# $CH_2(X^3B_1)$ 分子的结构与解析势能函数

吕 兵<sup>1,2</sup>,杨向东<sup>2</sup>

(1. 贵州师范大学理学院,贵州贵阳 550001;2. 四川大学原子与分子物理研究所,四川成都 610065)

摘要: 运用密度泛函理论(DFT)的 B3LYP 方法在 6-311++G<sup>\*\*</sup> 水平上, 对基态 CH<sub>2</sub> 分子的结构进行了 优化计算, 得到 CH<sub>2</sub> 分子的稳定结构为  $C_2$ ,构型, 电子态为  $X^3B_1$ , 平衡核间距  $R_{CH}$ = 0.1 072 nm、离解能  $D_e$ = 8.034 eV, 用多体项展式理论推导了基态 CH<sub>2</sub> 分子的解析势能函数, 其等值势能图准确再现了基态 CH<sub>2</sub> 分子 的结构特征及其势阱深度与位置.

关键词: CH<sub>2</sub>; Murrell-Sorbie 函数; 多体项展式理论; 解析势能函数 中图分类号: 0 561.1 文献标识码: A 文章编号: 0258-7971(2008)04-0376-05

CH<sub>2</sub> 是星际中重要的自由基分子, 其光离解在 天文学中是一个重要过程. CH<sub>2</sub> 分子的电子结构与 性质一直为理论和实验工作者广泛关注, Darwin 等<sup>[1]</sup>对 CH<sub>2</sub> 分子 的光谱 进行 了实验, 白洪涛 等<sup>[2,3</sup>]对 CH<sub>2</sub> 与 SO 的反应机理进行了相应的理 论计算. 但为了从理论上得到 CH<sub>2</sub> 分子的振转光 谱, CH<sub>2</sub> 的势能面还值得研究.

本文在 Gaussian 03 程序下, 采用密度泛函理 论(DFT)的 B3LYP 方法, 在 6-311++G<sup>\*\*</sup>基组 水平上对 CH<sub>2</sub> 分子的结构进行了优化计算, 得到 了其平衡几何结构以及力常数等参数, 在优化的基 础上计算了 CH<sub>2</sub> 分子的离解能, 推导出了 CH<sub>2</sub> ( $X^{3}B_{1}$ )分子的多体项展式势能函数, 并根据势能 函数讨论了它们的势能面静态特征.

1 基态  $CH_2$  分子的结构和离解极限

1.1 基态 CH<sub>2</sub> 分子的平衡结构、振动频率和力常数 采用 B3LYP 方法和 6-311++  $G^{**}$ 基组对基态的 CH<sub>2</sub> 分子可能的对称性结构进行了几何优化计算,其结果见表 1.由于分子的稳定性可以根据正则振动的频率来判断,若频率中有一个虚频则为过渡态,若全为实频则表明优化结构为稳定结构.由表 1 可知, CH<sub>2</sub> 分子的  $C_{2v}$ 对称性结构的单

重态和三重态的振动频率全为实频,均是稳定结构,但是三重态的能量低于单重态的能量,由此得出 CH<sub>2</sub> 分子的基态具有  $C_{2\nu}$ 对称性结构,电子态为  $X^{3}B_{1}$ ,结合文献[3],可以看出我们的计算值较为 准确.

为了计算 CH<sub>2</sub>( $X^{3}B_{1}$ ) 分子 对应于 离解极限 C( ${}^{3}P_{g}$ ) + H( ${}^{2}S_{g}$ ) + H( ${}^{2}S_{g}$ ) 的 离 解 能  $D_{e}$ , 在 B3LYP/6-311++G<sup>\*\*</sup> 水平上, 先优化出 CH<sub>2</sub> ( $X^{3}B_{1}$ ) 分子的平衡结构的能量为-39.161 a. u, 然后计算相应的 C( ${}^{3}P_{g}$ ) 和 H( ${}^{2}S_{g}$ ) 的基态能量, 可 以计算出 CH<sub>2</sub>( $X^{3}B_{1}$ ) 分子的离解能为  $D_{e}$  =  $E_{(C)}$  + 2 $E_{(H)}$  -  $E_{(CH_{2})}$  = 8.034 eV.相应的力常数为  $f_{11} = f_{22}$  = 0.372 89 a. u.,  $f_{12}$  = -0.005 42 a. u.,  $f_{1a} = f_{2a}$  = 0.0137 2 a. u.,  $f_{aa}$  = 0.086 05 a. u.

**1.2** 基态 CH2 分子的电子状态与离解极限 基态 C 原子的电子组态为<sup>3</sup> $P_g$ , H<sub>2</sub> 分子的电子态为  ${}^{1}\sum_{g}^{+}$ , 当生成 CH<sub>2</sub> 分子时, 其对称性会进一步降低, 根据原子分子反应静力学原理<sup>[4]</sup>,  ${}^{3}P_{g}$  和  ${}^{1}\sum_{g}^{+}$ 分解为  $C_{2v}$ 不可约表示的直和, 即

$${}^{3}P_{g}(C) \xrightarrow{3} A_{2} + {}^{3}B_{1} + {}^{3}B_{2},$$
  
 ${}^{1}\sum_{g}^{+} (H_{2}) \xrightarrow{\rightarrow} {}^{1}A_{1},$ 

<sup>\*</sup> 收稿日期:2008-02-15

基金项目:国家自然科学基金资助项目(105740%);高等学校博士学科点专项科研基金资助项目(20050610010);贵州省教育厅自然 科学基金资助项目(2005105).

作者简介: 吕 兵(1977-), 男, 贵州人, 硕士生, 主要从事原子与分子物理方面的研究.

Tab. 1 The equilibrium structure and vibration frequency of CH2 molecule

| 多重性 | 对称性                       | 平衡键长/nm                         | <b>键角/</b> (°)        | 能量/<br>Hartree | 振动频率/ cm <sup>-1</sup> |              |           |
|-----|---------------------------|---------------------------------|-----------------------|----------------|------------------------|--------------|-----------|
| 1   | $C_{2v}$                  | $R_{\rm CH} = 0.1113$           | 101.58                | - 39.147       | 1 384. 64              | 2 898.52     | 2964.33   |
|     | $C_{2v}$                  | $R_{\rm CH} = 0.1758$           | 180.0                 | - 38.972       | - 1044.59              | - 285.01     | 286.77    |
|     |                           | $R_{\rm HH} = 0.075 \ 4$        |                       |                |                        |              |           |
|     | $D \infty_{\rm h}$        | $R_{\rm CH} = 0.1067$           | 180.0                 | - 39.0975      | - 1364.76              | 1 2 3 6. 4 8 | 3224.09   |
| 3   | $C_{2v}$                  | $R_{\rm CH} = 0.1072$           | 133.36                | - 39.161       | 1 040. 26              | 3 1 18.85    | 3362.91   |
|     |                           | $R_{\rm CH} = 0.\ 107\ 5^{[3]}$ | 133.93 <sup>[3]</sup> | —              | —                      | —            | —         |
|     | $C_{\infty_{\mathrm{V}}}$ | $R_{\rm CH} = 0.1986$           | 180.0                 | - 39.037       | - 428.479              | - 428.47     | 133. 564  |
|     |                           | $R_{\rm HH}=~0.074~9$           |                       |                |                        |              |           |
|     | $D \infty_{\rm h}$        | $R_{\rm CH} = 0.1068$           | 180.0                 | - 39. 1589     | - 905.93               | - 905.93     | 3 203. 37 |

根据 C 2v 群表示的直积

 $({}^{3}A_{2}+{}^{3}B_{1}+{}^{3}B_{2}) \neq {}^{1}A_{1} \xrightarrow{\rightarrow} {}^{3}A_{2}+{}^{3}B_{1}+{}^{3}B_{2},$ 包含<sup>3</sup>*B*<sub>1</sub>电子态,因此由基态的 H<sub>2</sub>( $X^{1}\sum_{g}^{+}$ )分子 和基态的 C( ${}^{3}P_{g}$ )原子可以生成 CH<sub>2</sub>( $C_{2v}$ )分子,表 示为

 $C + H_2 \rightarrow CH_2$ .

$${}^{3}P_{g}{}^{1}\sum_{g}^{+}{}^{3}A_{2} + {}^{3}B_{1} + {}^{3}B_{2}.$$
 (1)

基态 H 原子电子组态为 ${}^{2}S_{g}$ , CH 分子的电子 态为 ( ${}^{2}\prod_{g}$ ),当生成 CH<sub>2</sub> 分子时,其对称性也会 进一步降低,根据原子分子反应静力学原理<sup>[4]</sup>, ${}^{2}S_{g}$ 和  ${}^{2}\prod_{g}$ 分解为  $C_{2v}$  不可约表示的直和,即

 $^{2}S_{g}(\mathrm{H}) \xrightarrow{\rightarrow} ^{2}A_{1},$ 

<sup>2</sup>  $\prod_{g}$  (CH)  $\xrightarrow{\rightarrow} {}^{2}B_{1} + {}^{2}B_{2}$ ,

再根据 C2v群表示的直积

 $({}^{2}B_{1}+{}^{2}B_{2}) \neq {}^{2}A_{1} \rightarrow {}^{1,3}B_{1}+{}^{1,3}B_{2},$ 也包含<sup>3</sup>B<sub>1</sub> 电子态,因此由基态的 CH( ${}^{2}\prod_{g}$ )分子 和基态的 H( ${}^{2}S_{g}$ )原子也可以生成 CH<sub>2</sub>( $C_{2v}$ )分子, 表示为

H+ CH CH<sub>2</sub>,  

$${}^{2}S_{g}{}^{2}\prod_{n}{}^{1,3}B_{1}{}^{+1,3}B_{2}.$$
 (2)

根据 CH  $({}^{2} \prod_{g})$  分子的离解通道, 由微观过 程的传递性原理<sup>[4]</sup>, 由 2 个基态的 H $({}^{2}S_{g})$  原子和 基态的 C $({}^{3}P_{g})$  原子生成 CH<sub>2</sub>(  $C_{2v}$ ) 分子时的电子 态也包含<sup>3</sup>B<sub>1</sub>. 根据微观可逆性原理<sup>[4]</sup>,基态  $CH_2(X^3B_1)$ 分子的可能离解极限为

$$\operatorname{CH}_{2}(X^{3}B_{1}) \xrightarrow{\rightarrow} \begin{cases} \operatorname{C}(^{3}P_{g}) + \operatorname{H}_{2}(X^{1}\sum_{g}^{+}) \\ \operatorname{H}(^{2}S_{g}) + \operatorname{CH}(X^{2}\prod_{g}) \\ \operatorname{C}(^{3}P_{g}) + \operatorname{H}(^{2}S_{g}) + \operatorname{H}(^{2}S_{g}). \end{cases}$$
(3)

(3) 式中的 3 个离解通道均符合自旋限制和对称性限制.

#### 2 CH, H<sub>2</sub> 分子的势能函数和光谱常数

采用多种方法和基组对 CH 和 H<sub>2</sub> 分子的几何 结构进行了优化计算,结合实验数据,选择 CCSD (T) 方法和 6- 311+ + G<sup>\*\*</sup> (3df, 2pd) 基组对 CH 和 H<sub>2</sub> 分子进行单点能扫描,对应于不同核间距的 势能值拟合为如下形式的标准的 M urrell-Sorbie (M-S) 势能函数<sup>[5,6]</sup>

$$V = -D_{e}(1 + a_{1}\rho + a_{2}\rho^{2} + a_{3}\rho^{3}) \cdot \exp(-a_{1}\rho), \qquad (4)$$

式中  $\rho = R - R_e, R$  为核间距,  $R_e$  为平衡核间距,  $D_e, a_1, a_2, a_3$  为拟合参数. 根据 M – S 势能函数与 力常数以及力常数与光谱常数的关系<sup>[5,6]</sup>, 可以计 算出 CH 和 CH<sub>2</sub> 分子的光谱常数, 表 2 列出了 CH 和分子 H<sub>2</sub> 的 M – S 势能函数参数和光谱常数. 通 过与实验数据<sup>[7]</sup>的比较, 可以看出本文的计算结 果与实验值符合得较好.

#### 表 2 CH, H<sub>2</sub> 分子的基态 M-S 势能函数参数和光谱常数

Tab. 2 The M-S potential energy function parameters and spectroscopic constants of CH and H2 molecules

| 分子               | D d<br>eV              | R d<br>nm              | $a_1/$<br>nm <sup>-1</sup> | $a_2/$ nm <sup>-2</sup> | $a_{3}/$ nm <sup>-3</sup> | $\omega_{e}/cm^{-1}$    | $\omega_{ex} a$<br>cm <sup>-1</sup> | B d<br>cm <sup>-1</sup>  | $\alpha_{e}/$ cm <sup>-1</sup> |
|------------------|------------------------|------------------------|----------------------------|-------------------------|---------------------------|-------------------------|-------------------------------------|--------------------------|--------------------------------|
| СН               | 3.631                  | 0.112                  | 38. 32                     | 351.12                  | 2 268. 1                  | 2852.53                 | 62. 704                             | 14. 429                  | 0. 532                         |
|                  | 3.640 2 <sup>[7]</sup> | 0.111 9 <sup>[7]</sup> |                            |                         |                           | 2 858. 5 <sup>[7]</sup> | 63.02 <sup>[7]</sup>                | 14.457 <sup>[7]</sup>    | 0. 534 <sup>[7]</sup>          |
| $\mathrm{H}_{2}$ | 4. 7469                | 0.0742                 | 39.62                      | 406.8                   | 3 574.4                   | 4 401.103               | 121. 209                            | 60. 762                  | 3. 055                         |
|                  | 0.747 2 <sup>[7]</sup> | 0.074 1 <sup>[7]</sup> |                            |                         |                           | 4401.213 <sup>[7]</sup> | 121.336 <sup>[7]</sup>              | 60. 853 0 <sup>[7]</sup> | 3. 062 2 <sup>[7]</sup>        |

### 3 CH<sub>2</sub>分子的多体项展式势能函数

多体项展式理论<sup>[5]</sup> 是一个研究分子结构和多 原子分子解析势能函数很好的方法之一,该方法得 到了广泛的应用<sup>[8~11]</sup>.对于 CH<sub>2</sub> 分子,设基态原 子的能量为零,则满足(3)式离解极限的多体项展 式势能函数为

$$V(R_{1}, R_{2}, R_{3}) = V_{CH}^{(2)}(R_{1}) + V_{CH}^{(2)}(R_{2}) + V_{HH}^{(2)}(R_{3}) + V_{CH_{2}}^{(3)}(R_{1}, R_{2}, R_{3}),$$
(5)

式中  $V_{\text{CH}}^{(2)}(R_1)$ ,  $V_{\text{CH}}^{(2)}(R_2)$ ,  $V_{\text{CH}}^{(2)}(R_3)$  均为两体项 的势能函数, 采用 M – S 势能函数来表达. 根据势 能面的结构特征, 采用优化内坐标, 选择  $C_{2v}$  为参 考结构, 其中  $R_1^0 = R_2^0 = 0.107 \ 2 \ \text{nm}, R_3^0 =$ 0. 1969 nm, 内坐标  $\Omega = R_i - R_i^0$  可按下式变换为 优化内坐标

$$\begin{bmatrix} S_1 \\ S_2 \\ S_3 \end{bmatrix} = \begin{bmatrix} \sqrt{1/2} & \sqrt{1/2} & 0 \\ \sqrt{1/2} & -\sqrt{1/2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \end{bmatrix}, \quad (6)$$

显然在平衡构型,有 *S*<sub>1</sub> = *S*<sub>2</sub> = *S*<sub>3</sub> = 0, (6) 式中, *V*<sup>(3)</sup><sub>CH,</sub>(*R*<sub>1</sub>, *R*<sub>2</sub>, *R*<sub>3</sub>) 为三体项, 其形式为

$$V_{\rm CH_2}^{(3)}(R_1, R_2, R_3) = P \bullet T, \tag{7}$$

式中 P 为多项式, T 为量程函数, 分别表示为 P =  $C_1 + C_2S_1 + C_3S_2^2 + C_4S_3 + C_5S_1S_3 + C_6S_1^2 + C_7S_3^2$ , T =  $\left[1 - \tanh\left(\frac{Y_1S_1}{2}\right)\right] \left[1 - \tanh\left(\frac{Y_3S_3}{2}\right)\right]$ . (1)

优化内坐标中的 $S_2$ 对 $R_1$ 和 $R_2$ 的交换是反对称的, 但 $R_1$ 和 $R_2$ 交换后的分子结构是等同的, 为 了满足这一物理意义上的要求,  $S_2$ 只能含偶次项. 对势能表面进行非线性优化, 可以确定出 2 个非线 性系数( $Y_1$ ,  $Y_3$ ),而7个线性系数( $C_1$ ,  $C_2$ ,  $C_3$ ,  $C_4$ ,  $C_5$ ,  $C_6$ ,  $C_7$ )可以根据 CH<sub>2</sub>分子的结构以及性质参 数得出.使用表 1, 2中的数据,得到 CH<sub>2</sub>分子的多 体项展式势能函数的三体项中的参数为  $C_1 =$ 65. 1938 eV,  $C_2 = 1$  138. 732 eV • nm<sup>-1</sup>,  $C_3 =$ 475. 6798 eV • nm<sup>-2</sup>,  $C_4 = -$  896. 648 2 eV • nm<sup>-1</sup>,  $C_5 = -$  7 829. 164 eV • nm<sup>-2</sup>,  $C_6 = 5$  864. 902 4 eV • nm<sup>-2</sup>,  $C_7 = 2983$ . 8146 eV • nm<sup>-2</sup>,  $Y_1 = 1$ . 8,  $Y_3 = 2$ . 0.

# 4 结果与讨论

为了直观地展示 CH2 分子的结构与对称性以 及形成机理,图 1~3 绘出了基态 CH2 分子的伸缩 振动势能面图和旋转势能面图.

图 1 是根据 CH<sub>2</sub> 分子的解析势能函数在固定 键角∠HCH= 133. 36°的情况下, 绘制的 C —H 键 对称伸缩振动的等值势能面图, 从图 1 中清楚地看 到, 其等值势能面准确地再现了 CH<sub>2</sub> 分子的  $C_{2v}$ 对 称性结构的特征, 在 a 处  $R_1(C - H) = R_2(C - H)$ = 0. 107 2 nm 存在很深的势阱, 势阱深度为 8. 034 eV, 容易生成 H —C —H 的络合物分子, 表示在该 处形成稳定的 CH<sub>2</sub> 分子, 这与优化计算结果相一 致. 并且在 H+ CH → CH<sub>2</sub> 反应过程中不存在明显 的势垒, 是一个很容易进行的无阈能反应.

图 2 是 CH<sub>2</sub> 分子的 C—H 键对称伸缩振动的 三维势能图. 在三维势能图的最低点(A1 点) 代表 形成稳定的 CH<sub>2</sub> 分子. 当H, C 和 H 原子相互远离 时, 体系的能量趋于相对的势能零点(D1 点), 势能 函数满足 CH<sub>2</sub> 分子离解极限H+ C+ H 的特征, 并 且在图中表现出了 CH<sub>2</sub> 分子离解的 3 个可能通 道, 可以得出通道 1 的离解能为 4.382 eV, 通道 3 的离解能为 3.652 eV, 与实验值 4.371 eV 和



Fig. 1 The bonds stretching contour of CH<sub>2</sub> molecule



图 3 CH<sub>2</sub> 分子的旋转势能面

通道 1: (A1 点 B1 点, A1 点 C1 点)  

$$CH_2(X^3B_1) \stackrel{\cdot}{} H(^2S_g) + CH(X^2 \prod_g)$$
,  
通道 2: (A1 点 D1 点)  
 $CH_2(X^3B_1) \stackrel{\cdot}{} C(^3P_g) + H(^2S_g) + H(^2S_g)$ ,  
通道 3: (B1 点 D1 点, C1 点 D1 点)  
 $CH(X^2 \prod_g) \stackrel{\cdot}{} C(^3P_g) + H(^2S_g)$ .

图 3 是将 H — H 键固定在 X 轴上, 让 C 原子 绕 H — H 键旋转时的等势能面图. 图中清晰地显示 了 CH<sub>2</sub> 分子的平衡结构特征, 即在 X = 0.0 nm, Y= 0.042 4 nm 处有一个角形极小, 这说明 C 原子 从垂直于键方向进攻, 不存在势垒, 只要 C 原子具 有一定的初始平动能, 就有可能打断 H — H 键而生 成  $C_{2v}$  对称性结构的 CH<sub>2</sub> 分子.



图 2 CH<sub>2</sub>的对称伸缩振动三维势能面

Fig. 2 The bonds stretching three- dimensional figure of  $CH_2$  molecule

# 5 结 论

本文在 B3LYP/6- 311+ +  $G^{**}$  水平上对 CH<sub>2</sub> 分子进行了优化计算,得到其基态结构为  $C_{2v}$ 对称性结构,电子态为  $X^{3}B_{1}$ ,进一步的计算得到 了 CH<sub>2</sub> 分子的离解能等参数. 然后用最小二乘法 拟合出了基态的 CH 分子和H<sub>2</sub> 分子的 M – S 势能 函数参数,并用多体项展式理论方法导出 CH<sub>2</sub> 了 分子的基态解析势能函数,绘出的等值势能面图和 三维势能图准确地再现了 CH<sub>2</sub> 分子的平衡结构特 征,同时表明H+ CH  $\stackrel{\rightarrow}{}$  CH<sub>2</sub> 是一个比较容易发生 的无阈能反应,这为进一步研究 H+ CH  $\stackrel{\rightarrow}{}$  CH<sub>2</sub> 体 系的分子反应动力学提供了依据.

### 参考文献:

- DARWIN D C, YOUNG A T, JOHNST ON H S, et al. Rate constants for triplet methylene (X<sup>3</sup>B<sub>1</sub>) removal by oxygen, nitric oxide and acetylene from infrared diode laser flash kinetic spectroscopy[J]. J Phys Chem, 1989, 93: 1 074-1 085.
- [2] 白洪涛,黄旭日,于健康,等.乙炔基自由基 C<sub>2</sub>H 与氧
   气反应的密度泛函理论研究[J].化学学报,2004,62
   (5):461-466.
- [3] 白洪涛,黄旭日.亚甲基自由基(CH<sub>2</sub>)与SO反应机理 的理论研究[J].化学学报,2006,64(2):139144.
- [4] 朱正和. 原子分子反应静力学[M]. 北京: 科学出版

Fig. 3 T he contour of  $CH_2$  for C atom moving around the H- H bond

社,1996.

- [5] 朱正和, 俞华根. 分子结构与分子势能函数[M]. 北 京:科学出版社, 1997.
- [6] 庞礼军, 汪荣凯, 令狐荣锋, 等. HF 分子基态 (X<sup>1</sup>∑<sup>+</sup>)
   的分子结构与势能函数[J]. 云南大学学报: 自然科学版, 2007, 29(2): 156-159.
- [7] HUBER K P, HERTZBERG. Molecular spectrum and molecular structure (IV) constants of diatomic molecules [M]. New York: Van Nostrand Reinhold Company, 1979.
- [8] 刘玉芳, 韩晓琴, 吕广申, 等. B<sub>2</sub>C(<sup>1</sup>A<sub>1</sub>) 和 BC<sub>2</sub>(<sup>2</sup>A) 的
   结构与解析势能函数[J]. 物理学报, 2007, 56(8):

4 412 4 419.

- [9] 伍冬兰,程新路,杨向东,等. SiO<sub>2</sub>分子的基态(X<sup>1</sup>A<sub>1</sub>)
   结构与分析势能函数[J].物理学报,2007,55(1):
   147.
- [10] 刘玉芳, 徐后菊, 吴言宁, 等. SO<sub>2</sub> (<sup>2</sup>B<sub>1</sub>) 离子的结构
   与势能函数[J]. 物理学报, 2004, 53(6): 1749-1752.
- [11] 罗德礼,蒙大桥,朱正和.LH,LiO和LiOH的分析
   势能函数与分子反应动力学[J].物理学报,2003,52
   (10):2438-2442.
- [12] LUO Y R. Handbook of bond dissociation energies in organic compounds[M]. New York: CRC Press, 2003.

# Structure and analytic potential energy function of the molecule CH<sub>2</sub>

LV Bing<sup>1, 2</sup>, YANG Xiang-dong<sup>2</sup>

(1. School of Science, Guizhou Normal University, Guiyang 550001, China;

2. Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China)

**Abstract**: The density function (B3LYP) method has been used to optimize the possible ground state structures of CH<sub>2</sub> molecule. The results show that the ground state of CH<sub>2</sub> molecule has  $C_{2v}$  symmetry and is in the  $X^{3}B_{1}$  state. The parameters of structure are  $R_{CH} = 0$ . 107 2 nm,  $D_{e} = 8.034 \text{ eV}$ , respectively. The potential energy function of CH<sub>2</sub> has been derived from the many-body expansion theory. The potential energy function describes correctly the configuration and the dissociation energy of the ground-state CH<sub>2</sub> molecule.

Key words: CH2; Murrell-Sorbie function; many-body expansion theory; potential energy function

Lie symmetry algebraic of nonconservative dynamical systems

LIU Cui mei<sup>1</sup>, LI Yan min<sup>1</sup>, FU Jing li<sup>2</sup>

(1. Department of Physics, Shangqiu Teachers College, Shangqiu 476000, China;

2. Institute of Mathematical Physics, Zhejiang Sci Tech University, Hangzhou 310018, China)

Abstract: Lie symmetry algebra of linear nonconservative dynamical systems is studied. By using 1-1 mapping, the Lie point and Lie contact symmetry algebras are obtained from two independent solutions of the linear equations of motion.

Key words: Lie algebra; symmetry; infinitesimal transformation; nonconserved dynamical system