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Abstract: Substantial in vitro and in vivo evidence of neurotrophic and neuroprotective effects
of lithium suggests that it may also have considerable potential for the treatment of neurodegenerative
conditions. Lithium’s main mechanisms of action appear to stem from its ability to inhibit glycogen
synthase kinase-3 activity and also to induce signaling mediated by brain-derived neurotrophic fac-
tor. This in turn alters a wide variety of downstream effectors, with the ultimate effect of enhancing
pathways to cell survival. In addition, lithium contributes to calcium homeostasis. By inhibiting N-
methyl-D-aspartate receptor-mediated calcium influx, for instance, it suppresses the calcium-de-
pendent activation of pro-apoptotic signaling pathways. By inhibiting the activity of phosphoinositol
phosphatases, it decreases levels of inositol 1,4 ,5-trisphosphate, a process recently identified as a
novel mechanism for inducing autophagy. These mechanisms allow therapeutic doses of lithium to
protect neuronal cells from diverse insults that would otherwise lead to massive cell death. Lithium,
moreover, has been shown to improve behavioral and cognitive deficits in animal models of neurode-
generative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, and Hun-
tington’s, Alzheimer’s, and Parkinson’s diseases. Since lithium is already FDA-approved for the
treatment of bipolar disorder, our conclusions support the notion that its clinical relevance can be ex-
panded to include the treatment of several neurological and neurodegenerative-related diseases.
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(BD) ,a chronic mental illness characterized by cycling

1 INTRODUCTION

between moods of mania and depression''’. In fact,
For more than 60 years, lithium has been the  current treatment guidelines frequently recommend lith-
standard pharmacological treatment for bipolar disorder ~ ium as the first-line treatment against acute mania and
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prophylactically for recurrent manic and depressive epi-
sodes. Clinically, lithium can be used adjunctively
with other mood stabilizers, antidepressants, and anti-
psychotic medications to facilitate , enhance, or prolong
both treatment response and remission'>’. While
lithium’s mood-stabilizing effects have been associated
with a number of actions”’ ,the underlying biochemical
mechanisms involved have yet to be defined.

Neuronal atrophy and reduced cellular density, as
well as reduced grey matter volume were found in vari-
ous brain regions of patients with BD"*' | and MRI stud-
ies of the prefrontal cortex in patients with BD show ab-
normally low levels of the neuronal integrity marker N-
acetyl-asparate (NAA)"'. Tt is interesting to note that
BD patients who receive chronic lithium treatments
show consistently higher NAA levels and reduced loss
of grey matter volume'®® . In fact, significant attention
has focused on lithium’s neurotrophic and neuropro-
tective effects during the last decade, and considera-
ble research has been conducted on its efficacy as a
novel therapeutic in various disease models.

The neuroprotective effects of lithium against
glutamate-induced excitotoxicity have been extensive-
ly studied in various cellular and animal models.
Glutamate excitotoxicity has been implicated in a va-
riety of neurodegenerative diseases such as stroke,
Huntington’s disease ( HD ), amyotrophic lateral
sclerosis (ALS), brain trauma, cerebellar degenera-
tion, spinal cord injury, and possibly Alzheimer’s
disease (AD) and Parkinson’s disease (PD)"".
Lithium has also been shown to protect against insults
to neurons in the central nervous system ( CNS) and
neurally related cell lines; these insults include en-

doplasmic reticulum (ER) stress''"*

, apoptosis in-
duced by withdrawal of growth factor' ' | B-amyloid
(AB) U4 or colchicinest™ high potassium depri-

6] and supra-

vation' ', exposure to heat shock!"! |
therapeutic concentrations of anticonvulsants ( pheny-
toin and carbamazepine) ™', This article reviews re-
cent findings regarding potential targets involved in
lithium’s neuroprotective effects and their implications

for the treatment of human disorders of the CNS.

2 MECHANISMS UNDERLYING
LITHIUM'S NEUROPROTECTIVE
EFFECT

The fact that

normally become evident only after long-term treat-

lithium > s beneficial effects

ment and that these effects are not immediately re-
versed after discontinuation of the drug suggests that
the drug works by altering signaling pathways and
gene expression in the CNS. Fig. 1 shows the many
signaling pathways and mechanisms of action impli-

cated to date in lithium’s neuroprotective effects.
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Fig. 1 A schematic illustration of proposed mechanisms
underlying lithium’s neuroprotective effects.
Lithium can directly and indirectly inhibit constitu-
tively activated glycogen synthase kinase-3 ( GSK-3)
by multiple mechanisms, leading to disinhibition of
several transcription factors, including cyclic AMP-
response element binding protein ( CREB), heat-
shock factor-1 (HSF-1), and B-catenin, and subse-
quent induction of major cytoprotective proteins such
as brain-derived neurotrophic factor ( BDNF) , vas-
cular endothelial growth factor (VEGF) , heat shock
protein ( HSP)70, and B-cell lymphoma/leukemia-2
protein (Bel-2). Lithium-induced neurotrophic fac-
tors such as BDNF, in turn, activate its cell surface
receptor and the downstream phosphoinositide 3-ki-
nase (PI3K)/Akt and MAP kinase kinase ( MEK)/
extracellular-signal regulated kinase ( ERK) path-
ways. BDNF induction is an early and essential step
for neuroprotection against glutamate excitotoxicity
and may contribute to lithium-induced neurogenesis.
Lithium also indirectly inhibits GSK-3 activity via
PI3K-dependent activation of protein kinase C
(PKC) and c¢AMP-dependent activation of protein
kinase A (PKA). The ability of lithium to decrease
inositol 1,4 ,5-trisphosphate (IP3) levels is a novel
route for inducing autophagy. Furthermore, lithium
inhibits  N-methyl-D-aspartate ( NMDA ) receptor-
mediated calcium influx, which in turn decreases
subsequent activation of c-Jun N-terminal kinase
(JNK), p38 kinase, and transcription factor activa-
tor protein-1 ( AP-1). Inhibition of intracellular cal-
cium increase not only suppresses cellular stress,
but also reduces the activity of calpain and calpain-
mediated activation of pro-apoptotic cyclin-dependent
kinase 5 ( Cdk5)/p25 kinase. Lines with solid ar-
rows represent stimulatory connections; lines with
flattened ends represent inhibitory connections.
Dashed lines represent pathways with reduced activi-

ty as a result of lithium treatment.
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2.1 Protection against glutamate-induced exci-
totoxicity

In cultured rat CNS neurons that included cere-
bellar granule cells (CGCs) and cerebral cortical

190 chronic lithium treat-

and hippocampal neurons
ment was found to robustly reduce glutamate-induced
excitotoxicity mediated by NMDA receptors. This
effect was at least partly due to lithium’s ability to in-
hibit the influx of calcium, which mediates activity
in NMDA receptors. Studies further indicate that the
mechanism of action results from the attenuation of
constitutive phosphorylation at Tyrl 472 of the NR2B
subunit of the NMDA receptor, which is catalyzed by
Fyn, a member of the Src tyrosine kinase fami-

20-21 .. .. .
ly®?" . Brain ischemia is known to increase Src-me-

223) and to

diated tyrosine phosphorylation of NR2A
increase the interaction of NR2A with Src and Fyn,
which is mediated by postsynaptic density protein 95
(PSD-95) 2.

chemia-induced NR2A phosphorylation and PSD-95
[25]

Lithium blocks increases in both is-

interaction

CdkS also regulates signaling mediated by NM-
DA receptors, either directly through phosphorylation
of the NR2B subunit or indirectly through phospho-

rylation of PSD-95'%%"),
regulated by its co-activator p35, but when it binds

CdkS activity is primarily

to p25 (the product of calpain-mediated cleavage of
p35), Cdk5 becomes pro-apoptotic and its activity

d'#®! Sustained activation of

becomes dysregulate
CdkS5 in neurons is believed to be involved in many
neurodegenerative  diseases™ . In cultured rat
CGCs, lithium pretreatment prevents colchicine-in-
duced apoptosis, associated increases in Cdk5 ex-

pression, and fragmentation of p35 to p25°"7. 1

n
cultured primary brain neurons and rat brains, more-
over, pretreatment with lithium also reduces intracel-
lular calcium increase, calpain activity, Cdk5 acti-
vation, and cellular death induced by 3-nitropropi-
onic acid (3-NPA)'*'—a succinate dehydrogenase
inhibitor used to induce striatal pathology similar to
that observed in HD'**'.

Using cultured rat CGCs as a model to investi-
gate the mechanisms underlying human neuropatholo-
gy, researchers have associated excitotoxicity with
down-regulation of the cytoprotective Bel-2 protein
and also with up-regulation of pro-apoptotic proteins
such as Bax and p53"**'. Apoptotic death in cultured
rat CGCs, furthermore, was found to require activa-

tion of both JNK and p38 mitogen-activated protein

kinase ( MAP kinase ), which led to a robust in-
crease in AP-1 binding before apoptotic death'™’.
Long-term treatment with therapeutic concentrations
of lithium, however, was found to prevent both the
signaling events and the sharp increase in apoptosis.
2.2 Inhibition of GSK-3 and stabilization of
[B-catenin

Under non-stimulated basal conditions, GSK-3,
an enzyme with a and B isoforms that is pro-apoptot-
ic and appears to be a major regulator of inflamma-
tion, is considered to be constitutively active. Dys-
function of this enzyme, moreover, has been impli-
cated in the pathophysiology of mood disorders, AD,
diabetes, cancer, and inflammatory and autoimmune

3037 It has recently been suggested that

diseases
lithium’s mood-stabilizing, neurogenetic, neurotro-
phic, neuroprotective, and anti-inflammatory effects
stem, at least in part, from its ability to inhibit the
kinase activity of GSK-31% %%

from the fact that lithium is a competitive inhibitor of

This ability arises

magnesium. Since GSK-3 catalysis is dependent on

ATP-magnesium, lithium can inhibit its kinase activ-
4041]

ity directly"

Lithium also inhibits GSK-3 activity indirectly.
At therapeutic concentrations, it has been shown to
enhance phosphorylation of GSK-3a at Ser21 and
GSK-3B at Ser9. Researchers have identified a num-
ber of mechanisms that contribute to this effect, in-
cluding ¢cAMP-dependent activation of PKA ***/
PI3K-dependent activation of PKC™' and Akt"**'
and auto-regulation involving inhibitor-2 complex ac-
tivity, which enhances the inhibition of protein phos-
phatase-1'*’. Others have shown that in vitro and in
vivo, lithium treatment can decrease GSK-3f tran-
scription ). It also inhibits GSK-3 by negatively
regulating the calcium-dependent protease calpain,
whose N-terminal cleavage upregulates the activity of
GSK-3p3 kinase ', The fact that GSK-3 activation
has been linked to apoptotic cell death induced by a
variety of neural insults including glutamate excito-
toxicity **' makes it highly likely that neuroprotective
effect of lithium stems mainly from its ability to in-
hibit GSK-3. In fact, when RNA interference de-
pletes either of the 2 GSK-3 isoforms in neurons cul-
tured from the rat cerebral cortex, glutamate-induced

d'*). By the same token,

excitotoxicity is blocke
transfection with isoform-specific dominant-negative
mutants of GSK-3 or treatment with other non-selec-

tive pharmacological GSK-3 inhibitors also results in
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lithium-like neuroprotection against glutamate excito-
toxicity. Although GSK-3a and GSK-3B could have
distinct roles in transcriptional regulation and cell

11991 these results strongly suggest that both

surviva
are involved in the execution of glutamate-induced
neuronal death, and that both isoforms are initial tar-
gets of lithium-induced neuroprotection.

The transcription factor B-catenin is a substrate
of GSK-3 and is part of the Wnt pathway. Its cyto-
plasmic levels are negatively regulated by constitu-
tively active GSK-3. After being phosphorylated by
GSK-3, B-catenin undergoes proteasomal degrada-
tion"”''. Increases in cytoplasmic accumulations of
B-catenin facilitate its translocation into the nucleus.
There it conjoins with T-cell-specific transcription
factor ( Tef )/lymphoid enhancer binding factor
(Lef), enhances the transcription of growth fac-

152531 " and enhances genes involved in apoptotic

[54

tors
inhibition'™’. Results such as these have led some to
propose elevating B-catenin as a novel therapeutic
strategy for treating mood disorders. In support of
this theory, treatment with lithium increases B-cate-

[11 [55-56]

nin levels both in vitro' "~ and in vivo , and pro-

motes  [(B-catenin-dependent  transcriptional  e-

13136 These results indicate that lithium-in-

vents
duced accumulation of B-catenin could be relevant to
its neuroprotective and therapeutic effects.
2.3 Induction of survival molecules in the brain
In addition to the prophylactic qualities de-
scribed above, in rat brains and cultured CGCs chro-
nic lithium treatment has been found to induce Bel-2
UL Bel2 is an

anti-apoptotic protein that inhibits the release of cyto-

expression in the frontal cortex

chrome ¢ from mitochondria by regulating the perme-
ability of the mitochondrial outer membrane >
The ability to maintain calcium homeostasis in the
ER is another cytoprotective action of Bcl-2'7%
We have associated chronic lithium’s ability to in-
duce upregulation of Bel-2 in PC12 cells with its cy-
toprotective effects against AR peptide and thapsigar-

12610 In the rat brain, chro-

gin-induced ER stress
nic treatment with valproate—a mood-stabilizing
drug, anticonvulsant, and histone deacetylase inhibi-
tor ***! often used in BD patients with poor response
to lithium—also upregulates Bcl-2'""'. A recent
study shows that, in SH-SYSY cells, Bel-2 transla-
tion is directly inhibited by expression of the specific

microRNA miR-34a'%/.

in primary cultures of hippocampal neurons, chronic

In the rat hippocampus and

treatment with lithium or valproate decreases levels of
several microRNAs, including miR-34a"* | sugges-
ting a common regulator shared by these structurally
dissimilar mood stabilizers and indicating that a novel
target accounts for their therapeutic efficacy.

BDNF, a major neurotrophin essential for corti-
cal development, synaptic plasticity, and neuronal
survival , is likely one of the mediators of the clinical
efficacy of antidepressants and anxiolytics' .
Long-term treatment of cultured cortical neurons with
lithium induces BDNF, which in turn increases
phosphorylation at the Tyr490 residue and activates
its tyrosine receptor kinase B ( TrkB) receptor ®’.
Chronic treatment of rats with lithium also increases
protein levels of BDNF in various brain regions, but

B Recent

without altering the expression of Trk
study in cultured cortical neurons further reveals that
treatment with lithium or valproate at therapeutic
concentrations for 48 hours selectively increases the
levels of exon IV (formerly rat exon IIT)-containing
BDNF mRNA, and the activity of BDNF promoter
IV, Notably, this effect can be mimicked by the
pharmacological inhibition of GSK-3 or by the siR-
NA-mediated gene silencing of either the GSK-3a or
GSK-3pB isoform. By the same token, adding the
Trk-tyrosine kinase inhibitor K252a, or a BDNF-
neutralizing antibody, counteracts lithium’s ability to

protect neurons from excitotoxicity ®’ .

In cultured
cortical neurons, heterozygous or homozygous knock-
out of the BDNF gene also blocks lithium’s neuropro-
tective effects completely.

Researches in vitro and in vivo have further
shown that lithium treatment increases the expression
of VEGF"> 7 " in all probability by inhibiting
GSK-3B and stabilizing B-catenin signaling. VEGF

[75

promotes cell proliferation'”’ | proneuronal differen-

tiation of newly born cells'” | migration of immature
176771 and neurovascular remodeling after

lithium

neuroblasts
(74, 76, 78]

stroke By upregulating VEGF,

treatment optimizes skeletal myoblast functions for

) and prevents

[52]
b

cellular cardiomyoplasty in vitro
stress-induced reductions in VEGF levels and
promotes angiogenic and anti-apoptotic signaling in
rat ischemic preconditioned myocardium'™'.

HSPs are a group of molecular chaperones that
promote the folding of proteins and refolding of mis-
folded proteins. They also inhibit protein aggregate
formation and, through the ubiquitin-proteasome sys-

tem, facilitate the degradation of abnormally folded
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[80-81]

Among HSPs, HSP70 exerts a wide

variety of neuroprotective effects against apopto-

proteins
sis'®'. In various animal models, overexpression of
HSP70 has been recognized as a potential therapeutic
target against ischemic neuronal injury**"'. The ex-
pression of HSP70 is regulated by HSF-1"%)  a tran-
scription factor negatively regulated by GSK-33-de-
pendent phosphorylation'¥”’. Not surprisingly, there-
fore, GSK-3B activity correlates negatively with both
DNA binding activity of HSF-1 and HSF-1-depend-
ent transcription ** **/ . In light of the fact that
lithium’s inhibition of GSK-3 is associated with the
activation of HSF-1, upregulation of the heat-shock
response may account for some part of the neuropro-
tective effect of lithium.
2.4 Induction of autophagy

Autophagy—a physiological process for degrad-
ing cytoplasmic proteins or organelles in bulk—has
recently been recognized as a principal response to
cellular stress and an important regulator of neuronal
function and survival. As a ‘quality control’ process,
autophagy is believed to be particularly beneficial in
neurodegenerative disorders ( AD, PD, ALS, spino-
cerebellar ataxia type 3, and HD) characterized by
the accumulation of misfolded disease-causing pro-

[89-92]

teins . Authophagy appears to be negatively reg-

ulated by the mammalian target of rapamycin
(mTOR). By inhibiting mTOR, rapamycin upregu-
lates autophagy and this has been shown to be bene-
ficial in various models of neurodegenerative disea-
ses®?") " Other mechanisms for inducing autophagy
include inhibiting inositol monophosphatase and ino-
sitol transporters'”’. Lithium’s ability to deplete free
inositol and subsequently decrease IP3 levels was re-
cently identified as a novel route ( independent of
mTOR) for inducing autophagy'***’ and its attend-
ant benefits.
2.5 Induction of neurogenesis

Lithium was found to stimulate progenitor prolif-
eration in cultured brain neurons and to prevent the
loss of proliferation induced by glutamate or glu-

[96]

cocorticoids In addition, chronic lithium treat-

ment not only enhances neurogenesis in the hippo-

[97]

campus of normal mice """, but also restores neuro-

genesis in the brain in an animal model of Down syn-
drome' ™.

In primary rat hippocampal progenitor cultures,
long-term lithium treatment promotes the conversion

of these progenitor cells into neurons through the

GSK-3p3 activation  path-
way ') In a rat model of stroke, chronic lithium

inhibition/B-catenin

treatment upregulates the generation and survival of
newborn cells in the hippocampus by the ERK path-
way , and improves the behavioral performance of rats
after transient global cerebral ischemia''”"'. One
possible common downstream event related to neuro-
genesis is lithium-induced upregulation of BDNF,

which is
[102]

necessary for hippocampal neurogene-

sis

3 CLINICAL IMPLICATIONS
AND APPLICATIONS

3.1 BD

Because lithium has been the mainstay of treat-
ment for bipolar disorder, understanding the mecha-
nisms underlying its neuroprotective effects could
well provide insights into potential causes of the dis-
ease. With few exceptions, for instance, drugs pre-
scribed to treat BD work by conferring some measure

HO104]  Ag observed in  rodent

of neuroprotection
models, the antidepressant and antimanic effects of
lithium are most likely due to the inhibition of the ki-
nase GSK-37% 1% " whose overexpression in mice
produces behavioral correlates of hyperactivity and

- [107]
mania

. Drugs or genetic approaches that inacti-
vate GSK-3 also alleviate depressive-like behaviors
in mice expressing a mutant form of the brain seroto-

1981 while administering

nin-synthesizing enzyme
lentiviral-mediated GSK-33 shRNA into the dentate
gyrus of mice subjected to chronic stress appears to

"1 By the same

have an antidepressant-like effect’
token, genetic inactivation of GSK-3a in mice ap-
pears to have a similar antidepressant-like effect, as
measured by decreased immobility time and fewer ag-
gressive-like behaviors in behavioral tests'"™®'. A re-
cent study further reveals that mice deficient in the
inhibitory serine-phosphorylation of GSK-3 increases
susceptibility to mood disturbances, and serine-phos-
phorylation of GSK-3 is reduced during both stress-
related behavioral responses in wild-type mouse brain
and in blood cells from patients with BD'"""' . 1t is
also interesting to note that lithium, valproate, and
lamotrigine all enhance the serine phosphorylation of

GSK-3" '),
hypothesis that lithium’s therapeutic effects stem pri-

These findings not only support the

marily from its inhibition of GSK-3, they also support
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the targeting of GSK-3-linked pathways in our search
for new ways to treat BD.
3.2 Stroke

Most strokes are caused by cerebral ischemia,
which is the interruption of blood supply to the
brain. Long-term pretreatment with lithium has been
reported to decrease infarct volume and reduce neu-
rological deficits, not only in a model induced by
permanent  middle-cerebral  artery  occlusion
(MCAO) ") but also in transient MCAO models
followed by reperfusion'"*’ | which more closely ap-
proximate the pathophysiology of acute stroke. The
complex mechanisms underlying lithium’s neuropro-
tective effects may include inactivation of NMDA re-
ceptors' ™' | downregulation of pro-apoptotic p33 and

upregulation of anti-apoptotic Bel-2 and HSP70!'" |

resulting in reduced apoptotic cell death'"'*’ | acti-
vation of the PI3K/Akt cell survival pathway **
and inhibition of hypoxia-induced activation of

GSK-3'"e!,

after the onset of ischemia, post-insult treatment with

When administered up to three hours

therapeutic doses of lithium also markedly decreases
infarct volume. In a rat model of transient MCAO,
lithium has been shown to suppress neurological defi-
cits as measured by sensory, motor, and reflex

tests: 17]

. These beneficial effects are associated with
the activation of HSF-1 and induction of the cytopro-
tective protein  HSP70 in ischemic brain hemi-
spheres. A functional MRI study further showed that
even delayed chronic lithium treatment ( adminis-
tered up to 12 hours after the onset of ischemia and
followed by daily injections for 2 weeks) significantly
improved functional MRI response magnitude, which
is dependent on blood oxygenation levels, and vascu-
lar formation'""®. The ability of lithium to affect neu-
rovascular remodeling may be related to its ability to
increase protein levels of matrix metalloproteinase 9
(MMP-9) and VEGF'™. VEGF has, in fact, been
linked to angiogenesis, neurogenesis, and neuropro-

") These preliminary demonstrations of

tection
lithium’s pre- and post-insult beneficial effects sug-
gest that it may ultimately become a valuable clinical
tool for both the prevention and treatment of acute
stroke.
3.3 HD

HD is an inherited, autosomal-dominant, neu-
rodegenerative disease characterized by irreversible

[120]

physical and mental deterioration It is caused

by abnormal expansion of a trinucleotide CAG-repeat

in the gene that encodes a polyglutamine stretch in
the N-terminus of huntingtin, the disease-causing

[121]

protein® = . This abnormal expansion results in a se-

lective loss of neurons in the striatum and cor-
tex'? ). Transcriptional dysregulation also plays a
central role in the pathogenesis and pathophysiology

of this disease'?’

. HD is lethal, and currently there
is no treatment proven to arrest or reverse its course.

Because the supersensitivity ( or hyperactiva-
tion) of NMDA receptors appears to contribute to the
124]

pathophysiology of HD'?*'  lithium’s protective
properties against glutamate toxicity would seem to
make it ideally suited to treat this disease. In the rat
excitotoxic model induced by quinolinic acid (QA),
lithium treatment markedly reduces the size of QA-

(6l

induced striatal lesions'®"’ and the loss of striatal me-

U3 This lithium protection is

dium-sized neurons
correlated with upregulation of cytoprotective Bcl-2
and downregulation of caspase-3 activation. In a cell
model of HD, the protective effects of lithium in re-
ducing mutant huntingtin aggregates and cell death
are mimicked, either by treatment with a GSK-3f3
inhibitor or by overexpression of a dominant-negative
GSK-3B mutant' ™', In Drosophila, a GSK-3p in-

hibitor mimics lithium-induced protection against the
127]

toxicity of aggregate-prone proteins™ ~*. Lithium pre-
treatment also stimulates the proliferation of striatal
cells near the site of QA-induced injuries, and some
of these replicating cells have the phenotype of neu-
rons or astroglia . In a rat 3-NP model of HD,
lithium treatment reduces striatal neurodegeneration
by preventing the activation of calpain and Cdk5'*’.
In Drosophila and R6/2 mouse models of HD, sys-
temic administration of rapamycin induces autophagy
and reduces toxicity of polyglutamine expansions'”’ .
Moreover, in cellular and Drosophila models of HD,
lithium combined with rapamycin induces autophagy
and shows greater protection against neurodegenera-
tion than either pathway alone''™'. In R6/2 mice,
although lithium treatment administered post- ( but
not pre-) symptomatically significantly improves ro-
tarod performance, it appears to have no effect on
survival overall ', However, in the N171-82Q and
YAC128 mouse models of HD, pre-symptomatic co-
treatment with lithium and valproate produces more
robust improvements in motor deficits and stronger
anxiolytic and antidepressant-like effects than either

130]

drug alone' Evidence of these neuroprotective

properties in models of HD suggests that lithium, es-
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pecially in combination with other medications, may
prove useful as a treatment for HD.
3.4 AD

AD is characterized by progressive memory loss
and personality changes, ultimately leading to de-
mentia. The neuropathological hallmarks of AD are
an abnormal accumulation of AR and neurofibrillary
tangles (tauopathies) resulting from hyper-phospho-
rylation of taw, a microtubule-binding protein' !
The association of pathogenesis and neuronal death in
AD with abnormal increases in GSK-3 levels and ac-

?! suggests a possible role for lithium in trea-

[133]

tiVity[ "

ting this disorder In vivo and in vitro, lithium

reduces tau phosphorylation by inhibiting GSK-

313413)  Tau phosphorylation levels are also regula-

ted by protein phosphatase 2A (PP2A) ") and re-
duced PP2A activity in the brain has been reported
in individuals with AD""). In rats, lithium treat-
ment has been shown to increase PP2A activity''™* |

decrease tau phosphorylation, and facilitate its de-

[139]

struction In cultured cortical neurons, lithium

was also recently shown to downregulate tau tran-

[140]

scription Chronic lithium treatment also blocks

AB production through GSK-3 inhibition"*'". Ap
peptide is derived from amyloid precursor protein
(APP) by sequential secretase-dependent proteolytic
processing. In the brains of mice overproducing
APP chronic lithium treatment blocks AR accumula-
tion, presumably by interfering with the reaction of

[142]

vy-secretase . In cultured neurons and neurally re-

lated cells, chronic lithium treatment largely sup-
presses exogenous AB-induced hyper-phosphorylation

of tau, downregulation of Bel-2, and neuronal

death ™ ** ") It is further interesting to note that

the protein level of Bel-2 in the brains of a mouse

model of AD is inversely correlated with the expres-

[65]

sion of miR-34a'”", a microRNA that has recently

emerged as a common lithium and valproate tar-

%! These findings suggest a novel mechanism

get
for lithium’s protective effects against AD in which
the downregulation of miR-34a indirectly upregulates
Bel-2.

Experiments with various animal models of AD
have shown a number of other benefits from lithium.
In mouse models of tauopathies, chronic lithium
treatment not only inhibits tau phosphorylation and
3H it al-

neuronal degeneration mediated by GSK- ,

so decreases tau lesions by promoting ubiquitina-

[145]

tion In addition, in mutant fau transgenic mice

with advanced neurofibrillary pathology, chronic lith-
ium treatment decreases aggregation of mutant tau

") and arrests the development of neurofi-

proteins
brillary tangles''*’". Chronic lithium treatment in rats
has also been shown to activate the Wnt/B-catenin
pathway, and thereby to protect against AB-induced
hippocampal neurodegeneration'*'. With regard to
lithium’s behavioral effects, Drosophila models of
tauopathies show that its inhibition of GSK-3( rever-

9]

ses locomotor deficits'*’. In rats injected with pre-

formed AR fibrils, chronic lithium treatment im-

proves spatial learning deficits''**’ .

In transgenic
mice overexpressing human APP, 3 months of treat-
ment with lithium have been shown to reduce the
burden of AR, tau hyper-phosphorylation, and neu-
rodegeneration in the cortex and hippocampus. In
addition, the inhibition of GSK-3 signaling normali-
zes deficits in water-maze performance' ™. Clinical-
ly, a preliminary study in individuals with BD found
that a history of lithium treatment resulted in signifi-

cantly better cognition and memory scores compared
151
. In

with individuals receiving other treatments"
elderly BD patients, moreover, chronic lithium treat-

U321 Taken to-

ment reduced the prevalence of AD
gether, these results suggest a promising therapeutic
role for lithium in the treatment of AD.
3.5 PD

PD is a prevalent neurodegenerative disease
characterized by resting tremor, muscular rigidity,
bradykinesia, and postural instability associated with
a relatively selective loss of dopaminergic neurons in
the substantia nigra. PD is another neurodegenera-
tive condition characterized by aggregates of mutant
protein ( Lewy bodies) , mainly a-synuclein'"*"**'
In animal models, neurotoxins such as rotenone,
6-hydroxydopamine (6-OHDA ), l-methyl-4-phe-
nylpyridinium (MPP* ), and the MPP" precursor
N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine
(MPTP) can trigger PD-associated neurochemical
changes. In these models, therapeutic concentrations
of lithium have been shown to facilitate clearance of
the mutant form of a-synuclein, an autophagy sub-

strate[%] .

GSK-3B

caspase-3 induced by rotenone,

In cultured human neuroblastoma cells,
activation facilitates the activation of
a mitochondrial
complex I-inhibitor, or by MPP*. By the same to-

, lithium treatment inhibits the activation of
[155]

ken
caspase-3 in a PI3K-dependent manner In cul-

tured neurons, it prevents 6-OHDA'"**) and MPP " -
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induced neuronal death. In addition, chronic lithium
treatment in mice prevents MPTP-induced neurotox-
icity, normalizes the downregulation of Bel-2, and
normalizes the upregulation of Bax elicited by MPTP
in the striatum of the mouse brain''”’'. Experimental
evidence of these protective effects suggests that lithi-
um may have substantial therapeutic potential in the
treatment of PD.

3.6 Fragile X syndrome (FXS)

FXS is caused by abnormal expansion of the tri-
nucleotide ( CGG ) repeat-mediated transcriptional
silencing of the fragile X mental retardation-1
(FMRI) gene'"® that encodes the fragile X mental
retardation protein ( FMRP )™,

found that in FVB/NJ FMRI knockout mice, the in-
hibitory serine-phosphorylation of GSK-3 is im-

A recent study

paired ") | suggesting a possible therapeutic role for
lithium. In a Drosophila model of FXS, adulthood
lithium treatment increases naive courtship and re-
stores short-term memory'®"’. Moreover, in the Dro-
sophila model , treatment with metabotropic glutamate
receptor ( mGluR ) antagonists or lithium prevents
age-related cognitive impairments, and continuous
treatment during aging effectively rescues these defi-
cits''". Mouse models of FXS display certain FXS-
and autism-relevant behavioral phenotypes''®"'*
several of which are ameliorated with lithium treat-

[160.166)  Chronic lithium treatment of FXS mice

ment
largely blocks aberrant dendritic spine morphology
and reduces anxiety levels, deficient social interac-
tions and impaired learning ability''’’. Lithium’s
beneficial effects on FXS mouse brains are associated
with normalization of hypo-phosphorylation of GSK-
3B at Ser9. A pilot clinical study has confirmed sim-
ilar benefits from lithium treatment in FXS patients

aged 6 —23 years, who showed improvements in be-
168]

havior, adaptive skills, and cognition-
3.7 ALS

ALS is an adult-onset neurodegenerative disease
characterized by progressive loss of motor neurons
(MNs) in the brain, brain stem, and spinal cord,
resulting in generalized weakness, muscle atrophy,
paralysis, and eventual mortality within 5 years of
disease onset "', Mice expressing mutant Cu/Zn
superoxide dismutase 1 ( SOD1) exhibit ALS-like
phenotypes, including the formation of intracellular
aggregates of SODI in the brain and spinal cord, be-
havioral abnormalities, and premature death. In or-

ganotypic slice cultures of spinal cord, chronic treat-

ment with lithium dose-dependently prevents excito-
toxic cell death of MNs by inhibiting the GSK-38
signaling pathway“m. Treatment with either lithium
alone or in conjunction with an antioxidant has been
shown to improve motor function and slow disease

QUTHT o

progression in a mouse model of AL
bined treatment of ALS mice with lithium and val-
proate produces a greater and more consistent effect
than monotreatment with either drug in delaying the
onset of disease symptoms, decreasing neurological

174]
174 Moreo-

deficit scores, and prolonging life span
ver, a 15-month pilot clinical trial in randomized
ALS patients found that patients treated with lithium
and riluzole together showed markedly reduced mor-
tality than patients treated with riluzole alone''™’.
Since inconsistent results have also been repor-
ted"™ ") however, further studies are needed to
clarify these discrepancies.
3.8 Multiple sclerosis (MS)

MS is the most common inflammatory demyelin-
ating disease of the CNS, which causes demyelina-
tion and neurodegeneration with lesions predominant-

781 The most frequently used

ly in the white matter
animal model of MS is experimental autoimmune en-
cephalomyelitis (EAE) ") induced in mammals by
systemic injection of myelin oligodendrocyte glyco-
protein (MOG) , myelin basic protein, or proteolipid

[180]

protein A recent study demonstrates that in

knock-in mice expressing constitutively active GSK-3,
EAE develops more rapidly and is more severe s |
suggesting that GSK-3 kinase may be a potential
therapeutic target for the treatment of MS. Adminis-
tration of GSK-3 inhibitors in mice has been shown to
control several inflammatory and immune conditions
in both the periphery and the CNS'**/. Notably, lith-
ium pretreatment at therapeutically relevant doses not
only abolishes the onset of EAE but also greatly re-
duces demyelination, microglia activation, and leu-

In addi-

tion, lithium treatment suppresses MOG peptide-in-

kocyte infiltration in the spinal cord ™'

duced immune responses in vitro and decreases the
production of several proinflammatory cytokines by
splenocytes stimulated with MOG peptide after isola-
tion from EAE mice. These results suggest that lithi-
um may be useful for therapeutic intervention in au-
toimmune and inflammatory diseases such as MS,

which afflict the CNS.
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4 CONCLUSION

Studies from various laboratories confirm that,
in a vast number of cellular and animal models of
brain disorders, lithium has robust therapeutic
effects. It is also becoming increasingly clear that
lithium’s inhibition of GSK-3, whose hyperactivity is
involved in cell death and the pathophysiology of
many neurodegenerative conditions, accounts for
much of its ability to protect and even increase neu-
rons. GSK-3 inhibition plays a prominent role in ac-
tivating signaling pathways and inducing anti-apop-
totic and neurotrophic proteins. The lithium-induced
inhibition of the metabolism of phosphoinositide and
production of IP3 also appears to be involved in up-
regulating autophagy—a process critical for the clear-
ance of protein aggregates associated with neurode-
generative diseases. Emerging evidence suggests that
the mood-stabilizers lithium and valproate target spe-
cific microRNAs that regulate the expression of anti-
apoptotic proteins and are perhaps involved in the
pathophysiology of brain disorders. Further micro-
RNA research is therefore needed to investigate the
etiology of these diseases and elucidate lithium’s
mechanisms of action.

As can be seen from the review provided above,
research with animal models has confirmed the bene-
ficial effects of lithium treatment in an increasing
number of CNS disorders. Many preclinical studies
report evidence of significantly decreased neurode-
generation, enhanced neurogenesis, improved be-
havioral performance, improved cognitive function,
and prolonged survival. Based on promising preclini-
cal results and its long history of safe clinical use in
humans, lithium is currently being tested as a treat-
ment for a variety of human brain disorders. Results
to date are mixed. While some clinical studies report
promising improvement, others indicate no treatment
response. Resolving discrepancies such as these re-
quires large-scale clinical trials of long duration—an
expensive undertaking difficult to envision in this era
of restricted budgets. Yet, in light of the results from
recently completed preclinical studies, combined
treatment with lithium and other neuroprotective
drug(s) is recommended for adequate clinical testing
to ameliorate the devastating effects of neurodegener-
ative diseases and psychiatric disorders that currently

exact so great a human toll.
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