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Abstract. We consider the relationship of two fixed point theorems
for direction-preserving discrete correspondences. We show that, for any
space of no more than three dimensions, the fixed point theorem [4] of
Iimura, Murota and Tamura, on integrally convex sets can be
derived from Chen and Deng’s fixed point theorem [2] on lattices by
extending every direction-preserving discrete correspondence over an in-
tegrally convex set to one over a lattice. We present a counter example
for the four dimensional space. Related algorithmic results are also pre-
sented for finding a fixed point of direction-preserving correspondences on
integrally convex sets, for spaces of all dimensions.

1 Introduction

A recent work on discrete fixed point introduced by Iimura [4] has attracted a
series of work on related problems. Iimura, Murota and Tamura [6] improved the
original proof of Iimura. Chen and Deng presented an alternative discrete fixed
point theorem for general domain with a matching algorithmic bound for all finite
dimensions [2]. In [8], Laan, Talman and Yang presented an iterative algorithm
for the zero point problem. Friedl, Ivanyosy, Santha and Verhoeven obtained a√

n upper bound for the dimension two Sperner problem [7], thus a matching
bound when combined with the lower bound of Crescenzi and Silvestri [3].

These problems are closely related. The matching bound of Friedl, Ivanyosy,
Santha and Verhoeven for the Sperner problem is in some sense a mirror result
of an earlier work of Hirsch, Papadimitriou and Vavasis on 2D approximate fixed
point [5]. In addition, the higher dimensional query complexity for the Sperner
problem of Friedl, Ivanyosy, Santha and Verhoeven, i.e., with query time linear
in the separation number of the skeleton graph of the manifold and the size of
its boundary, compares closely with the upper bound of Chen and Deng [2], for
the query complexity of finding a discrete fixed point.

In this work, we set to understand the relationship between the discrete fixed
point theorem of Iimura, Murota and Tamura, and the discrete fixed point
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theorem of Chen and Deng. In both cases, the discussion focuses on direction-
preserving correspondences. The main differences are the restriction of the do-
mains for which the theorems could apply. Murota, Iimura and Tamura consider
a domain which is integrally convex. Informally, a point in the convex hull of
the domain can be represented by a convex combination of integral points in
the domain within unit distance from it. The work of Chen and Deng allows
the domain not to be convex at all. Moreover, the result of Murota, Iimura and
Tamura restricts the correspondence to be bounded in the domain. A more gen-
eral boundary condition for correspondence is presented in Chen and Deng [2].
It is therefore natural to believe that the work of Murota, Iimura and Tamura
can be derived from the seemingly more general version of Chen and Deng.

Indeed, for dimension two and three, we confirm it by embedding an integra-
lly convex set in a lattice so that the bounded correspondence on the integrally
convex set can be extended to a bounded and direction-preserving function on
the lattice. Any fixed point of this function leads to a fixed point of the original
correspondence. Therefore, a claim of existence of a fixed point on the lattice
leads to a claim of existence of a fixed point in the integrally convex set. Such a
direct extension, however, does not carry over to higher dimensions. We derive
an interesting counter example for four-dimensional space.

There is another unsettled issue for the discrete fixed point theorem of Murota,
Iimura and Tamura, that of algorithmic issues. In [8], Laan, van der Talman, and
Yang presented an iterative algorithm which is shown to terminate with a fixed
point. Our extension theorem for two and three dimensional spaces directly an-
swers this problem and derives a matching algorithmic bound. For higher constant
dimensional spaces, we need to refine the domain to derive an algorithmic solution.

In section 2, we define a fixed point problem called FPCd. Previous results
are then reviewed in section 3. We formalize the concept of function extension
mechanism in section 4. After presenting positive results for both two and three
dimension spaces, we derive a counter example for the four-dimensional space in
section 5. Section 6 gives a sketch of an algorithm to solve problem FPCd, for
spaces of all dimensions, which implies a matching bound for the time complexity
of FPCd. Finally, we conclude in section 7 with discussions on the difference
between the two approaches.

2 Definition of Problem FPCd

In this section, we will define a fixed point problem called FPCd. It originates
from the fixed point theorem of Iimura, Murota and Tamura [4, 6] concerning
direction-preserving correspondences on integrally convex sets.

Definition 1. Let X be a nonempty finite subset of Z
d and Γ : X →→ X be a

nonempty-valued correspondence ( that is, for every x ∈ X, Γ (x) ⊂ X ).
A point x ∈ X is said to be a fixed point of Γ if x ∈ Γ (x).
For each x ∈ X, let τ(x) ∈ Γ (x) denote the projection of x onto Γ (x), i.e.,

||τ(x) − x ||2 = min
y∈Γ (x)

||y − x ||2
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where ||y − x ||2 = (
∑d

i=1(yi − xi )2 )1/2.

Definition 2. A correspondence Γ : X →→ X where X ⊂ Z
d is said to be

direction-preserving on X if for all x, x′ ∈ X with ||x − x′ ||∞ ≤ 1, we have
(τi(x) − xi ) (τi(x′) − x′

i ) ≥ 0 for every 1 ≤ i ≤ d.

We now define two classes of convex sets in Z
d, integrally convex sets and dis-

cretely convex sets, which play important roles in the fixed point theorem.

Definition 3. A finite set X ⊂ Z
d is integrally convex if for all points y ∈ X,

y ∈ X ∩ N(y), where N(y) = { z ∈ Z
d

∣
∣ ||z − y ||∞ < 1 }.

Definition 4. A finite set X ⊂ Z
d is discretely convex if X = X ∩ Z

d.

Theorem 1 (Theorem of Iimura, Murota and Tamura [6]). Let X ⊂ Z
d

be a nonempty integrally convex set. For every nonempty, discretely convex-
valued and direction-preserving correspondence Γ from X to itself, there must
exist a fixed point x∗ ∈ X such that x∗ ∈ Γ (x∗).

In brief, the task of the fixed point problem FPCd is to find a fixed point
of correspondence Γ which satisfies all the conditions in Theorem 1. Formally
speaking, the input includes both the set X and correspondence Γ . Here X is
described by all the extreme points of convex set X. This representation of X is
succinct, according to the following lemma.

Lemma 1. For every d ≥ 1, there exists an integer Nd such that, for all inte-
grally convex sets X ⊂ Z

d, the number of extreme points of X is less than Nd.

On the other hand, correspondence Γ looks like a black box to algorithms. We
only consider algorithms which are based on correspondence evaluations. Such
an algorithm should behaves as follows: It makes up a test point r1 ∈ X , sends
it to the black box and receives τ(r1). Based on r1 and τ(r1), it computes a new
test point r2 and evaluate τ(r2). It continues until a fixed point of Γ is reached.
We assume that each evaluation of τ takes one step.

Diameter of the integrally convex set X , that is, n = maxx,y∈X ||x − y ||∞,
is taken as the input size of FPCd. We are interested in the time complexity
Td(n) of problem FPCd. Our main result is stated in the following theorem.

Theorem 2. For every constant d ≥ 2, Td(n) = Θ(nd−1).

Problem FPCd is closely related to problems DFPd and AFPd [2].

3 Previous Results on Fixed Point Problems

In this section, we review both the problem definitions and algorithmic results
in [2]. For every 1 ≤ k ≤ d, we use ek to denote the kth unit vector of Z

d. Here
ek

k = 1 and ek
i = 0 for all 1 ≤ i 	= k ≤ d,.
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Definition 5. For all p < q ∈ Z
d, Ap,q = { r ∈ Z

d
∣
∣ ∀ 1 ≤ i ≤ d, pi ≤ ri ≤ qi }.

Its boundary is defined as Bp,q = { r ∈ Ap,q

∣
∣ ∃ 1 ≤ i ≤ d, ri = pi or qi }.

Definition 6. Function f : S → { 0, ±e1, ±e2 ... ± ed } where S ⊂ Z
d is said

to be direction-preserving if for all r1, r2 ∈ S which satisfy ||r1 − r2 ||∞ ≤ 1, we
have ||f(r1) − f(r2) ||∞ ≤ 1.

When S = Ap,q, f is said to be bounded if r + f(r) ∈ Ap,q for all r ∈ Bp,q.

It is proved in [2] that any function f which is both bounded and direction-
preserving has a zero point r∗ ∈ Ap,q such that f(r∗) = 0. The task of problem
DZPd is to find such a point in Ap,q. To get information of f , algorithms make
up test points and evaluate f at these points. Similarly, we use T 1

d (n) to denote
the time complexity of DZPd, where n = max1≤i≤d (qi − pi).

Definition 7. Map G : Ed = [0, 1]d → R
d satisfies a Lipschitz condition with

constant M if ||G(x) − G(y) ||∞ ≤ M ||x − y ||∞ for all x, y ∈ Ed.
We use LM,d to denote the set of all those maps F : Ed → Ed such that

G(x) = F(x) − x satisfies a Lipschitz condition with constant M .

By Brouwer’s fixed point theorem, every map F ∈ LM,d has a fixed point x∗ ∈ Ed

such that F(x∗) = x∗. Given a map F ∈ LM,d and ε > 0, the output of problem
AFPd is an approximate fixed point x∗ ∈ Ed with error bounded by ε. More
exactly, x∗ should satisfy ||F(x∗) − x∗ ||∞ ≤ ε. Similarly, F looks like a black
box to algorithms, which can only be accessed by evaluations. We use T 2

d (M, ε)
to denote the time complexity of problem AFPd.

Theorem 3 ([2]). For every constant d ≥ 2,

T 1
d (n) = Θ(nd−1) and T 2

d (M, ε) = Θ
((M

ε

)d−1
)
.

In fact, the lower bound of Td(n) in Theorem 2 can be easily derived from the
lower bound of T 1

d (n) above.

4 Extension Mechanism for Low Dimensional Spaces

In this section, we focus on a natural idea to solve problem FPCd. First, we
formalize the concept of function extension mechanism Md. Its existence gives
an algorithm for FPCd with time complexity O(nd−1). M2 and M3 are then
constructed and we get the upper bound in Theorem 2 for cases d = 2 and 3.

4.1 Definition of Function Extension Mechanism Md

The discrete approach presented in this section is based on the existence of al-
gorithms for problem DZPd with time complexity O(nd−1). Let Ap,q be the
smallest set that contains X which is the domain of Γ and τ . A function exten-
sion mechanism Md extends map τ to be a direction function f from Ap,q to
{ 0, ±e1, ±e2 ... ± ed } which is both bounded and direction-preserving. We can
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use any algorithm for problem DZPd to find a zero point of f . Properties of
Md guarantee that, given a zero point of f , one can find a fixed point of map τ
(and thus, correspondence Γ ) very efficiently.

Definition 8. Given an input pair (X, Γ ) of FPCd, if the integrally convex
set X is non-degenerate, that is, X is a d-polytope in R

d, then function exten-
sion mechanism Md = (Ad, Bd) for d-dimensional space constructs a direction
function f from Ap,q to { 0, ±e1, ... ±ed }.

The following five properties should be satisfied:

– P1. Function f is both bounded and direction-preserving on Ap,q;

– P2. For every r ∈ Ap,q, algorithm Ad takes (r, X, τ) as input and computes
f(r) with O(1) (d is viewed as a constant here ) running time;

– P3. For every r ∈ X, f(r) = 0 if and only if τ(r) = r;

– P4. For evert r ∈ X such that τ(r) 	= 0, f(r) · (τ(r) − r) > 0;

– P5. For every zero point r of f such that r /∈ X, algorithm Bd takes (r, X, τ)
as input and computes a fixed point r′ ∈ X of τ with O(1) running time.

Clearly, once we find a mechanism Md for d-dimensional space, we get an al-
gorithm for FPCd with time complexity O(nd−1) ( if X is degenerate, then we
exhaustively check every point in X , since |X | ≤ nd−1 ). From now on, we always
assume that X is non-degenerate.

4.2 Function Extension Mechanism M2 for Case d = 2

M2 is closely related to a map ψ from Ap,q to X . For every r ∈ X , ψ(r) = r.
Otherwise, ψ(r) = r̃ where

|r1 − r̃1 | = min
r′∈X, r2=r′

2

|r1 − r′1 |.

The construction of function f is described in figure 1.
Properties P2, P3 and P4 are easy to verify. For property P5, if r 	∈ X and

f(r) = 0, then f(r′) = 0 where r′ = ψ(r). With the succinct representation of
X , r′ = ψ(r) can be computed in O(1) time. Proof of the following lemma is
available in the full version [1].

Lemma 2. f constructed by M2 is both bounded and direction-preserving.

Function Extension Mechanism M2

1: for any r ∈ X

2: if τ (r) = 0 then f ′(r) = 0
3: else if τ2(r) �= 0 then f ′(r) = sign (τ2(r)) e2

4: else f ′(r) = sign (τ1(r)) e1

5: for any r ∈ Ap,q, f(r) = f ′(ψ(r))

Fig. 1. Details of the Function Extension Mechanism M2



58 X. Chen and X. Deng

4.3 Function Extension Mechanism M3 for Case d = 3

Behavior of the mechanism M3 is similar to M2, while the details are a little
more complicated. First, we divide Ap,q into three pairwise disjoint sets, X , S1
and S2 where

S1 = { r /∈ X, r ∈ Ap,q

∣
∣ ∃ r′ ∈ X, r2 = r′2 and r3 = r′3 },

S2 = { r /∈ X ∪ S1 , r ∈ Ap,q

∣
∣ ∃ r′ ∈ X ∪ S1, r1 = r′1 and r3 = r′3 }.

We then define two maps. ψ1 is from X ∪ S1 to X . For all r ∈ X , ψ1(r) = r.
For all r ∈ S1, ψ1(r) = r̃ where

|r1 − r̃1 | = min
r′∈X, r2=r′

2, r3=r′
3

|r1 − r′1 |.

Map ψ2 is from Ap,q to X ∪ S1. For all r ∈ X ∪ S1, ψ2(r) = ψ1(r). For all point
r ∈ S2, ψ2(r) = r̃ where

|r2 − r̃2 | = min
r′∈X∪S1, r1=r′

1, r3=r′
3

|r2 − r′2 |.

Given a map τ , M3 first convert it into a direction function f ′ from X to
{0, ±e1, ±e2 , ±e3 }. After extending f ′ to be f ′′ on X ∪ S1 using map ψ1, we
employ map ψ2 to extend f ′′ onto Ap,q. The difficulty here is that, to keep
the direction-preserving property, we must be careful when dealing with some
boundary points of X .

Definition 9. Point r ∈ X is said to be a left (or right ) boundary point of X
if (r1 − 1, r2, r3) /∈ X (or (r1 + 1, r2, r3) /∈ X ). We use LX (or RX ) to denote
the set of left (or right ) boundary points of X.

From the definition of integrally convex sets, we get the following lemma.

Lemma 3. For all points r1, r2 ∈ LX (or RX ) which satisfy |r1
2 − r2

2 | ≤ 1 and
|r1

3 − r2
3 | ≤ 1, we have | r1

1 − r2
1 | ≤ 2.

Furthermore, if |r1
1 − r2

1 | = 2, then |r1
2 − r2

2 | = |r1
3 − r2

3 | = 1.

Definition 10. Pair (r1, r2 ) where r1, r2 ∈ LX (or r1, r2 ∈ RX ) is said to be
a bad pair of X if | r1

2 − r2
2 | = | r1

3 − r2
3 | = 1 and | r1

1 − r2
1 | = 2. We use BX to

denote the set of bad pairs of X.
r ∈ X is said to be bad if there exists r′ ∈ X such that (r, r′) ∈ BX .

Each bad pair (r1, r2) of X gives a supporting hyperplane Hr1,r2 = (u, a) of X
where |ui | = 1, for all 1 ≤ i ≤ 3. For example, if r1 = (0, 0, 0) and r2 = (2, 1, 1)
are two left boundary points, then one can prove both (1, 1, 0) and (1, 0, 1) belong
to LX . These points together define a hyperplane Hr1,r2 = (−1, 1, 1, 0). With
Hr1,r2 = (u, a), we define Sr1,r2 = {−u1 e1, −u2 e2, −u3 e3}.

On the other hand, for a bad point r ∈ X , there might be more than one
point r′ such that (r, r′ ) ∈ BX . We define Sr =

⋂
(r,r′)∈BX

Sr,r′ which has the
following property.
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Lemma 4. For every bad point r ∈ X, 1 ≤ |Sr | ≤ 3.
If Sr = {+ek } (or Sr = {−ek}) where 1 ≤ k ≤ 3, then rk = min r′∈X r′k

(or rk = maxr′∈X r′k ). Furthermore, if k 	= 1, then there are exactly two points
r′ ∈ X such that (r, r′ ) ∈ BX .

If |Sr | > 1 and τ(r) 	= r, then there exists a unit vector cek ∈ Sr such that
cek · (τ(r) − r) > 0.

For every bad point r such that Sr = {cek } where k 	= 1 and |c | = 1, we define
vectors vL, vR ∈ {±e1, ±e2, ±e3 } based to the value of τ(r) and the shape of
X around r. Only the case for c = 1 and k = 3 is described below, as other cases
are similar.

Case 1: (r, rL), (r, rR ) ∈ BX where rL = (r1 − 2, r2 − 1, r3 − 1), rR =
(r1 +2, r2 +1, r3 −1). If τ3(r) < 0, then vL = vR = −e3. Otherwise, we have
τ1(r) = τ2(r). If τ1(r) > 0, then vL = +e1 and vR = +e2, or else vL = −e2

and vR = −e1.

Case 2: (r, rL), (r, rR ) ∈ BX where rL = (r1 − 2, r2 + 1, r3 − 1), rR =
(r1 +2, r2 −1, r3 −1). If τ3(r) < 0, then vL = vR = −e3. Otherwise, we have
τ1(r) = −τ2(r). If τ1(r) > 0, then vL = +e1 and vR = −e2, or else vL = +e2

and vR = −e1.

In both cases, we have vL · (τ(r) − r) > 0, vL ∈ Sr,rL , vR · (τ(r) − r) > 0 and
vR ∈ Sr,rR . Details of the mechanism M3 are described in figure 2. Similarly,
properties P2, P3, P4 and P5 are easy to verify. Proof of the following lemma is
available in the full version.

Function Extension Mechanism M3

1: for any r ∈ X

2: if τ (r) = 0 then f ′(r) = 0
3: else if r is a bad point of X and |Sr | > 1 then
4: there must exist k such that cek ∈ Sr and cτk(r) > 0, set f ′(r) = cek

5: else let k be the largest integer satisfies τk(r) �= 0, set f ′(r) = sign (τk(r)) ek

6: for any r ∈ X
�

S1

7: if r ∈ X then f ′′(r) = f ′(r)
8 : else if f ′(ψ1(r)) = 0 then f ′′(r) = 0
9: else if ψ1

1(r) = min r′∈X r′
1 then f ′′(r) = +e1

10: else if ψ1
1(r) = max r′∈X r′

1 then f ′′(r) = −e1

11: else if r′ = ψ1(r) is a bad point of X and Sr′ = { cek } where k �= 1 then
12: if r1 < r′

1 then f ′′(r) = vL

13: else f ′′(r) = vR

14: else f ′′(r) = f ′(ψ1(r))
15: for any r ∈ Ap,q, f(r) = f ′′(ψ2(r))

Fig. 2. Details of the Function Extension Mechanism M3
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Lemma 5. f constructed by M3 is both bounded and direction-preserving.

5 A Counter Example for 4-Dimensional Space

Although function extension mechanism Md does exist for cases d = 2 and 3,
we find great difficulty in designing Md for higher dimensional spaces. In this
section, we construct a set of maps S in the 4-dimensional space and prove the
non-existence of mechanism M4.

The domain of maps in S is

X =
{

r ∈ Z
4

∣
∣
∣ ∀ 1 ≤ i ≤ d, ri ≥ 0 and r1 + r2 + r3 + r4 ≤ n

}

which can be divided into layers X = X1 ∪ X2 ... ∪ Xn = Y ∪ Z. Here set
Xi = {r ∈ X | r4 = i}, Y = Xn ∪ Xn−1 ... ∪ Xn−5 and Z = X − Y . For every
r ∈ Z, we construct a map τr as follows, and S = {τr | r ∈ Z }.

For every two maps τr , τr′ ∈ S, τr(p) = τr′(p) for all p ∈ Y . Values of τ ,
where τ ∈ S, on the first four layers Xn, Xn−1, Xn−2 and Xn−3 are described
in figure 3. In this figure, an arrow cek on point r means Γ (p) = { p + cek }
and τ(p) = p + cek. For every p ∈ Xn−4, if ||p − (2, 0, 0, n − 4) ||∞ > 1, then
τ(p) = p − e4. If p = (2, 0, 0, n − 4), then τ(p) = p − e1. Otherwise, τ(p) − p =
τ((p1, p2, p3, p4+1))−(p1, p2, p3, p4+1). Finally, τ(p) = p−e4 for every p ∈ Xn−5,.

e3

e1

e2

+ e 4

- e 4

Fig. 3. A Counter Example

Values of τr on Z are described as follows. For every p ∈ Z, if p = r, then
τr(p) = p. Otherwise, we have two cases. If ||r ||1 > ||p ||1 where ||r ||1 =

∑4
i=1 ri,

letting k be an integer such that rk > pk, then τr(p) = p + ek. If ||r ||1 ≤ ||p ||1,
letting k be an integer such that rk < pk, then τr(p) = p − ek. One can prove
the following property of maps in S.

Lemma 6. τr : X → X is direction-preserving and r is its only fixed point.
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Now we prove the non-existence of mechanism M4. Let’s make a reduction to ab-
surdity, considering that there exists a mechanism M4 = (Ad, Bd), however, sat-
isfies all the five properties P1, P2 ...P5, then for every map τr ∈ S, it constructs
a direction-preserving function fr. By property P4, we have fr(r′) = τr(r′) − r′

for every r′ ∈ X . Since fr is direction-preserving, we must have fr(r∗) = 0 where
r∗ = (1, 1, 1, n − 2).

Let’s pick a map τr ∈ S arbitrarily and run Bd with input (r∗, X, τr). Af-
ter constant steps, it should output a fixed point r′ of τr according to P5. By
Lemma 6, we have r′ = r. This means that maps in S can be recognized within
constant steps, which contradicts with the fact that |S | = Θ(n4). As a result,
our assumption is wrong and no such mechanism exists.

6 An Algorithm for Problem FPCd

In this section, we briefly describe an algorithm for FPCd and prove the upper
bound in Theorem 2, for spaces of all dimensions.

Definition 11. For every point r ∈ Z
d, we define a hypercube Cr,n ⊂ R

d as

Cr,n =
{

x ∈ R
d

∣
∣
∣ ri ≤ xi ≤ ri + n, for all 1 ≤ i ≤ d

}
.

Let (Γ, X) be an input instance of FPCd, then we use Cr,n to denote the smallest
hypercube containing X . Starting from Γ , we build a map F from Cr,n

to itself. Details of the construction can be found in the full version. We give the
following lemmas without proof.

Lemma 7. Given an input instance (Γ, X) of problem FPCd, for every point
x ∈ Cr,n, F(x) can be computed in O(1) time.

Lemma 8. For every constant d ≥ 2, there exists a constant Dd such that, for
every input instance (Γ, X) of problem FPCd, map F belongs to LDd,d.

Lemma 9. For every point x∗ ∈ X such that ||F(x∗) − x∗ ||∞ < 1/(d + 1)2,
there must exist a fixed point of correspondence Γ in N(x∗) ∩ X. Recall that
N(x∗) = { r ∈ Z

d | ||r − x∗ ||∞ < 1 }.

Lemma 10. For every x ∈ Cr,n such that ||F(x) − x||∞ < 1/(d1/2(d + 1)2),
point x∗ = ΨX(x) must satisfy ||F(x∗) − x∗ ||∞ < 1/(d + 1)2. Here ΨX is the
projection onto X where ||x − ΨX(x) ||2 = miny∈X ||x − y ||2.

F can be scaled to be a map F ′ from Ed = [0, 1]d to itself as follows. For every
point x ∈ Ed, F ′(x) − x = (F(nx + r) − (nx + r))/n.

The reason we build F and F ′ is to find a fixed point of Γ . By Lemma 8,
one can prove that the new map F ′ also belongs to LDd,d, thus we can use an
algorithm for AFPd to compute an ε = 1/(d1/2(d + 1)2n) approximate fixed
point x of F ′, and x∗ = nx + r must be an 1/(d1/2(d + 1)2) approximate fixed
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Algorithm for Problem FPCd

1: Let (Γ, X) be the input instance of problem FPCd

2: Let F and F ′ be the two maps constructed
3: Use an algorithm for AFPd to find an ε approximate fixed point x of F ′

4: compute x∗ = nx + r

5: if x∗ ∈ X , then
6: query Γ for every point in N(x∗) ∩ X and output a fixed point of Γ

7: else
8: compute x′ = ΨX (x∗)
9 : query Γ for every point in N(x′) ∩ X and output a fixed point of Γ

10: endif

Fig. 4. The Algorithm for Fixed Point Problem FPCd

point of F . Lemma 9 and 10 together show that, once we get x∗, a fixed point
of Γ can be located easily.

The algorithm is described in figure 4. Let’s analyze its time complexity. For
every test point x ∈ Ed which is queried by the AFPd algorithm, constant steps
are sufficient to compute F ′(x) according to Lemma 7. By Theorem 3, the time
used by the AFPd algorithm in line 3 is O ((Dd/ε)d−1) = O (nd−1). This gives
us the upper bound of time complexity Td(n) in Theorem 2.

7 Concluding Remarks

In this paper, we described two different approaches to solve the discrete fixed
point problem FPCd. In the discrete approach, we try to extend map τ to be a
direction-preserving function f on lattice Ap,q. In the continuous approach, we
construct a Lipschitz map F3 from Cr,n to itself. While the former only works
for low dimensional spaces, the latter solves problem FPCd for spaces of all
dimensions. But how does the algorithm for problem AFPd work? Actually, it
samples map F3 with a suitable interval, builds a direction function which is
both bounded and direction-preserving, and employs an algorithm for problem
DZPd to find an zero point which is also an approximate fixed point of F3 [2].

Thus in both approaches, we construct (explicitly or implicitly) a bounded
and direction-preserving function on some lattice. The difference is that, the
lattice of the continuous approach has much higher density than the one of
the discrete approach. While no function extension mechanism exists for high
dimensional spaces, we can always construct a direction-preserving function on
a denser lattice implicitly using the continuous method.

References

1. Xi Chen and Xiaotie Deng. Lattice Embedding of Direction-Preserving Corre-
spondence Over Integrally Convex Set (Full version). manuscript, available at
http://www.cs.cityu.edu.hk/∼deng/.



Lattice Embedding of Direction-Preserving Correspondence 63

2. Xi Chen and Xiaotie Deng. On algorithms for discrete and approximate brouwer
fixed points. In STOC 2005, pages 323–330.

3. P. Crescenzi and R. Silvestri. Sperner’s lemma and robust machines. Comput.
Complexity, 2(7):163–173, 1998.

4. T. Iimura. A discrete fixed point theorem and its applications. J. of Mathematical
Economics, 7(39):725–742, 2003.

5. C. Papadimitriou M.D. Hirsch and S. Vavasis. Exponential lower bounds for finding
brouwer fixed points. J. Complexity, (5):379–416, 1989.

6. K. Murota, T. Iimura, and A. Tamura. Discrete fixed point theorem reconsidered.
J. of Mathematical Economics, to appear.

7. M. Santha, K. Friedl, G. Ivanyos, and F. Verhoeven. On the black-box complexity
of sperner’s lemma. In FCT, 2005.

8. D. Talman, G. Laan, and Z. Yang. Solving discrete zero point problems. In Tinbergen
Institute Discussion Papers, 2004.


	Introduction
	Definition of Problem $FPC^d$
	Previous Results on Fixed Point Problems
	Extension Mechanism for Low Dimensional Spaces
	Definition of Function Extension Mechanism $M^d$
	Function Extension Mechanism $M^2$ for Case $d$ =2
	Function Extension Mechanism $M^3$ for Case $d$ =3

	A Counter Example for 4-Dimensional Space
	An Algorithm for Problem $FPC^d$
	Concluding Remarks


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




