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Abstract We investigate the problem of listing combinations using a special class of operations, prefix

shifts. Combinations are represented as bitstrings of 0’s and 1’s, and prefix shifts are the operations of

rotating some prefix of a bitstring by one position to left or right. We give a negative answer to an open

problem asked by F. Ruskey and A. Williams (Generating Combinations by Prefix Shifts, Proc. 11th

Annual International Computing and Combinatorics Conference 2005, LNCS 3595, Springer, (2005),

570-576), that is whether we can generate combinations by only using three very basic prefix shifts

on bitstrings, which are transposition of the first two bits and the rotation of the entire bitstring by

one position in either direction (i.e., applying the permutations σ2 , σn and σn
−1 to the indices of the

bitstrings).
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1 Introduction

An important class of problems in combinato-

rial algorithms is efficient listing of fundamental

combinatorial objects such as permutations, com-

binations, subsets, integer partitions, and so on.

Regarding this listing task, efficiency is usually a

main concern, and a common approach is to gener-

ate the objects such that successive elements differ

in a small way. A classic example is the binary

reflected Gray code [1, 2] which lists all n-bit bi-

nary numbers so that successive numbers differ in

exactly one bit.

The term combinatorial Gray code first ap-

peared in [3], and now stands for any generation

of combinatorial objects such that successive ob-

jects differ in a usually small, or other specified

way. Gray codes have applications in diverse ar-

eas as data compression [4], statistical computation

[5], graphics and image processing [6], processor al-

location in the hypercube [7], information storage

and retrieval [8], etc. For an excellent survey on

combinatorial Gray codes, please see [9]. In partic-

ular, for combination generation the applications

include, among others, cryptography, genetic al-

gorithms, statistical computation, and exhaustive
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combinatorial searches.

In [10], the authors present a new algorithm

for generating combinations by prefix rotations. If

we represent combinations as bitstrings of length

n = s + t containing s 0’s and t 1’s, and denote

by B(s, t) = {b1 b2 · · · bn ∈ {0, 1}n :
∑

i=1
nbi = t}

the combination set, the algorithm generates the

combinations with a remarkably simple rule: iden-

tify the shortest prefix ending in 010 or 011 (or the

entire bitstring if no such prefix exists) and then

rotate it to the right by one position. The rota-

tion, which is equivalent to a cyclic permutation

σk = (1, 2, · · · , k) (2 ≤ k ≤ n) acting on the in-

dices of the bitstring, is called a prefix shift. Please

see the following as an example of listing B(3, 3).

↪→ σ6 111000 → σ4 011100 → σ2 101100 → σ3 110100

→ σ5 011010 → σ4 101010 → σ4 010110 → σ3 001110

→ σ3 100110 → σ4 110010 → σ6 011001 → σ2 101001

→ σ4 010101 → σ3 001101 → σ3 100101 → σ5 010011

→ σ3 001011 → σ4 000111 → σ4 100011 → σ5 110001

The above generating algorithm has several re-

markable properties, we mention some of them in

the following (see [10] for more discussions). First,

successive combinations differ by a prefix shift,

which makes the algorithm very suitable for hard-

ware implementation, and very fast in the situation

where combinations are stored in a single computer

word. In addition, the listing is cyclic, that is the

generating rule also applies between the last and

the first bitstrings. Second, successive combina-

tions differ by one or two transpositions of a 0 and

a 1. There are other algorithms with even more

restricted operations between successive combina-

tions. E.g., successive combinations differ by a sin-

gle transposition [11], only zeros exist between the

transposed bits [12], or the transposed bits have at

most one bit between them [13]. Along with the one

in [10], all these algorithms are discussed in Knuth

[14]. Third, the algorithm has an efficient loopless

implementation (see [15]). Finally, the new Gray

code also has a simple ranking function whose run-

ning time is O(n) arithmetic operations. However,

in general this algorithm requires all the n−1 prefix

shifts σk for k = 2, 3, · · · , n.

One open problem regarding the power and lim-

itation of prefix shifts in generating combinations

is proposed in [10], that is, whether the number

of different prefix shifts used can be reduced. In

particular, can we generate combinations by only

letting the three basic permutations σ2 , σn and

σn
−1 act on the indices of the bitstrings? In this

paper we make a step toward settling this problem

by giving a negative answer to the latter question.

Previous works on similar or related subjects are,

among others, [16, 17].

In this paper we refer to operations of using the

inverse of permutations (i.e., σk
−1 for 2 ≤ k ≤ n)

to act on the indices of bitstrings also as prefix

shifts. We also use “prefix shift σk” (2 ≤ k ≤ n)

for short, to stand for the straightforward meaning

when it is clear from the context.

2 Preliminaries

It is easy to see that, for the problem of listing

each element once from a class of combinatorial ob-

jects such that successive objects differ in a speci-

fied way, there is a corresponding Hamiltonian path

or cycle problem: for each object obj there is a ver-

tex v(obj) in the corresponding graph, and there is
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an edge joining v(obj1 ) and v(obj2 ) if and only if

obj2 and obj1 differ from each other in the speci-

fied way. The graph has a Hamiltonian path if and

only if the required listing of the objects exists, and

the graph has a Hamiltonian cycle corresponds to

a cyclic listing, that is a listing in which the first

and last objects also differ in the specified way.

In this paper we denote combinations as bit-

strings of length n = s + t containing s 0’s and t

1’s, and denote the set of combinations by B(s, t) =

{b1 b2 · · · bn ∈ {0, 1}n :
∑

i=1
nbi = t}. Also, we use

G(s, t) to denote the corresponding graph (some-

times we use G to denote the graph if it is clear

from the context). First we list some facts that

will be useful later.

Proposition 1 Suppose P is a Hamiltonian path

of graph G, and a node v ∈ G has degree 2 and v is

not an endpoint of P , then the two nodes adjacent

to v in P must be the two neighbors of v in the

original graph G.

Proof: The conclusion follows immediately. 2

Proposition 2 Suppose a node v ∈ G has degree

3, with v1 , v2 and v3 as its three neighbors, and

both v1 and v2 have degree 2, and suppose P is a

Hamiltonian path of G. If neither of v1 and v2 is

an endpoint of P , then the edge connecting v and

its third neighbor v3 cannot appear in P .

Proof: Since both v1 and v2 have degree 2 and

they are not endpoints of P , by proposition 1, both

v1 and v2 are adjacent to v in the Hamiltonian path

P , it follows that v3 can no longer be a neighbor

of v in path P , thus the edge connecting v and v3

cannot appear in P .2

Proposition 3 Suppose C is a simple cycle which

is a subgraph of G, and suppose P is a Hamilto-

nian path of G. If for every two adjacent nodes in

C there is at least one of them having degree 2 in

G, then C must contain at least one endpoint of P .

Proof: For the sake of contradiction, assume that

C contains no endpoint of P . Consider any node

v ∈ C, since v is not an endpoint of P , it has two

neighbors in P , we prove that they must be the two

neighbors of v in cycle C.

There are two cases. If v has degree 2 in G,

by proposition 1, the conclusion follows. If v has

degree greater than 2, consider the two neighbors

of v in C, v1 and v2 , they must both have degree 2

in G. Since v1 and v2 are not endpoints of P , they

must both be adjacent to v in path P , thus they

are the two neighbors of v in P .

Now consider node u, the first node in P that

belongs to C, then u is not an endpoint of P . By

the above argument the node before u in P must

also belong to C, which contradicts with the way

we pick u. 2

Proposition 4 Suppose P is a Hamiltonian path

of G(s, t), where s, t ≥ 2, and l ∈ B(s, t) is a string

in which there is no single occurrence of 0 or 1,

i.e., l can be partitioned into blocks of contiguous

bits, each block is comprised of the same digits and

is of size at least two. Let C(l) denote the cycle

in G(s, t) corresponding to the sequence l, σn(l),

σn
(2 )(l), · · · , then C(l) contains at least one end-

point of P .

Proof: For any string l0 in the above sequence,

if the degree of v(l0 ) in G is 3, then l0 must start
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with 01 (or 10). Since there is no single occurrence

of 0 or 1 in l, the two strings corresponding to the

two nodes adjacent to v(l0 ) in C(l) (i.e., σn
−1 (l0 )

and σn(l0 )) must start with 11 and 00 (or 00 and

11), therefore the two nodes adjacent to v(l0 ) in

C(l) must both have degree two in G. By propo-

sition 3, there must be a node in C(l) which is an

endpoint of P . 2

3 The Main Results

In this section we will prove our main result,

which is the following theorem. We prove the the-

orem by dividing it into three lemmas.

Theorem 1 One can generate combinations

B(s, t) by using prefix shifts σ2 , σn and σn
−1 if

and only if min{s, t} ≤ 2.

Lemma 5 If min{s, t} ≤ 2, then B(s, t) can be

generated by using prefix shifts σ2 , σn and σn
−1 .

Proof of Lemma 5: Without loss of generality,

assume that t ≤ 2. For t = 1, we can simply gen-

erate B(s, t) by a sequence of n− 1 σn ’s:

10s → σn010s−1 → σn · · · → σn0s1.

For t = 2, there are two cases according to the

parity of n. If n is odd, we can generate B(s, t) by

starting with 110s , then applying the sequence of

n − 1 σn ’s and one σ2
n−3

2 times, finally followed

by a sequence of n − 1 σn ’s. If n is even, we also

start with 110s , and then apply the sequence of

n − 1 σn ’s and one σ2
n−2

2 times, finally followed

by a sequence of n−2
2 σn ’s. It is easy to see that in

this way we can list all elements of B(s, t) without

repetition.

110s → σn0110s−1 → σn · · · → σn10s1 → σ2

010s−11 → σn1010s−1 → σn · · · → σn10s−110 → σ2

010s−210 → σn0010s−21 → σn · · · → σn10s−2100 → σ2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
010d

s
2
e10b

s
2
c−1 → σn0010d

s
2
e10b

s
2
c−2 → σn · · · .

2

Lemma 6 If min{s, t} = 3, then the underlying

graph G of B(s, t) with allowed operations σ2 , σn

and σn
−1 has no Hamiltonian path.

Proof of Lemma 6: Without loss of general-

ity, assume that t = 3 and s ≥ 3. Assume

that there is a Hamiltonian path P in G. De-

fine ai = 10i120s−i , i = 1, 2, · · · , s. It is easy

to see that for each 1 ≤ i ≤ s, the following se-

quence ai , σn(ai), σn
(2 )(ai), · · · , σn

(n−1 )(ai) con-

tains n distinct strings, thus it corresponds a cycle

of size n in G, we denote the cycle by C(ai). More-

over, these s cycles C(a1 ), C(a2 ), · · · , C(as) are

vertex-disjoint (notice that we cannot simply ap-

ply proposition 4 here to argument that we get the

contradiction that P has at least s endpoints, since

adjacent vertices in C(ai) can have degree three),

and they connect each other in G by the s edges

v(ai)v(σ2 (ai)), i = 1, 2, · · · , s, along with an extra

edge v(1010s−11)v(0120s−11) (see Figure 1). No-

tice that the extra edge v(1010s−11)v(0120s−11)

will not exist when t > 3, see Figure 2.

Let bi = 0120s−i10i−1 , ci = 10s−i10i1, i =

1, 2, · · · , s − 1. Let A be the set of nodes covered

by the above s cycles C(ai), i = 1, 2, · · · , s, and let

O be the set of the other nodes in G.



Yongxi Cheng: On Generating Combinations by Three Basic Operations 5
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· · ·

1
a

2
a

s
a
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a
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a

1
b

2
b
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b

s-1
c

s-2
c

2
c

1
c

Fig. 1. Underlying graph of B(s, t) with operations σ2 , σn and σn
−1 (s ≥ 3, t = 3)

Since s ≥ 3, O is non-empty. It is easy to

see that there are 2s − 4 edges v(b2 )v(σ2 (b2 )),

· · · , v(bs−1 )v(σ2 (bs−1 )), v(c1 )v(σ2 (c1 )), · · · ,
v(cs−2 )v(σ2 (cs−2 )) connecting one node from A

and one node from O, and the nodes v(b2 ), v(b3 ),

· · · , v(bs−1 ) and v(c1 ), v(c2 ), · · · , v(cs−2 ) are

the endpoints of these edges in A. For any node

v ∈ C(ai) for some 1 ≤ i ≤ s, let NC (v) be the set

of the two nodes adjacent to v in the correspond-

ing cycle C(ai) containing v, and denote NC =

NC (v(b2 )) ∪ NC (v(b3 )) ∪ · · · ∪ NC (v(bs−1 )) ∪
NC (v(c1 )) ∪ NC (v(c2 )) ∪ · · · ∪ NC (v(cs−2 )).

Since P is connected, among the above 2s −
4 edges connecting A and O there must be at

least one appearing in P . Assume that the edge

v(l)v(σ2 (l)) ∈ P , where l ∈ {b2 , b3 , · · · , bs−1 , c1 ,

c2 , · · · , cs−2}. Notice that all nodes in NC have de-

gree 2 in G. By proposition 2, since v(l)v(σ2 (l)) ∈

P , there must be one node from NC (v(l)) which is

an endpoint of P . Since P has two endpoints and

by proposition 4 at least one of them is contained

in cycle C(as), it follows that there is exactly one

node from NC which is the other endpoint of P .

Next we will show that among the above 2s−4

edges connecting A and O, there can be at most one

appearing in P . Let v0 denote the unique endpoint

of P such that v0 ∈ NC , there are two cases:

Case 1. v0 is not a common neighbor of any

two nodes v(bi) and v(ci), for 2 ≤ i ≤ s− 2. Then

by proposition 2, among the above 2s−4 edges only

the one with an endpoint having v0 as its neighbor

could appear in P .

Case 2. v0 is a common neighbor of v(bi)

and v(ci) in cycle C(ai), for some 2 ≤ i ≤ s −
2. Then only the two edges v(bi)v(σ2 (bi)) and

v(ci)v(σ2 (ci)) could possibly appear in P .
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···

··
·

···

t-1 s-1
101 0

t-1 s-2
0101 0

t-1 s-1
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s-1 t-2
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s-1 t-1
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···

t s
1 0

t s-1
01 0
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s t-1
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2 s t-2
1 0 1

···

s t
0 1

s-1 t-1
010 1 s-1 t-2

1010 1

t-1 s-1
1 010

···

t-1 s-2
01 010

s-1 t-1
0 1 01

s-1 t-1
10 1 0

t-2 s-2
101 010

s-2 t-2
010 101

t-2 s-2 2 2
1 0 1 0

s-2 2 2 t-2
0 1 0 1

···

t-2 s-2 2
01 0 1 0

2 t-2 s-2
10 1 0 1

2 t-2 s-2 2
0 1 0 1

2 2 t-2 s-2
1 0 1 0

2 2 t-2 s-3
01 0 1 0

···

s-2 2 2 t-3
10 1 0 1

t-1 s-1
1 0 10

2 s-1 t-2
01 0 1

t-2 s-1
101 0 1

s-2 t-1
010 1 0

2 t-1 s-2
10 1 0

t s
C(1 0 )

2 2 t-2 s-2
C(1 0 1 0 )

s-1 t-1
C(010 1 )

· · · · · · · · · · · ·

Fig. 2. Underlying graph of B(s, t) with operations σ2 , σn and σn
−1 (s, t ≥ 4)

Without loss of generality, assume that v0 is

adjacent to v(bi) in P , since the node in NC (v(bi))

other than v0 (which has degree 2 in G) can no

longer be an endpoint of P , it must be adjacent

to v(bi) in P , thus v(bi) already has two neighbors

in P and so the edge v(bi)v(σ2 (bi)) cannot appear

in P , thus v(ci)v(σ2 (ci)) is the only possible edge

that appears in P .

Therefore, in either case, among the above

2s − 4 edges connecting A and O there is exactly

one of them appearing in P . However, this implies

that the node set O must contain an endpoint of P ,

which is a contradiction since P cannot have three

endpoints.2

Lemma 7 If min{s, t} ≥ 4, then the underlying

graph G of B(s, t) with allowed operations σ2 , σn

and σn
−1 has no Hamiltonian path.

Proof of Lemma 7: Assume that there is a

Hamiltonian path P in G. For any string l ∈
B(s, t), let C(l) denote the cycle in G corre-

sponding to the sequence l, σn(l), σn
(2 )(l), · · · .

Since s, t ≥ 4, by proposition 4, both cycles

C(1t0s) and C(12021t−20s−2 ) contain at least one

endpoint of P . It is easy to see that C(1t0s)

and C(12021t−20s−2 ) are vertex-disjoint, therefore

each of them contains exactly one endpoint of P .

Consider the two nodes of C(1t0s) having

degree three, v(10s1t−1 ) and v(01t0s−1 ), since

C(1t0s) contains only one endpoint of P , among

the above two nodes there must exist one such that

its two neighbors in C(1t0s) are not endpoints of P ,

without loss of generality, assume it is v(10s1t−1 ).

By proposition 2, the edge connecting v(10s1t−1 )

and its third neighbor in G, v(010s−11t−1 ), will not
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appear in P . Thus we can remove this edge from G,

and the resulting graph will still contain the Hamil-

tonian path P (see Figure 2). After removing the

edge v(10s1t−1 )v(010s−11t−1 ), consider the cycle

C(010s−11t−1 ), now it contains only three nodes

with degree three, v(10s−11t−10), v(1010s−11t−2 )

and v(01t−1010s−2 ), and they are not adjacent

to each other. Therefore, by proposition 3,

C(010s−11t−1 ) also contains at least one endpoint

of P . However, C(1t0s), C(12021t−20s−2 ) and

C(010s−11t−1 ) cover disjoint node sets in G, thus

P must have at least three endpoints, which is a

contradiction. 2

Proof of Theorem 1: It follows immediately

from lemmas 5, 6 and 7. 2

4 Conclusion and Future Studies

In this paper we showed that in general pre-

fix shifts σ2 , σn and σn
−1 are not sufficient for

generating combinations. Combination generation

is of wide applications, and prefix shifts are ba-

sic operations which are very suitable for hardware

implementation. It is interesting to further inves-

tigate whether we can generate combinations by

using some more restricted class of prefix shifts.
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