
An Hybrid Approach for Efficient Multicast Stream
Authentication over Unsecured Channels

Christophe Tartary1,2, Huaxiong Wang1,3, and Josef Pieprzyk3

1 Division of Mathematical Sciences
School of Physical and Mathematical Sciences

Nanyang Technological University
Singapore

2 Institute for Theoretical Computer Science
Tsinghua University

Beijing, 100084
P.R. China

3 Centre for Advanced Computing - Algorithms and Cryptography
Department of Computing

Macquarie University
NSW 2109 Australia

{ctartary,josef}@ics.mq.edu.au,
HXWang@ntu.edu.sg

Abstract. We study the multicast stream authentication problem when an oppo-
nent can drop, reorder and inject data packets into the communication channel. In
this context, bandwidth limitation and fast authentication are the core concerns.
Therefore any authentication scheme is to reduce as much as possible the packet
overhead and the time spent at the receiver to check the authenticity of collected
elements. Recently, Tartary and Wang developed a provably secure protocol with
small packet overhead and a reduced number of signature verifications to be per-
formed at the receiver.

In this paper, we propose an hybrid scheme based on Tartary and Wang’s ap-
proach and Merkle hash trees. Our construction will exhibit a smaller overhead
and a much faster processing at the receiver making it even more suitable for mul-
ticast than the earlier approach. As Tartary and Wang’s protocol, our construction
is provably secure and allows the total recovery of the data stream despite era-
sures and injections occurred during transmission.

Keywords: Stream Authentication, Polynomial Reconstruction, Unsecured
Channel, Merkle Hash Tree, Erasure Code.

1 Introduction

With the expansion of communication networks, broadcasting has become a major tech-
nology to distribute digital content from a single user to a large audience via a public
communication channel such as the Internet for instance. Online games, military de-
fense systems, satellite television and financial quotes are a few examples of multicast
distribution of information. Nevertheless, in large-scale broadcasts, a lost piece of a
data stream1 could generate a flood of retransmission requests from the receivers that

1 In broadcasting, the sequence of information sent into the network is called stream.

W. Susilo, J.K. Liu, and Y. Mu. (Eds.): ProvSec 2007, LNCS 4784, pp. 17–34, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

18 C. Tartary, H. Wang, and J. Pieprzyk

congregate at the sender’s side. Furthermore the network can be under the influence of
malicious users performing illegal and damaging operations on the stream. As a conse-
quence, the security of a multicast authentication protocol relies on the network proper-
ties and the opponents’ computational power. Several unconditionally secure schemes
have been developed [5, 9, 36] but either these are one-time protocols or they require too
large storage capacities. In this work, we consider that adversaries have polynomially
bounded computational abilities.

An application like a pay-TV channel broadcasting programs 24 hours a day and
seven a week suggests that the stream can be considered as infinite. Nevertheless the
receivers must be able to authenticate data within a short period of time upon reception.
Since many protocols will distribute private or sensitive content, non-repudiation of the
sender is required for most of them as using data from an uncertain origin can have
disastrous consequences during military operations for instance. Unfortunately signing
each data packet2 is impractical as digital signatures are generally very expensive to
generate and/or verify. Furthermore bandwidth limitations prevent one-time and k-time
signatures [11, 35] from being used due to their large size. Boneh et al. constructed
short signatures in [6] but their verification time is prohibitive to be a practical solution
for authenticated broadcast [3, 37]. Thus a general approach is to generate a single
signature and to amortize its computational cost and overhead over several data packets
using a chain of hash functions for instance.

Several constructions relying on hash functions have been developed to deal with
packet loss [12, 21, 31, 32]. A signature is generated from time to time and is always
assumed to be received correctly. This provides authentication and non-repudiation of
the sender and allows new receivers to join the communication group at any block3

boundary. Using Markov chains [10, 30, 42] to model the network packet loss, the
authors of the previous constructions determined bounds on the packet authentication
probability. Unfortunately, the main issue in those schemes is the fact that they rely on
the reliable reception of signature packets. Since networks like the Internet only provide
a best effort delivery of data, the reliability requirement limits the area of applications
of those constructions.

In order to overcome this issue, a general solution is to split the signature into k parts
where only � of them (� < k) are enough to guarantee the recovery of the whole signa-
ture. Many schemes have been developed using this idea [1, 26, 27, 28, 29] but none of
them tolerates a single packet injection. Using a Merkle hash tree [20], Wong and Lam
developed a construction dealing with both erasures and injections [41]. Nevertheless,
it is vulnerable to denial of service attacks (DoS) against the computational resources
of the receiver as each packet carries the block signature. Thus, in the worst case, the
number of signature verifications to be performed per block of n packets is Θ(n). In
[15], Karlof et al. overcame this problem by using Merkle hash trees as one-way accu-
mulators [2, 4, 24, 25]. Their approach requires O(1) signature verifications per block
in any case and each augmented packet4 has to carry �log2 n� hashes which may be too

2 Since the data stream is large, it is divided into fixed-size chunks called packets.
3 In order to be processed, packets are gathered into fixed-size sets called blocks.
4 We call augmented packets the elements sent into the network. They generally consist of the

original data packets with some redundancy used to prove the authenticity of the element.

An Hybrid Approach for Efficient Multicast Stream Authentication 19

large for resource limited receivers. In [17], Lysyanskaya et al. used a polynomial rep-
resentation as well as an algorithm by Guruwami and Sudan [14] to deal with packet
drops and data injections. As in Karlof et al.’s construction, their technique requires
O(1) signature verifications but its packet overhead is O(1) bits. Recently, Lysyankaya
et al.’s approach has been extended by Tartary and Wang [39]. This scheme uses Maxi-
mum Distance Separable (MDS) codes [18] and is denoted as TWMDS in our paper. It
requires O(1) signature verifications per block, O(1) bit packet overhead and enables
all data packets to be recovered at the receiver despite erasures and injections thanks
to the erasure correcting code. This feature is important when the application process-
ing the data packets is not loss tolerant as it may be the case for military applications
where obtaining all information about the enemy target is vital or for high quality video
streaming where this technique prevents frozen images to happen.

In this work, we present an hybrid construction based on Merkle hash trees and
TWMDS which will be provably secure in the random oracle model. This idea of using
a Merkle hash tree for multicast authentication is note new but this technique enables
fast authentication as only hash computations are performed. As in TWMDS, our new
scheme will enable the whole data packets to be recovered at the receiver despite era-
sures and injections and will allow new members to join the communication group at
any block boundary. As noted earlier, both the packet overhead and the speed of au-
thentication at the receiver are the core concerns for multicast stream authentication.
Since the relation between overhead and speed is central in this context and limits the
scope of applications of many schemes, we will emphasize that our protocol exhibits a
smaller overhead and a much faster authentication process than TWMDS making our
scheme more suitable for broadcast applications. As TWMDS, the non-repudiation of
the stream origin will be guaranteed using a digital signature.

The plan of this paper is as follows. In the next section, we introduce our network
model and recall a few results from [14]. Our authentication scheme is described in
Sect. 3 while its security and recovery property will be discussed in Sect. 4. In Sect. 5,
we present the benefits of our approach in term of overhead as well as authentication
speed at the receiver. Finally, we will sum up our contribution to the multicast authen-
tication problem over unsecured channels in Sect. 6.

2 Preliminaries

We now present our network model as well as an erasure correcting code we use in our
construction. We also recall a modified version of the algorithm Poly-Reconstruct by
Guruswami and Sudan [14] which will be used to deal with data injections and packet
drops as in [17, 39].

Network Model. We consider that the communication channel is under the influence of
an opponent O who can drop and rearrange packets of his choice as well as can inject
bogus data into the network. This corresponds to the unsecured communication channel
model described by Menezes et al. in [19]. We investigate the multicast stream authen-
tication problem. Thus we can assume that a reasonable number of original augmented
packets reaches the receivers and not too many incorrect chunks of data are injected by
O. Indeed, if too many original packets are dropped then data transmission becomes

20 C. Tartary, H. Wang, and J. Pieprzyk

the main problem to treat since a small number of received packets would be probably
useless even if authenticated. On the other hand, if O injects a large number of forged
packets then the main problem becomes increasing the resistance against DoS attacks.
In order to build our signature amortization scheme, we need to split the data stream
into blocks of n packets: P1, . . . , Pn. We define two parameters: α (0 < α ≤ 1) (the
survival rate) and β (β ≥ 1) (the flood rate). It is assumed that at least a fraction α and
no more than a multiple β of the number of augmented packets are received. This means
that at least �αn� original augmented packets are received amongst a total which does
not exceed �βn� elements.

Code Construction. In our construction, we focus on linear codes to correct erasures. As
in [39], we use Maximum Distance Separable (MDS) codes [18]. As our scheme works
with any MDS code, we refer the reader to [39] for a discussion about which family of
MDS codes to choose for best efficiency. Note that any linear code can be represented
by a generator matrix G. Encoding a message m (represented as a row vector) means
computing the corresponding codeword c as: c := m G (see [18]).

Polynomial Reconstruction Algorithm. In [14], Guruswami and Sudan developed an
algorithm Poly-Reconstruct to solve the polynomial reconstruction problem. They
proved that if T points were given as input then their algorithm output the list of all
polynomials of degree at most K passing through at least N of the T points provided:
T >

√
KN . We will use the same version of Poly-Reconstruct as in [39] where it was

named MPR. Denote IF2q the field representing the coefficients of the polynomial. Ev-
ery element of IF2q can be represented as a polynomial of degree at most q − 1 over
IF2 (see [16]). Operations in IF2q are performed modulo a polynomial Q(X) of degree
q (Q(X) is irreducible over IF2).

MPR
Input:The maximal degree K of the polynomial Q(X), the minimal number N of agree-
able points, T points {(xi, yi), 1 ≤ i ≤ T } and the polynomial Q(X) of degree q.
1. If there are no more than

√
KN distinct points then the algorithm stops.

2. Using Q(X), run Poly-Reconstruct on the T points to get the list of all polynomials
of degree at most K over IF2q passing through at least N of the points.
3. Given the list {L1(X), . . . , Lμ(X)} obtained at Step 2. For each polynomial
Li(X) := Li,0 + . . . + Li,KXK where ∀i ∈ {0, . . . , K}Li,j ∈ IF2q , form the ele-
ments: Li := Li,0‖ · · · ‖Li,K .
Output: {L1, . . . , Lμ}: list of candidates

Note that Poly-Reconstruct runs in time quadratic in N and outputs a list of size at
most quadratic in N as well (see Theorem 6.12 and Lemma 6.13 from [13]). Algorithms
for implementing Poly-Reconstruct can be found in [22].

3 Our Hybrid Authentication Protocol

In order to guarantee the security of our construction, we need a collision resistant hash
function h (see [33]) and an unforgeable signature scheme (SignSK,VerifyPK) (see [38])
the key pair of which (SK,PK) is created by a generator KeyGen as in [15, 17, 39].

An Hybrid Approach for Efficient Multicast Stream Authentication 21

Scheme Overview. Each block contains n data packets P1, . . . , Pn and is located within
the whole stream using its identification value BID. Our algorithms apply two steps.

The first step works as follows. Due to our network model, we want to generate n
augmented packets AP1, . . . , APn such that we can reconstruct the sequence of pack-
ets P1, . . . , Pn from any �α n�-subset of {AP1, . . . , APn}. Thus we need to encode
P1, . . . , Pn using a code which can correct up to n − �α n� erasures. Therefore we em-
ploy a [n, �α n�, n−�αn�+1] code. Notice that the use of such a code implies that the
elements of the code alphabet are larger than the size of a data packet as the message to
be encoded (M1 · · · M�α n�) should represent the concatenation P1‖ · · · ‖Pn.

The second step of our algorithm consists of building Merkle hash trees. If we de-
note (C1 · · · Cn) the codeword corresponding to the message (M1 · · · M�α n�) then we
partition the digests h(C1), . . . , h(Cn) into f families of �n

f � elements where f is an ef-
ficiency parameter (see Sect. 5). Remark that if f does not divide n then the last family
will be completed with dummy packets (consisting of zeros for simplicity). This family
padding has no effect on the number of augmented packets sent into the network as those
dummy elements will only be used to construct the last family tree. Since f and n will
be public, each receiver knows how many dummy packets to add for the last family. For
each family Fj := {h(C(j−1) �n

f �+1), . . . , h(Cj �n
f �)} (for j ∈ {1, . . . , f}) we build the

Merkle hash tree the leaves of which are the elements of Fj (see Fig. 1 for an example).

h(C5)h(C1) h(C2) h(C3) h(C4)

h(h(C1)‖h(C2)) h(h(C3)‖h(C4))

H14 := h(H12‖H34)

h(C6) h(C7) h(C8)

h(h(C5)‖h(C6)) h(h(C7)‖h(C8))

H58 := h(H56‖H78)

r1 := h(H14‖H58) (Root)

(Leaves)

H12 := H34 := H56 := H78 :=

Fig. 1. the Merkle hash tree of F1 when �n
f
� = 8

To provide authentication and non-repudiation and allow new members to join the
communication group at block boundaries, we sign the digest h(r1‖ · · · ‖rf) where r1,
. . . , rf are the f tree roots. As in [39], we construct a polynomial A(X) of degree at
most ρn (for some rational constant ρ), the coefficients of which represent r1‖ · · · ‖rf‖σ
where σ is the signature. We build the augmented packets as:

∀i ∈ {1, . . . , n} APi := BID‖i‖Ci‖A(i)‖ path(i)

where path(i) denotes the �log2�n
f �� hashes needed to reconstruct the path from h(Ci)

to the root of his family tree. For instance on Fig. 1, we have path(2) = h(C1)‖H34‖H58.
As said earlier, BID denotes the position of the block P1, . . . , Pn within the stream.

22 C. Tartary, H. Wang, and J. Pieprzyk

Upon reception of data, the receiver checks the signature by reconstructing A(X)
using MPR. Once the signature σ is verified, the receiver knows the original tree roots
r1, . . . , rf . Thus he can identify the correct Ci’s amongst the list of elements he got by
checking which paths are correct within the f trees. According to the definition of α
there must be at least �αn� symbols from C1, . . . , Cn in his list. Finally, he corrects the
erasures using the MDS code and recovers the data packets P1, . . . , Pn.

Formal Scheme Construction. As in [39], we assume that α and β are rational numbers
so that we can represent them over a finite number of bits using their numerator and
denominator. In order to run Poly-Reconstruct as a part of MPR, we have to choose
ρ ∈ (0, α2

β). Remark that it is suggested in [39] to choose ρ = α2

2 β to get a small list
returned by Poly-Reconstruct. Notice that ρ has to be rational since ρn is an integer.
We also consider that the [n, �α n�, n − �α n� + 1] code is uniquely determined (i.e. its
generator matrix G is known) when n, α, β and ρ are known. Denote IF2q̃ the field of this
MDS code. Due to space limitations, we omitted the construction of q, q̃ as well as the
different pads used by our scheme which can be found in the full version of this paper.
Table 1 summarizes the scheme parameters which are assumed to be publicly known.

Table 1. Public parameters for our authentication scheme

n: Block length ˜Q(X): Polynomial representing the field for the MDS code
f : Number of families P : bit size of data packets
α, β: Network rates G: Generating matrix of the MDS code
ρ: Ratio Q(X): Polynomial representing the field for polynomial interpolation

The hash function h as well as the signature verification algorithm Verify and the sig-
nature public key PK are also assumed to be publicly known. We did not include them in
Table 1 since they can be considered as general parameters. For instance h can be SHA-
256 [23] while the digital signature is a 1024-bit RSA signature [34]. We denote H the
digest bit length and S the bit length of a signature. Since h and the digital signature are
publicly known, so are H and S.

Authenticator
Input: The secret key SK, the block number BID, Table 1 and n data packets P1, . . . , Pn.

/* Packet Encoding */

1. Parse P1‖ · · · ‖Pn as M1‖ · · · ‖M�αn� after padding. Encode the message
(M1 · · ·M�α n�) into the codeword (C1 · · ·Cn) using the MDS code.

/* Tree Construction */

2. For j from 1 to f do

Compute the digests h(C(j−1) �n
f �+1), . . . , h(Cj �n

f �) and build the Merkle hash

tree having the previous digests as leaves (as said earlier some padding with zeros
values may be needed when j = f). Denote rj its root.

/* Signature Generation */

An Hybrid Approach for Efficient Multicast Stream Authentication 23

3. Write R as R := r1‖ · · · ‖rf . Compute the family signature σ as
σ := SignSK(h(BID‖f‖n‖α‖β‖P‖R)). Parse R‖σ as a0‖ · · · ‖aρ n where each
ai ∈ IF2q after padding.

4. Construct the block polynomial A(X) := a0 + a1 X + · · · + aρ n Xρ n and evaluate
it at the first n points5 of IF2q .

/* Construction of Augmented Packets */

6. Build the augmented packet APi as APi := BID‖i‖Ci‖A(i)‖ path(i) where path(i)
is defined as in the scheme overview section.

Output: {AP1, . . . , APn}: set of augmented packets.

As in [39], assuming that α and β are rational enabled us to write α‖β over a finite
number of bits. It should be noticed that when (n, f, α, β,P , ρ) are given, each step of
Authenticator is uniquely determined as soon as (Q(X), G, ˜Q(X)) are provided. Fur-
thermore since ρ only depends on α, β and n, it is realistic to presume that when (n, α, β)
are given, ρ is also uniquely determined. For instance, consider the remark made in [39]
where ρ is suggested to be set as α2

2 β . As a consequence, we can consider that when

(n, f, α, β,P) are given, (ρ, Q(X), G, ˜Q(X)) are uniquely determined. This consider-
ation is identical to what is assumed in [39].

Decoder
Input: The public key PK, the block number BID, Table 1 and the set of received packets
RP.

/* Signature Verification and Root Recovery */

1. Write the packets as BIDi‖ji‖C′
ji

‖Aji‖ path′ji
and discard those having BIDi �= BID

or ji /∈ {1, . . . , n}. Denote N the number of remaining elements. If (N < �αn� or
N > �βn�) then the algorithm stops.

2. Rename the remaining elements as {AP′
1, . . . , AP′

N } and write each element as:
AP′

i = BID‖ji‖C′
ji

‖Aji‖ path′ji
where ji ∈ {1, . . . , n}. Run MPR on the set {(ji, Aji),

1 ≤ i ≤ N} to get a list L := {C1, . . . , Cμ} of candidates for signature verification. If
MPR rejects that set then the algorithm stops.

3. Set r′k = ∅ for k ∈ {1, . . . , f}. While the signature has not been verified and the list
L has not been exhausted, pick a new candidate r̃1‖ · · · ‖r̃f‖σ̃ after removing the pad.
If VerifyPK(h(BID‖f‖n‖α‖β‖P‖r̃1‖ · · · ‖r̃f), σ̃) = TRUE then σ̃ is considered as the
authentic block signature σ and we set r′k = r̃k for k ∈ {1, . . . , f} as authentic tree
roots. If L is exhausted before the signature is verified then our algorithm stops.

/* Packet Decoding */

4. Set C′ := (∅, . . . , ∅). For each of the N remaining packets, BID‖ji‖C′
ji

‖Aji‖ path′ji
,

5 Any element of IF2q can be represented as λ0Y
0 + λ1Y1 + . . . + λq−1Y

q−1 where each λi

belongs to IF2. We define the first n elements as (0, . . . , 0) , (1, 0, . . . , 0) , (0, 1, 0, . . . , 0) ,
(1, 1, 0, . . . , 0) and so on until the binary decomposition of n − 1.

24 C. Tartary, H. Wang, and J. Pieprzyk

we first compute its family number �ji as �ji :=
⌈

ji

�n/f�
⌉

. Second, if the path from

h(C′
ji

) to the value r′�ji
can be reconstructed using path′ji

then we set the jth
i coordinate

of C′ to Cji .

5. If C′ has less than �α n� non-erased coordinates then the algorithm stops.
Else
5.1. Correct the erasures of C′ using the MDS decoding process and denote
(M ′

1, . . . , M
′
�α n�) the corresponding message.

5.2. Remove the pad from M ′
1‖ · · · ‖M ′

�α n� and write the resulting string as
P ′

1‖ · · · ‖P ′
n.

Output: {P ′
1, . . . , P

′
n}: set of authenticated packets.

Note that when Decoder stops then the whole content of block BID is lost. Neverthe-
less the definitions of α and β ensure that this will never happen (see Theorem 2).

4 Security and Recovery Analysis

Security of the Scheme. We recall the security definition as presented in [39].

Definition 1 ([39]). (KeyGen,Authenticator,Decoder) is a secure and (α, β)-correct
multicast authentication scheme if no probabilistic polynomial-time opponent O can win
with a non-negligible probability to the following game:

i. A key pair (SK, PK) is generated by KeyGen.
ii. O is given: (a) The public key PK and (b) Oracle access to Authenticator (but O

can only issue at most one query with the same block identification tag BID).
iii. O outputs (BID, f, n, α, β,P , ρ, Q(X), ˜Q(X), G, RP).

O wins if one of the following happens:

a. (correctness violation) O succeeds to output RP such that even if it contains �αn�
packets (amongst a total number of elements which does not exceed �βn�) for some
block identification tag BID, Decoder fails to identify all the correct packets.

b. (security violation) O succeeds to output RP such that Decoder outputs
{P ′

1, . . . , P
′
n} that was never authenticated by Authenticator for parameters

(BID, f, n, α, β,P , ρ, Q(X), ˜Q(X), G).

We now show that our construction also satisfies the above security definition. The proof
of the following theorem can be found in Appendix A.

Theorem 1. Our scheme (KeyGen,Authenticator,Decoder) is secure and (α, β)-correct.

Recovery Property. We now show that our scheme enables any receiver to recover the
n data packets and the number of signature verifications to be performed per block is
upper bounded by the same value as for TWMDS. We recall the following definition:

An Hybrid Approach for Efficient Multicast Stream Authentication 25

Definition 2 ([39]). Given a flow of n symbols, we say that the survival and flood rates
(α, β) are accurate if: (1) data are sent per block of n elements through the network
and (2) for any block of n elements {E1, · · · , En} emitted by the sender, if we denote
{Ẽ1, . . . , Ẽμ} the set of received packets then μ ≤ �βn� and at least �αn� elements
of {E1, · · · , En} belong to {Ẽ1, . . . , Ẽμ}. Condition (2) must be true for each receiver
belonging to the communication group.

From this point onwards, we assume that (α, β) is accurate for our network flow n. As
in [39], we have the following result whose proof can be found in Appendix B.

Theorem 2. For any BID, each receiver recovers the n original data packets P1, . . . ,
Pn. In addition the number of signature verifications to be performed is upper bounded
by U(n) := min(�U1(n)�, �U2(n)�) where:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

U1(n) =
1
ρn

(

1
√

α2 − βρ
− 1

)

+
β

α2 − βρ
+

1
ρ

U2(n) =
β

2(α2 − βρ)
+

1
ρ

+

√

β2 + 4
ρ2 n2 (1 − ρα)

2(α2 − βρ)
− 1

ρn

which is O(1) as a function of the block length n.

5 Efficiency Analysis

As said in Sect. 1, bandwidth limitations and authentication delay are two major con-
cerns for authentication protocols. In this section we will see that for a suitable choice of
f our construction can achieve smaller overhead than TWMDS while exhibiting a much
faster authentication at the receiver.

Packet Overhead. The packet overhead is the length of the extra tag of information used
to provide authentication. Notice that an augmented packet without a tag is assumed to
be written as: BID‖i‖Pi. Remember that the bit size of packets Pi is P .

Our augmented packets are written as BID‖i‖Ci‖A(i)‖ path(i). The element Ci is rep-

resented by
⌈

nP
�α n�

⌉

bits while A(i) requires
⌈

f H+S+λ
ρ n+1

⌉

bits where λ is the smallest

element of IN such that:
⌈

f H + S + λ

ρ n + 1

⌉

≥ �log2 n�

is verified (see the full version of the paper for details). The element path(i) consists of
�log2�n

f �� digests computed by h. Therefore, our packet overhead ω is equal to:

ω :=
⌈

nP
�α n�

⌉

− P +
⌈

f H + S + λ

ρ n + 1

⌉

+
⌈

log2

⌈

n
f

⌉⌉

H bits

The augmented packets of TWMDS are written as BID‖i‖Ci‖A(i) where Ci is rep-

resented over
⌈

nP
�α n�

⌉

bits while A(i) requires
⌈

nH+S
ρ n+1

⌉

bits. Therefore, the overhead

ωTWMDS of TWMDS is equal to:

26 C. Tartary, H. Wang, and J. Pieprzyk

ωTWMDS :=
⌈

nP
�α n�

⌉

− P +
⌈

n H + S
ρ n + 1

⌉

bits

To illustrate the benefits of our approach over TWMDS, we will compute the ratio
ω

ωTWMDS
for different choices of P , α, β. We choose the network rates as in [39] and the

packet size to 512 and 4096 bits as in [32]. We pick n = 1000 as in those two works and
set ρ to α2

2 β as suggested in [39]. We used SHA-256 as a hash function and a 1024-bit
RSA signature scheme. The first step is to compute f minimizing our overhead ω. These
values are shown in Table 2 while the corresponding overhead ω is in Table 3.

Table 2. Number of families f minimizing ω when n = 1000

P = 512 P = 4096

α α

0.5 0.75 0.8 0.9 0.5 0.75 0.8 0.9

1.1 125 500 500 500 125 500 500 500

β 1.25 125 250 500 500 125 250 500 500

1.5 125 250 250 500 125 250 250 500

2 125 250 250 250 125 250 250 250

Table 3. Overhead of our construction ω when f is chosen as in Table 2 and n = 1000

P = 512 P = 4096

α α

0.5 0.75 0.8 0.9 0.5 0.75 0.8 0.9

1.1 1569 930 827 663 5153 2125 1723 1062

β 1.25 1607 971 887 710 5191 2166 1783 1109

1.5 1672 1028 944 790 5256 2223 1840 1189

2 1801 1143 1044 889 5385 2338 1940 1288

Our comparison to TWMDS is depicted in Table 4. It clearly shows that our construc-
tion exhibits a smaller overhead than TWMDS. Our benefits get larger over networks
with small reliability (i.e. α is small) or highly polluted by O (i.e. β is large). Our con-
struction also seems to perform even better when the data packets are small.

Table 4. Ratio ω
ωTWMDS

when n = 1000

P = 512 P = 4096

α α

0.5 0.75 0.8 0.9 0.5 0.75 0.8 0.9

1.1 56.95% 79.28% 81.96% 87.93% 81.29% 89.74% 90.45% 92.11%

β 1.25 52.57% 74.18% 78.57% 83.73% 78.17% 86.50% 88.05% 88.93%

1.5 46.97% 66.97% 71.08% 78.53% 73.57% 81.43% 82.73% 84.63%

2 39.50% 57.55% 60.52% 67.30% 66.12% 73.50% 74.02% 74.88%

An Hybrid Approach for Efficient Multicast Stream Authentication 27

Authentication Efficiency. We now compare the authentication delay at the receiver
between our construction and TWMDS. It should be noticed that the authentication part
of Decoder consists of Steps 1 to 4. Indeed Step 5 is dedicated to erasure correction which
is a non-authentication related feature. In those four steps, two points matter: the number
of signature verification queries and the quantity of information to be processed by h. In
our comparison, we focus on the worst case, i.e. we assume that the number of signature
verification is U(n). Note this is the same value as in [39]. In this situation, the number
of bits h1 processed by h is:

U(n) (|BID|+f H+|f |+�log2 n�+|α|+|β|+�log2 P�)+�β n� (P+2 �log2�n
f �� H)

As f ≤ n, we can assume that |f | = �log2 n� bits. Considering TWMDS, the number
of bits h2 processed by the hash function is:

U(n) (|BID| + n P + �log2 n� + |α| + |β| + �log2 P�) + �β n� P

Table 5 represents the ratio T :=
U(n) tS + h1 tH
U(n) tS + h2 tH

where tS denotes the number of

seconds required to perform one signature verification and tH is the number of seconds
to hash one bit. In [31], it is assumed that there are about 500 packets sent per second
in the network in the case of video broadcast. As n = 1000, we buffer roughly 2 sec-
onds of video per block. So if BID is represented over 30 bits, then it provides a stream
which can last at least 68 years. It is also realistic to assume that |α| and |β| are negli-
gible in comparison to |BID|, H, �log2 n� and �log2 P�. Our results are based on Dai’s
benchmarks [8].

Table 5. Ratio T when n = 1000

P = 512 P = 4096

α α

0.5 0.75 0.8 0.9 0.5 0.75 0.8 0.9

1.1 37.98% 54.08% 56.98% 60.85% 10.49% 19.14% 21.18% 23.89%

β 1.25 38.31% 56.40% 56.46% 59.64% 10.62% 19.41% 20.82% 23.04%

1.5 38.14% 55.22% 58.35% 60.26% 10.55% 18.84% 20.34% 23.48%

2 37.93% 53.85% 58.35% 68.25% 10.47% 18.19% 20.34% 25.03%

Table 5 shows that our construction is much faster than TWMDS. Note that we deliber-
ately removed the query to Poly-Reconstruct happening at Step 2 of Decoder. Neverthe-
less TWMDS also performs such a request. So if the time needed to run Poly-Reconstruct
is added to both numerator and denominator of T then the values of Table 5 will be flat-
tened but our scheme will nonetheless remain faster.

In [40], Tartary and Wang suggested to use the provably collision resistant trapdoor
hash function Very Smooth Hash (VSH) [7] instead of a digital signature to speed up the
running time at the receiver. Based on Contini et al.’s work, VSH is 25 times slower than
SHA-1 while it requires to use a 1516-bit modulus to achieve the same security level as
a 1024-bit RSA signature modulus. Table 6 describes the overhead for our construction,

28 C. Tartary, H. Wang, and J. Pieprzyk

Table 6. Minimal overhead of our construction for n = 1000 when using VSH

P = 512 P = 4096

α α

0.5 0.75 0.8 0.9 0.5 0.75 0.8 0.9

1.1 1573 932 828 664 5157 2127 1724 1063

β 1.25 1612 973 888 712 5196 2168 1784 1111

1.5 1678 1031 946 791 5262 2226 1842 1190

2 1808 1146 1047 891 5392 2341 1943 1290

Table 7. Ratio ω
ωTWMDS

for n = 1000 when using VSH

P = 512 P = 4096

α α

0.5 0.75 0.8 0.9 0.5 0.75 0.8 0.9

1.1 57.10% 79.45% 82.06% 88.06% 81.35% 89.82% 90.50% 92.19%

β 1.25 52.73% 74.33% 78.65% 83.96% 78.24% 86.58% 88.10% 89.09%

1.5 47.13% 67.17% 71.23% 78.63% 73.66% 81.54% 82.82% 84.70%

2 39.65% 57.70% 60.70% 67.45% 66.21% 73.59% 74.13% 75.00%

Table 8. Ratio T for n = 1000 when using VSH

P = 512 P = 4096

α α

0.5 0.75 0.8 0.9 0.5 0.75 0.8 0.9

1.1 26.81% 43.71% 46.82% 50.97% 8.95% 17.72% 19.79% 22.54%

β 1.25 27.15% 46.02% 46.26% 49.74% 9.07% 17.98% 19.42% 21.68%

1.5 26.97% 44.79% 48.06% 50.33% 9.01% 17.41% 18.92% 22.12%

2 26.75% 43.36% 48.06% 58.38% 8.92% 16.74% 18.92% 23.68%

Table 7 depicts the ratio ω
ωTWMDS

and Table 8 represents the speed ratio T when VSH is
used instead of RSA.

One notices that using VSH slightly increases the overhead with respect to the digital
signature approach but it reduces the authentication time at the receiver even further.

6 Conclusion

In this paper, we presented an hybrid construction based on Merkle hash trees and
TWMDS. Our scheme is provably secure under the random oracle model and enables
new participants to join the communication group at every block boundary. As TWMDS,
our approach allows the whole data packets to be recovered at the receiver. The tradeoff
between overhead and authentication speed limits the application of many constructions.
The main benefits of this interaction between MDS codes and Merkle hash tree is that
our packet overhead and authentication speed are much smaller than for TWMDS. If the
number of families f is suitably chosen then, when using 512-bit packets, our overhead

An Hybrid Approach for Efficient Multicast Stream Authentication 29

is between 39% and 88% of TWMDS while the authentication speed is between 66% and
92%. When using larger packets, the benefits of our construction increase even further
as the overhead then represents between 38% and 68% of TWMDS while the authen-
tication speed is between 11% and 25%. The advantages of our scheme are important
when the reliability of the network is small and the pollution due to the attacker is large.

We also saw that when we employed a trapdoor hash function such a VSH instead of a
digital signature as suggested in [40], the benefits of our scheme increased even further.

Acknowledgement

The authors are grateful to the anonymous reviewers for their comments to improve the
quality of this paper. This work was supported by the Australian Research Council under
ARC Discovery Projects DP0558773, DP0665035 and DP0663452. This work was sup-
ported in part by the National Natural Science Foundation of China Grant 60553001 and
the National Basic Research Program of China Grant 2007CB807900, 2007CB807901.
Christophe Tartary did some of this work while at Macquarie University where his re-
search was supported by an iMURS scholarship. The research of Huaxiong Wang is
partially supported by the Minitry of Education of Singapore under grant T206B2204.

References

[1] Al-Ibrahim, M., Pieprzyk, J.: Authenticating multicast streams in lossy channels using
threshold techniques. In: Lorenz, P. (ed.) ICN 2001. LNCS, vol. 2094, pp. 239–249.
Springer, Heidelberg (2001)

[2] Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes with-
out trees. In Advances in Cryptology - Eurocrypt’97. In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)

[3] Barreto, P.S., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryp-
tosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–369. Springer,
Heidelberg (2002)

[4] Benaloh, J., de Mare, M.: One-way accumulators: A decentralized alternative to digital sig-
natures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer,
Heidelberg (1994)

[5] Blundo, C., De Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., Yung, M.: Perfectly-secure
key distribution for dynamic conferences. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 471–486. Springer, Heidelberg (1993)

[6] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C.
(ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)

[7] Contini, S., Lenstra, A.K., Steinfeld, R.: VSH: an efficient and provable collision resistant
hash function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 165–182.
Springer, Heidelberg (2006)

[8] Dai, W.: Crypto++ 5.2.1 benchmarks (July 2004)
[9] Desmedt, Y., Frankel, Y., Yung, M.: Multi-receiver/multi-sender network security: Efficient

authenticated multicast/feedback. In: IEEE INFOCOM 1992, vol. 3, pp. 2045–2054. IEEE
Computer Society Press, Los Alamitos (1992)

30 C. Tartary, H. Wang, and J. Pieprzyk

[10] Fu, J.C., Lou, W.Y.W.: Distribution Theory of Runs and Patterns and its Applications. World
Scientific Publishing, Singapore (2003)

[11] Gennaro, R., Rohatgi, P.: How to sign digital streams. In: Kaliski Jr., B.S. (ed.) CRYPTO
1997. LNCS, vol. 1294, pp. 180–197. Springer, Heidelberg (1997)

[12] Golle, P., Modadugu, N.: Authenticating streamed data in the presence of random packet
loss. In: Symposium on Network and Distributed Systems Security, pp. 13–22. Internet
Society (2001)

[13] Guruswami, V.: List Decoding of Error-Correcting Codes. Springer, Heidelberg (2004)
[14] Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-geometric

codes. IEEE Transactions on Information Theory 45(6), 1757–1767 (1999)
[15] Karlof, C., Sastry, N., Li, Y., Perrig, A., Tygar, J.D.: Distillation codes and applications to

DoS resistant multicast authentication. In: 11th Network and Distributed Systems Security
Symposium (NDSS) (2004)

[16] Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications - Revised
Edition. Cambridge University Press, Cambridge (2000)

[17] Lysyanskaya, A., Tamassia, R., Triandopoulos, N.: Multicast authentication in fully adver-
sarial networks. In: IEEE Symposium on Security and Privacy, pp. 241–253. IEEE Com-
puter Society Press, Los Alamitos (2003)

[18] MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland,
Amsterdam (1977)

[19] Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography.
CRC Press, Boca Raton, USA (1996)

[20] Merkle, R.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS,
vol. 435, pp. 218–238. Springer, Heidelberg (1990)

[21] Miner, S., Staddon, J.: Graph-based authentication of digital streams. In: IEEE Symposium
on Security and Privacy, pp. 232–246. IEEE Computer Society Press, Los Alamitos (2001)

[22] Moon, T.K.: Error Correction Coding: Mathematical Methods and Algorithms. Wiley,
Chichester (2005)

[23] National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard (SHS)
(August 2002. Amended 25 (February 2004)), Available online at:
http://csrc.nist.gov/publications/fips/fips180-2/
fips180-2withchangenotice.pdf

[24] Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.J. (ed.)
CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

[25] Nyberg, K.: Fast accumulated hashing. In: Gollmann, D. (ed.) Fast Software Encryption.
LNCS, vol. 1039, pp. 83–87. Springer, Heidelberg (1996)

[26] Pannetrat, A., Molva, R.: Authenticating real time packet streams and multicasts. In: 7th In-
ternational Symposium on Computers and Communications, IEEE Computer Society Press,
Los Alamitos (2002)

[27] Park, J.M., Chong, E.K.P., Siegel, H.J.: Efficient multicast packet authentication using sig-
nature amortization. In: IEEE Symposium on Security and Privacy, pp. 227–240. IEEE
Computer Society Press, Los Alamitos (2002)

[28] Park, J.M., Chong, E.K.P., Siegel, H.J.: Efficient multicast stream authentication using era-
sure codes. ACM Transactions on Information and System Security 6(2), 258–285 (2003)

[29] Park, Y., Cho, Y.: The eSAIDA stream authentication scheme. In: Laganà, A., Gavrilova,
M., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3046, pp.
799–807. Springer, Heidelberg (2004)

[30] Paxson, V.: End-to-end Internet packet dynamics. IEEE/ACM Transactions on Network-
ing 7(3), 277–292 (1999)

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

An Hybrid Approach for Efficient Multicast Stream Authentication 31

[31] Perrig, A., Canetti, R., Tygar, J.D., Song, D.: Efficient authentication and signing of multi-
cast streams over lossy channels. In: IEEE Symposium on Security and Privacy, pp. 56–73.
IEEE Computer Society Press, Los Alamitos (2000)

[32] Perrig, A., Tygar, J.D.: Secure Broadcast Communication in Wired and Wireless Networks.
Kluwer Academic Publishers, Dordrecht (2003)

[33] Pieprzyk, J., Hardjono, T., Seberry, J.: Fundamentals of Computer Security. Springer, Hei-
delberg (2003)

[34] Rivest, R.L., Shamir, A., Adelman, L.: A method for obtaining digital signatures and public
key cryptosystems. Communication of the ACM 21(2), 120–126 (1978)

[35] Rohatgi, P.: A compact and fast hybrid signature scheme for multicast packet authentication.
In: 6th ACM Conference on Computer and Communications Security, pp. 93–100. ACM
Press, New York (1999)

[36] Safavi-Naini, R., Wang, H.: New results on multi-receiver authentication code. In: Nyberg,
K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 527–541. Springer, Heidelberg (1998)

[37] Scott, M., Costigan, N., Abdulwahab, W.: Implementing cryptographic pairings on smart-
cards. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 134–147.
Springer, Heidelberg (2006)

[38] Stinson, D.R.: Cryptography: Theory and Practice, 3rd edn. Chapman & Hall/CRC (2006)
[39] Tartary, C., Wang, H.: Achieving multicast stream authentication using MDS codes. In:

Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 108–125.
Springer, Heidelberg (2006)

[40] Tartary, C., Wang, H.: Efficient multicast stream authentication for the fully adversarial
network. International Journal of Security and Network (Special Issue on Cryptography in
Networks) 2(3/4), 175–191 (2007)

[41] Wong, C.K., Lam, S.S.: Digital signatures for flows and multicasts. IEEE/ACM Transac-
tions on Networking 7(4), 502–513 (1999)

[42] Yajnik, M., Moon, S., Kurose, J., Towsley, D.: Measurement and modeling of the temporal
dependence in packet loss. In: IEEE INFOCOM 1999, vol. 1, pp. 345–352. IEEE Computer
Society Press, Los Alamitos (1999)

A Proof of Theorem 1

Assume that the scheme is either insecure or not (α, β)-correct. By definition an oppo-
nent O can break the scheme security or correctness with a non-negligible probability
π(k) where k is the security parameter setting up the digital signature and the hash func-
tion. Therefore we must have either cases:

(1) With probability at least π(k)/2, O breaks the scheme correctness
(2) With probability at least π(k)/2, O breaks the scheme security

It should be noticed that since π(k) is a non-negligible function of k, so is π(k)/2.

Point (1). We claim that if O can break the scheme correctness in polynomial time then
either he can forge the digital signature or he can find a collision for the hash function
in polynomial time as well.

This will be proved by turning an attack breaking the (α, β)-correctness of our construc-
tion into a successful attack against either primitive.

32 C. Tartary, H. Wang, and J. Pieprzyk

For this attack, O will have access to the signing algorithm SignSK (but O will not have
access to SK itself). He can use the public key PK as well as the collision resistant
hash function h. O will be allowed to run Authenticator whose queries are written as
(BIDi, fi, ni, αi, βi, Pi, ρi, Qi(X), ˜Qi(X), DPi) where DPi is the set of ni data pack-
ets to be authenticated. In order to get the corresponding output, the signature is obtained
by querying SignSK as a black-box at Step 3 of Authenticator.

According to our hypothesis, O broke the correctness of the construction. This means
that, following the previous process, O managed to obtain values BID, f, n, α, β,P , ρ,
Q(X), ˜Q(X) and a set of received packets RP such that:

– There exists a query value i such as:

(BID, f, n, α, β,P , ρ, Q(X), ˜Q(X))=(BIDi, fi, ni, αi, βi, Pi, ρi, Qi(X), ˜Qi(X))

Denote DP = {P1, . . . , Pn}(= DPi) the n data packets associated with this query
and AP the response given to O. In particular we denote σ the signature correspond-
ing to DP and generated as in Step 3 of Authenticator.

– |RP ∩ AP| ≥ �α n� and |RP| ≤ �β n�.

– {P ′
1, . . . , P

′
n} = Decoder(PK, BID, f, n, α, β,P , ρ, Q(X), ˜Q(X), RP) where

P ′
ζ �= Pζ for some ζ ∈ {1, . . . , n}.

Assume that the digital signature is unforgeable and the hash function is collision
resistant.

Since |RP ∩ AP| ≥ �α n� and |RP| ≤ �β n�, Step 1 of Decoder ends successfully.
The consistency of Poly-Reconstruct involves that the list returned by MPR at Step 2
contains the element r1‖ · · · ‖rf‖σ corresponding to DP once the pad is removed. Note
that the length of the pad is uniquely determined once H, S, n and ρ are known. The
first two ones are general parameters while the others correspond to query i on DP.

The presence of r1‖ · · · ‖rf‖σ within the list returned by MPR involves that at least
one pair message/signature will go through the verification process at Step 3 of Decoder.
As the digital signature is unforgeable and the hash function is collision resistant, this
pair will be the only one for which VerifyPK ends successfully. Indeed denote ˜R‖σ̃ an
element from the list such that:

VerifyPK(h(BID‖f‖n‖α‖β‖P‖˜R), σ̃) = TRUE

By hypothesis, O is allowed to perform a polynomial number of queries to Authentica-
tor and no more than one query per block identification value. Denote � the number of
queries done by O, BID1, . . . , BID� the � block identification values and R1‖σ1, . . . ,
R�‖σ� the corresponding � concatenations of tree roots/signatures. Note that we are cur-
rently working with iteration number i since BID = BIDi.

Since the signature scheme is secure we get σ̃ ∈ {σ1, . . . , σ�}. This means:
∃i0 ∈ {1, . . . , �}/σ̃ = σi0 . The security of the digital signature involves i0 = i as
O cannot query Authenticator more than once per block identification value. Thus: σ̃ =
σi = σ. For the same reason we get:

h(BID‖f‖n‖α‖β‖P‖ Ri
︸︷︷︸

R

) = h(BID‖f‖n‖α‖β‖P‖˜R)

An Hybrid Approach for Efficient Multicast Stream Authentication 33

Since h is collision resistant we get: ˜R‖σ̃ = R‖σ which corresponds to the data packets
DP (= DPi).

Therefore at the end of Step 3 we have recovered the f tree roots, that is:

∀i ∈ {1, . . . , f} r′i = ri

Since h is collision resistant, it is obvious that, for any element of RP written as
BID‖ji‖C′

ji
‖Aji‖ path′ji

, if path′ji
can be used to recover the path of h(C′

ji
) to the root

of his tree r′�ji
= r�ji

then C′
ji

= Cji . This corresponds to the use of the Merkle hash
trees as collision resistant accumulators as in [15]. This involves that, at the end of Step
4 of Decoder, we have:

∀ξ ∈ {1, . . . , n} C′
ξ ∈ {∅, Cξ} where C′ = (C′

1 · · · C′
n)

Since |RP∩AP| ≥ �α n�, we deduce that at least �α n� coordinates of C′ are non-empty
at the end of Step 4. Since the code can correct up to n − �α n� erasures we get:

∀ξ ∈ {1, . . . , �α n�} M ′
ξ = Mξ

at the end of Step 5.1. Therefore we get:

∀ξ ∈ {1, . . . , n} P ′
ξ = Pξ

We obtain a contradiction with our original hypothesis which stipulated
∃j ∈ {1, . . . , n} P ′

j �= Pj . As a consequence, we deduce that either the hash func-
tion is not collision resistant or the digital signature is not secure.

Point (2). We claim that if O can break the scheme correctness in polynomial time then
either he can forge the digital signature or he can find a collision for the hash function
in polynomial time as well.

We consider the same kind of reduction as in Point (1). The opponent O breaks the
security of the scheme if one of the following holds:

I. Authenticator was never queried on input BID, f, n, α, β,P , ρ, Q(X), ˜Q(X) and the
decoding algorithm Decoder does not reject RP, i.e. {P ′

1, . . . , P
′
n} �= ∅ where {P ′

1,

. . . , P ′
n} = Decoder(BID, f, n, α, β,P , ρ, Q(X), ˜Q(X), RP).

II. Authenticator was queried on input BID, f, n, α, β,P , ρ, Q(X), ˜Q(X) for some data
packets DP = {P1, . . . , Pn}. Nevertheless the output of Decoder verifies P ′

j �= Pj for
some j ∈ {1, . . . , n}.

Case I. Since Decoder output some non-empty packets, Step 3 had to terminate success-
fully. In particular it has been found a pair (h(BID‖f‖n‖α‖β‖P‖R), σ) (after removing
the pad) such that:

VerifyPK(h(BID‖f‖n‖α‖β‖P‖R), σ) = TRUE

If O never queried Authenticator for block tag BID then the previous pair is a forgery
of the digital signature.

34 C. Tartary, H. Wang, and J. Pieprzyk

If O queried Authenticator for block tag BID then denote (BID, fi, ni, αi, βi, Pi, ρi,

Qi(X), ˜Qi(X)) his query. By hypothesis we have:

(BID, fi, ni, αi, βi, Pi, ρi, Qi(X), ˜Qi(X)) �= (BID, f, n, α, β,P , ρ, Q(X), ˜Q(X))

As said in Sect. 3, when (n, f, α, β,P) are given, (ρ, Q(X), G, ˜Q(X)) are uniquely
determined. Thus the previous relation is equivalent to:

(BID, fi, ni, αi, βi, Pi) �= (BID, f, n, α, β,P)

Therefore either the previous pair message/signature is a forgery of the signature scheme
or the pair (BID‖fi‖ni‖αi‖βi‖Pi‖Ri, BID‖f‖n‖α‖β‖P‖R) is a collision for the hash
function f .

Case II. We have the same situation as Point (1).

B Proof of Theorem 2

Let BID be fixed. Due to the accuracy of (α, β), we could demonstrate as in [39] that, at
the end of Step 3 of Decoder, the receiver has recovered the signature σ as well as the f
tree roots r1, . . . , rf . Similarly to Wong and Lam’s and Karlof et al.’s approaches [15, 41]
which both relies on a Merkle hash tree construction, Step 4 enables us to identify all
correct codeword coordinates amongst the set of received elements since h is a collision
resistant hash function. Due to the accuracy of (α, β), we have at least �α n� values
which are consistent with (C1 · · · Cn). Thus Step 5 successfully ends since the code can
correct up to n−�αn� erasures. As a consequence, Decoder outputs the whole n original
packets, that is: ∀i ∈ {1, . . . , n} P ′

i = Pi.
As we use the same settings as in [39], we deduce that U(n) ∈ O(1) is also a bound on

the size of the list output by Poly-Reconstruct for our construction. The reader interested
in the details is referred to [39].

	An Hybrid Approach for Efficient Multicast Stream Authentication over Unsecured Channels
	Introduction
	Preliminaries
	Our Hybrid Authentication Protocol
	Security and Recovery Analysis
	Efficiency Analysis
	Conclusion
	Proof of Theorem 1
	Proof of Theorem 2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

