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Abstract. To reduce the risk of privacy disclosure during personal data publish-
ing, the approach of anonymization is widely employed. On this topic, current
studies mainly focus on two directions: (1)developing privacy preserving models
which satisfy certain constraints, such as k-anonymity, l-diversity, etc.; (2)de-
signing algorithms for certain privacy preserving model to achieve better privacy
protection as well as less information loss. This paper generally belongs to the
second class. We introduce an effective algorithm “BSGI” for the widely ac-
cepted privacy preserving model: l-diversity. In the meantime, we propose a novel
interpretation of l-diversity: Unique Distinct l-diversity, which can be properly
achieved by BSGI . We substantiate it’s a stronger l-diversity model than other
interpretations. Related to the algorithm, we conduct the first research on the
optimal assignment of parameter l according to certain dataset. Extensive exper-
imental evaluation shows that Unique Distinct l-diversity provides much better
protection than conventional l-diversity models, and BSGI greatly outperforms
the state of the art in terms of both efficiency and data quality.

Keywords: Privacy preservation, BSGI, k-anonymity, l-diversity, Unique-
Distinct l-diversity.

1 Introduction

With the development of internet, more and more data on individuals are being collected
and published for scientific and business uses. To reduce the risk of privacy disclosure
during such publishing, the approach of anonymization is widely used. Removing the
attributes that explicitly identify an individual, (e.g., name, social security number) from
the released data table is necessary but insufficient, because a set of Quasi-identifying
(QI) attributes (e.g., date of birth, zip code, gender) can be linked with public available
datasets to reveal personal identity. To counter such “link attack”, P. Samaritan and
L. Sweeney proposed the model of k-anonymity[1,2,3,4]. K-anonymity requires each
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tuple in the published table to be indistinguishable from at least k − 1 other tuples
on QI values. Tuples with the same QI values form an equivalence class. Thereby
k-anonymity reduces the identity disclosure risk to no more than 1/k.

However, since k-anonymity does not take into account the sensitive attribute (SA),
namely, the attribute containing privacy information(e.g., disease, salary), it may be
vulnerable to sensitive attribute disclosure[5]. [5] presents two kinds of possible at-
tacks that k-anonymity cannot prevent: homogenous attack and background knowledge
attack, then proposes a new model: l-diversity to counter such attacks. l-diversity en-
sures each equivalence class contains at least l “well-represented” SA values, thereby
reduces the risk of sensitive attribute disclosure to no more than 1/l.

Current algorithms for l-diversity are generally derived from algorithms for k -
anonymity. As proved in [5], any algorithm for k-anonymity, like hierarchy-base algo-
rithm Incognito[13] and partition-based algorithm Mondrian[14], can be transformed
easily to algorithm for l-diversity, just by changing the condition in each checking phase
from k-anonymity to l-diversity. However, since k-anonymity algorithms do not take
into account the distribution of SA values at all, which is the essence of l-diversity, the
derived l-diversity algorithms may generate great and unnecessary information loss. In
fact, our experiments in Section 6 reveal that Incognito for l-diversity is almost imprac-
tical for low efficiency and data quality while Mondrian for l-diversity drops behind our
algorithm largely in both terms.

In [8], a new model, “Anatomy” was proposed for privacy preserving. Although
Anatomy fails to prevent identity disclosure because of no generalization on QI at-
tributes, its ideas inspire us to propose an algorithm specially designed for l-diversity:
BSGI . Since the implementation of l-diversity largely relies on the distribution of SA
values, an intuitive but most effective inspiration is to firstly “bucketize” the tuples ac-
cording to their SA values, then recursively “select” l tuples from l distinct buckets and
“group” them into an equivalence class. As for the residual tuples, “incorporate” each of
them into a proper equivalence class. The resulted table will satisfy l-diversity perfectly.

For instance, for the disease information table: Table 1, to satisfy 2-diversity, firstly,
tuples are bucketized according to the “Disease” attribute and three buckets are formed:
B1 = {t1, t4}, B2 = {t3, t5} and B3 = {t2, t6, t7}. Here ti denotes the ith tu-
ple in the table. Secondly, t1 and t2 are selected from B1 and B3 and grouped. An
group(equivalence class) is formed as shown in Table 2.

Continuously, t3 and t4, t5 and t6 are selected and grouped (Table 3). Finally, the
residual tuple t7 is incorporated into Group 2, the final published table is created
(Table 4).

Detailed discussions about the implementation of the four steps form the mainbody
of this paper, together with two natural by-products: the optimal assignment of the
parameter l and the stronger l-diversity model: Unique Distinct l-diversity.

The idea of Unique Distinct l-diversity comes from the property of the transformed
tables achieved by BSGI: without considering the incorporated tuples, each equiva-
lence class contains exactly l distinct SA values, we call such model “Unique Distinct
l-diversity” and will further discuss it in this paper.

The rest of this paper is organized as follows. Section 2 gives the basic notations and
definitions, including the Unique Distinct l-diversity model. Section 3 and 4 provide the
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Table 1. The Original Table

NO. Name Gender Postcode Age Disease
1 Alice F 10075 50 Cancer
2 Bob M 10075 50 Obesity
3 Carl M 10076 30 Flu
4 Diana F 10075 40 Cancer
5 Ella F 10077 20 Flu
6 Fiona F 10077 25 Obesity
7 Gavin M 10076 25 Obesity

Table 2. The First Equivalence Class

Group id. Gender Postcode Age Disease
1 * 10075 50 Cancer
1 * 10075 50 Obesity

Table 3. The Table after Bucktizing, Sel −
ecting and Grouping

Group id Gender Postcode Age Disease
1 * 10075 50 Cancer
1 * 10075 50 Obesity
2 * 1007* 30-40 Flu
2 * 1007* 30-40 Cancer
3 F 10077 20-25 Flu
3 F 10077 20-25 Obesity

Table 4. The Final Published Table

Group id Gender Postcode Age Disease
1 * 10075 50 Cancer
1 * 10075 50 Obesity
2 * 1007* 25-40 Flu
2 * 1007* 25-40 Cancer
2 * 1007* 25-40 Obesity
3 F 10077 20-25 Flu
3 F 10077 20-25 Obesity

essential ideas of BSGI algorithm, together with the discussion about l’s assignment.
Section 5 formally presents the BSGI algorithm with further discussions. Section 6
provides the experimental evaluations. Section 7 introduces related work and Section 8
concludes this paper with discussions about future work.

2 Preliminary

2.1 Basic Notations

Let T = {t1, t2, · · · , tn} be the table that need to be anonymized. Here ti,i = 1, 2, · · · ,
n represents the ith tuple of the table. Each tuple contains a set of Quasi-identifying at-
tribute {A1, A2, . . . , AN}. Each tuple contains one sensitive attribute S(we will discuss
the single-tuple-multi-SA case in Section 5).We use t[A] to denote the value of t’s at-
tribute A. Let T ∗ = {t∗1, t

∗
2, · · · , t∗n} be the anonymized table, where t∗i is the ith tuple

after anonymization. Also T ∗ = e1
⋃

e2
⋃

· · ·
⋃

em, where ei is the ith equivalence
class. Let E be the set of equivalence classes. By overriding, we also use ei[Aj ], etc.
And ei[S] denotes the multi-set of ei’s SA values.

2.2 The Information Loss Metric

In fact, our BSGI algorithm does not rely on a certain information loss metric. Any met-
ric that captures the quality of generalization[12,15,18] can be adopt by the algorithm.
In our experiment, we use the metric proposed by [12], denoted as IL metric.
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IL metric defines the information loss for categorical and numerical attributes sep-
arately. The information loss of a tuple is defined by summing up the loss of all at-
tributes(multiplied by different weights). The total information loss of the whole table
is defined by summing up the loss of all tuples.

2.3 l-diversity and Unique Distinct l-diversity

Definition 1. (The l-diversity Principle) An anonymized table is said to satisfy
l-diversity principle if for each of its equivalence class e, e[S] contains at least l “well-
represented” values[5].

According to [5,6], the so called “well-represented” has several interpretations:

1. Distinct l-diversity. This interpretation just requires that for each equivalence class
ei, there are at least l distinct values in ei[S].

2. Entropy l-diversity. The entropy of equivalence class e is defined as follows:

Entropy(e) = −
∑

each distinct s∈e[S]

P (e, s) log(P (e, s))

Here P (e, s) denotes the proportion that value s takes in e[S]. Entropy l-diversity
requires for each equivalence class ei, Entropy(ei)≥ log l.

3. Recursive (c,l)-diversity. Let d be the number of distinct SA values in e[S]. ri, 1 ≤
r ≤ d, be the number of the ith most frequent SA value in e[S]. Recursive (c,l)-
diversity requires r1 < c(rl + rl+1 + · · · + rd).

Here we propose our interpretation of l-diversity:

Definition 2. (Unique Distinct l-diversity) An anonymized table is said to satisfy
Unique Distinct l-diversity if for each of its equivalence class e, e[S] contains exactly l
distinct SA values.

Observation 1. If equivalence class e satisfies Unique Distinct l-diversity, then it also
satisfies Distinct l-diversity, Entropy l-diversity and Recursive (c, l)-diversity for all
constant c > 1.

The proof is simple, we need only to check the demand of the three models one by
one. According to this observation, Unique Distinct l-diversity is a stronger model. �

Observation 2. Unique Distinct l-diversity prevents “probability inference attack”1

better than other three models.
This is also apparent, in Unique Distinct l-diversity, the SA attributes are uniformly

distributed. Therefore, when the attacker locates some individual in a certain equiva-
lence class e, without further background knowledge[5], he cannot disclose the indi-
vidual’s SA value with probability higher than 1/l. However, in the other three models,

1 Or “skewness attack”[6], the privacy disclosure because of non-uniform distribution of SA
values within a group.
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there may be cases when one SA value appears many more times than other SA value
in e[S]. Then the attacker could guess the individual has such SA value with high
probability. �
The foregoing observations substantiate the advantages of Unique Distinct l-diversity.
We shall prove its feasibility in Section 4.

3 The Implementation of the Selecting Step

In BSGI , the tuples are first bucketized according to their SA values. Let Bi denote
the ith greatest bucket and B = {B1, B2, . . . , Bm} denote the set of buckets. We have:
ni = |Bi|, n1 ≥ n2 ≥ · · · ≥ nm, Σm

i=1ni = n. Since different ni’s may vary greatly,
we shall use the following “Max− l” method to ensure the formed “l-tuple groups” are
as many as possible: in each iteration of selecting, one tuple is removed from each of
the l largest buckets to form a new group. Note that after one iteration, the size of some
buckets will be changed. So in the beginning of every iteration, the buckets are sorted
according to their sizes, as shown in Figure 2.

Theorem 1. The Max-l method creates as many groups as possible.

Proof. We prove by induction on m = |B| and n = |T |.
Basis. m = n = l. This is the basis because when m < l or n < l, no group can be
created. In this case, there is exactly one tuple in each bucket, apparently, the Max-l
method creates as many groups as possible.

Induction. When m > l, n > l. Assume the way W creates maximal number of
groups, which equals k. We denote Gi = {i1, i2, . . . , il} (i1 < i2 < · · · < il) to be
the ith group created by W and Gi contains one tuple from each of Bi1 , Bi2 , . . . , Bil

.
From W , a new way W

′
can be constructed that satisfies: (1)W

′
creates k groups;

(2)The first group created by W
′

is G
′

i = {1, 2, . . . , l}. The construction takes two
operations: swap and alter.

1. swap. ((i, a), (j, b)) (1 ≤ i, j ≤ k, 1 ≤ a, b ≤ m, a ∈ Gi, a /∈ Gj , b ∈ Gj , b /∈
Gi) means to exchange a in Gi with b in Gj . For example, G1 = {1, 2}, G2 =
{3, 4}, swap((1, 1), (2, 3)) leads to G1 = {2, 3}, G2 = {1, 4}. Since a /∈ Gj , b /∈
Gi, the grouping way after this operation is always valid.

2. alter. (a, b) (1 ≤ a < b ≤ m) means to replace each a in every Gi with b and re-
place each b with a. For the above example, alter(2, 3) leads to G1 = {1, 3}, G2 =
{2, 4}. The grouping way is valid after this operation if and only if a’s total appear-
ing times is no more than b’s.

The construction is like this: for variable i from 1 to l, assume the ith element in G1
is b. If i = b, we do nothing. Otherwise, b must be greater than i. We check for other
k − 1 groups G2, . . . , Gk. There are two possible cases:

1. There is a group Gj such that i ∈ Gj and b /∈ Gj . In this case, we perform
swap((1, b), (j, i)) to obtain a new grouping way. Since i /∈ G1, b /∈ Gj , it is
still a valid grouping way.
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2. Every group that contains i also contains b. Therefore, the total number of i’s is no
more than that of b’s. In this case, we perform alter(i, b), the grouping way is still
valid after this operation.

Note operation on i ensures the ith element in G1 to be i and does not change the first
i − 1 elements. So when the whole process finishes, we obtain a valid grouping way
W

′
with G

′

1 = {1, 2, . . . , l}. Removing tuples responding to the elements in G
′

1, we
obtain a new instance of the problem with m′ ≤ m, n′ = n − l < n. Due to induction
hypopiesis, we know our algorithm generates as many groups as possible for the new
instance. In the meantime, the best solution to the new instance contains at lest k − 1
groups, because G

′

2, G
′

3, . . . , G
′

k is such a grouping way. So for the original instance,
our algorithm generates at least k groups. That is the maximal number as assumed. The
proof is completed. �

During selecting, in order to reduce information loss and avoid exhaustively search-
ing the solution space, the following greedy method is adopted: in each iteration of
selecting, a random tuple t1 is selected from B1 and it forms the original equivalence
class(group) e. For variable i from 2 to l, from Bi, a tuple ti that minimize IL(e

⋃
ti)

is selected and merged into e, as shown in Figure 2.

4 The Property of Residual Tuples after Selecting and Grouping

In this section, well shall investigate the property of residual tuples after selecting and
grouping steps.

Theorem 2. When the selecting and grouping steps terminate, there will be no residual
tuples if and only if the buckets formed after the “bucketizing” step satisfy the following
properties (we call it l-Property):
(1) ni

n ≤ 1
l , i = 1, 2, . . . , m(Use the same notation: ni, m, n, as in Section 3)

(2) n = kl for some integer k

Proof. First notice that ni

n ≤ 1
l is equivalent with n1 ≤ k, because n1 is the largest

among all ni’s.

(If ) We prove by induction on m = |B| and n = |T |.
Basis. m = n = l, this is the basis because m cannot be smaller than l. Now there’s
one tuple in each bucket. Obviously the algorithm leaves none.

Induction. m > l or n > l. Resembling the proof of Theorem 1, we assume that
when the first group is created by our algorithm, the remaining buckets and tuples form
a new instance of the problem with parameter (m′, n′). We shall prove this new instance
also has l-Property.

Apparently m′ ≤ m, n′ = n− l = (k −1)l. To prove n′
1

n′ ≤ 1
l . We discuss two cases

for different values of n1.

1. n1 = k. Assume that n1 = n2 = · · · = nj = k, nj+1 < k. We have:

n = kl = Σm
i=1ni = Σj

i=1ni + Σm
i=j+1ni ≥ kj
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So l ≥ j. This means the number of the buckets with k tuples does not exceed l.
According to our algorithm, after the first group is removed, the bucket with most
tuples has size k − 1 because all the buckets previously has size k contribute one to

that group. That is n′
1 = k − 1 = n′

l , or n′
1

n′ ≤ 1
l .

2. n1 ≤ k − 1. This case is simple because n′
1 ≤ n1 ≤ k − 1, so n′

1
n′ ≤ 1

l .

In both cases, we obtain that the new instance has l-Property. With the very same idea as
used in the proof of Theorem 1, the outcome of the remaining execution of the algorithm
equals to what we obtain by running the algorithm individually for the new instance.
Due to induction hypopiesis, we know our algorithm will leave no non-empty buckets.
So for the original instance, the conclusion also holds. The proof of if-part is completed.

(Only-if ) It is easy to verify that n must be multiple of l to guarantee that all the
tuples can be grouped. So there exists some integer k such that n = kl

Since there’s no residual tuples, for the requirement of l-diversity, each group con-
tains at most one tuple from the first bucket. The mapping from the tuples in B1 to the
groups is one − to − one, but not necessarily onto. Therefore, we have n1 ≤ k = n

l ,
or n1

n ≤ 1
l .The proof of only-if part is completed. �

When the buckets satisfy the first condition while do not satisfy the second condition of
l-Property, we have following conclusion:

Corollary 1. If the buckets satisfy following Property: ni

n ≤ 1
l , then after the selecting

and grouping steps, each non-empty bucket has only one tuple.

Proof. Assume n = kl + r, 0 ≤ r < l, hypothetically change our algorithm like
this: first subtract one tuple from each of B1, B2, . . . Br, then operate the “Max − l”
selecting method in Section 3. The new instance satisfies l-Property and k groups will
be formed. Therefore the best solution creates no less than k groups. In the meantime it
creates no more than k groups because n = kl + r.

Now we already know there are k iterations of “selecting and grouping” in total2,
denote them to be I1, I2 . . . Ik. Assume one bucket(denoted Bbad) contains at least 2
tuples after Ik . Note before Ik, there are at most l − 1 buckets with size at least 2,
otherwise there will be at least l non-empty buckets after Ik. So a tuple from Bbad

is selected during Ik and |Bbad| ≥ 3 before Ik . Similarly, before Ik−1, there are at
most l − 1 buckets with size at most 3. So a tuple from Bbad is selected during Ik−1
and |Bbad| ≥ 4 before Ik−1. Recursively, we obtain |Bbad| ≥ k + 2 before I1, this
contradicts the condition. The proof is completed. �

The above result is of great merits. On one side, the number of residual tuples is lim-
ited and bounded by l, our algorithm will not suffer from large number of residual
tuples. Thus the feasibility of Unique Distinct l-diversity can be assured. As proved in
Section 2, Unique Distinct l-diversity is a stronger l-diversity model which provides
better privacy preservation. The experiment in Section 6 will also substantiate this. In
sum, we have:

2 Similar theorem is proved in [8], however, we find that proof ungrounded because it assumes
the number of iteration equals k, without proof.
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Corollary 2. Unique Distinct l-diversity can be exactly achieved if the original table
satisfy both l-Property (1) and (2). If the table just satisfy l-Property (1), Unique Dis-
tinct l-diversity can be achieved with less than l residual tuples.

On the other side, we can choose a proper l according to the distribution of SA values.
Consider, assigning a large number to l provides better privacy preservation but greater
information loss, while a small number leads to less data distortion but higher privacy
disclosure risk. Current studies ignore to investigate the optimal assignment of l to
balance such trade-off. However, from previous discussion we can reach the following
conclusion:

Corollary 3. The optimal assignment to parameter l in l-diversity is max{2, � n
n1

�}.

If � n
n1

� = 1, this reflects the most frequent SA value takes a proportion more than 50%.
This is a greatly “skew” distribution and the privacy disclosure risk cannot be reduced
to below 1/2.

As for the residual tuples, the simplest way is to suppress them. Here we perform
incorporating: for each of them, find a proper equivalence class to incorporate it. The
so called “proper” has two requirements: (1)The chosen equivalence class had better
not contain the new SA value, thus it will satisfy Unique Distinct (l + 1)-diversity after
incorporation. (2)The incorporation leads to minimal information loss. The detailed
implementation is in Figure 3.

5 The BSGI Algorithm

5.1 The Algorithm

Summing up the previous discussions, we formally present the BSGI algorithm in this
section.

The “Select” procedure in Figure 2 implements the “Max-l” selecting method in
Section 3 and the “Incorporate” procedure implements the incorporating method in
Section 4. Say, if there exists some equivalence class e that t[S] /∈ e[S], t is incorporated
into one of such classes that minimize the information loss. Otherwise, for each e,
t[S] ∈ e[S], the choosing of e to incorporate t is only based on minimal information
loss.

5.2 Further Discussion about the Algorithm

In this section, we shall discuss some special cases with regard to BSGI .

1. The single-Individual-Multi-Class Case
Note our algorithm can be categorized into “local-recoding”[13] that the created equiv-
alence classes may overlap each other. Thus one individual may be associated with
more than one equivalence classes. For instance, in Table 4, the individual George can
be associated with both Group 2 and Group 3. With regard to its influence on privacy
disclosure risk, we shall prove:
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Input: Original table T
Output: Anonymized table T ∗ which satisfies l-diversity
Data: E = ∅, E is the set of equivalence classes
begin1

/* The bucketizing step */
Bucketize tuples of T according to their SA values;2

B = {Bi} /* B is the set of buckets */3

/* The selecting and grouping steps */
while |B| ≥ l do4

E = E
�

Select();5

/* The incorporating step */
foreach residual tuple t do6

Incorporate(t);7

return T ∗;8

end9

Fig. 1. The BSGI Algorithm

Data: B =the set of buckets; e = ∅, the equivalence class to be created
begin1

Sort buckets in B according to their size;2

B = {B1, B2, · · · , Bm} where Bi is the ith greatest bucket in B;3

Randomly remove one tuple t1 from B1;4

e = {t1};5

for i ← 2 to l do6

Remove one tuple ti from Bi that minimize IL(e
�

ti);7

e = e
�

ti;8

return e;9

end10

Fig. 2. The Select Procedure

Data: E =the set of equivalence classes; t =the tuple to be incorporated
begin1

E
′
= {e|e ∈ E and t[S] /∈ e[S]};2

if |E′ | �= 0 then3

Find e in E
′

that minimize IL(e
�

t);4

else5

Find e in E that minimize IL(e
�

t);6

e = e
�

t;7

end8

Fig. 3. The Incorporate Procedure
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Theorem 3. The case of single-individual-multi-class does not increase sensitive at-
tribute disclosure risk to more than 1/l.

Proof. Assume one individual I , with SA value I[s], can be associated with equiva-
lence classes ei1 , ei2 , . . . , eij . According to probability’s Bayes Model, the risk of sen-
sitive attribute disclosure is

j∑

k=1

Pr(I ∈ eik
) · Pr(privacy disclosure|I ∈ eik

)

Consider
∀k, Pr(privacy disclosure|I ∈ eik

) ≤ 1/l

and
j∑

k=1

Pr(I ∈ eik
) = 1

We have, the total risk of sensitive attribute disclosure:

Pr(privacy disclosure) ≤ 1/l �

2. The Single-Individual-Multi-Tuple Case
Traditionally, we assume one single individual corresponds to a single tuple in the table.
However, there are cases where one single individual corresponds to multiple tuples.
(e.g., one person’s multiple disease records for different diseases). In this case, if multi-
ple tuples of a same individual is grouped together, the proportion of tuples containing
the individual’s SA values within that group will be larger than 1/l, thus leads to higher
privacy disclosure risk.

To counter such case, we need only to add a “check” procedure during the selecting
step. If a candidate tuple belongs to a already-selected individual, that tuple will not be
selected.

3. The Single-Tuple-Multi-SA Case
Traditionally, we deal with the case where a single tuple contains only one sensitive
attribute. For the single-tuple-multi-SA case, an intuitive thinking is to consider the
SA value as one multi-dimensional vector. However, this may lead to privacy disclo-
sure. Consider the case of two sensitive attributes: (Disease, Salary). The values
(flu, $10000), (cancer, $10000), (obesity, $10000) do not equal to each other. But
if tuples with these SA values are grouped, the disclosure risk for attribute Salary is
100%.

To counter such case, in the selecting step, the new tuple should be unequal to
each of the already-selected tuples on all sensitive attributes. However, this is quite a
preliminary approach, it’s performance deserves extensive study.

6 Experiments

In this section, we conducted several experiments using the real world database Adult,
from the UCI Machine Learning Repository[20] to verify the performance of BSGI in
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both efficiency and data quality by comparing with full-domain generalization algorithm
“Incognito” and multi-dimensional partition algorithm “Mondrian” respectively.

6.1 Experimental Data and Setup

Adults database is comprised of data from the US Census. There are 6 numerical at-
tributes and 8 categorical attributes in Adult. It leaves 30162 records after removing the
records with missing value. In our experiments, we retain only eight attributes. {Age,
Final-Weight, Education, Hours per Week, Martial Status, Race, Gender} are consid-
ered as Quasi-identifying attributes. The former four attributes are treated as numeric
attributes while the latter three are treated as categorical attributes. WorkClass is the
sensitive attribute. According to Corollary 1, the upper bound of l is determined to be
7 because the most frequent SA value “Prof-specialty” takes a proportion greater than
1/8 while less than 1/7.

We modify LeFevre’s Incognito[13] and Mondrian[14] into the l-diversity versions.
These two algorithms and our BSGI are all built in Eclipse 3.1.2, JDK 5.0, and exe-
cuted on a dual-processor Intel Pentium D 2.8 GHz machine with 1 GB physical mem-
ory. The operating system is Microsoft Windows Server 2003.

6.2 Efficiency

The running time of Incognito is not in Figure 4 because such exhaustive algorithm
takes nearly exponential time in the worst case. In our experiment, its execution time
is more than half an hour, exceed the other two by several orders of magnitude. We
execute both BSGI and Mondrian three times, and calculate the average. Figure 4 re-
ports the average time of both algorithms. As is shown, the running time of Mondrian
decreases from about 90s to 75s, because when l increases, the recursive depth of the al-
gorithm reduces. However, as is shown, BSGI performs much better than Mondrian
and almost does not increase with l. In fact, it is easy to conclude the time complexity
of BSGI is O(n2), highly efficient and independent of l.

6.3 Data Quality

Figure 6 depicts the widely adopted metric: Discernibility Metric cost(DM )[16] of the
three algorithms and Table 5 shows the average group size resulted from them. These
two metrics are mutually related, because without suppression, DM is defined as

DM =
∑

each equivalence class e

(|e|)2

In both metrics, the cost of Incognito exceeds the other two by orders of magnitude.
Since Incognito always maps all the QI values within the same level of its general-
ization hierarchy into a same generalized value, as a result, it tends to over-generalize
the original table. In fact, over-generalization is the fatal shortcoming of the class of
full-domain generalization algorithms. Secondly, BSGI does a much better job than
Mondrian. Actually, BSGI always achieves the best result with regard to these two
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Table 5. Average Group Size

Average Group Size
l BSGI Mondrian Incognito
2 2.00 2.47 471
3 3.00 4.32 471
4 4.00 6.71 628
5 5.00 9.81 942
6 6.00 13.79 1005
7 7.00 18.73 1005

metrics, because it implements the Unique Distinct l-diversity model and every equiv-
alence class is of the minimal size l. We can learn that there are almost exactly l tuples
in each equivalent class generated by BSGI .

Besides DM and average group size metrics, we adopt the IL metric in
Section 2.2, which gives more information about how much the tuples are generalized.
Figure 5 demonstrates the IL as a function of l. Again, Incognito causes more loss by
orders of magnitude. BSGI is the best but the advantage seems not so significant in
comparison with Mondrian. When l = 7, the IL of BSGI is 70% of Mondrian’s.
This can be explained by the implementation of selecting step: the new selected tuple
that minimize IL is not from the whole table, but from an appointed bucket. As proved
in Section 3, such selecting method ensures the maximum number of created groups,
however may be unable to achieve minimal information loss. This cost is worthwhile,
because Unique Distinct l-diversity largely enhances privacy preservation.

In sum, the excessively long execution time and high information loss render Incog-
nito almost impractical. BSGI achieves the optimal DM and AverageSize metric.
With regard to the IL metric, BSGI still outperforms Mondrian apparently. The
BSGI is an highly efficient algorithm with low information loss. In the meantime,
it achieves the stronger Unique Distinct l-diversity model, which preserves privacy
excellently.
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7 Related Work

As introduced in the abstract, the work dealing with developing privacy models in-
cludes [5,6,7,8,9,10,11] and etc. [6] proposes the model of t-closeness, which requires
the distribution of SA values in each equivalence class to be close to the entire table. [7]
enable personal specified degree of privacy preserving. Instead of generalizing original
QI values, [8] anatomize the original table into a quasi-identifier table (QIT ) and a sen-
sitive table(ST ). [9] propose the model of δ-presence to the case of individual presence
should be hidden. Unlike previous work on static datasets, [10,11] deal with privacy
preserving for dynamic, or incremental datasets. The work on designing algorithms for
privacy models includes [13,14,15,16,17] and etc. [13], [14] and [15] represent three
main classes of algorithms: hierarchy-based, partition-based and clustering-based. In
fact, our work can be categorized into clustering-based algorithms. There are still other
related works. The information loss metric proposed by [12] is adopted by this pa-
per. [19] investigates the large information loss that privacy preservation techniques
encounter in high-dimension cases.

8 Conclusion and Future Work

In this paper, we propose a specially designed algorithm: BSGI for l-diversity.
Through such algorithm, a stronger l-diversity model, Unique Distinct l-diversity can
be achieved with less information loss. We also investigate the optimal assignment to
parameter l in the model.

For the future work, although we have dealt with the single-tuple-multi-SA case,
further analysis on the influence of multiple sensitive attributes and designing specific
algorithm are of great merits. In the meantime, it may be worthwhile to extend BSGI
to work on dynamic growing datasets.
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