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Abstract. We study a restricted related model of the network routing
problem. There are m parallel links with possibly different speeds,
between a source and a sink. And there are n users, and each user i
has a traffic of weight wi to assign to one of the links from a subset of all
the links, named his/her allowable set. We analyze the Price of Anarchy
(denoted by PoA) of the system, which is the ratio of the maximum
delay in the worst-case Nash equilibrium and in an optimal solution.
In order to better understand this model, we introduce a parameter λ
for the system, and define an instance to be λ-good if for every user,
there exist a link with speed at least smax

λ
in his/her allowable set. In

this paper, we prove that for λ-good instances, the Price of Anarchy
is Θ

�
min{ log λm

log log λm
, m}�. We also show an important application of our

result in coordination mechanism design for task scheduling game. We
propose a new coordination mechanism, Group-Makespan, for unrelated
selfish task scheduling game. Our new mechanism ensures the existence

of pure Nash equilibrium and its PoA is O
�

log2 m
log log m

�
. This result improves

the best known result of O(log2 m) by Azar, Jain and Mirrokni in [2].

1 Introduction

Network routing is one of the most important problems in the network
management. In most networks, especially in a large-scale network like internet,
it is unlikely that there is a centralized controller who can coordinate the
behavior of all the users in the network. In such situations, every user in the
network decides how to rout his/her traffic, aware of the congestion caused by
other users. Users only care about the delay they suffer, and their selfish behavior
often leads the whole network to a suboptimal state. Recently, researchers start
to investigate the performance degradation due to the lack of the coordination
for the users.

In the model first studied by Kautsoupias and Papadimitriou [9], there are
m identical parallel links from the same origin to the same destination. There
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are n users, and each with a traffic of weight wi. We assume that the traffic
of each user can not be split and as a result each user chooses exactly one
link. After all the users choose their links, the delay of a link is equal to the
total weight of the traffics on it, and the delay a user suffers is equal to the
delay of the link he chooses. The performance of the system we consider here is
the maximum delay of all the links. We are mainly interested in stable states,
where no user can decrease his delay by unilaterally changing his choice. In game
theory, such a state is also called a Nash equilibrium. In order to measure the
performance degradation, they compared the performance of Nash equilibrium
with the optimal solution when there is centralized coordination. In particular,
we analyze the Price of Anarchy (PoA for short) of the system, which is defined
to be the performance ratio between the worst-case Nash equilibrium and an
optimal solution. In [9], Kautsoupias and Papadimitriou showed that the PoA
of that system is at most 2− 1/m.

Since then, a lot of research works have be done along this line. There are
mainly two generalized models of this problem which are well studied. One model
is routing with related links, where different links may have different speeds and
the delay of a link is equal to the total weight on this link over its speed. In this
uniform related model, Czumaj and Vöcking proved that the PoA is Θ

(
log m

log log m

)

[4]. The other model is routing with restricted links, where each user i is only
allowed to choose links from a subset Si of all the links. However the links are still
identically in the sense that the speed of each link is the same. In this restricted
model, Awerbuch et al. proved that the PoA is also Θ

(
log m

log log m

)
[1].

In light of these results, one may conjecture that the common extension of
these two models, where the links are both related and restricted, also has a
PoA of Θ

(
log m

log log m

)
. In fact, this model was studied by Gairing et al. in [7], and

they showed that the PoA of this problem can be as large as m− 1. However, in
their bad instance demonstrating the lower bound of m−1, some users can only
use extremely slow links (with speed less than smax

(m−1)! , where smax is the largest
speed). This is a little artificial and unlikely to appear in the real world. So in
order to better understand this model, we introduce a property called λ-goodness
for the system. An instance is called λ-good if and only if every user can at least
use a link with speed no less than smax

λ . Now in our notation, the result in [7] says
that the PoA can be as large as m − 1 when the system is only (m − 1)!-good.
So what is the exact relation between the PoA and the λ-goodness of a system?
In this paper, we answer this question completely by giving a tight bound for
the PoA of a λ-good system in term of λ.

Theorem 1. For λ-good instances, the price of anarchy is Θ
(
min{ log λm

log log λm ,m}).
In the proof of Czumaj and Vöcking for related links, they essentially used

the property of uniform related, which means that each link has a fixed speed
and all the users can choose it. And in the proof of Awerbuch et al. for restricted
links, they essentially used the property of identical, which means that all the
links have the same speed. In our extended model, namely restricted related
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links, none of the two properties hold and as a result none of their technique
can be adopted to analyze the PoA of the new model directly. In this paper, we
use a new proof approach. We calculate the delay of links interval by interval,
obtain some recursive relations between them based on the property of Nash
equilibrium, and finally we are able to derive a bound of the maximum delay in
the system.

Our result also has an important application in task scheduling game with
coordination mechanism. Task scheduling can be viewed as another model for
routing problem by treating the links as machines, the traffics as tasks, the
delay of a user as the completion time of his/her task, and the delay of the
system as the makespan of the system. Then we have scheduling with identical
machines, related machines, and restricted machines corresponding to the above
three models of routing problems. Further more, we also have a more general
model, called scheduling with unrelated machines, in which each machine may
have different speeds for different tasks. An instance of scheduling unrelated
machines is denoted by a matrix t = (tij), where tij denotes the processing time
that machine j needs for task i. In this language, when each machines uses the
Makespan policy, i.e. to process its tasks in such a parallel way that all of them
are completed at the same time, the task scheduling game is essentially the same
as the routing problem. However, as observed by Christodoulou, Koutsoupias
and Nanavati in [3], the scheduling policies of the machines may affect the choices
of the users, and hence the PoA of the system. So they considered the problem
of designing a set of local scheduling policies such that the PoA of the system is
small. Such a set of scheduling policies are called coordination mechanism, and
the PoA of the system with a coordination mechanism is also called the PoA of
this mechanism.

Using our main result, we propose a new coordination mechanism, named
Group-Makespan mechanism, for scheduling unrelated machines. This Group-
Makespan mechanism ensures the existence of a pure Nash equilibrium and its
PoA is O

(
log2 m

log log m

)
, improving the best known result O(log2 m) by Azar, Jain

and Mirrokni in [2].

2 Preliminaries and Notations

In this section, we define our problem formally. There are m independent links
from certain origin to destination, and n independent users. We use [m] and [n]
to denote the link set {1, · · · ,m} and user set {1, · · · , n} respectively. Each link
j ∈ [m] has a speed sj and w.l.o.g, we assume s1 ≥ s2 ≥ · · · ≥ sm. Each user
i ∈ [n] has a traffic of weight wi, which can only be assigned to a link from a
set Si ⊆ [m]. We use < w, s,S > to denote an instance of the problem, where
w = (w1, · · · , wn), s = (s1, · · · , sm) and S = {S1, · · · , Sn} denote the weights,
speeds and allowable link sets. We introduce the property of λ-goodness for a
instance < w, s,S >.
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Definition 1. (λ-Goodness)An instance < w, s,S > is λ-good if and only if
the following condition holds: for any user i ∈ [n], there exists a machine j ∈ Si

such that the speed sj is at least s1/λ.

We consider pure strategies for users, and each user’s strategy is to decide
which link to assign his/her traffic. We use a = (a1, · · · , an) ∈ S1 × · · · × Sn to
denote a combination of all users’ strategies, where user i selects a link ai ∈ Si.
We also use a−i to denote the strategies of all the other users except user i. In
a state a, the delay of link j, denoted by laj , is the total weights on it over its
speed, and the delay of the system, denoted by la, is the maximum delay over
all the links. That is laj = 1

sj

∑
i:ai=j wi, la = maxj laj .

We consider the optimum when there is centralized coordination, that is, the
minimal delay of the system over all the possible states. We use opt to denote
the optimum as well as an optimal solution.

We assume the users are all non-cooperative and each one wishes to minimize
his/her own cost, without any regard to the performance of the system. The cost
of user i in a state a is the delay of link ai and we use ca

i to denote it. We have
ca
i = laai

.
Now we define the Nash equilibria of the system formally.

Definition 2. (Nash Equilibrium) A state a is called a Nash Equilibrium
(NE for short )of the system if and only if no user can decrease his/her cost by
unilaterally changing a link. That is, for any user i ∈ [n], any strategy a′i ∈ Si

and a′ = (a−i, a
′
i), we have ca

i ≤ ca′
i .

For any instance of the problem, pure Nash Equilibrium always exists. The
proof of this fact is using a quite common method with an elegant potential
function, which is pointed out in several places(see [5] for example).

Theorem 2. (Existence of Nash Equilibrium) For λ ≥ 1 and any λ-good
instance < w, s,S >, there exists a Nash Equilibrium state a of it.

To compare the performance of Nash Equilibrium with the optimum, we give
the definition of Price of Anarchy.

Definition 3. (Price of Anarchy)For instance of restricted routing problem,
the Price of Anarchy (PoA for short) is defined as the performance ratio between
the worst-case Nash equilibrium and the optimal solution. That is

PoA = max
a∈S1×···×Sn

a is a NE

la

opt
.

And for any family of instances, its Price of Anarchy is defined to be the largest
PoA among all its possible instances.

3 PoA of λ-Good Restricted Routing

In this section, we prove our main result Theorem 1. If λ > (m− 1)!, Gairing et
al. gave a tight bound Θ(m) [7]. So in this section, we always assume λ ≤ (m−1)!
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and prove that the PoA of the family of λ-good instances is Θ
(

log λm
log log λm

)
. We

only give the proof for the upper bound and omit the tight example here.

Theorem 3. (Upper Bound) Given any λ-good instance < w, s,S > and a
state a ∈ S1 × · · · × Sn which is a Nash equilibrium, delay of the system la is at

most opt ·O
(

log λm
log log λm

)
.

For notational simplicity, we scale the speeds and weights such that s1 = 1
and opt = 1. We also define several notations used in the proof. For any k ∈ R+

and j ∈ [m], let W k
j = max{laj − k, 0} · sj and W k =

∑
j∈[m] W

k
j . Especially, we

use Wj = W 0
j to denote the total weight assigned to link j, and W = W 0 to

denote the total weight of all the users. Fix an optimal solution opt, let Oj be
the set of users assigned to link j in opt. We also define Ok

j to be the set of users
who choose link j in opt and have costs at least k, that is, Ok

j = {i ∈ Oj , c
a
i ≥ k}.

Our proof of the upper bound theorem comes from the following lemmas. In
Lemma 1, we give a initial condition of W k and this is the only point we use
the condition that the instance is λ-good. Then Lemma 2 and Lemma 3 give
recursive relations between W ks, which basically says that W k should increase
significantly when k become small. So we can bound the total weight W from
below in terms of makespan la and λ. On the other hand, the total weigh is
bounded from above by m. Putting things together, we can bound la.

Lemma 1. For any λ-good instance and any Nash equilibrium a, we have
W la−2 ≥ 1

λ .

Proof. Consider a link whose delay achieves la, say link j∗. Let i be a user on
link j∗, and let link j ∈ Si has the maximum speed in Si. Now if j = j∗, we have
laj = la. If j 6= j∗, since a is a Nash equilibrium, i cannot decrease his/her cost
by changing from link j∗ to link j. We have la = ca

j∗ ≤ laj + wi

sj
.

As in the optimal solution, task i can only be assigned to a link from Si, whose
speed is at most sj , we have wi/sj ≤ opt = 1. Therefore, we have laj ≥ la − 1.
So no matter whether j = j∗ or not, we have laj ≥ la − 1, hence

W la−2 ≥ W la−2
j ≥ 1 · sj ≥ 1

λ
,

where the last inequality is because the instance is λ-good. 2

Lemma 2. For any Nash equilibrium a and 0 ≤ k ≤ la − 2, we have W k ≥
la

la−(k+2)W
k+2 .

Proof. Firstly, we want to prove that W k
j ≥

∑
i∈Ok+2

j
wi. If Ok+2

j is empty, then

we are done. Otherwise, for any task i ∈ Ok+2
j , ca

i ≥ k + 2, by the definition of
Nash equilibrium, we have

k + 2 ≤ ca
i ≤ laj + wi/sj ≤ laj + 1.
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The last inequality is because that the task i is assigned to link j in opt.
Therefore, laj ≥ k + 1 and W k

j ≥ 1 · sj ≥
∑

i∈Oj
wi ≥

∑
i∈Ok+2

j
wi. Noticing

that
⋃

j Ok
j = {i : ca

i ≥ k}, we can bound W k as follows:

W k =
∑

j∈[m]

W k
j ≥

∑

j∈[m]

∑

i∈Ok+2
j

wi =
∑

i:ca
i≥k+2

wi =
∑

j:laj≥k+2

Wj (1)

By the definition of Wj and W k+2
j , for any j, laj > k + 2, we have:

Wj =
laj

laj − (k + 2)
W k+2

j ≥ la

la − (k + 2)
W k+2

j (2)

The last inequality is because the function f(x) = x
x−(k+2) is monotone

decreasing when x > k + 2 and for all j, we have laj ≤ la.
So from (1) and (2), we have:

W k ≥ la

la − (k + 2)

∑

j:laj >k+2

W k+2
j =

la

la − (k + 2)
W k+2

From lemma 1 and lemma 2, we have recursive relation about W k and an
initial condition. These ensures us to prove an upper bound on la, which is
O(log λm). There is a little gap between our expected bound. The reason is that
in the above estimation in (2), we bounded all the laj from above by la. This is
a little weak since there cannot be too many links with large laj . The following
lemma uses a more careful estimation, and explores a recursive relation between
W k,W k+2, and W k+4, which helps us to obtain a better bound on la.

Lemma 3. For any λ-good instance and any Nash equilibrium a, we have W k ≥
k+6
4 (W k+2 − 2W k+4).

Proof. First, we omit some links in the summation of the last term in (1), then

W k ≥
∑

j:laj >k+2

Wj ≥
∑

j:k+6≥laj >k+2

Wj .

Now, the estimation occurred in (2) can be more tight: for any link j such that
k + 6 ≥ laj > k + 2, we have

Wj =
lAj

laj − (k + 2)
W k+2

j ≥ k + 6
k + 6− (k + 2)

W k+2
j =

k + 6
4

W k+2
j

So, we can bound W k as

W k ≥ k + 6
4

∑

j:k+6≥laj >k+2

W k+2
j =

k + 6
4

(
W k+2 −

∑

j:laj >k+6

W k+2
j

)
(3)
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For ∀j, laj > k + 6, we have

W k+2
j = (laj − (k + 2)) · sj and W k+6

j = (laj − (k + 6)) · sj ,

hence 2W k+4
j = W k+2

j + W k+6
j . Using this equality, we can bound the

negative term in (3) as follows:
∑

j:laj >k+6

W k+2
j ≤

∑

j:laj >k+6

2W k+4
j ≤ 2W k+4.

Substituting this into (3), and we finish the proof. 2

Putting things together, we have the proof of Theorem 3.
Proof of Theorem 3: Let k0 = b la

6 c. For any k ≥ la − 2k0 ≥ 2la

3 , we have:

W k ≥ k + 6
4

(
W k+2 − 2W k+4

)

≥ k + 6
4

(
W k+2 − 2 · la − (k + 4)

la
W k+2

)

=
2(k + 4)− la

4la
· (k + 6)W k+2

≥ 2( 2la

3 + 4)− la

4la
· (2la

3
+ 6)W k+2

≥ la

18
W k+2

The first inequality is by lemma 3 and the second inequality is by lemma 2.
so using this recursive relation and lemma 1, we have:

W la−2k0 ≥ W la−2 ·
(

la

18

) la

6

≥ 1
λ
·
(

la

18

) la

6

.

Since ∀j, sj ≤ s1 = 1, and opt = 1, we have W ≤ opt · ∑j sj ≤ m. By

W ≥ W la−2k0 , we have
(

la

18

) la

6

≤ λm. Since the solution to the equation

xx = y is x = Θ

(
log y

log log y

)
, we can obtain that la is at most O

(
log λm

log log λm

)
. 2

4 An Application in Coordination Mechanism

In this section, we see an application in coordination mechanism design for selfish
task scheduling game. We give the high level ideas of our new mechanism.
This new mechanism is inspired by the mechanism Split & Shortest in [2].
Given an instance t for scheduling with unrelated machines, we can define
ti = minj∈[m] tij as the weight of task i, and define the speed sij of a machine
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j with respect to a task i as sij = ti/tij , namely the minimum running time
of task i on all the machines over the running time of task i on machine j. In
our Group-Makespan mechanism, every machine simulates log m sub machines
and submachine k of machine j only run those tasks i for which machine j
has speed sij ∈ [2−k, 2−k+1). We artificially delay a task so that the k-th sub
machines of different machines all have fixed speed 2−k. Each machine simulates
its sub machines by round-robin, and for each submachine we use the Makespan
scheduling policy. In the submachine level, each submachine has a fixed speed,
and a task can only be assigned to some of the sub machines. So it becomes
a problem of scheduling with restricted related machines. Further more, all the
instance obtained in this way have a very good structure, namely it is 1-good.
Therefore in the submachine level, the PoA is bounded by Θ

(
log m

log log m

)
. Since

each machine has to simulate log m machines all the time, this may loss a factor
of at most log m.

We give the theorem as following, and omit the formal definition of the
Group-Makespan mechanism and the proof of this theorem due to the space
limitation. Readers may see [2] for idea of the submachine and related analysis.

Theorem 4. The Group-Makespan mechanism for scheduling m unrelated
machines ensures the existence of pure Nash equilibria, and the PoA of the task
scheduling game with this mechanism is O

(
log2 m

log log m

)
.
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