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Abstract

An accumulator based on bilinear pairings was proposed at CT-RSA’05. In this paper, we first demonstrate that the
security model proposed by Lan Nguyen does lead to a cryptographic accumulator which is not collision resistant. Second
we show that we can provide collision-resistance by updating the adversary model appropriately. Finally, we propose an
improvement on Nguyen’s identity escrow scheme with membership revocation based on the accumulator by removing
the trusted third party.
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1 Introduction

A cryptographic accumulator is an algorithm allowing the aggregation of a large set of elements into a single value of
constant size. Accumulators were introduced by Belanoh andde Mare [5] in order to design distributed protocols without
the presence of a trusted central authority. Such constructions are used in time-stamping [5], fail-stop signatures [4], ring
signatures [11] and multicast stream authentication [12] for instance. Camenisch and Lysyanskaya introduced the notion
of dynamic accumulators which allow the addition and deletion of values from the original set of elements [8]. In2005,
Nguyen [15] proposed a dynamic accumulator based on bilinear pairings to design ID-based ad-hoc anonymous identifi-
cation schemes and identity escrow protocols with membership revocation.

In this work, we demonstrate that, contrary to what was claimed in [15], Nguyen’s accumulator is not collision re-
sistant. Following his advice [17], we demonstrate how to modify the security model so that collision resistance can be
provided. Finally, we prove that it is possible to modify hisidentity escrow scheme based on the accumulator so that the
presence of a trusted third party is not required any longer.

The remainder of this paper is organized as follows. In the next section, we recall the definitions and results from
the original paper by Nguyen [15]. In Section 3, we introduceour attack against the collision resistance of Nguyen’s
accumulator. In Section 4, we demonstrate that the securitymodel modification proposed by Nguyen [17] does lead to a
collision resistant accumulator. Finally, we design our improvement on Nguyen’s identity escrow scheme in Section 5.
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2 Preliminaries

In this section, we recall the definitions and constructionsas they appear in Nguyen’s paper [15].

2.1 Notations and Terminology

Definition 1 A functionf : N→ R
+ is said to benegligibleif:

∀α > 0∃ℓ0 ∈ N : ∀ℓ > ℓ0 f(ℓ) < ℓ−α

Definition 2 A functionf : N→ R
+ is said to bepolynomially boundedif:

∃α0 > 0 : ∀ℓ ∈ N f(ℓ) < ℓα0

We denoteZp the set of residues{0, . . . , p − 1} modulop. We consider two additive cyclic groupsG1 = 〈P1〉 and
G2 = 〈P2〉 as well as a cyclic multiplicative groupGM . These three groups are assumed to have the same prime orderp.
We assume that we have a bilinear pairinge : G1 ×G2 → GM such that:

1. ∀(P,Q) ∈ G1 ×G2 ∀(a, b) ∈ Zp × Zp e(aP, bQ) = e(P,Q)
a b

2. e(·, ·) is not degenerated:e(P1, P2) 6= 1

3. There exists a computationally efficient algorithm to computee(P,Q) for every couple(P,Q) from G1 ×G2.

As in [15], we considerG1 = G2 (and thusP1 = P2) in the remainder of this paper. We have the following definition:

Definition 3 A bilinear pairing instance generatoris aprobabilistic polynomial-time(PPT) algorithmG taking as input a
security parameter1ℓ and returning a uniformly random tuplet = (p, G1, GM, e(·, ·), P ) of bilinear pairing parameters
defined as before whereℓ represents the length of the prime numberp andG1 = 〈P 〉.

We now present the definition of accumulators and the collision resistance property as set by Nguyen in [15].

Definition 4 ([15]) An accumulatoris a tuple({Xℓ}ℓ∈N
, {Fℓ}ℓ∈N

), where{Xℓ}ℓ∈N
is called thevalue domainof the

accumulator and{Fℓ}ℓ∈N
is a sequence of pairs of functions such that each(f, g) ∈ Fℓ is defined asf : Uf ×Xext

f → Uf

for someXext
f ⊃ Xℓ andg : Uf → Ug is a bijective function. In addition, the following properties are satisfied:

• (Efficient Generation)There exists an efficient algorithmG taking as input a security parameter1ℓ and outputting
a random element(f, g) from Fℓ possibly together with some auxiliary informationaf .

• (Quasi-commutativity)∀(ℓ, (f, g), u, x1, x2) ∈ N×Fℓ×Uf ×Xℓ×Xℓ f(f(u, x1), x2) = f(f(u, x2), x1). For any
ℓ ∈ N, (f, g) ∈ Fℓ andX := {x1, . . . , xq} ⊂ Xℓ, we callg(f(· · · f(u, x1) · · · , xq)) theaccumulated valueof the
setX overu. The elementf(· · · f(u, x1) · · · , xq) does not depend on the order of the elements to be evaluated and
is denotedf(u, X).

• (Efficient Evaluation)For any (f, g) ∈ Fℓ, u ∈ Uf andX ⊂ Xℓ with polynomially bounded size (as a function of
ℓ), g(f(u, X)) is computable in time polynomial inℓ even without the knowledge ofaf .

Nguyen set the previous definition to generalize the accumulator constructions by Camenisch and Lysyanskaya [8] and
Dodiset al. [11] whereUf = Ug and the bijective functiong is the identity function. Then, he gave the following security
definition.

Definition 5 ([15] Collision Resistant Accumulator) An accumulator is said to becollision resistantif for everyPPT
algorithmA, the function:

Advcol.acc.
A (ℓ) := Prob

(

(f, g)
R
← Fℓ;u

R
← Uf ; (x,w, X)← A(f, g, Uf , u) |

(X ⊂ Xℓ) ∧ (w ∈ Ug) ∧ (x ∈ Xext
f \ X) ∧ (f(g−1(w), x) = f(u, X))

)

is negligible as a function ofℓ. We say thatw is a witnessfor the fact thatx ∈ Xℓ has been accumulated inv ∈ Ug

wheneverg(f(g−1(w), x)) = v.

We now introduce theq-Strong Diffie Hellman (q-SDH) assumption as it was used by Nguyen to claim the security of his
construction.

Definition 6 Theq-Strong Diffie Hellman(q-SDH) assumptionstates that for everyPPTalgorithmA, the function:

Advq-SDH
A

(ℓ) := Prob
((

A(t, P, s P, . . . , sq P ) =
(

c, 1

s+c
P
))

∧ (c ∈ Zp)
)

is negligible as a function ofℓ wheret = (p, G1, GM, e(·, ·), P )← G(1ℓ) ands
R
← Z

∗
p.
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2.2 Construction of the Accumulator

To generate an instance of the accumulator from the securityparameterℓ, we run the algorithmG on input1ℓ to obtain a
tuple t and a uniformly chosen elements from Z

∗
p as in Definition 6. We construct a tuplet′ := (P, s P, . . . , sq P ) where

q is an upper bound on the number of elements to be accumulated.The corresponding functions(f, g) for this instance
(t, t′) are defined as:

f : Zp × Zp −→ Zp g : Zp −→ G1

(v, x) 7−→ (x + s) v v 7−→ v P

This construction involves that we have:

Uf = Xext
f = Zp Ug = G1 Xℓ = Zp \ {−s}

It is clear thatf is quasi-commutative. In addition, foru ∈ Zp and a setX = {x1, . . . , xk} ⊂ Zp \ {−s} wherek ≤ q, the

accumulated valueg(f(u, X)) =

(

k
∏

i=1

(xi + s)u

)

P is computable in time polynomial inℓ from the tuplet′ and without

the knowledge of the auxiliary informations [15].

We now recall the security theorem demonstrated by Nguyen. Note that it is denoted as Theorem2 in [15].

Theorem 1 ([15]) The accumulator related to the pair(f, g) defined above provides collision resistance if theq-SDH
assumption holds, whereq is the upper bound on the number of elements to be accumulated.

3 Breaking the Collision Resistance

In this section, we construct a PPT algorithmA which breaks the collision resistance property of the accumulator with
non-negligible probability. Since this will contradict the result from Theorem 1, we will then show that the adversary
reduction model to theq-SDH assumption given by Nguyen was incorrect.

3.1 Our Attack

Algorithm Construction. According to Definition 5, the adversary is given the functionsf andg as well asu and the set
Uf = Zp. We build the following algorithm:

AlgorithmA
Input: The pair of functions(f, g) and the valueu.

1. Computes = f(1, 0)

2. Letk be any polynomial function ofℓ. Choose uniformly at randomk +1 elements ofZp \{−s} denotedx1, . . . , xk, x
and setX := {x1, . . . , xk}.

3. Computeλ :=

k
∏

i=1

(xi + s)u modp andµ := (x + s)
−1 modp. Denoteξ := λµ modp and setw := g(ξ).

Output: The triple(x,w,X).

Correctness of the output.Due to Step2, we have:X ⊂ Xℓ andx ∈ Xext
f \ X. From Step3, we obtain:w ∈ Ug.

By construction ofX we have:f(u, X) =

k
∏

i=1

(xi + s)u modp. We also haveξ = g−1(w) sinceg is invertible. We obtain

the following equalities:
f(ξ, x) = (x + s) ξ modp

= (x + s)λµ modp

= (x + s) (x + s)
−1

λ modp
= λ modp
= λ
= f(u, X)

Therefore, we have:f(g−1(w), x) = f(u, X). In addition, the construction of the triple(x,w, X) is deterministic (the
valueµ always exists sincex 6= −s). So, we obtain:

Advcol.acc.
A (ℓ) = 1
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Running time. First, it should be noticed that any operation (addition, multiplication, inversion) inZp can be done in
quadratic time as a function ofℓ [14]. That is, any of these arithmetic operations can be performed inO(ℓ2) bit operations.

Sincek is a polynomial function ofℓ, we denote it asK(ℓ). We can also assume that picking one random element from
Zp \ {−s} requires polynomial timeR(ℓ) (otherwise it would be computationally infeasible to construct a single family
of elements fromZp \ {−s} = Xℓ which is not a realistic assumption). Thus, Step2 is executed in(K(ℓ) + 1)R(ℓ) bit
operations.

Sinces has been obtained at Step1 (usingO(ℓ2) bit operations), one can getλ with k multiplications andk additions
in Zp representingO(K(ℓ) ℓ2) bit operations. Each of the two elements,µ andξ, also needsO(ℓ2) bit operations to be
computed whileg can be run in polynomial timeG(ℓ). Therefore, the number of bit operations executed during Step3 is
O(K(ℓ) ℓ2 + G(ℓ)).

As a consequence, the running time ofA is:

O(ℓ2) + (K(ℓ) + 1)R(ℓ) + O(K(ℓ) ℓ2 + G(ℓ)) = O(K(ℓ)R(ℓ) ℓ2 + G(ℓ))

which is polynomial in the security parameterℓ.

Therefore,A is a PPT algorithm breaking the collision resistance of the accumulator with non-negligible probability.
Thus, the accumulator is not collision resistant. We point out thatA enables to construct many such triples(x,w, X).

3.2 Comments on the Original Security Proof

The issue in [15] is that the adversary is given access tof which enables him to break the computational assumption
as follows. According to Definition 6, an adversary trying tobreak theq-SDH assumption should only be provided with
(t, P, z P, . . . , zq P ). Nevertheless, the adversary model of the accumulator (Definition 5) allows to query bothf andg.
As a consequence, it is easy for the adversary to obtainz by a single query tof as in Step1 of A. Then, he can compute
(z + c)

−1 modp in O(ℓ2) bit operations forany c. Finally, the adversary runsg on that inverse and obtain1
z+c

P . This
means that the adversary can break theq-SDH assumption.

4 Ensuring Collision Resistance

In order to be immune against our attack, Nguyen suggested toallow the adversary the use of the compositiong◦f instead
of bothf andg [16, 17]. His proposed definition is as follows:

Definition 7 ([16]) An accumulator is said to becollision resistantif for everyPPTalgorithmA, the function:

Advcol.acc.
A (ℓ) := Prob

(

(f, g)
R
← Fℓ;u

R
← Uf ; (x,w, X)← A(g ◦ f, Uf , u) |

(X ⊂ Xℓ) ∧ (w ∈ Ug) ∧ (x ∈ Xext
f \ X) ∧ (f(g−1(w), x) = f(u, X))

)

is negligible as a function ofℓ. We say thatw is a witnessfor the fact thatx ∈ Xℓ has been accumulated inv ∈ Ug

wheneverg(f(g−1(w), x)) = v.

In [15], the issue was that a PPT adversaryAcol.acc. attacking the collision resistance of the accumulator had extra in-
formation (namely, a direct access to bothf andg) with respect to a PPT adversaryAq-SDH trying to attack theq-SDH
assumption directly. We now demonstrate that it is not the case any longer for the security model based on Definition 7.

Theorem 2 LetAcol.acc. be aPPTadversary attacking the collision resistance of the accumulator and letAq-SDH be a
PPTadversary attacking theq-SDHassumption. Then, both adversaries have the same view of theq-SDHassumption.

Proof.
According to Definition 6, a PPT adversaryAq-SDH attempting to break theq-SDH assumption is given the elementst and
t′ where:

t = (p, G1, GM , e(·, ·), P )
t′ = (P, s P, . . . , sq P )

According to Definition 7, a PPT adversaryAcol.acc. attempting to break the collision resistance of the accumulator is
provided witht (representing the construction parameters of the accumulator) as well ast′′ where:

t′′ := (g ◦ f, Uf , u)
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In the case of Nguyen’s construction, we have:Uf = Zp. So, we can write:

t′′ = (g ◦ f, Zp, u)

We have to demonstrate thatAcol.acc.(initially attacking the collision resistance of the accumulator) does not gain any ben-
efits from receivingt′ (i.e.Acol.acc.knowst, t′ andt′′) overAq-SDH who attacks theq-SDH assumption directly (i.e.Aq-SDH

only knowst andt′). In other words, we must prove that the extra knowledget′′ does not giveAcol.acc.any advantage with
respect toAq-SDH when attacking theq-SDH assumption.

First, it should be noticed thatAq-SDH knows the groupZp (second component oft′) since he has knowledge ofp as a part
of the parametert.

Second,Aq-SDH can simulate the black-boxg ◦ f from t andt′. Indeed consider(U ,X ) from Zp × Zp. We have:

(g ◦ f)(U ,X ) = g(f(U ,X )) = (X + s)U P = (X U)P + U sP

Since(P, s P ) are the first two elements oft′,Aq-SDH can compute(g ◦f)(U ,X ) in polynomial time for any input(U ,X ).

It remains to argue about the role ofu. Assume thatAcol.acc.designs an oracleO(t, t′, t′′). The previous two observations
allows us to rewrite this oracle asO(t, t′, u). According to Definition 7,u has been chosen uniformly at random fromZp

and then given toAcol.acc.. Nevertheless,Zp is also known toAq-SDH. Thus,Aq-SDH can also draw elements uniformly at
random fromZp. As a consequence, the advantage of the algorithmO(t, t′, u) is equal to the advantage of the algorithm
O(t, t′, v) wherev has been chosen uniformly at random fromZp byAq-SDH.

Thus, the view ofAcol.acc.(when he is givent′) is identical to the view ofAq-SDH.
�

The previous results shows thatAq-SDH can simulate the result of any algorithmAcol.acc. can design (sinceAq-SDH can
directly constructg ◦ f while u is chosen uniformly at random over the setZp which is also known toAq-SDH). We can
now demonstrate the security of Nguyen’s accumulator similarly to [15].

Theorem 3 If the q-SDHassumption holds then the accumulator is collision resistant.

Proof.
Assume that a PPT adversaryA can break the collision resistance of the accumulator with non-negligible probability. As
stated in [15],A can construct a setX = {x1, . . . , xk} ⊂ Zp \ {−z}, an elementx ∈ Zp \ (X ∪ {−z}) andW ∈ G1 such
that:

(x + z)W =

[

k
∏

i=1

(xi + z)u

]

P (1)

where the tuple challenge for theq-SDH assumption is(P, z P, . . . , zq P ). We will show that the PPT adversaryA can
compute(x, 1

x+z
P ) with non-negligible probability.

Consider the formal polynomialf(Z) defined as:

f(Z) :=

k
∑

i=0

fi Zi =

k
∏

i=1

(xi + Z)

SinceZp[Z] is an Euclidean’s ring, there exists a (unique) pair(g(Z), c) from Zp[Z] × Zp such that:f(Z) = (x +

Z) g(Z) + c. If we write g(Z) as
k−1
∑

i=0

gi Zi then the previous equality is equivalent to the system:



















1 x 0 0 · · · 0
0 1 x 0 · · · 0
...

. ..
. ..

.. .
.. .

...
0 · · · 0 1 x 0
0 · · · · · · 0 1 x
0 · · · · · · · · · 0 1





































c
g0

...

gk−2

gk−1



















=



















f0

...

fk−1 − x
1



















The(k + 1)× (k + 1) matrix is invertible. Since the coefficientsf0, . . . , fk−1 only depend onx1, . . . , xk, the adversary
can compute the valuec as well as the coefficients ofg(Z). We have:
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(1) ⇐⇒ W = [g(z)u]P + c u
x+z

P

(1) ⇐⇒ 1

x+z
P = 1

c

(

1

u
W − g(z)P

)

Sincek ≤ q, the elementsP, z P, . . . , zk P are public. Therefore, the adversary can computeg(z)P since:

g(z)P =

k−1
∑

i=0

gi (zi P )

which achieves the proof of construction of1
x+z

P . As a consequence, the PPT adversaryA was able to compute
(x, 1

x+z
P ) with non-negligible probability which means thatA broke theq-SDH assumption.

�

5 Improvement to Nguyen’s Identity Escrow Scheme

In 1991, Chaum and van Heyst introduced group signatures to enable individual members to sign messages on behalf of
the whole group [10]. An identity escrow scheme [13] is actually an interactive version of a group signature scheme. We
propose an improvement on the modified version of Nguyen’s construction as the original scheme was found flawed by
Zhang and Chen [19]. Our proposed construction does not require the presence of a trusted third party while keeping the
efficiency of the original scheme.

5.1 Design of Nguyen’s Identity Escrow Scheme

An identity escrow scheme with membership revocation is a tuple IE = (GKg, UKg, Join, Iss, IEIDP , IEIDV , Open,
Judge, Revoke, Update, CheckArchive) of polynomial time algorithms, whereGKg generates public parameters and se-
cret keys,UKg generates personal public and private keys for users (candidate members), the protocol (Join, Iss) allows
a user to join the group and get a membership secret key and a membership certificate, whereJoin represent the part
run by the user,Iss the part run by theGroup Manager(GM) issuing certificates. The identity escrow’s main protocol
IEID = (IEIDP , IEIDV ) allows a group member to anonymously prove his membership,Open revokes an IEIDtranscript
to find the prover andJudge decides if theOpen finds the right prover. The details of the notations are referred to [15].

This identity escrow scheme works as follows. Denoteℓ the security value. The construction parameters of the scheme
(p, G1, GM , e(·, ·), P ) are obtained by querying the bilinear pairing instance generatorG on input1ℓ (Definition 3). We
also require the existence of a collision resistant hash functionH : {0, 1}

∗
→ Zp [18]. The details can be found in [15].

GKg. A trusted third party uniformly choosesx, s, x′ from Z
∗
p andP0, G,H from G1. He computesPpub := x P,Θ :=

e(G,G)x′

andQpub := sQ. He publishes the group public key as{P, P0, Ppub,H,G,Θ, Qpub}, and gives the GM the
issuing key(x, s) as well as the opening keyx′.

(Join, Iss). When a userUi wants to join the group, he runs an interactive protocol withthe GM to obtain his secret keyxi,
his identity∆i as well as a pair(ai, Si) calledcertificate. That is,Ui selects his secret keyxi and sends a committed value
xiP to the GM. The GM calculatesSi = 1

x+ai

(xiP + P0) and transfers it back toUi. The detailed description is referred
to [15]. These four elements satisfye(ai P + Ppub, Si) = e(P, xi P + P0) and∆i = e(P, Si). Suppose the current group
accumulated value isVj−1. The GM computes the new accumulated value asVj := (ai + s)Vj−1. The witness ofUi is
Wi,j := Vj−1.

(IEIDP , IEIDV ). UserUi computesE := tG andΛ := ∆i Θt. Then, he can show knowledge of(ai, Si, xi,Wi,j) such
thate(ai P + Ppub, Si) = e(xi P + P0, P ) ande(ai Q + Qpub,Wi,j) = e(Q,Vj).

Open. To open an IEID transcript(E,Λ, . . .), the GM computes∆i = Λ e(E,G)−x′

and a non-interactive zero-knowledge
proof of knowledge ofx′ so thatΘ = e(G,G)x′

andΛ/∆i = e(E,G)x′

.

5.2 Our Improvement

The properties an identity escrow (group signature) schememust exhibit are unforgeability, anonymity, unlinkability,
traceability, collision resistance and exculpability [1,9]. The latter means that neither a group member nor the GM can
sign any message on the behalf of another group member. At Asiacrypt’06, Cao [9] proposed an attack breaking the ex-
culpability of the Ateniese-Camenisch-Joye-Tsudik’s (ACJT) group signature [1]. In his attack, the GM can forge a valid
group signature on the behalf ofUi (for anyi) since the GM can intentionally chooset := loga0

a (see [9] for details). The
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reader may be aware of a recent reply to Cao by the designers ofthe ACJT scheme [3]. As they emphasize, the attack by
Cao only works when the GM is dishonest and the public parameters not verifiable (which was excluded in their original
work [1]).

Consider the case where the scheme parameters are non-verifiable and the GM is untrusted. To reveal the underlying
problem of Cao’s attack, let’s see another attack on the ACJTscheme as follows. Let̂e and x̂ be asê := k1 φ(n) and
x̂ := −t−1 + k2 φ(n) (for an appropriate selection ofk1, k2 so that̂e ∈ Γ andx̂ ∈ Λ, whereΓ andΛ are integer intervals
defined in [1] ). Thus, we haveAê

i ≡ 1 ≡ ax̂ a0 mod n whereAi represents the identity of userUi. The GM can generate
group signatures on behalf ofUi using(ê, x̂).

In [15], this attack is not possible since the scheme parameters are set up by a trusted third party who distributes them to
the GM. Nonetheless, the security analysis there does not consider the behavior of the trusted third party which, as pointed
out in [6], will expose the scheme to unexpected attacks. Intuitively, there may be a simple method to foil such attacks, i.e.,
to generate public parametersP andP0 as output of some hash function mapping a binary string to a group element [7]. In
this case, however, a security proof of Nguyen’s scheme has not been provided. We propose below a simple improvement
requiring less calculation than querying such a hash function along with a proof of security. Our idea is to identify userUi

by xi P instead ofSi, as representingUi by axi rather thanAi in the unpublished version of the ACJT scheme [2]. This
approach makes the construction resistant against an attack like Cao’s.

(Join, Iss). When a userUi wants to join the group, he runs an interactive protocol withthe GM to obtain his secret keyxi,
his identity∆i as well as a pair(ai, Si) calledcertificate. These four elements satisfye(ai P +Ppub, Si) = e(P, xi P +P0)
and∆i = e(P, xiP ). Suppose the current group accumulated value isVj−1. The GM computes the new accumulated value
asVj := (ai + s)Vj−1. The witness ofUi is Wi,j := Vj−1.

(IEIDP , IEIDV ). UserUi computesE := tG andΛ := ∆i Θt. Then, he can show knowledge of(ai, Si, xi,Wi,j) such
thate(ai P + Ppub, Si) = e(xi P + P0, P ) ande(ai Q + Qpub,Wi,j) = e(Q,Vj). Formally, this proof of knowledge is as
below:

PK{(ai, xi, t, rw, rs) :

e(P,Us)
aie(P,H)−rsaie(Ppub, Us)e(Ppub,H)−rs = e(P, P )xie(P0, P ),

e(Q,Uw)aie(Q,H)−rwaie(Qpub, Uw)e(Qpub,H)−rw = e(Q,Vj),

E = tG,Λ = e(P, P )xiΘt, Rw = rwG, aiRw = rwaiG,Rs = rsG, aiRs = rsaiG},

whereUw = Wi,j + rwH, Us = Si + rsH, Rw = rwG, Rs = rsG, H is also part of the public key.

Here are the details of the construction. In Step 2 (See Page 14, Section 6.1 of [16]) do:

(a) IEIDP generatesrs, rw, k1, k2, k3, k4, k5, k6, k7 ∈R Zp and computes the following:

Uw = Wi,j + rwH, Rw = rwG, Us = Si + rsH, Rs = rsG, T1 = k3G
T2 = k1Rw − k5G, T3 = k1Rs − k7G, T4 = k4G, T5 = k6G
Π1 = e(P,Us)

k1e(P,H)−k7e(Ppub,H)−k6e(P, P )−k2

Π2 = e(Q,Uw)k1e(Q,H)−k5e(Qpub,H)−k4

Π3 = e(P, P )k2Θk3

(b) IEIDP −→ IEIDV : E,Λ, Uw, Rw, Us, Rs, T1, T2, T3, T4, T5,Π1,Π2,Π3.

(c) IEIDP ←− IEIDV : c ∈R Zp.

(d) IEIDP computes inZp: s1 = k1−cai, s2 = k2−cxi, s3 = k3−ct, s4 = k4−crw, s5 = k5−crwai, s6 = k6−crs,
s7 = k7 − crsai.

(e) IEIDP −→ IEIDV : s1, s2, s3, s4, s5, s6, s7.

(f) IEIDV verifies if the following equalities are satisfied:

T1 = s3G + cE, T2 = s1Rw − s5G, T3 = s1Rs − s7G
T4 = s4G + cRw, T5 = s6G + cRs

Π1 = e(P,Us)
s1e(P,H)−s7e(Ppub,H)−s6e(P, P )−s2 [e(P0, P )/e(Ppub, Us)]

c

Π2 = e(Q,Uw)s1e(Q,H)−s5e(Qpub,H)−s4 [e(Q,Vj)/e(Qpub, Uw)]c

Π3 = e(P, P )s2Θs3Λc
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Open. To open an IEID transcript(E,Λ, ...), the GM computes∆i = Λ e(E,G)−x′

and a non-interactive zero-knowledge
proof of knowledge ofx′ so thatΘ = e(G,G)x′

andΛ/∆i = e(E,G)x′

.

The security of this proof of knowledge is easy to check giventwo (s1, s2, s3, s4, s5, s6, s7, c) and(s′1, s
′
2, s

′
3, s

′
4, s

′
5, s

′
6, s

′
7, c

′)
wheresi 6= s′i for i = 1, ..., 7 andc′ 6= c.

Lemma 1 Under the Discrete Logarithm assumption onG1, the above IEID protocol is an honest-verifier perfect zero-
knowledge proof of knowledge of(ai, Si, xi,Wi,j , t) that E = tG and Λ = e(P, P )xi Θt, and e(ai P + Ppub, Si) =
e(xi P + P0, P ) ande(ai Q + Qpub,Wi,j) = e(Q,Vj).

Proof.
Soundness:The goal is to show that if the protocol accepts with non-negligible probability the proof of knowledge, then
a PPT prover must have the knowledge of(ai, Si, xi,Wi,j) satisfying the stated relations, under the Discrete Logarithm
assumption onG1.

Suppose the protocol accepts for the same commitmentUw, Rw, Us, Rs, T1, T2, T3, T4, T5,Π1,Π2,Π3 with two different

pairs of challenges and responsesc, s1, s2, s3, s4, s5, s6, s7 andc′, s′1, s
′
2, s

′
3, s

′
4, s

′
5, s

′
6, s

′
7. Let fi =

si−s′

i

c−c′
, i = 1, ..., 7,

then the following equations are obtained according to the verification algorithms of the protocol:

f3G + E = 0 (2)

f1Rw = f5G (3)

f1Rs = f7G (4)

f4G + Rw = 0 (5)

f6G + Rs = 0 (6)

e(P,Us)
f1e(P,H)−f7e(Ppub,H)−f6e(P, P )−f2e(P0, P )/e(Ppub, Us) = 1 (7)

e(Q,Uw)f1e(Q,H)−f5e(Qpub,H)−f4e(Q,Vj)/e(Qpub, Uw) = 1 (8)

e(P, P )f2Θf3Λ = 1 (9)

From Equation (2) to Equation (9), we get:

E = −f3G,Λ = e(P, P )−f2Θ−f3 . (10)

From Equations (3), (4), (5) and (6), we obtain:−f1f4G = f5G,−f1f6G = f7G. Then:

− f1f6 = f7, (11)

− f1f4 = f5 (12)

sinceG is a generator ofG1.

From Equation (7), we get:

e(P,−f1Us + f7H)e(Ppub, f6H + Us) = e(−f2P + P0, P ),

Applying Equation (11), we obtain:

e(−f1P + Ppub, f6H + Us) = e(−f2P + P0, P ), (13)

Similarly, from Equation (8) and Equation (12), we get:

e(−f1Q + Qpub, f4H + Uw) = e(Q,Vj). (14)

From Equations (10), (13) and (14), it is easy to see that if wesett = −f3, xi = −f2, ai = −f1, Si = f6H + Us,
Wi,j = f4H + Uw, they satisfy the relations stated in the lemma.

Zero-knowledge:The simulator choosesc, s1, s2, s3, s4, s5, s6, s7 ∈ Zp and computes

T1 = s3G + cE, T2 = s1Rw − s5G, T3 = s1Rs − s7G

T4 = s4G + cRw, T5 = s6G + cRs

Π1 = e(P,Us)
s1e(P,H)−s7e(Ppub,H)−s6e(P, P )−s2 [e(P0, P )/e(Ppub, Us)]

c

Π2 = e(Q,Uw)s1e(Q,H)−s5e(Qpub,H)−s4 [e(Q,Vj)/e(Qpub, Uw)]c

Π3 = e(P, P )s2Θs3Λc

It is easy to see that the distribution of the simulation is the same as the distribution of the real transcript.
�
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Theorem 4 The above scheme provides non-frameability under the Discrete Logarithm assumption onG1.

Proof.
The corresponding theorem in [15] states that the original Identity Escrow scheme provides non-frameability if the Dis-
crete Logarithm assumption onG1 holds and the digital signature scheme(Ks, Sign, V er) is existentially unforgeable
against chosen message attack. In our improvement, we simplify the description by omitting the digital signature scheme,
whose purpose is to bind (in a non-repudiable manner) the transcript and the identity∆i. We just assume this is the case,
i.e., ∆i = e(P, P )xi and the transcript are bound together. Then, we proceed to prove that if there is a PPT adversary
A breaking non-frameability of the above scheme, we can construct a PPT adversaryB breaking the Discrete Logarithm
assumption overG1.

SupposeB is given a challengeP ∗ = zP randomly chosen from groupG1 = 〈P 〉. The goal ofB is to calculatez.
B constructs an instance of the above scheme by generatingx, s, x′ ∈R Z

∗
p andP0, G,H ∈R G1 ensuringG is also a

generator ofG1. B givesA the group public key{P, P0, Ppub = x P,H,G,Θ, Qpub = sQ}, the issuing key(x, s) and the
opening keyx′.

B simulates a set of possible users{1, ..., q} whereq is the upper bound on the group size.B choosesi∗ ∈R {1, ..., q} and
providesA access to the following simulated oracles the definitions ofwhich can be found in [16]:

• SndToU(i,Min). If i 6= i∗, B just plays as an honest useri by executingJoin as specified inMin. If i = i∗, B
simulates the (Join, Iss) protocol so that∆i = e(P, P ∗).

• WReg, GSig, USK, CrptU, RevokeU, andWitness. B can simulate all these oracles because the knowledge of the
secret keys, except the case whenUSK(i∗) is queried.

If A succeeds with probabilityǫ, then the probability that he can impersonatei∗ is at leastǫ/q. From the soundness of
the protocol (Lemma 1),B can extract(ai, Si, xi,Wi,j , t) so thatE = tG, Λ = e(P, P ∗)Θt, e(ai P + Ppub, Si) =
e(xi P + P0, P ) ande(ai Q + Qpub,Wi,j) = e(Q,Vj), i.e.,z = xi.

�

The security properties with regard to anonymity and traceability, as discussed in [15], also hold in the above scheme,
because the encryption part and the GM’s algorithms are identical.

6 Conclusion

In this work, we first constructed an algorithm breaking the collision resistance of the accumulator as defined in [15].
We showed that the original accumulator security model proposed by Nguyen allowed an adversary to break theq-SDH
assumption. Second, we demonstrated that the new security model suggested by Nguyen [17, 16] did not allow the ad-
versary to break the mathematical assumption so that the collision resistance of the accumulator is ensured. Finally, we
proved that it possible to remove the trusted third party of Nguyen’s identity escrow scheme based on the accumulator
while being safe against an attack similar to Cao’s.
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