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Abstract

An accumulator based on bilinear pairings was proposed at CTARSH this paper, we first demonstrate that the
security model proposed by Lan Nguyen does lead to a cryptographicaulator which is not collision resistant. Second
we show that we can provide collision-resistance by updating the adyensalel appropriately. Finally, we propose an
improvement on Nguyen'’s identity escrow scheme with membershigatiom based on the accumulator by removing
the trusted third party.
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1 Introduction

A cryptographic accumulator is an algorithm allowing theegation of a large set of elements into a single value of
constant size. Accumulators were introduced by Belanotdarndare [5] in order to design distributed protocols without
the presence of a trusted central authority. Such conginsgcare used in time-stampirid [5], fail-stop signaturdsrjdg
signatures [111] and multicast stream authentication [@P]rfstance. Camenisch and Lysyanskaya introduced themoti
of dynamic accumulators which allow the addition and detetif values from the original set of elemerits [8].2005,
Nguyen [15] proposed a dynamic accumulator based on bilipgisings to design ID-based ad-hoc anonymous identifi-
cation schemes and identity escrow protocols with memh@rskiocation.

In this work, we demonstrate that, contrary to what was odgirim [15], Nguyen’s accumulator is not collision re-
sistant. Following his advicé [17], we demonstrate how talifyothe security model so that collision resistance can be
provided. Finally, we prove that it is possible to modify fdentity escrow scheme based on the accumulator so that the
presence of a trusted third party is not required any longer.

The remainder of this paper is organized as follows. In tha section, we recall the definitions and results from
the original paper by Nguyen [15]. 3, we introdace attack against the collision resistance of Nguyen’s
accumulator. I_Secfiod 4, we demonstrate that the seaudigel modification proposed by Nguyeén [17] does lead to a
collision resistant accumulator. Finally, we design oupiovement on Nguyen'’s identity escrow schemie in Secfion 5.



2 Preliminaries

In this section, we recall the definitions and constructiamshey appear in Nguyen’s paper|[15].

2.1 Notations and Terminology
Definition 1 A functionf : N — R is said to benegligibleif:
Va>03geN:VL>L, f)<e“

Definition 2 A functionf : N — R is said to bepolynomially boundedf:
Jap >0 : W eN fl) <X

We denoteZ,, the set of residue$0,...,p — 1} modulop. We consider two additive cyclic grougs, = (P;) and
G2 = (P,) as well as a cyclic multiplicative groug@y. These three groups are assumed to have the same primeporder
We assume that we have a bilinear pairingG; x Go — Gy such that:

1. V(P,Q) € Gy x Gy Y(a,b) € Zy x Zp e(a P,bQ) = e(P,Q)*"

2. e(+,-) is not degenerated({ Py, P») # 1

3. There exists a computationally efficient algorithm to poec (P, Q) for every couplg P, Q) from G, x Ga.
As in [15], we considefs; = G2 (and thusP; = P,) in the remainder of this paper. We have the following ddtinit
Definition 3 A bilinear pairing instance generaisra probabilistic polynomial-timg¢PPT) algorithmG taking as input a

security parametet’ and returning a uniformly random tupte= (p, G1, Gw, e(-, -), P) of bilinear pairing parameters
defined as before whefaepresents the length of the prime numpemdG, = (P).

We now present the definition of accumulators and the collisesistance property as set by Nguyen in [15].
Definition 4 ([15]) An accumulatoris a tuple ({X¢},cn, {Fe}oen), Where{X,},.y is called thevalue domainof the

accumulator andF,},. is a sequence of pairs of functions such that egily) < F, is defined ag : Uy x X‘}Xt — Uy
for somexfcXt D X¢gandg : Uy — U, is a bijective function. In addition, the following propiexs are satisfied:

o (Efficient GenerationThere exists an efficient algorithghtaking as input a security parametgf and outputting
a random elemenf, g) fromF, possibly together with some auxiliary informatiop.

e (Quasi-commutativityy(¢, (f, g), u, z1,22) € NxFgx Uy x Xp x Xy f(f(u,21),22) = f(f(u,z2),21). Forany
eN,(f,g9) € FpandX = {z1,...,2q} C Xy, we callg(f(--- f(u,z1)--- ,2q)) theaccumulated valuef the
setX overu. The elemenf(--- f(u,z1)-- - ,zq) does not depend on the order of the elements to be evaluatied an
is denotedf (u, X).

o (Efficient Evaluation)For any (f,g) € F¢,u € Uy andX C X, with polynomially bounded size (as a function of
), 9(f(u, X)) is computable in time polynomial iheven without the knowledge of.

Nguyen set the previous definition to generalize the accatoutonstructions by Camenisch and Lysyanskaya [8] and
Dodiset al. [11] whereU; = U, and the bijective functiop is the identity function. Then, he gave the following seturi
definition.

Definition 5 ([15] Collision Resistant Accumulator) An accumulator is said to beollision resistanif for every PPT
algorithm A4, the function:

AdvE=e2(t) = Prob((£,9) & Fesu & Ups (2,0,X)  A(f, 9, Up, u) |
(X CXe) A (w € Ug) A @ € XFN\X) A (g7 (w), @) = F(u, X))

is negligible as a function of. We say thaiv is a witnessfor the fact thatr € X, has been accumulated ine U,
whenevey(f(g~(w),z)) = v.

We now introduce thg-Strong Diffie Hellman ¢-SDH) assumption as it was used by Nguyen to claim the sgafrhis
construction.

Definition 6 Theg-Strong Diffie Hellman¢-SDH) assumptiorstates that for everlpPTalgorithm A, the function:

AQVEON(0) = Prob((A(t, Ps P, s7P) = (0,25 P) ) A (e €2,))

is negligible as a function df wheret = (p, G1, Gy, e(-,-), P) «+ G(1¢) ands kil Zy,.



2.2 Construction of the Accumulator

To generate an instance of the accumulator from the seqaitymeter, we run the algorithng on input1¢ to obtain a
tuplet and a uniformly chosen elemenfrom Z as inDefinition 6. We construct a tuple:= (P, s P, ..., s P) where
¢ is an upper bound on the number of elements to be accumulBtedcorresponding functior(sf, ¢) for this instance
(t,t") are defined as:

fr Zpyx2Z, — Zy, g: Z, — Gy
(v,z) +— (z+s)v v +— ouP

This construction involves that we have:
Uy =X%=12, Uy =Gy Xe=2Zp\ {—s}

Itis clear thatf is quasi-commutative. In addition, fare Z, and aseX = {z1,..., 21} C Z, \ {—s} wherek < ¢, the
k
accumulated valug( f (u, X)) = H (x; + s)u | Piscomputable in time polynomial ihfrom the tuplet’ and without

=1
the knowledge of the auxiliary information[15].

We now recall the security theorem demonstrated by Nguyete Mhat it is denoted as Theorenn [15].

Theorem 1 ([15]) The accumulator related to the pafif, g) defined above provides collision resistance if th8DH
assumption holds, whetgis the upper bound on the number of elements to be accumulated

3 Breaking the Collision Resistance

In this section, we construct a PPT algorittdnwhich breaks the collision resistance property of the aedatar with
non-negligible probability. Since this will contradictethresult fron{Theorem| 1, we will then show that the adversary
reduction model to the-SDH assumption given by Nguyen was incorrect.

3.1 Our Attack
Algorithm Construction. According td Definifion b, the adversary is given the funetig andg as well as: and the set
Uy = Z,. We build the following algorithm:

Algorithm A
Input The pair of functiong f, g) and the valuex.

1. Computes = f(1,0)
2. Letk be any polynomial function of. Choose uniformly at randoi+ 1 elements ofZ,, \ {—s} denotedr, . .., zy, =
and seX := {z1,..., 2 }.

k
3. Compute\ := [ [ (x; + s) umodp andy := (z + s)~' modp. Denotet := A u modp and setw := g(¢).
i=1
Output The triple(z, w, X).
Correctness of the output.Due to Ste®2, we haveX C X, andx € X?Xt\ X. From Ste8, we obtainw € U,.

k
By construction oX we have:f (u, X) = H(xi + s) u modp. We also have = g~!(w) sinceg is invertible. We obtain

the following equalities:

~

—

on

&
|

(z + s)¢ modp

(z + s) A modp

(z+s) (z+s)"" Amodp
A modp

A

= f(u,X)

Therefore, we havef (g~ !(w),z) = f(u,X). In addition, the construction of the tripler, w, X) is deterministic (the
valuey always exists since # —s). So, we obtain:

AdVR(0) = 1



Running time. First, it should be noticed that any operation (addition]tiplication, inversion) inZ, can be done in
quadratic time as a function é6f[14]. That is, any of these arithmetic operations can begperéd inO(¢2) bit operations.

Sincek is a polynomial function of, we denote it a&’(¢). We can also assume that picking one random element from
Z, \ {—s} requires polynomial tim& (¢) (otherwise it would be computationally infeasible to coust a single family

of elements fronkZ,, \ {—s} = X, which is not a realistic assumption). Thus, Steis executed i(/(¢) + 1) R(¢) bit
operations.

Sinces has been obtained at Stegusing O(¢?) bit operations), one can gatwith & multiplications and additions
in Z,, representing) (KC(¢) £2) bit operations. Each of the two elemengsand¢, also need€)(¢?) bit operations to be
computed whilgy can be run in polynomial timg(¢). Therefore, the number of bit operations executed durieg $ts
O(K(0) 02 4+ G(0)).

As a consequence, the running timefs:
O(F?) + (K() + 1) R(L) + O(K(£) £2 + G(£)) = O(K(£) R(£) £2 + G (1))
which is polynomial in the security parameter

Therefore, A is a PPT algorithm breaking the collision resistance of tbeumulator with non-negligible probability.
Thus, the accumulator is not collision resistant. We poirittbat.4 enables to construct many such triplesw, X).

3.2 Comments on the Original Security Proof

The issue in[[15] is that the adversary is given accesp which enables him to break the computational assumption
as follows. According t@ Definifion]6, an adversary tryingareak theg-SDH assumption should only be provided with
(t,P,z P,...,2%P). Nevertheless, the adversary model of the accumulatorfffiefi 5) allows to query botlf andg.

As a consequence, it is easy for the adversary to obthina single query tg as in Stepl of A. Then, he can compute
(z+ c)’l modp in O(¢?) bit operations forny c. Finally, the adversary rungon that inverse and obtaizn}; P. This
means that the adversary can breakg&DH assumption.

4 Ensuring Collision Resistance

In order to be immune against our attack, Nguyen suggestatbte the adversary the use of the compositjery instead
of both f andg [16,[17]. His proposed definition is as follows:

Definition 7 ([16]) An accumulator is said to beollision resistanif for everyPPTalgorithm A, the function:

Advffl'acc(ﬁ) = F’I’Ob((f7 9) & Fe;u & U (z,w,X) — A(go f,Ur,u)|
(X CTXe)A(weUy)A(x e X‘;Xt\ X)A (f(g~Hw),z) = f(u,X)))

is negligible as a function of. We say thaiv is a witnessfor the fact thatr € X, has been accumulated ine€ U,
whenevey(f(g~(w),z)) = v.

In [15], the issue was that a PPT adversaty acc. attacking the collision resistance of the accumulator hdchen-
formation (namely, a direct access to bgtland g) with respect to a PPT adversa#y,_spy trying to attack the;-SDH
assumption directly. We now demonstrate that it is not tlse @my longer for the security model based on Definition 7.

Theorem 2 Let Acolacc. e aPPT adversary attacking the collision resistance of the acdaton and let.4,.spy be a
PPTadversary attacking the-SDH assumption. Then, both adversaries have the same view @f3Bd assumption.

Proof.
According td Definifion B, a PPT adversady,.spy attempting to break the-SDH assumption is given the elementnd
t’ where:

t = (valaGMve("')ap)

t = (PsP...,s9P)

According to[Definifion ¥, a PPT adversard acc. attempting to break the collision resistance of the accatoulis
provided witht (representing the construction parameters of the accuonykes well ag” where:

t":=(go f,Uys u)

4



In the case of Nguyen’s construction, we halg:= Z,. So, we can write:
t" = (g0 f,Zp,u)

We have to demonstrate thdt, occ.(initially attacking the collision resistance of the acauator) does not gain any ben-
efits from receiving’ (i.e. Acol.acc. knowst, t” andt”) over.A,.spr Who attacks thg-SDH assumption directly (i.e4,-spn
only knowst andt’). In other words, we must prove that the extra knowledggoes not givedq.acc. any advantage with
respect tod,.spn when attacking thg-SDH assumption.

First, it should be noticed that,.spn knows the groufZ,, (second component ¢f) since he has knowledge pfas a part
of the parametet.

Second,A,.spr can simulate the black-baxo f fromt andt’. Indeed considef/, X) from Z,, x Z,. We have:
(go U, X) = g(fU, X)) = (X +s)UP = (XU)P+USsP
Since(P, s P) are the first two elements 6f A,.spn can computégo f) (U, X) in polynomial time for any inputi/, X).

It remains to argue about the rolemfAssume thafdco.acc. designs an oraclé(t,t’,t”). The previous two observations
allows us to rewrite this oracle &3(t,t’, u). According td Definifion I has been chosen uniformly at random frém
and then given todcoacc. Neverthelessz, is also known tad,.spn. Thus, A,.spy can also draw elements uniformly at
random fromZ,. As a consequence, the advantage of the algorithimt’, u) is equal to the advantage of the algorithm
O(t,t',v) wherev has been chosen uniformly at random fré@mby A,.sph.

Thus, the view 0fAcol.acc.(When he is givent’) is identical to the view 0f4,,-sph.
d

The previous results shows thdt.spy can simulate the result of any algorithay acc. can design (sinced,.spn can
directly construcy o f while u is chosen uniformly at random over the #twhich is also known to4,.spH). We can
now demonstrate the security of Nguyen’s accumulator aitgito [15].

Theorem 3 If the ¢-SDH assumption holds then the accumulator is collision resista

Proof.

Assume that a PPT adversadycan break the collision resistance of the accumulator wotitmegligible probability. As
stated in[[15],A can construct a st = {z1,..., 21} C Z, \ {—z}, anelement € Z,, \ (XU {—z}) andW € G, such
that:

k

(x+2)W = lH(xl—i—z)u

i=1

P 1)

where the tuple challenge for tlReSDH assumption i$P, z P, ..., z%9 P). We will show that the PPT adversa# can

compute(z, xiz P) with non-negligible probability.

Consider the formal polynomigl(Z) defined as:

k

k
f(Z) = Zfi AR H(%‘ +Z)
i=0

i=1

SinceZ,[Z] is an Euclidean’s ring, there exists a (unique) fgif2), c) from Z,[Z] x Z, such that:f(Z) = (z +

k—1
Z) g(Z) + c. If we write g(2) asz gi Z* then the previous equality is equivalent to the system:
=0
1 = 0 0 0 c fo
0 1 x 0 0 )
0 -~ 0 1 =z 0 a
0 - ... 0 1 =z 2 foo1—x
0 -+ o ... 0 1 Jh—1 1
The (k + 1) x (k + 1) matrix is invertible. Since the coefficienfs, ..., fx—1 only depend ony, ..., z, the adversary

can compute the valueas well as the coefficients gf 7). We have:



@ — W=lg(=)uP+ 2

Ttz
@ = ;LP=1(1W-g()P)

u

Sincek < ¢, the element®, z P, ..., z* P are public. Therefore, the adversary can comp(te P since:

k—1
9(z)P=> gi('P)
1=0
which achieves the proof of construction gfr—z P. As a consequence, the PPT adversdryvas able to compute

(z, xiz P) with non-negligible probability which means thdtbroke theg-SDH assumption.

O

5 Improvement to Nguyen'’s ldentity Escrow Scheme

In 1991, Chaum and van Heyst introduced group signatures to enadhilédual members to sign messages on behalf of
the whole group[10]. An identity escrow schermel[13] is altyuan interactive version of a group signature scheme. We
propose an improvement on the modified version of Nguyemsitaction as the original scheme was found flawed by
Zhang and Chen [19]. Our proposed construction does notreetiie presence of a trusted third party while keeping the
efficiency of the original scheme.

5.1 Design of Nguyen'’s ldentity Escrow Scheme

An identity escrow scheme with membership revocation ispdeti€ = (GKg, UKg, Join, Iss, IEIDp, IEIDy,, Open,
Judge, Revoke, Update, CheckArchive) of polynomial time algorithms, wher@Kg generates public parameters and se-
cret keys,UKg generates personal public and private keys for users (@ateimembers), the protocdlofn, Iss) allows

a user to join the group and get a membership secret key andrdbenghip certificate, wherépin represent the part
run by the userlss the part run by thé&sroup Manager(GM) issuing certificates. The identity escrow’s main protocol
I[EID = (IEIDp, IEIDy ) allows a group member to anonymously prove his memberéhipn revokes an IEICranscript

to find the prover andudge decides if theDpen finds the right prover. The details of the notations are reféto [15].

This identity escrow scheme works as follows. Denbthe security value. The construction parameters of thensehe
(p,Gy1, G, e(,-), P) are obtained by querying the bilinear pairing instance ggtneg on input1¢ (Definifion 3). We
also require the existence of a collision resistant hasttiomH : {0, 1} — Z,, [18]. The details can be found in15].

GKg. A trusted third party uniformly chooses s, 2’ from Z5 and Py, G, H from G,. He computespp := = P, © :=
e(G,G)I' and Qpub := s Q. He publishes the group public key &8, Py, Poun, H, G, ©, Qpun}, and gives the GM the
issuing key(z, s) as well as the opening key.

(Join, Iss). When a uset/; wants to join the group, he runs an interactive protocol wWithGM to obtain his secret key,
his identityA; as well as a paifa;, S;) calledcertificate That is,U; selects his secret key and sends a committed value
x; P to the GM. The GM calculateS; = ﬁai(xiP + Py) and transfers it back t0;. The detailed description is referred
to [15]. These four elements satisfiu; P + Poub, Si) = e(P, z; P + Py) andA; = e(P, S;). Suppose the current group
accumulated value i8;_;. The GM computes the new accumulated valu&as= (a; + s) V;_1. The witness oU; is

Wi,j = Vj_l.

(IEIDp, IEIDy). UserU; computesE := t G andA := A; ©'. Then, he can show knowledge @f;, S;, z;, W; ;) such
thate(ai P+ Ppub, Sz) = e(xi P+ P, P) ande(ai Q+ qub, WiJ) = e(Q, Vj)

Open. To open an IEID transcrifit, A, . . .), the GM computes\; = A e(E, G)~* and a non-interactive zero-knowledge
proof of knowledge of:’ so that® = ¢(G, G)* andA/A; = e(E,G)* .

5.2 Our Improvement

The properties an identity escrow (group signature) schemst exhibit are unforgeability, anonymity, unlinkakjlit
traceability, collision resistance and exculpabillty /@], The latter means that neither a group member nor the GM can
sign any message on the behalf of another group member. AtAgit06, Cao [9] proposed an attack breaking the ex-
culpability of the Ateniese-Camenisch-Joye-Tsudik's (AL group signature [1]. In his attack, the GM can forge advali
group signature on the behalf of (for anyi) since the GM can intentionally choose= log,,, a (seel[9] for details). The



reader may be aware of a recent reply to Cao by the designére 8iCJT scheme [3]. As they emphasize, the attack by
Cao only works when the GM is dishonest and the public pamms@iot verifiable (which was excluded in their original
work [1]).

Consider the case where the scheme parameters are noabterdind the GM is untrusted. To reveal the underlying
problem of Cao’s attack, let's see another attack on the A&EKEme as follows. Let andi be asé := k; ¢(n) and

# = —t~1 + ko ¢(n) (for an appropriate selection &f, k. so that¢ € I and# € A, wherel™ andA are integer intervals
defined in[[1] ). Thus, we havé¢ = 1 = a® ay mod n where4; represents the identity of usgf. The GM can generate
group signatures on behalf bf using(é, ).

In [15], this attack is not possible since the scheme parametire set up by a trusted third party who distributes them to
the GM. Nonetheless, the security analysis there does nstdaer the behavior of the trusted third party which, as gain
out in [6], will expose the scheme to unexpected attackaitihmtly, there may be a simple method to foil such attacks, i

to generate public parametdrsand P, as output of some hash function mapping a binary string toamelement]i7]. In
this case, however, a security proof of Nguyen'’s scheme tidsaen provided. We propose below a simple improvement
requiring less calculation than querying such a hash fanalong with a proof of security. Our idea is to identify usgr

by z; P instead ofS;, as representing; by a*: rather thanA; in the unpublished version of the ACJT schemle [2]. This
approach makes the construction resistant against ark éikacCao’s.

(Join, Iss). When a uset/; wants to join the group, he runs an interactive protocol WithGM to obtain his secret key,

his identityA, as well as a paifa;, S;) calledcertificate These four elements satisfya; P+ Poub, Si) = e(P, z; P+ Fp)
andA,; = e(P, z; P). Suppose the current group accumulated val#g.is. The GM computes the new accumulated value
asV; := (a; + s) Vj_1. The witness olJ; is W; ; := V,_;.

(IEIDp, IEIDy). UserU; computest := ¢ G andA := A; ©'. Then, he can show knowledge @f;, S;, z;, W; ;) such
thate(a; P + Poub, Si) = e(z; P+ Py, P) ande(a; Q + Qpub, Wi.;) = e(Q, V;). Formally, this proof of knowledge is as
below:

PK{(Gi,CCi,t,?”w,’/‘s) :
e(P,Us)%e(P,H) "% e(Ppup, Us)e(Ppus, H)™ "> = e(P, P)""e(Fy, P),
6(@, Uw)aie(Qu H)_T‘waie(qubv Uw)e(qub7 H)_rw = €(Q, ij)>
E =tG,A =e(P,P)*O" R, = 1r,G,a; Ry = 17,a;G, Ry = 175G, a; Ry = r50,G},
whereU, =W, ; +r,H,Us = S; +r.H, R, = r,G, Rs = r,G, H is also part of the public key.

Here are the details of the construction. In Step 2 (See Pageettion 6.1 of [16]) do:

(a) IEIDp generates,, r, k1, ka2, ks, ka4, ks, ke, k7 €r Z,, and computes the following:

Uw:Wi’j-l-TwH, Rw:’l’wG, US:Si+TSH, RSZTSG, lede
Ty = kiRy — kG, T3 =k Rs— kG, Ty=kG, T5=ksG

I = e(P,Us)k1e(P, H) "% e(Pyup, H) *se(P, P) 2

I, = 6(@7 Uw)kle(QyH)ikse(qulnH)ik(l

My — e(P, P)F2 @k

(b) IEIDp — IEIDv: E, A, Uy, Ry, Us, Rs, Ty, To, T3, Ty, T, 113, T, 113,
(©) IEIDp «— IEIDy: ¢ € Z,.

(d) IEIDp computesirtZ,: s; = ki —ca;, s2 = ko —cx;, 53 = ks —ct, s4 = ka —cry, S5 = ks — crya;, s¢ = kg —crs,
s7 = k7 — crga;.

(6) IEIDp — IEIDy: S1, 82,83, 84, S5, S6, S7.

() IEIDy verifies if the following equalities are satisfied:

Ty =s3G+cE, Ty=s51Ry—s5G, T3=31Rs— s7G

Ty = 4G+ cRy, Ts5=56G +cR,

Iy = e(P,Us)* e(P, H) *"e(Ppyp, H) % e(P, P)~*2[e(Po, P)/e(Ppup, Us)|°
I = e(Q, Uw)™ e(Q, H)**e(Qpus, H) ~**[e(Q, V})/e(Qpup, Uw)]®

II3 = e(P, P)%20% A



Open. To open an IEID transcrigtZ, A, ...), the GM computes\; = A e(E, G)*I' and a non-interactive zero-knowledge
proof of knowledge oft’ so that® = e(G, G)* andA/A; = e(E,G)* .

The security of this proof of knowledge is easy to check givem(s1, sz, s3, S4, S5, Se, S7, ¢) @and(s}, s, sk, 4, sk, 8§, S7, )
wheres; # s, fori=1,...,7andcd # c.

Lemma 1 Under the Discrete Logarithm assumption @n, the above IEID protocol is an honest-verifier perfect zero-
knowledge proof of knowledge 6f;, S;, z;, W; ;,t) that E = tG and A = e(P, P)* ©', ande(a; P + Ppup, S;) =
e(l’i P + P07 P) ande(ai Q + qub7 Wi,j) = 6(@7 ‘/j)

Proof.

SoundnessThe goal is to show that if the protocol accepts with non-igége probability the proof of knowledge, then
a PPT prover must have the knowledge(@f, S;, z;, W; ;) satisfying the stated relations, under the Discrete Laigai
assumption ofiz;.

Suppose the protocol accepts for the same commitdignR,,, Us, Ry, T1, 15, T3, Ty, T, 111, I15, 13 with two different
pairs of challenges and responses,, s2, ss, S4, 55, 56, 57 and ¢, s, s5, s5, s, 5§, s, 5. Let f; = 2= i = 1,...,7,
then the following equations are obtained according to thrdigation algorithms of the protocol:

fsG+E=0 @)
flRw = f5G (3)
fiRs = f7G 4)
f1G+ Ry, =0 (5)
feG+Rs;=0 (6)
e(P, U e(P,H) T e(Pyup, H) oe(P, P)™"e(Py, P)/e(Ppus, Us) = 1 ©)
e(Q, Uw) " e(Q. H) ™o e(Qpun, H) ™ 1e(Q, V)) /e(Qpubs Uw) = 1 (8)
e(P,P)20A =1 )
From[Equation (2) tp Equafion (9), we get:

E = —f3G,A =e(P,P)" 207/, (10)

From Equationd(3)[{4).15) and|(6), we obtainf; f4G = [5G, —f1f¢G = f+G. Then:
= fife = fr, (11)
—fifa=1s (12)

sinceG is a generator of .
From[Equation (7), we get:

6(P7 _flUs + f7H)e(Ppubvf6H + US) = e(_fQP + POaP)a
Applying[Equation (11), we obtain:

e(_f1P+Ppub7f6H+Us) :6(—f2P+P0,P), (13)
Similarly, from[Equation (8) and Equation (12), we get:
e(—f1Q + Qpuv, f4H + Uy) = €(Q,Vj). (14)

From Equations {10)[[{13) and{14), it is easy to see that ib@t¢ = —f3, z; = —f2, a; = —f1, S; = foH + U,
W, ; = faH + U,, they satisfy the relations stated in the lemma.

Zero-knowledgeThe simulator chooses s1, s2, s3, 54, S5, 56, 57 € Zp and computes
T, =s3G+cE, Ty =5R,—s5G, T5=3sRs— 557G
Ty = 4G+ cRy, T5= 356G+ cR;
II, = e(P,Us)* e(P, H) " e(Ppup, H) " *e(P, P)"*[e(Po, P)/e(Ppus, Us)|¢
I, = e(Q,Uw)* e(Q, H) ™ e(Qpuv, H)™**[e(Q, V})/e(Qpub, Uw)]
II3 = e(P, P)*0%A°

It is easy to see that the distribution of the simulation esghme as the distribution of the real transcript.



Theorem 4 The above scheme provides non-frameability under the &tis¢rogarithm assumption d; .

Proof.

The corresponding theorem in |15] states that the origidehtity Escrow scheme provides non-frameability if the-Dis
crete Logarithm assumption dh; holds and the digital signature schelfé;, Sign, Ver) is existentially unforgeable
against chosen message attack. In our improvement, weiSirthi@ description by omitting the digital signature scheem
whose purpose is to bind (in a non-repudiable manner) timsdragt and the identityA;. We just assume this is the case,
i.e., A; = e(P,P)* and the transcript are bound together. Then, we proceedte hat if there is a PPT adversary
A breaking non-frameability of the above scheme, we can oaoctsh PPT adversarg breaking the Discrete Logarithm
assumption ove®;.

SupposeB is given a challengé’* = zP randomly chosen from grou@; = (P). The goal ofB3 is to calculatez.
B constructs an instance of the above scheme by generating’ €z Z; and Py, G, H €g G, ensuringG is also a
generator ofz,. BB gives.A the group public ke P, Py, Poun = = P, H, G, 0, Qpuo = s Q}, the issuing keyz, s) and the
opening keyr’.

B simulates a set of possible uséis..., ¢} wheregq is the upper bound on the group sifkchooses* € {1, ..., ¢} and
providesA access to the following simulated oracles the definitionstith can be found ir [16]:

e SndToU(z, My, ). If @ # *, B just plays as an honest useby executingloin as specified inV/;,,. If i = i*, B
simulates theJpin, Iss) protocol so that\; = e(P, P*).

e WReg, GSig, USK, CrptU, RevokeU, andWitness. B can simulate all these oracles because the knowledge of the
secret keys, except the case whSK(i*) is queried.

If A succeeds with probability, then the probability that he can impersonétés at least/q. From the soundness of
the protocol [Lemmal1)3 can extract(a;, S;, z;, W; j,t) so thatE = tG, A = e(P, P*)0", e(a; P + Poup, Si) =
e(xz; P+ Py, P) ande(a; Q + Qpun, Wi ;) = e(Q,V;), i.e.,z = z;.

O

The security properties with regard to anonymity and trbitiég as discussed iri [15], also hold in the above scheme,
because the encryption part and the GM’s algorithms ardian

6 Conclusion

In this work, we first constructed an algorithm breaking t#ision resistance of the accumulator as defined_in [15].
We showed that the original accumulator security model gsed by Nguyen allowed an adversary to breakgtsDH
assumption. Second, we demonstrated that the new secwidglrauggested by Nguyehn [17,116] did not allow the ad-
versary to break the mathematical assumption so that thisionlresistance of the accumulator is ensured. Finaly, w
proved that it possible to remove the trusted third party glijen’s identity escrow scheme based on the accumulator
while being safe against an attack similar to Cao’s.
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