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Abstract. Goldreich (ECCC 2000) suggested a simple construction of
a candidate one-way function f : {0, 1}n → {0, 1}m where each bit of
output is a fixed predicate P of a constant number d of (random) input
bits. We investigate the security of this construction in the regime m =
Dn, where D(d) is a sufficiently large constant. We prove that for any
predicate P that correlates with either one or two of its variables, f can
be inverted with high probability.

We also prove an amplification claim regarding Goldreich’s construc-
tion. Suppose we are given an assignment x′ ∈ {0, 1}n that has correla-
tion ε > 0 with the hidden assignment x ∈ {0, 1}n. Then, given access
to x′, it is possible to invert f on x with high probability, provided
D = D(d, ε) is sufficiently large.

1 Introduction

In a short note in 2000, Oded Goldreich [Gol00] proposed a very simple con-
struction of a conjectured one-way function:

1. Choose a bipartite graph G with n vertices on the left, m vertices on the
right, and regular right-degree d.

2. Choose a predicate P : {0, 1}d → {0, 1}.
3. Let f = fG,P be the function from {0, 1}n to {0, 1}m defined by

f(x)i = the ith bit of f(x) = P (xΓ (i,1), . . . , xΓ (i,d))

where Γ(i,j) is the jth neighbor of right vertex i of G.

Goldreich conjectured that when m = n and d is constant, for “most” graphs G
and predicates P , the resulting function is one-way.1

In this work we investigate Goldreich’s construction in the setting where the
graph G is random, d is constant, and m = Dn for a sufficiently large constant

1 More precisely, with constant probability over the choice of G and P (say 2/3), the
corresponding family of functions as n → ∞ is one-way. Goldreich also suggests
specific choices of P and G.
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D = D(d). We show that for this setting of parameters, Goldreich’s construc-
tion is not secure for most predicates P . In fact, our conclusion holds for every
predicate P that exhibits a correlation with either one of its variables or a pair
of its variables.

We also show that if we are given a “hint” x′ – any assignment that has
nontrivial correlation with the actual input x to the one-way function – it is
possible to invert f on x, as long as D is a sufficiently large constant. However,
D depends not only on d but also on the correlation between x and x′.

While our theorem does not rule out the security of Goldreich’s construction
when m = n, it indicates some possible difficulties in using this construction, as
it reveals its sensitivity on the output length. It indicates that when the ratio
m/n is a sufficiently large constant, the construction can be broken for a large
class of predicates. It is also easy to see that when m/n is smaller than 1/(d−1)
the function can also be inverted for every predicate P , as with high probability
the “constraint hypergraph” splits into components of size O(log n) [SS85].

On the other hand, for certain choices of the predicate P to which our theorem
does not apply, it has been conjectured that the function f is not only one-way
but also a pseudorandom generator [MST03].2

1.1 Goldreich’s Function and Cryptography in NC0

Goldreich’s proposal for a one-way function has several features that were ab-
sent from all known earlier proposals: (1) It is extremely simple to implement,
and (2) it is very fast to compute, especially in parallel. On the other hand,
the conjectured security of Goldreich’s function is not known to relate to any
standard assumptions in cryptography, such as hardness of factoring or hardness
of finding short vectors in lattices.

This paradigm of “NC0 cryptographic constructions” where every bit of the
output depends only on a constant number of input bits has since been extended
to other cryptographic primitives, in particular pseudorandom generators. Re-
markably, Applebaum, Ishai, and Kushilevitz [AIK04] showed that a pseudoran-
dom generator (and in particular a one-way function) in NC0 can be obtained
assuming the hardness of the discrete logarithm problem; however, the stretch of
this pseudorandom generator is only constant. In a different work [AIK06], the
same authors gave a different construction of a pseudorandom generator with
small linear stretch using the less standard assumption that certain random
linear codes are hard to decode.

These constructions give evidence that cryptography in NC0 may be possible.
However, the constructions are rather complicated and the parameters they yield
are of little practical value. For example, it is not known whether it is possible
to have a pseudorandom generator that stretches n bits of input into, say, 10n
bits of output under comparable assumptions.

For this reason, we believe it is interesting to investigate the power and limi-
tations of simple constructions such as the one of Goldreich, which may be more

2 Actually [MST03] considers a slightly different function; see below.
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useful in practice. A step in this direction was made by Mossel, Shpilka, and
Trevisan [MST03]. They conjectured that the function f : {0, 1}n × {0, 1}n →
{0, 1}m where

f(x, y)i = xΓ (i,1) + xΓ (i,2) + xΓ (i,3) + yΔ(i,1) · yΔ(i,2)

is a pseudorandom generator with high probability, where Γ and Δ are incidence
lists of random (n, m) bipartite graphs of right-degree 3 and 2 respectively. As
partial evidence towards their conjecture, Mossel et al. proved that f is pseudo-
random against linear functions for, say, m = n1.1. It is not difficult to see by
the Linial-Nisan conjecture [LN90], which was recently proved [Bra09], f is also
pseudorandom against constant-depth circuits.

Very recently, Cook, Etesami, Miller, and Trevisan [CEMT09] showed that a
restricted class of algorithms called “myopic algorithms” take exponential time
to invert Goldreich’s construction. The kinds of algorithms used in this work are
not myopic.

1.2 Our Results

We state our main results. They refer to the standard notion of “correlation”
among strings and functions which is formally defined in Section 2.

Theorem 1. Let K be a sufficiently large constant and D > 2Kd. Suppose P :
{0, 1}d → {0, 1} is a predicate that has nonzero correlation with one of its inputs
or a pair of its inputs. Consider the function fG,P : {0, 1}n → {0, 1}m, where
m = Dn. Then, with high probability over G, fG,P is invertible on a 1−2−2−Ω(d)n-
fraction of inputs as a one-way function.

Theorem 2. Let K be a sufficiently large constant and D > (1/ε)Kd. Let P :
{0, 1}d → {0, 1} be any non-constant predicate. Then there is an algorithm A
such that with high probability over G, with the following holds. Consider the
function fG,P : {0, 1}n → {0, 1}m, where m = Dn. For a 1−2−ε22−Ω(d)n fraction
of assignments x and any assignment x′ that has correlation ε (in absolute value)
with x, on input G, P, f(x) and x′, A outputs an inverse for fG,P (x). The running
time of A is polynomial in n and 1/εd.

1.3 Our Approach

The problem of inverting Goldreich’s function is somewhat analogous to the
problem of reconstructing assignments to random 3SAT formulas in the planted
3SAT model. We exploit this analogy and show that several of the tools devel-
oped for planted 3SAT can be applied to our setting as well.

The proofs of Theorems 1 and 2 consist of two stages. In the first stage, we
almost invert f in the sense that we find an assignment z that matches the
hidden assignment x on a 99% fraction of positions. In the second stage we turn
z into a true inverse for f(x). The second stage is common to the proofs of both
theorems.
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To give some intuition about the first stage in Theorem 1, suppose for instance
that P is the majority predicate. Then we try to guess a the value of the bit xi

by looking at all constraints where xi appears and taking the majority of these
values. Since xi has positive correlation with the majority predicate, we expect
this process to result in a good guess for most xi that appear in a sufficiently large
number of clauses. In fact, if f has about n log n bits of output, this reconstructs
the assignment completely; if m = Dn for a sufficiently large constant D, a large
constant fraction of the bits of x is recovered. The same idea applies to any
predicate with correlates to one of its variables.

For predicates correlating with a pair of their variables, we will argue that the
output of f contains certain noisy information about the correlation between
the pairs. In particular, it gives information as to whether the pair of variables
have the same or different values. More precisely, it is possible to construct a
graph G whose vertices correspond to variables of i and an edge between i and
j appears independently, but with probability depending on the event xi = xj .
The clusters in this graph correspond to variables taking the same value. Using
known methods for clustering random graphs [Coj06] we can recover most of the
values of x.

The first stage in the proof of Theorem 2 is based on the observation that if
we start with some assignment x′ that correlates with the input x to f , then the
output bits of f(x) give information about the values of various variables xi, for
an arbitrary predicate P . We prove this in Section 4.

For the second stage, we extend an algorithm of Flaxman [Fla03] (similar ones
have also been given in [Vil07, KV06]) for reconstructing planted assignments of
random 3CNF formulas. The planted 3SAT model can be viewed as a variant of
our model where the predicate P corresponds to one of the eight predicates z1∨
z2∨z3, . . . , z1∨z2∨z3. This algorithm starts from an almost correct assignment,
then unsets a small number of the variables in this assignment according to
some condition (“small support size”), so that with high probability all (but a
constant number of) the remaining set variables are correct. Then the value of
the unset variables can be inferred in polynomial time. We show that the notion
of “small support size” can be generalized to arbitrary non-constant predicates,
and this type of algorithm can be used to invert f . While we directly follow
previous approaches, our proofs include a few technical simplifications.

2 Preliminaries

Some definitions. Let X, Y be random variables over {0, 1}. The correlation
between X and Y is the value E[(−1)X+Y ]. The correlation between a predi-
cate P : {0, 1}d → {0, 1} and a subset (xi)i∈S of its inputs is the correlation
between the random variables P (X1, . . . , Xd) and

∑
i∈S Xi, where the sum is

taken modulo 2, and X1, . . . , Xn are uniformly distributed. We say P correlates
with (xi)i∈S if the above correlation is nonzero. The correlation between a pair
of assignments x, y ∈ {0, 1}n is the correlation between the ith bit of x and y,
where i ∈ [n] is random.
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We say a Bernoulli random variable X ∼ {0, 1} is ε-biased towards 0 (resp. 1)
if the probability of X = 0 is at most 1/2 − ε (resp. 1/2 + ε).

We say an assignment x ∈ {0, 1}n is ε-balanced if its correlation with the all
zero assignment is at most ε in absolute value.

By analogy with the random 3SAT problem, we will refer to the input x ∈
{0, 1}n on which we are interested the function fG,P (x) as the planted assign-
ment. We will call an assignment x′ ∈ {0, 1}n d-correct if it is at hamming
distance at most d from the planted assignment.

On the random graph model. In Goldreich’s definition [Gol00], The bipartite
graph G in the function fG,P is chosen from the following random graph model
G = {Gn,m}: (1) Each graph G in Gn has n left vertices and m = m(n) right
vertices; (2) each right vertex v of G has d neighbors on the left, labeled by
Γ1(v), . . . , Γd(v); (3) The neighbors of each right vertex are uniformly distributed
(repetitions allowed) and independent of the neighbors of all other vertices.

The literature on planted 3SAT usually considers a different model where
each of the clauses is included in the formula independently with probability
p = p(n). Our results can be extended in the corresponding model for G, but
such a model is less natural for one-way functions.

3 Obtaining an Almost Correct Assignment

In this section, we show that for predicates correlating with one or a pair of
inputs, we can get an assignment that agrees with the planted one on almost all
variables.

3.1 For Predicates Correlating with One Input

When the predicate P (z1, . . . , zk) correlates with one of its inputs, say z1, then
every output bit of fG,P (x) gives an indication about what the corresponding
input bit should be. If we think of this indication as a vote, and take a majority
of all the votes, we set most of the input bits correctly. The following proposition
formalizes this idea.

Algorithm Majority Voting
Inputs: A predicate P (z1, . . . , zd) that correlates with zk; the graph G; the value
fG,P (x)
Algorithm.

1. For every input variable i, calculate the majority among the values fG,P (x)j

where i occurs as the kth variable.
2. Set x′

i to equal this value if the correlation between P and zk is positive, and
the complement of this value otherwise.

3. Output the assignment x′.
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Proposition 1. Suppose D > 4d and P is a predicate that correlates with its
kth variable. For a 1 − 2−Ω(n/d24d) fraction of x ∈ {0, 1}n and with probability
1 − 2−Ω(4dn) over the choice of G, the assignment x′ produced by algorithm
Majority Voting agrees with x on a (1 − 2−Ω(D/4d))n fraction of variables.

Proof. Without loss of generality assume k = 1, and assume the correlation
between P and z1 is positive. Since this correlation is a multiple of 2−d, it must
then be at least 2−d.

Now fix any input x that is 1/2d2d-balanced. We think of the constraint graph
G as being chosen in the following manner: First, for each constraint in G the
first variable i1 is chosen uniformly at random. Then, for every i, among the
constraints where i is the first variable, the other variables i2, . . . , id are chosen
at random. Let Ni denote the number of constraints with i as the first variable.

Now consider the random experiment where one samples xi2 , . . . , xid
at ran-

dom and outputs the value b = P (xi, xi2 , . . . , xid
). If xi2 , . . . , xid

were uniformly
distributed in {0, 1}, then b is a Bernoulli random variable whose output is at
least 2−d-biased towards xi. However, xi2 , . . . , xid

might not be uniformly dis-
tributed but only 1/2d2d-balanced. Since the statistical difference between the
distributions (xi2 , . . . , xid

) when the samples are uniform and when they are
uniformly balanced is at most (d−1)/2d2d ≤ 2−(d+1), it follows that b is at least
2−(d+1)-biased towards xi.

Fix some i such that Ni ≥ D/2. By Chernoff bounds, over the random choice
of G, the value x′

i agrees with xi with probability at least 1 − 2−Ω(4−dD). By
another Chernoff bound, the number of is among those Ni such that Ni ≥ D/2
where xi and x′

i disagree is at most 2−Ω(4−dD)n with probability 2−Ω(4−dDn).
Applying Lemma 4 with ε = 4d/D we obtain the theorem. �	

3.2 For Predicates Correlating with a Pair of Inputs

We illustrate the inversion of fG,P (x) for a predicate that correlates with a pair of
its inputs by looking at the “all equal” predicate. Specifically, let AE(z1, z2, z3)
be the predicate “z1 = z2 = z3”. Then AE does not correlate with any of its
variables, but it correlates with the pair (z1, z2).

In this example, every constraint (xi1 , xi2 , xi3 ) where AE evaluates to 1 tells
us that xi1 = xi2 . Now construct a graph H whose vertices are variables of x and
such a constraint gives rise to an edge (i1, i2). Then the connected components
in this graph indicate collections of variables xi that must have the same value.
When x is roughly balanced, because G is random, the induced subgraphs on
the sets {i : xi = 0} and {i : xi = 1} are random graphs with constant average
degree. Therefore with high probability, each of these subgraphs will have a giant
connected component, giving two large sets of variables of x that must have the
same value. By guessing the value of the variables within each set we obtain an
assignment x′ that agrees with x almost everywhere.

Now consider the majority predicate MAJ(z1, z2, z3). This predicate also cor-
relates with its first pair of variables. Fix an almost balanced assignment x. Now
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suppose we see a constraint such that MAJ(xi1 , xi2 , xi3) = 1. While we cannot
say with certainty that xi1 = xi2 , this constraint gives an indication that xi1

and xi2 are more likely to be different than equal. So we can hope to recover a
large portion of the assignment x by looking for a large cut in the graph H .

For a general predicate that correlates with a pair of its variables, we can
reconstruct a large portion of the assignment x by using a spectral partitioning
algorithm on H . This idea was used by Flaxman [Fla03] in a related context.
Coja-Oghlan [Coj06] proved a general “partitioning theorem” which, in partic-
ular, gives the following algorithm.

Theorem 3 (Theorem 1 of [Coj06], special case). There is a polynomial-
time algorithm Partition with the following property. Let C0 be a sufficiently
large constant. Let (S0, S1) be a partition of [n] such that |S0|, |S1| ≥ n/3. Fix
probabilities p00, p11, p01 ∈ [C0/n, D/n]. Suppose the graph H ′ is a random graph
where each edge (i, j), where i ∈ Sa, j ∈ Sb (a ≤ b) is included independently at
random with probability pab. Assume that

n(|p00 − p01| + |p11 − p01|) ≥ C0 max(
√

np00 log(np00),
√

np11 log(np11)) , (1)

then with high probability Partition(H ′) outputs a partition (S′
0, S

′
1) of [n] such

that (S0, S1) and (S′
0, S

′
1) differ on at most (1 − O(D−10))n vertices of H ′.

Condition (1) is a non-degeneracy condition which requires there to be a notice-
able difference in edge densities. Otherwise, the information about the original
partition is lost.

Algorithm Pairwise
Inputs: A predicate P (z1, . . . , zd) that correlates with (zk, zr); the graph G; the
value fG,P (x)
Algorithm

1. Choose b such that Prz[zk 
= zr | P (z) = b] 
= Prz[zk = zr | P (z) = b].
2. Construct the graph H on vertex set [n] with edges (ik, ir) iff there is a

constraint in G such that P (xi1 , . . . , xid
) = b. Let mH denote the number of

edges of H .
3. Sample M from the binomial distribution with

(
n
2

)
samples, each with prob-

ability mH/2. Let H ′ be the subgraph consisting of the first M distinct edges
of G. (If there are not enough such edges, fail.)

4. Run Partition(H ′). Call the partition output by the algorithm (S′
0, S

′
1).

5. Output the pair of assignments x′, x′, where x′
i = a iff i ∈ S′

a, and x′ is the
complementary assignment.

For step 1, it follows that such a choice of b is always possible by the assumption
that P correlates with (zk, zr). Step 3 is a technical trick that allows us to pass
from our random graph model, where the number of edges is fixed, to the model
where each edge is sampled independently at random with probability mH/2. We
believe this step is not necessary, but since the algorithm Partition is analyzed
in the latter model we include it for accuracy.
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Proposition 2. Fix a sufficiently large constant C. Suppose D > Cd16d and P is
a predicate that correlates with (zk, zr). For a 1 − 2−Ω(d4d) fraction of x ∈ {0, 1}n

and with high probability over the choice of G, one of the two assignments produces
by algorithm Pairwise agrees with x on a (1 − Ω(D−10))n fraction of variables.

Proof. Without loss of generality assume b = 1, k = 1 and r = 2. Let p �= =
Prz[z1 
= z2 | P (z) = 1], p= = Prz [z1 = z2 | P (z) = 1]. The fact that P is
correlated with (zk, zr) implies that |p= − p �=| ≥ 4−d.

Let us first fix a balanced input x. Let S0 and S1 denote the 0 and 1 vari-
ables of x. Let mH be the number of 1-outputs of fG,P (x). Conditioned on
P (xi1 , . . . , xid

) = 1, we can think of i1, . . . , id as chosen by the following process.
First, we determine where in the partition (S0, S1) the indices i1 and i2 belong.
Then we randomly sample i1 and i2 from the corresponding set in the partition.
Then we choose i3, . . . , id. This process induces the following random graph H :
For each of mH edges, first randomly choose where in the partition the edge
belongs. We put the edge in (S0, S0) and (S1, S1) with probability p=/2 and in
(S0, S1) with probability p �=. Then randomly choose an edge on that side of the
partition.

Disregarding the possibility that step 3 fails, the graph H ′ is then a random
graph with edge densities p00, p11 = p=mH/n(n−1), and p01 = p �=mH/n(n−1).
By Chernoff bounds, mH > m/2d with high probability. Then for D > C1d16d

condition (1) will be satisfied and with high probability over the choice of G, the
algorithm will return the correct partition.

To complete the proof we need to analyze the effect that the imbalance of
x and the step 3 failure have on this ideal scenario. We now assume that x is
1/2d4d-balanced. It can be checked (similarly to the proof of Proposition 1) that
this affects the probabilities p00, p01, p11 by at most 2−(2d+1)mH/n(n + 1), so
condition (1) will still be satisfied. By Chernoff bounds, step 3 succeeds with
high probability. �	

4 Amplifying Assignments

In this section we give the proof of Theorem 2. As discussed, the proof goes in
two stages. First, we find an assignmnent w that agrees with x on most inputs.
Then we use Theorem 4 to invert f . We focus on the first stage.

The idea of the algorithm is to use the assignment x′ in order to get empirical
evidence about the values of each variable xi in the hidden assignment. First,
since the predicate P (z) is nontrivial, it must depend on at least one of its
variables, say z1. To obtain evidence about the value of xi, let’s consider all
constraints in which xi appears as the first variable. Since G is random, we
expect the number of such constraints to be fairly large. Moreover, the other
variables appearing in the constraints are also random.

Now let us fix a pair of assignments x and x′ with correlation ε, a variable i,
and a value b ∈ {0, 1}, and look at the probability distribution Db generated by
the following process:3

3 It is easy to see that Db does not depend on i.
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1. Choose a random G.
2. Choose a random constraint j of fG,P where i appears as the first variable.

Call the other variables i2, . . . , id.
3. Output (x′

i2 , . . . , x
′
id

, f(b, xi2 , . . . , xid
)j).

Our main observation (see Lemma 1 below) is that the distributions D0 and D1

are statistically far apart. Therefore we can determine the value b = f(x) with
good confidence by observing enough samples from one of these two distributions.
But observing the values f(x)j in those constraints j where i appears as the
first variable amounts exactly to sampling from this process. This suggests the
following algorithm for computing w:

Algorithm Amplify. On input P , G, f(x), ε, an assignment x′ that ε-correlates
with x,

1. Compute the distributions D0 and D1 (see below).
2. For every i, compute the empirical distribution D̂i defined as follows:

(a) Choose a random constraint (i, i2, . . . , id) of f where i is the first variable.
(b) Output (x′

i2
, . . . , x′

id
, f(b, xi2 , . . . , xid

)j).
3. Set wi = b if D̂i is closer to Db than to D1−b in statistical distance.

Proposition 3. Let G be random right regular bipartite graph with n left vertices
and 2εDd

n right vertices, where D is a sufficiently large constant. With high
probability over the choice of G, for a 1−2−Ω(ε2n) fraction of assignments x and
every assignment x′ that has correlation ε with x, algorithm Amplify outputs
assignments w1, . . . , wn so that at least one of them agrees with x in a 1 − ε
fraction of places.

As discussed above, the proof of this theorem consists of two steps. First, we
show that the distributions D0 and D1 are statistically far apart. Then, we show
that with high probability over G, for most i the distribution D̂i is statistically
close to Dxi .

Lemma 1. Let x and x′ be two assignments such that x is ε/2-balanced and x′

has correlation ε with x. Then the statistical distance between D0 and D1 is at
least ε−O(d).

We observe that the distance can be as small as ε−Ω(d), for example if P is
the XOR predicate on d variables, x is any balanced assignment, and x′ is an
assignment that equals 1 on a 1− ε fraction of inputs and 0 on the other inputs.

Proof. We begin by giving alternate descriptions of the distributions Db. To do
this, we define a distribution F over {0, 1}2 as follows: First, choose i ∈ [n] at
random, then output the pair (xi, x

′
i). Let (a, a′) denote a pair sampled from F .

It is not difficult to see that

min(Pr[a′ = 0], Pr[a′ = 1]) ≥ ε/2 (2)

for if this were not the case, it would violate the assumptions on x and x′.
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The distribution Db can now be described as follows:

1. Uniformly and independently sample pairs (ai, a
′
i) ∼ F for i = 2, . . . , n.

2. Output (a′
2, . . . , a

′
d, P (b, a2, . . . , ad)).

Intuitively, this corresponds to the process of first sampling input bits from x′,
then evaluating P at a “noisy” version of x′. If there was no noise, it is easy to
see that D0 and D1 must be far apart, as they have to differ for at least one
setting of a′

2, . . . , a
′
d, and by (2) this happens with probability at least (ε/2)d−1.

To argue the general case, note that the statistical distance between D0 and
D1 is bounded below by the quantity

sd(D0, D1)

=
∑

(a′
2,...,a′

d)∈{0,1}d−1

2 · Fd−1(a′
2, . . . , a

′
d)

· ∣∣EFd−1 [P (0, a2, . . . , ad) − P (1, a2, . . . , ad) | a′
2, . . . , a

′
d]

∣
∣

≥2 · (ε/2)d−1

· max(a′
2,...,a′

d)

∣
∣EFd−1 [P (0, a2, . . . , ad) − P (1, a2, . . . , ad) | a′

2, . . . , a
′
d]

∣
∣

≥2 · (ε/2)d−1

· E(a′
2,...,a′

d)

[
EFd−1 [P (0, a2, . . . , ad) − P (1, a2, . . . , ad) | a′

2, . . . , a
′
d]

2
]1/2

where Fd−1(a′
2, . . . , a

′
d) denotes the probability of sampling a′

2, . . . , a
′
d in d −

1 independent copies of F , the expectation EFd−1 is taken over independent
choices of a2, . . . , ad where each ai is sampled from the distribution F conditioned
on a′

i, and the expectation E(a′
2,...,a′

d) refers to a uniformly random choice of
(a′

2, . . . , a
′
d) ∼ {0, 1}d−1.

To lower bound the last quantity, we consider the linear operator Td−1 on the
space R{0,1}d−1

defined by

(Td−1g)(a′
2, . . . , a

′
d) = EFd−1[g(a2, . . . , ad) | a′

2, . . . , a
′
d].

Let T−1
d−1 denote its inverse (whose existence will be argued) and ‖·‖2 denote the

�2 operator norm. Recall that for any linear operator T ,

‖T ‖2 = maxg ‖Tg‖2 / ‖g‖2 = max|σ|
where the maximum ranges over the singular values σ of T . Applying this defi-
nition to the operator T−1

d−1, we have that

∥
∥T−1

d−1

∥
∥

2
·E(a′

2,...,a′
d)

[
EFd−1 [P (0, a2, . . . , ad)−P (1, a2, . . . , ad) | a′

2, . . . , a
′
d]

2
]1/2

≥ E(a2,...,ad)

[
(P (0, a2, . . . , ad) − P (1, a2, . . . , ad))2

]1/2 ≥ 2−d+1

We are left with the task of upper bounding the quantity
∥
∥T−1

d−1

∥
∥

2
. It is bounded

by the largest (in absolute value) singular value of the operator T−1
d−1, which is
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the inverse of the smallest singular value of Td−1 = T
⊗(d−1)
1 . Putting everything

together, we obtain that

sd(D0, D1) ≥ 2 · (ε/4)d−1 · |σ|d−1

where σ is the smaller singular value of the operator T1. A calculation of the
singular values of T1 (which we omit) shows that |σ| = Ω(ε), so sd(D0, D1) =
ε−O(d). �	

We now prove that the distributions D̂i are mostly close to the distributions
Dxi . We will need the following crude bound on the number of samples needed
in order to approximate a distribution with bounded support by its empirical
average. It easily follows from Chernoff bounds.

Lemma 2. Suppose D is a distribution on a set of size S and D̂ is the empirical
average of N independent samples of D, where N ≥ 3S2/γ2 log(S/δ). Then

Pr[sd(D, D̂) < γ] > 1 − δ.

Lemma 3. Fix any constants γ, ε > 0. Suppose G is a random graph with n left
vertices and Dn right vertices, where D ≥ 24d2d log(3/ε)/γ2. With probability
1 − 2−Ω(ε2n) over the choice of G, for a 1 − 2Ω(ε2n) fraction of assignments x,
for at least a 1 − ε fraction of i, for every assignment x′ that has correlation ε
with x, we have that sd(D̂i, Dxi) < γ.

Proof. Fix an ε/2-balanced assignment x. We will show that

PrG

[|{i : sd(D̂i, Dxi) ≥ γ}| > εn
]

= 2−Ω(ε2n).

Since at most 2−O(ε2n) assignments x are not balanced, it follows that

Prx,G

[|{i : sd(D̂i, Dxi) ≥ γ}| > εn
]

< 2−Ω(ε2n)

from where the lemma follows by Markov’s inequality.
We think of the constraint graph G as being chosen in the following manner:

First, for each constraint in G the first variable i1 is chosen uniformly at ran-
dom. Then, for every i, among the constraints where i is the first variable, the
other variables i2, . . . , id are chosen at random. Let Ni denote the number of
constraints with i as the first variable. Observe that conditioned on the choices
of Ni, the events

sd(D̂i, Dxi) ≥ γ

are independent of one another. Let Ei be an indicator variable for this event.
Moreover, the distribution D̂i is an empirical average of Ni samples from Dxi ,
so by Lemma 2 we have that as long as Ni ≥ D/2, PrG[Ei = 1 | Ni] ≤ ε/3.
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Let I denote the set of those i such that Ni < D/2. Then

PrG[
∑

i∈[n]

Ei ≥ εn] ≤ PrG[
∑

i∈[n]

Ei ≥ εn | |I| < εn/3] + PrG[|I| ≥ εn/3]

≤ PrG[
∑

i�∈I

Ei ≥ 2εn/3 | |I| < εn/3] + PrG[|I| ≥ εn/3]

≤ 2−Ω(ε2n) + PrG[|I| ≥ εn/3] (by the Chernoff bound)

≤ 2−Ω(ε2n) (by Lemma 4) �	

To finish the proof of proposition 3, we argue that algorithm Amplify outputs
the correct answer with high probability. First, observe that the algorithm needs
to know the correlation between x and x′; we try all possible n values for this
correlation. (In fact, it is sufficient to try O(1/ε) approximate values.) Then
proposition 3 follows by combining Lemma 1 and Lemma 3 with γ = ε−Dd for
a sufficiently large constant D.

5 From Almost Correct to Correct

In this section, we show that if we start with an almost correct assignment,
fG,P (x) can be inverted for any nontrivial predicate P , provided that the con-
straint to variable ratio m/n = D is a sufficiently large constant (depending
on d). Our proofs are an adaptation of known algorithms for planted random
3SAT [Fla03, KV06].

Proposition 4. Let K be a sufficiently large constant and P be an arbitrary
nonconstant predicate. Suppose D > Kd64d. There exists a polynomial-time al-
gorithm such that for a 1 − 2−Ω(d24d) fraction of x ∈ {0, 1}n and with high
probability over the choice of G, on input G, P , fG,P (x), and x′ ∈ {0, 1}n that
has correlation 1 − 1/Kd2dD with x, outputs an inverse for fG,P (x).

Together with propositions 1 and 2, we have proved theorem 1. With proposi-
tion 3, we have proved theorem 2.

The algorithm has three stages. In the first stage, the objective is to come up
with an assignment that matches most “core” variables of x. Roughly speaking,
the core of G with respect to the assignment x is the set of those variables
that occur regularly in G, in the sense that their presence in various types of
constraints of G occurs within a small error of the expectation. The core will
comprise most of the variables of x. In the second stage, some of the variables
are unassigned. At the end of this stage, all assigned variables are assigned as in
x, and all core variables are assigned. In the third stage, an assignment for the
remaining variables is found by brute force. (The final assignment may not be
x, as there are likely to be many possible inverses for fG,P (x).)

Due to space constraints we defer the proof of proposition 4 to the full version
of the paper.
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Appendix: A Sampling Lemma

Lemma 4. Fix ε < 1/2 and suppose D > 2 log(1/ε). Let N1, . . . , Nn be random
variables taking values in the set {0, . . . , Dn} sampled uniformly conditioned on
N1 + · · · + Nn = Dn. Then with probability 2−Ω(εDn), fewer than εn of the
variables take value less than D/2.

Proof. Let I denote the set of those i such that Ni < D/2. By a union bound, the
probability of |I| ≥ εn is at most

(
n
εn

)
times the probability that N1, . . . , Nεn <

D/2. We argue that for every i,

Pr[Ni < D/2 | N1, . . . , Ni−1 < D/2] = 2−Ω(D)

from where the claim follows. To show this, observe that conditioned on N =
N1+· · ·+Ni−1, Ni is a sum of (Dn−N) independent Bernoulli random variables
with probability 1/(n − i) each. If N1, . . . , Ni−1 < D/2, then the conditional
expectation of Ni is at least D. By Chernoff bounds, the conditional probability
that Ni < D/2 is then at most 2−Ω(D). �	
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