
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011 6285

Authentication of Digital Streams
Christophe Tartary, Member, IEEE, Huaxiong Wang, and San Ling

Abstract—We study the multicast stream authentication
problem when the communication channel is under control of
an opponent who can drop, reorder and inject data packets. Re-
cently, many coding theory based protocols have been developed
to treat the stream authentication problem over such a channel.
In this paper, our goal is to provide a general coding approach
for multicast stream authentication. We design an authentication
protocol which combines any list recoverable code (provided some
conditions on its construction parameters). We demonstrate that
the previous schemes can be viewed as instances of our construc-
tion when a Reed–Solomon code is used as a list recoverable code.
In such settings, we also show that our approach leads to a better
upper bound on the number of signature verification queries for
each receiver.

Index Terms—Adversarial network, list recoverable codes, poly-
nomial reconstruction problem, stream authentication.

I. INTRODUCTION

W ITH the expansion of communication networks, broad-
casting has become a major way of distributing digital

content to a large audience over public communication chan-
nels such as the Internet. Video-conferences, air traffic control,
software updates and stock quotes are examples of applications
based on broadcast. Unfortunately, large-scale broadcasts pre-
vent lost content from being retransmitted for two reasons. First,
the size of the communication group involves that a single dele-
tion could lead to an overwhelming number of redistribution re-
quests at the sender end. Second, a feedback channel for those
requests may not even exist as in the case of satellite television.
In addition to these drawbacks, the network can be under the
influence of malicious users altering the data stream. Thus, the
security of broadcast transmission schemes depends on both the
network properties and the opponents’ computational power. In

Manuscript received August 29, 2009; revised April 20, 2011; accepted May
22, 2011. Date of current version August 31, 2011. C. Tartary was supported
in part by the National Natural Science Foundation of China under Grants
61033001, 61061130540, 61073174, and 61050110147 (International Young
Scientists program); in part by the National Basic Research Program of China
under Grants 2007CB807900 and 2007CB807901; in part by the Danish
National Research Foundation; and in part by the National Natural Science
Foundation of China (under the grant 61061130540) for the Sino-Danish Center
for the Theory of Interactive Computation (CTIC) within which part of this
work was performed. H. Wang and S. Ling were supported by the Singapore
National Research Foundation under Research Grant NRF-CRP2-2007-03.

C. Tartary is with the Institute for Theoretical Computer Science within the
Institute for Interdisciplinary Information Sciences at Tsinghua University, Bei-
jing, 100084, China (e-mail: ctartary@mail.tsinghua.edu.cn).

H. Wang and S. Ling are with the Division of Mathematical Sciences in the
School of Physical and Mathematical Sciences, Nanyang Technological Univer-
sity, Singapore (e-mail: hxwang@ntu.edu.sg; lingsan@ntu.edu.sg).

Communicated by T. Fujiwara, Associate Editor for Complexity and Cryp-
tography.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2011.2161960

this paper, we will consider scenarios where opponents have
bounded computational abilities.

Some applications, e.g., television and stock market, will dif-
fuse a long stream of data whose content is to be authenticated
by the receivers within a short period of time upon reception.
Since many multicast protocols transfer private or sensitive in-
formation, nonrepudiation of the sender is required. In addi-
tion, most channels used for multicast only provide a best effort
delivery of data like the Internet with the User Datagram Pro-
tocol [1].

Two important concerns of the multicast authentication
problem are the network bandwidth availability and the re-
ceivers’ computational abilities. Indeed, large packets may
create irregular throughput of data which sometimes results in
congestion of the network information flow. On the other hand,
receivers with limited computational abilities will require more
time to authenticate data delaying the stream play. Therefore,
a stream authentication protocol should aim to minimize both
packet1 overhead and computational cost.

The stream authentication problem has been extensively
studied (see, for example, the survey [2]). The simplest tech-
nique to ensure nonrepudiation of information is to use a
signature to sign each data packet (also known as the sign-each
approach). However, signature schemes are time expensive
to generate and verify which makes this idea impractical for
stream authentication. As a consequence, a common approach
is to generate a single signature and to amortize its communi-
cation and computation overheads over several packets using
hash chains for instance.

By appending the digest of each packet to several followers
according to some specific patterns, Perrig et al. [3], [4], Golle
and Modadugu [5] and Miner and Staddon [6] designed schemes
dealing with packet loss. One signature was generated from time
to time to ensure nonrepudiation of data. In these papers, the
network packet loss behavior was modeled by a -state Markov
chain [7], [8] which provided bounds on the packet authenti-
cation probability. Unfortunately, all these schemes rely on the
reception of signature packets.

To overcome this problem, one solution is to split the signature
into smaller parts where only of them are sufficient
for recovery. Along this line, several schemes were developed
[9]–[13] but none of them tolerates a single packet injection. In
2003, Lysyanskaya et al. [14]2 designed a technique resistant to
packet loss and data injections using Reed–Solomon (RS) codes
[16] where the number of signature verifications to be performed
per block3 turns out to be as a function of the block length .

1Since the stream size is large, it is divided into small fixed-size entities called
packets.

2An updated version of this work recently appeared in [15].
3In order to be processed, packets are gathered into fixed-size sets called

blocks.

0018-9448/$26.00 © 2011 IEEE

6286 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

This approach was later extended in [17]–[21]. In 2004, Karlof et
al. developed a protocol called PRABS [22] using a Maximum
Distance Separable (MDS) code along with a one-way accumu-
lator [23] based on a Merkle hash tree [24] requiring less signa-
ture verifications than the techniques from [14], [17]–[21]. Un-
fortunately, PRABS’s augmented packets4 must carry
hash values which is much larger than for those constructions. It
should be noticed that this drawback comes from the use of the
tree which means that techniques from [25]–[28] also have this
problem. The reader can find a more detailed survey of authen-
tication protocols in [29].

In this paper, we propose a new coding approach to the
stream authentication problem. Our technique relies on list
recoverable codes and it is based on the following observation.
When the adversary pollutes the communication channel, the
receiver gets several candidate values for some packets. Since
performing exhaustive search on these elements is computa-
tionally prohibitive, one seeks a way to reduce the number of
possible packets to a small number. An -list recoverable
code is an error-correcting code such that if there are at most

values per codeword coordinate then there are at most
codewords consistent with these elements (a more rigorous
definition can be found in Section III-B-II). Note that the
adversary may inject elements in such a way that some packets
may have more than candidates. In such a situation, we will
delete all the corresponding coordinate candidates and consider
this position as an erasure.

The benefits of our approach are twofold. First, it provides
with a black-box construction for stream authentication proto-
cols based on list recoverable codes. That is, any list recover-
able code (with suitable parameters and) can be utilized
for our scheme while preserving its security. Second, we will
demonstrate that the constructions from [14], [17]–[21] can be
treated as particular cases of our approach where the deletion
process does not occur. In fact, we will even show that this
deletion process, when performed on the RS code used in [14],
[17]–[21], leads to a smaller signature verification cost than in
those papers. This result shows that our technique outperforms
those constructions. In addition, we provide explicit values for
a critical parameter of the RS decoding algorithm in the context
of broadcasting. Such a study has never been done before [14],
[17]–[21] since the decoding algorithm was rather regarded as
a black-box. These values provide essential information to effi-
ciently implement our scheme using RS codes.

This paper is organized as follows. In Section II, we recall
our previous studies on broadcast authentication and present
the reader with the new approach undertaken in this paper. In
Section III, we introduce the mathematical tools needed in this
paper. In Section IV, we describe our coding-based protocol for
the stream authentication problem. Its security and efficiency are
studied in Section V. In Section VI, we compare the benefits with
respect to the RS code-based constructions from [14], [17]–[21]
and we refine the parameters of the RS decoding algorithm for
practical implementations. The last section will summarize our
contributions to the broadcast authentication problem.

4We call augmented packets the elements sent into the network. They gener-
ally consist of the original data packets with some redundancy used to prove the
authenticity of the element.

II. RELATED WORK AND PAPER CONTRIBUTION

The aim of a stream authentication protocol is to enable the
data receiver to authenticate the origin of information. The
data is distributed through a network where some nodes may
be under control of an adversary whose goal can be either to
prevent some participants from validating genuine packets or to
have some receivers identify incorrect data as authentic. In this
context, several parameters must be taken into account: packet
overhead, computational power and memory capacity of the
participants, type of streaming (live or delayed).

In [18] and [19], we presented protocols allowing the receiver
to perform authentication of information and reconstruction of
the whole data stream. Our goal was to study the trade-off be-
tween computational costs and reconstruction of information.
The purpose of [21] was to focus on the trade-off between packet
overhead and number of signature verification queries. Those
constructions dealt with live distribution of data. However, mul-
ticast can be used to broadcast delayed streams. One can as-
sume that the sender knows a longer part of the stream than
during live distribution. The work of [17], [20], [30] assumed
that the sender could buffer blocks at a time to reduce
the number of signature verification queries and the packet over-
head even further.

In all those papers [17]–[21], [30], we used the Guruswami-
Sudan algorithm to deal with injections of bogus data by the
adversary as in [14]. As said above, our investigations were fo-
cused on finding different practical trade-offs between packet
overhead, signature verification complexity, computational cost
and memory requirements. In the current paper, our study is to
focus on another central—though more theoretical in its treat-
ment—issue for authentication: dealing with adversarial injec-
tions of data. This is crucial as any protocol dealing with this
problem can be used as a subroutine of any existing authen-
tication scheme. Apart from the sign-each approach which is
computationally prohibitive, there currently exist only two tech-
niques in the literature which can handle those injections: cryp-
tographic accumulators and the Guruswami-Sudan algorithm.
As explained in Section I, the design of current accumulators
does not satisfy the requirements of multicast authentication:
those based on Merkle hash trees have too large an overhead
while a construction like Nguyen’s [31] requires the use of pair-
ings on elliptic curves [32] which is too slow [33] for quick
authentication.

The starting point of this work was the study of the original
goal of the Guruswami-Sudan algorithm: performing list-de-
coding of RS codes. In this paper, we first show that we can
design similar secure protocols for any list recoverable protocol
(provided some conditions on their parameters). That is, the se-
curity of the construction only relies on the list recoverable prop-
erty of the code and the existence of an efficient algorithm to
construct that list. This has the advantage to provide a black-box
design for such authentication protocols.

The second point we present in this paper is the column dele-
tion process. When analyzing the use of the Guruswami-Sudan
algorithm in the multicast context, one notices that the receiver
inputs the whole set of collected data. Our approach is based on

TARTARY et al.: AUTHENTICATION OF DIGITAL STREAMS 6287

the observation that a packet has a single correct value. There-
fore, if the receiver collects a lot of candidates for a particular
packet, then the noise is important for that element. Thus, it may
be computationally less expensive to treat the packet as an era-
sure rather than inputting the whole set of candidate values to the
list decoding algorithm. However, these potential extra erasures
lead to other conditions for the code parameters. In Sections IV
and V, we treat the problems of black-box list recoverable codes
and column deletions at the same time.

We illustrate our approach using RS codes in Section VI. We
first deduce a lower bound on the column height to perform dele-
tions. This value, valid for all receivers, is based on the network
parameters. Second, we demonstrate that this value turns the RS
code into a list recoverable code where the receivers can use the
Guruswami-Sudan algorithm with identical parameters. Third,
we deduce an upper bound on the size of the list output by that
reconstruction algorithm and we show that this deletion-based
bound is tighter than the value computed in [18] which was also
valid for our different constructions quoted above as well as the
original scheme from [14] (Sections VI-A and VI-B). This re-
sult justifies our original idea of ignoring very noisy packets by
removing them from the set of elements input to the list recovery
algorithm.

When studying the survey done by McEliece on the Gu-
ruswami-Sudan algorithm [34], one notices that there is an
important parameter called the interpolation multiplicity which
needs to be specified. However, no study of this parameter seems
to have ever been done in the context of multicast authentica-
tion. We give a brief survey in Section VI-C-1 and we show the
explicit values to be chosen to run this reconstruction algorithm
efficiently. Remark that the result of the analysis can also be used
with any construction running the Guruswami-Sudan algorithm
as a subroutine. In Section VI-C-2, we use those critical values
to deduce a second upper bound on the list size output by the
algorithm and we show, on an example, that this new bound is
tighter than in [18] as well. In this work, we also demonstrate
that the packet overhead of our construction using column
deletions is the same as for [14], [18].

We can summarize our contribution as follows. First, it
generalizes the constructions from [14], [17]–[21] to the family
of list recoverable codes and it introduces the idea of per-
forming deletion of columns where the number of candidate
values is large (i.e., we remove very noisy positions before
reconstructing the list of consistent codewords/signature verifi-
cation candidates). We get a black-box construction for stream
authentication where any list recoverable code (with suitable
parameters) can be used while preserving correctness and
security of the scheme. Second, it shows that, when using RS
codes, this deletion process turns the code into a list recoverable
code having smaller list size. Third, the new bounds on the
list size we obtain are tighter than existing ones. Fourth, this
work provides explicit choices of the interpolation parameter
(which is an essential parameter to run the Guruswami-Sudan
algorithm) in the context of multicast authentication.

III. MATHEMATICAL BACKGROUND

In this section, we review the tools that we use to ensure the
security and to analyze the efficiency of our construction (see

Section V). We also give an overview of the Guruswami-Sudan
algorithm [35] that is used in [14], [17]–[21].

A. Cryptographic Primitives

Before presenting the primitives to be used in our protocol,
we need to recall the following definition:

Definition III.1 ([36]): A function is said to be
negligible if for every positive polynomial there exists an
integer such that for all , we have

The nonrepudiation of the sender will be provided using dig-
ital signatures while the integrity of the data stream will be
checked by applying hash functions.

1) Digital Signatures:

Definition III.2 ([37]): A signature scheme (or digital signa-
ture) is a five-tuple of sets where the following
conditions are satisfied:

1) is a finite set of possible messages.
2) is a finite set of possible signatures.
3) , the keyspace, is a finite set of possible keys.
4) For each (SK,PK) , there is a signing algorithm

and a corresponding verification algo-
rithm . Each and

are functions
such that the following equation is satisfied for every
message and for every signature

if
if

A pair with and is called a signed
message.

Note that, for every (SK,PK) , and
should be polynomial-time functions. will be a public
function while will remain private. For concision in the
remaining of this paper, we denote a signature scheme as a triple
(KeyGen ,) where KeyGen is the key genera-
tion algorithm taking as input the security parameter repre-
senting the bit length of the signature and outputting a pair of
elements (SK,PK) such that SK is the signer secret key while
PK is the public key to be used by the verifier.

Definition III.3 ([37]): A digital signature (KeyGen,
) is said to be secure against chosen message

attack if no Probabilistic Polynomial-Time (PPT) opponent
can win with non-negligible probability (as a function of the
signature length) the following game:

1) is given an oracle simulating (but does not
have access to SK).

2) chooses a polynomial number of messages
(being a polynomial in) and queries the signing oracle
to obtain their signatures. The messages are constructed
adaptively, i.e., chooses after receiving the signa-
ture on .

3) constructs a pair such that:
.

The opponent wins if: .

6288 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

In most situations, security against known message attacks
(i.e., does not choose the messages to be signed by the oracle)
is sufficient as is only a channel eavesdropper. Nevertheless,
in some cases, has the ability to choose those messages. Con-
sider the case of two TV stations emitting programs through the
same satellite TV provider. Each station may try to use its own
data to attack its rival. Thus, in our constructions, we will as-
sume that our digital signature is secure according to Definition
III.3.

2) Hash Functions:

Definition III.4 ([38]): A hash function is a function which
has, as a minimum, the following two properties:

1) Compression: maps an input of arbitrary finite bit
length, to an output of fixed bit length .

2) Ease of computation: Given and an input , can
be computed in polynomial-time as a function of .

The output is called hash or digest of the message .
We now present the property that the hash functions for our

scheme will be assumed to have.

Definition III.5 ([38]): A hash function as defined above is
said to be collision resistant if no PPT opponent can construct
two different messages and such that
with non-negligible probability as a function of .

B. Coding Theory

1) Maximum Distance Separable Codes: Since packets may
be dropped during transmission, using an erasure correcting
code will enable recovery of missing elements as in [18], [20],
[21]. In our construction, we use linear codes.

A linear code of length , dimension and minimum dis-
tance is denoted by . The Singleton bound states
that any code satisfies: [16]. It is
known that any code can correct up to era-
sures [39]. Thus, an code cannot correct more than

erasures. In order to maximize the efficiency of our con-
struction, we are interested in codes correcting exactly
erasures. These codes are called Maximum Distance Separable
(MDS) codes [16]. Even though our protocol works with any
family of MDS codes, we suggest to use the codes created by
Lacan and Fimes [40] for their efficient encoding and decoding
as explained in [18].

2) List Recoverable Codes: In order to deal with injections of
bogus elements into the network, we use a list recoverable code.
These codes were first introduced by Elias [41] and Wozencraft
[42] to treat the following problem. If we have more than 50%
of errors in a codeword coordinates, then unique decoding is im-
possible. Nonetheless, in this situation, one would like to obtain
a list of consistent messages.

Definition III.6 ([43]): For and integers
, a code of length over an alphabet is said to

be -list recoverable if for all lists of ele-
ments of having size at most , there are at most codewords

such that for at least indices .

C. Polynomial Reconstruction Problems

The Polynomial Reconstruction Problem (PRP) is the fol-
lowing mathematical problem:

Polynomial Reconstruction Problem:
Input: Integers , and points
where , for a field .
Output: All univariate polynomials of de-
gree at most such that for at least values
of .

In 1999, Guruswami and Sudan developed an algorithm
called Poly-Reconstruct to solve the PRP [35]. Poly-Re-
construct has an adjustable integer parameter called the
interpolation multiplicity. This algorithm works in two steps:

1) The interpolation step. The decoder constructs a bivariate
polynomial with the property that has a
zero of multiplicity at each of the points and for which
the weighted degree is as small as possible.

2) The factorization step. The decoder finds all factors of
of the form , where is a poly-

nomial of degree at most and returns the list of all
such polynomials .

This algorithm exhibits the following characteristics:

Theorem III.7 ([44]): The algorithm Poly-Reconstruct can
solve the PRP in polynomial-time in for any field provided:

. In addition, the size of the output list is upper
bounded by where

Guruswami demonstrated that Poly-Reconstruct runs in time
quadratic in while the size of the list is at most quadratic
in (see Theorem 6.12 from [44]). When also taking the
interpolation multiplicity into account, its running time is

[34]. In particular, as a function of the interpolation
multiplicity (i.e., when is regarded as a constant), its running
time is . Algorithms for implementing Poly-Reconstruct
and improvements can be found in [45], [46].

Remark III.8: In coding theory, one usually assumes that
the ’s entered as input of the PRP are pairwise distinct (see
Section VI-A for an example). This condition forms a weaker
variant of the PRP called the noisy PRP [47]. Thus, decoding
is reduced to solving an instance of the noisy PRP. As trivially
observed in [47], PolyReconstruct can be used in that situation
as well.

IV. DESIGN OF THE STREAM AUTHENTICATION PROBLEM

A. Network Model

We assume that the communication channel is under control
of an opponent who can drop and rearrange packets. He is
also allowed to inject bogus data into the network. This model
is called the unsecured communication channel [38]. Note that
it also corresponds to the Dolev-Yao threat model [48].

Since our primary concern is the multicast authentication
problem, we can assume that a reasonable number of original
augmented packets reach the receivers and not too many incor-
rect elements are injected by . Indeed, if too many original
packets are dropped then strengthening data transmission is
the main issue as it is likely that the few packets successfully

TARTARY et al.: AUTHENTICATION OF DIGITAL STREAMS 6289

Fig. 1. Example of received packets.

received and authenticated are going to be useless anyway. On
the other hand, if injects a large number of forged packets
then the main problem is making the communication channel
more resistant against DoS attacks. Indeed, if injects too
many packets, then the receiver will have to buffer data much
faster than he can authenticate it. This will rapidly result in a
saturation of his storage capacity. In order to build our signature
amortization scheme, we split the data stream into blocks of
packets: . Each of these blocks is located within the
whole stream using a Block IDentifiers value BID.

We define two parameters: (the survival
rate) and (the flood rate). It is assumed that at least
a fraction and no more than a multiple of the number of
augmented packets are received. This means that, when aug-
mented packets are sent into the network, at least of them
are received and the total number of received packets does not
exceed . This can be summarized as follows.

Definition IV.1: We say that a pair of survival and flood
rates is accurate to the network for a flow of elements if:

1) Data are sent per block of elements through the network.
2) For any block of elements emitted by the

sender, the set of received packets satisfies
and .

The second condition must be true for each receiver be-
longing to the communication group.

In this model, the parameter represents the quality of the
transmission medium. For instance, if fiber is used, then will
be extremely close to 1 whereas wireless networks will experi-
ence a smaller value for that coefficient due to the higher era-
sure rate for this technology. The parameter represents the
noxiousness of the adversary. A network where the flow of data
can easily be influenced by an outsider will exhibit a large value
for this parameter. Determining appropriate values for a
given network is not in the scope of this paper. Therefore, we as-
sume that some preliminary study of the network topology has
already determined the couple .

In the remaining of this paper, we assume that is accu-
rate to the network for a flow of augmented packets.

B. Overview of the Construction

In this section, we give a general overview of our scheme. We
need a collision resistant hash function and a digital signature

(KeyGen, ,) which is secure against chosen
message attacks.

1) Protocol at the Sender: From the data packets
, we want to construct augmented packets

such that if at most of them are
lost during transmission then the receiver can still recover all
the ’s. Thus, we need to encode these packets using an

code. To perform this encoding, the
size of elements forming the code’s alphabet will be larger than
the size of a data packet by a factor roughly equal to .

In order to provide nonrepudiation and to deal with
bogus injections, we hash the codeword coordinates

(generated by the MDS code) and sign the
concatenation into . We encode

using the -list recoverable
code into . We build the augmented packets as:

.
2) Protocol at the Receiver: Upon reception of a list of

packets, the receiver stacks the candidate values for the ’s as
on Fig. 1.

Then, he deletes the columns where there are more than
candidate values as depicted on Fig. 2.

He outputs the list of codewords which are consistent with
the remaining stacks. He decodes these codewords which leads
to the recovery of the block signature as well as the digests

. Thus, he can identify the correct ’s as a
part of packets in . According to the definition of , there must
be at least symbols from . Finally, he corrects
the erasures using the MDS code and recovers the data packets

.

C. Formal Scheme

In this section, we describe a multicast authentication pro-
tocol using list recoverable code codes which is robust against
packet loss and data injection. As in [14], [17]–[21], our tech-
nique allows any new user to join the communication group at
any block boundary.

1) Parameters of the List Recoverable Code: Our construc-
tion requires a -list recoverable code of dimension
and length over the finite field with elements . Now, we
discuss the relations those parameters have to satisfy.

6290 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

Fig. 2. Remaining candidates after column deletions.

The first point is the deletion process shown on Figs. 1 and 2.
Since the pair of rates is accurate, at least columns
contain one correct element before deletions. At the same time,
the opponent injects at most bogus packets.
As any column can contain up to elements without being trun-
cated, we deduce that the number of columns containing a cor-
rect element which can be deleted is at most

This bound is reached when the receiver collects elements for
only columns while exclusively pollutes those posi-
tions as well. The receiver gets no values for the other
columns. Therefore, despite deletions of columns, each receiver
is guaranteed that there will be at least

columns containing one correct element after deletions. In order
to use the code, we must have

Secondly, the message to be encoded is bits long
before padding where the digest bit length and the bit length
of a signature (see Step 3 of Algorithm 1). As the dimension of
the code is , we must have

Algorithm 1 Authenticator

Input: The secret key SK, the block number BID, Table I and
data packets .

1. Compute: . Denote as
or . Write

as where each is

bits long. Encode the message

into the codeword using the MDS code over .

TABLE I
PUBLIC PARAMETERS FOR OUR SCHEME

2. Compute the coordinate digests
and construct the block signature as

.

3. Parse into after
padding. Encode the message into the codeword

using the list recoverable code over .

4. Build the augmented packets as

Output: : set of augmented packets.

We deduce that a necessary and sufficient condition to use a
-list recoverable code of dimension and length over

is

(1)

In the remaining of this paper, we assume that the list recov-
erable code satisfies (1).

2) Authentication Scheme: For our construction, we assume
that and are rational numbers. Thus, we can represent them
over a finite number of bits using their numerator and denomi-
nator. Table I summarizes the scheme parameters which are as-
sumed to be publicly known.

The hash function as well as Verify and PK are also assumed
to be publicly known. We did not include them in Table I since
they can be considered as general parameters. For instance,
can be SHA-256 while the digital signature can be a 1024-bit
RSA signature [38]. Since and the digital signature are pub-
licly known, so are and .

We denote by the tag representing the communication
parameters, namely: . It is assumed that the
list of polynomials contains a single polynomial per

TARTARY et al.: AUTHENTICATION OF DIGITAL STREAMS 6291

degree value . Note that the elements of Table I
uniquely determine . The sender processes the data stream
as specified by Algorithm 1. The receivers process information
using Algorithm 2.

Algorithm 2 Decoder

Input: The public key PK, the block number BID, Table I and
the set of received packets RP.

1. Write the packets as and discard those
having or . Denote the number
of remaining elements. If (or) then
the algorithm stops.

2. Rename the remaining elements as and
write each element as: where

.

3. Initialize for . For ,
include into . For , if then
re-set .

4. Recover the list of codewords agreeing with the
lists .

5. Initialize for . Set . While (the
list has not been exhausted) and (the signature has not been
verified) do:

5.1 Decode into . Parse the latter as:
after removing the pad where each is bits long.

5.2 If
then set for and break the loop.
Otherwise, increase by 1.

6. If the signature has not been verified then the algorithm
stops.

7. Set for . For , if
then set .

8. If has less than nonerased coordinates
then the algorithm stops. Otherwise, compute as in Step 1 of
Authenticator and correct the erasures over of the MDS
codeword .

9. Denote the corresponding message. Parse it as
where each is bits long after removing the

pad.

Output: : set of authenticated packets.

V. ANALYSIS OF THE PROTOCOL

A. Security of the Scheme

Similar to [14], [18], [20], [21], we give the following
definition:

Definition V.1: A collection of algorithms (KeyGen, Authen-
ticate, Decode) constitutes a secure and -correct proba-
bilistic multicast authentication scheme if no PPT opponent
can win with a non-negligible probability the following game:

i) A key pair (SK,PK) is generated by KeyGen.
ii) is given: (a) the public key PK and (b) oracle access

to Authenticate (but can only issue at most one query
with the same block identification tag BID).

iii) outputs .
wins if one of the following happens:

a) (violation of the correctness property) succeeds to
construct RP such that even if it contains packets
(amongst a total not exceeding elements) of some
authenticated packet set AP for block identification tag
BID and parameters , , , , , the decoder fails to
authenticate all the correct packets.

b) (violation of the security property) succeeds to con-
struct RP such that the decoder outputs that
was never authenticated by Authenticate for the value BID
and parameters , , , , .

We have the following security result for our authentication pro-
tocol. Its demonstration can be found in Appendix I.

Theorem V.2: The authentication scheme (KeyGen, Authen-
ticator, Decoder) is secure and -correct.

B. Efficiency of the Scheme

1) Data Recovery: We will now demonstrate that our scheme
enables any receiver to recover the data packets (as in [18],
[20], [21]). The following theorem is another way of expressing
Theorem V.2.

Theorem V.3: Given the scheme (KeyGen, Authenticator,
Decoder), for any BID, each receiver recovers the original
data packets .

Proof: Let BID be the current block value. Because the
pair of rates is accurate, at least of the original
elements are received by the receiver amongst a
total of no-more than elements. Thus, the demonstration
of Theorem V.2 shows that Decoder returns since
the digital signature is secure against chosen message attack and
the hash function is collision resistant.

2) Signature Verification Cost: In this section, we derive an
upper bound on the number of signature verification queries per-
formed by the receiver for each block of packets.

Theorem V.4: Given the scheme (KeyGen, Authenticator,
Decoder), for any BID, the number of signature verifications to
be performed by each receiver is upper bounded by .

Proof: Let BID be the current block value. Because the
pair of rates is accurate, at least of the original el-
ements are received by the receiver amongst a
total of up to elements. Thus, the proof of Theorem V.2
shows that one of the elements from the list con-
structed at Step 4 of Algorithm 2 is equal to the original string

. Thus, there are at most signature verification
queries. Due to the design of the list recoverable code, we have:

.

6292 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

3) Packet Overhead: The augmented packets are written as

The bit size of the element is and is slightly larger than
since it is bits long. So, our packet overhead is

Notice that the difference comes from the fact that
we use a code correcting up to a fraction of erasures.

4) Codes: Our authentication protocol uses coding tech-
niques for two different purposes.

• Data Recovery. This occurs at Step 8 of Decoder where
the goal is to reconstruct the symbols gener-
ated at Step 1 of Authenticator. This code is only utilized to
correct erasures. This part of our authentication protocol is
similar to dealing with an erasure channel having reliable
symbol transmission rate for an alphabet of size where

is roughly . Implementing this section of the protocol
simply requires to use a code which can correct up to a

-fraction of erasures.
• Data Authentication. This occurs at Step 4 and Step 5

of Decoder where the goal is to reconstruct the signature
generated at Step 2 of Authenticator. We use the list
decoding property of the code for an alphabet of size

. The value of depends on the pad needed to encode
(see Section VI for an illustration

using RS codes). It should be noticed that, if the pad is not
taken into account, the length of the string to be encoded
is bits which is independent of the packet bit
length .

VI. APPLICATION OF OUR CONSTRUCTION USING

REED–SOLOMON CODES

In Section IV, we presented a theoretical approach based on
list recoverable codes to ensure stream authentication. In this
section, we illustrate that construction using RS codes.

A. Performing List Recovering of Reed–Solomon Codes

Let be the finite field with elements and denote by
the ring of univariate polynomials over . Consider
as distinct elements of . We define the following mapping:

Definition VI.1 ([49]): The Reed–Solomon (RS) code of di-
mension and length over is the following set of -tuples
(codewords):

Remark VI.2: It is clear that recovering corresponds
to solving an instance of the noisy PRP. An important fact is
that Poly-Reconstruct directly outputs a list of candidates for the
original message . As a consequence, Poly-Reconstruct
enables to merge Step 5.1 and Step 5.2 of Algorithm 2.

Similar to [14], [18], [21], we use an RS code of length and
dimension . Now, we need to determine the parameter
so that Poly-Reconstruct can be used after deletion of columns.

Let be the maximum number of columns which can be
deleted. Since the pair of rates is accurate, at most
elements are collected by each receiver. Since a column is not
deleted if it contains up to candidate values, we have

We need to have at least one correct element after deletions. In
the worst case, there are only original elements reaching
the receiver. Thus, the number of these elements remaining after
deletion is at least . We need to have

(2)

We assume that (2) holds. The degree of the polynomial used
for the RS code is . If columns are deleted,
then we have at least correct elements amongst at most

points. Remark that
since (2) holds and . As a consequence, we require

which can also be written as

In order to study this minimum, we consider the following real
mapping

In particular, we must have . It should be noticed that
the value used in [14], [18], [21] is at most . In order to
obtain the same bound, we must have .
The mapping is differentiable over its domain and we get the
following result:

In order to have , we must have

which is equivalent to: as is an integer. This
lower bound is denoted .

We showed that if (2) held then choosing no smaller
than guaranteed to run Poly-Reconstruct while

. Now, we would like to see whether
any such a verifies (2). It is easy to see that we have

TARTARY et al.: AUTHENTICATION OF DIGITAL STREAMS 6293

The parameter is the survival rate of the network for a flow .
Thus, without loss of generality, one can assume that .
Otherwise, it would mean that some receivers may get no more
than one original packet from the sender which is not a realistic
network assumption. As a consequence, we get

Thus, any ensures that at least 1 original element is not
deleted when columns are removed. More precisely, we showed
that at least original elements remain after those column
deletions.

Theorem VI.3: Let be any integer no smaller than .
The previous RS code is -list recov-

erable from any set of at most points
where is any integer in with:

as defined (see the equation
at the bottom of the page).

The proof of the previous theorem can be found in
Appendix II.

Remark VI.4: The reader may notice that the properties of
the RS code described above do not verify (1) as we have

for some . Thus, this RS code does not seem
to be usable for our construction. Hopefully, this is not the
case for the following reason. In Section IV, the protocol
requires to use a -list recoverable code whose param-
eters verify (1). Theorem VI.3 does not claim that the RS
code is -list recoverable in the sense
of Definition III.6. Indeed, in that definition, it is allowed to
have up to candidate values for each of the positions while
the recovery of the RS code is guaranteed provided that there
are no more than values in total. The latter
condition is due to the necessity of running Poly-Reconstruct.
However, this restriction does not weaken the security of the
scheme as the list output by Poly-Reconstruct will still con-
tain due to its consistency as an error
correcting decoder.

TABLE II
PACKET OVERHEAD WHEN � � ���� FOR � � ��� (LEFT)

� � ���� (RIGHT)

B. Comparison to PRP-Based Broadcast Authentication
Schemes

As discussed in Section VI-A, using the minimal value
involves that our construction has the same packet overhead as
[14], [18], [21]. More precisely, our packet overhead is

where is the smallest element of such that

(3)

Table II depicts the packet overhead for this construction for
and for the values of as used in [18], [20], [21].

The parameter has been chosen so that represents 10%,
30%, 50%, 70% and 90% of the threshold value as in [18],
[21]. As in [11], we chose two different values for the bit size

of data packets, namely: 512 bits and 4096 bits. These packet
size values were used by Pannetrat and Molva to illustrate the
data flow when (1) collecting traffic information from sensors

6294 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

Fig. 3. Comparison of Bounds when � � ���.

distributed over the street of a city (512 bits) and (2) performing
real-time video broadcasting over the Internet (4096 bits). We
used SHA-256 as a hash function and a 1024-bit RSA signature
scheme (i.e., and).

We will now demonstrate that our scheme exhibits a smaller
upper bound on the number of signature verification queries to
be performed by the receiver. Note that [17], [20] are gener-
alizations of [18] to multiple blocks. Thus, our approach will
trivially lead to similar benefits when used over several blocks
of data as well.

It has been demonstrated in [18] that an upper bound for the
number of signature verification queries per block for [14], [18],
[21] was where

The demonstration of the following theorem can be found in
Appendix III.

Theorem VI.5: Let be any integer no smaller than . We
have

The previous theorem shows that, whatever the number of
deleted columns is, our list recoverable code approach leads

to a better upper bound on the number of signature verifica-
tion queries for each receiver. It should be noticed that the
complexity cost of running Poly-Reconstruct on the set of
nondeleted points is the same as using that algorithm on the
whole set (having at most elements) as in [14], [18], [21].
Thus, our deletion process does not increase the computational
complexity at the receiver.

We illustrate the theoretical bounds comparison from The-
orem VI.5 with the same values for and the couple as
in Table II. The results are depicted as Figs. 3–6.

In all graphs, we can see that the difference between
and our bound increases as a function of the number
of truncated columns. This tends to imply that the column re-
moval process has an impact on the list size and, by repercus-
sion, on the number of signature queries performed by the re-
ceiver which was our primary purpose in introducing this tech-
nique. Also, we notice that the difference between the two upper
bounds increases with when the number of truncated columns
is fixed. This fact must not be misinterpreted. Indeed, it may
be appealing to deduce that choosing a large value for is a
good approach. However, increasing means that the truncation
condition is relaxed. This can lead to reducing the number of
columns to be discarded which, in turn, may worsen the bound.
A trivial illustration of this fact is to consider since
no truncations are ever to occur in this situation.

C. Analysis of Polyreconstruct in the Context of Broadcast
Authentication

1) Interpolation Multiplicity: One of the drawbacks of the
previous works based on PolyReconstruct [14], [17]–[21], [29]

TARTARY et al.: AUTHENTICATION OF DIGITAL STREAMS 6295

Fig. 4. Comparison of Bounds when � � ����.

Fig. 5. Comparison of Bounds when � � ���.

is that no information is given concerning the choice of the inter-
polation multiplicity which is an essential parameter of the re-
construction algorithm. A large value will ensure the proper exe-
cution of the algorithm but, since its running time is ,

one needs to choose a value as small as possible to preserve
the practical efficiency of the whole authentication algorithm.
Based on the work done by McEliece [34], we provide explicit
choices of to be used in our multicast setting. A more de-

6296 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

Fig. 6. Comparison of Bounds when � � ���.

tailed analysis on the general behavior of PolyReconstruct can
be found in [34]. We first recall the following two results from
[34] using the notations of Section III-C.

Theorem VI.6 ([34]): The list output by PolyReconstruct
contains every polynomial of degree at most such that

. Furthermore, the number of polynomials in this list
is at most where

with being the index of the monomial in the
-revlex monomial order.

Remark VI.7: Apart from reducing the running time of
PolyReconstruct, choosing a small also reduces the size of
the list of polynomials since is an increasing mapping
when and are constant. This will be particularly valuable
in our multicast context as, in the worst case, the receiver needs
to perform one signature verification query per element of the
list (see Step 5.2 of Algorithm 2).

Unfortunately, computing the exact value of is not
simple. However, we have the following property.

Proposition VI.8 ([34]): We have

Given our network model, each participant collects at least
genuine data packets. Therefore, we need to determine

the smallest interpolation multiplicity such that:
when .

Let be a positive integer. Using Proposition VI.8,
holds provided that

(4)

The previous inequality is verified as soon as we have

In our multicast settings, we have . Thus,
is positive and we get:

We denote the following integer:

By construction: . From the previous analysis, we
deduce the following theorem.

TARTARY et al.: AUTHENTICATION OF DIGITAL STREAMS 6297

Fig. 7. Variations of the upper bound � on the interpolation multiplicity.

Theorem VI.9: Given an accurate pair of rates for a
flow of elements, any receiver can use PolyReconstruct with
interpolation multiplicity .

The important point to be noted is that is valid for any re-
ceiver. A priori, this is not the case for as depends on
the number of genuine packets the participant running PolyRe-
construct has collected. The parameter only depends on the
general settings of the scheme: , , .

Remark VI.10: The mapping is increasing. Thus,
choosing “close” to 0 will reduce the interpolation multiplicity
needed for PolyReconstruct. At the same time, the bound on
the size of the list output by this algorithm will also be smaller
since is increasing as a function of (and thus as a func-
tion of). The drawback with this approach is related to the
packet overhead of the authentication scheme. The “closer” to
0 the parameter gets, the larger the packet overhead becomes
since: .

We now study the value . Denote the real number such
that: . By construction: . We can rewrite
as

Fig. 7 represents the graph of . As , we

only drew the graph for up to 0.95 to have a representative
figure. An important fact is that only depends on the value
of . Thus, the graph is valid for any pair of survival and flood
rates .

Remark VI.11: For any , we have . In such
cases, PolyReconstruct is the original Sudan algorithm [50].

2) New Bound on the List Size: Based on the settings of The-
orem VI.6, we rewrite as to emphasize the fact
that the bound depends and , , . In our multicast context,
we have . The value is the bound
on the list size for a participant receiving a total of packets

(including both genuine and forged ones). Like , the value
depends on each participant since any two re-

ceivers and will a priori receive a different amount of
packets and . However, to evaluate the global efficiency
of the construction, we need to construct a bound valid for all
receivers. In the worst case, a participant can obtain up to
elements. In addition, it is easy to see that if (and

) then . As a conse-
quence, we get

From this observation, we get the following theorem.

Theorem VI.12: Given an accurate pair of rates for a
flow of elements, any receiver can use PolyReconstruct which
outputs a list having at most elements.

The previous theorem is also valid for the schemes from [14],
[17]–[21]. We will now make a practical comparison between

and the bound proposed in [18]. Our
comparison will focus on the case as this is the value
chosen in [18], [29] to illustrate the bound . Table III sum-
marizes this comparison where the values from have
been taken from [29]. The parameter has been chosen as rep-
resenting 10%, 30%, 50%, 70% and 90%.

The comparison seems to imply that the bound
is tighter than . Moreover, it seems

that achieves its smallest value for
(i.e.,) which was already observed for in [18].
As remarked in Section VI-C-1, in such a case, we can use the
Sudan algorithm since .

3) Application to Column Deletion: We now combine the
results from Sections VI-C-1 and VI-C-2 to use them in the
context of column deletion. We obtain the following properties
the proofs of which are straightforward.

Corollary VI.13: Let be any integer no smaller
than . The RS code from Section VI-A is

6298 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

TABLE III
COMPARISON BETWEEN ���� (LEFT) AND ���� ��� � ���� (RIGHT)

FOR � � ����

-list re-

coverable from any set of at most
points where is any integer in using as
interpolation multiplicity for PolyReconstruct where

Corollary VI.14: Let be any integer no smaller than .
We have

4) Practical Efficiency: As discussed in Section VI-C-4, two
codes are utilized in our authentication protocol and the code
sustaining most of the computational cost is the one used for list
decoding. In the section, we used an RS code for this purpose.

Due to (3), the packet overhead is bits but it is
independent of the packet length . It should be noticed that
the field used for our RS code is the same as in [14]. In
the recent full version of that paper [15], Lysyanskaya et al.
provided some indicative values for (see Table I from [15]).
In those many examples, they approximated by the ratio
and they used bits (SHA-1 hashing algorithm). The
smallest value for presented in [15] is 472 meaning that the
field has elements. In their analysis, they indicated that the
field operations required by PolyReconstruct may or may not be
faster than the sign-each approach depending on the choices of
parameters , , and . This drawback (also experienced by
our scheme) comes from the implementation efficiency of the
list decoding algorithm PolyReconstruct.

Lots of research have been done about PolyReconstruct since
its creation by Guruswami and Sudan in 1999. It appears that
the interpolation step is computationally expensive even if, in
the complexity point of view, it is polynomial in the code pa-
rameters. That is why recent works on that topic have been ded-
icated to reduce the cost of this phase. In [51], Trifonov con-
structed an algorithm finding Groebner bases for polynomial
ideal multiplication more efficiently. Its running time was later
improved in [52] using a simplified formula for polynomial ideal
squaring and a modification of the Karatsuba algorithm for tri-
angular bivariate polynomials. In [53], Chen et al. refined the
way polynomials were eliminated within the Kötter algorithm
[54] used to perform interpolation. Though, these papers present
techniques allowing to reduce the complexity of PolyRecon-
struct, the implementations done by the respective authors are
only performed over very small fields (, and in [51];

and in [52]; in [53]) or on specific communication
channels (additive white Gaussian noise channel and Rayleigh
fading channel in [53]).

Given the field parameters required for our authentication
protocol (which are identical to [15]), it is likely that this tech-
nique be still expensive (in a practical point of view) based on
the community’s current knowledge about the implementation
efficiency of PolyReconstruct.

D. Comparison to Lysyanskaya et al.’s Work

As said in Section I, [14] was the first paper using PolyRecon-
struct as a subroutine to achieve streaming authentication and its
full version was recently published in [15]. Because of its sim-
ilarities with our work, we are to argue about the fundamental
differences between [15] and our current paper.

In [15], the authors exclusively focussed on RS codes. At the
end of their paper, Lysyanskaya et al. formulated three open
problems:

O1 Can the decoding procedure be simplified in order to
reduce its time complexity?
O2 How efficient can the practical implementation of [15]
be?
O3 Can other classes of error correcting codes provide
better runtime or overhead?

In our paper, we addressed those three problems.
O1 We first used the truncation technique to speed-up the
signature verification procedure which plays a central role
in the authentication scheme. When our scheme is instan-
tiated with a RS code (Section VI) like [15], we performed
an analysis of the interpolation multiplicity of PolyRecon-
struct and we showed how receivers could appropriately
tune it. To the best of our knowledge, this is the first time
this efficiency parameter has been analyzed in the context
of stream authentication.
O2 In Section VI-C-4, we analyzed the practical efficiency
of PolyReconstruct. Based on the current knowledge of the
scientific community, we argued that solutions based on
PolyReconstruct were still rather theoretical than practical
given the size of the finite field on which PolyReconstruct
is supposed to operate to provide data authentication.
O3 In Section IV, we showed how any list decodable code
could be used to authenticate digital streams as soon as

TARTARY et al.: AUTHENTICATION OF DIGITAL STREAMS 6299

their parameters hold (1). We also provided a detailed study
of the packet overhead for this new class of protocols in
Section V. Our work generalizes [14] to a broader family
of authentication protocols in a black box way since no
assumption about the list recoverable code is made ex-
cept (1).

Apart from these considerations, our paper also makes use of
two coding techniques. The first one is for data authentication
via a list decodable code as in [15] where this role was played
by a RS code. Contrary to Lysyanskaya et al.’s paper, we use a
second code to correct data erasures. This allows any receiver
to reconstruct the whole data stream which is a feature that [15]
does not have. Furthermore,, we also correct a claim about the
packet overhead stated in [15]. Indeed, at the end of Section I
and in Section VI of their paper, Lysyanskaya et al. asserted
that the packet overhead for their scheme was independant of

. We showed that their communication cost analysis done in
Section V of [15] was incorrect since the use of a RS code im-
plied that the underlying field had to have at least distinct
values thus creating a -bit packet overhead (see (3) in
Section VI-B).

VII. CONCLUDING DISCUSSION

In this paper, we presented an authentication protocol based
on list recoverable codes for stream distribution over adversarial
networks. Our construction is provably secure. As [14], [18],
[21], our protocol enables total recovery of the data stream and it
allows new participants to join the communication group at any
block boundary. Our scheme works as a black-box construction
since any list recoverable code whose parameters satisfy (1) can
be used. As a consequence, one only has to focus on the compu-
tational complexity of the underlying list recoverable code when
implementing our protocol.

We illustrated this construction with RS codes and we demon-
strated that the RS code-based approaches developed in [14],
[18], [21] could be regarded as particular cases of our scheme.
We showed that our deletion process led to better bounds on the
number of signature verification queries than in [14], [18], [21]
while having the same packet overhead and computational com-
plexity. Finally, we performed a study of the interpolation mul-
tiplicity to be used for PolyReconstruct. Based on McEliece’s
survey [34], we obtained an explicit bound for this parameter
and deduced a new upper bound on the size of the list output by
this reconstruction algorithm. That bound is also valid for the
previous constructions using PolyReconstruct as a subroutine
such as [14], [17]–[21].

As discussed in Section VI-C-4, our current knowledge about
PolyReconstruct may still prevent us from having efficient im-
plementations. However, our protocol is not the first crypto-
graphic primitive based on the PRP. The first paper treating
polynomial reconstruction in a cryptographic context dates from
1999 [55]. In that paper, Naor and Pinkas looked at the noisy
PRP as a hardness assumption to design protocols for oblivious
polynomial evaluation (OPE) having applications for password
authentication and e-commerce (see [56] for extra details and
applications). In [57], the hardness of solving the noisy PRP
was used to provide semantic security for OPE and to construct
a pseudorandom extender as well as a semantically secure ci-

pher with forward security, superpolynomial message length
and an error-correcting decryption algorithm. In [49], Augot
and Finiasz constructed a public-key cryptosystem whose se-
curity is related to the PRP (even if no formal reduction was
proposed). As explained in [58], it is fundamental to develop
provable security frameworks not based on either the factoring
or the discrete logarithm problems. All these papers are related
to the post-quatum cryptography area [59] since the PRP has
been shown to be -hard [60]. However, our research is in
a slightly different context. Indeed, like Lysyanskaya et al.’s
scheme ([14], [15]), our construction needs the PRP to be solv-
able in polynomial time since PolyReconstruct is to be used.
Thus, our work should rather be classified in the same cate-
gory as [61] (cryptanalysis of an optimized version of [49])
and [62] (identifying extra traitors beyond the security level of
traitor tracing scheme). Therefore, the results of those later pa-
pers suffer from the same lack of practical efficiency of PolyRe-
construct.

Based on these considerations, several research directions can
be derived. First, one may want to consider other algorithms to
list decode RS codes. Note that, to fit our authentication pur-
pose, such an algorithm has to handle the fact that some ’s of
the PRP input can repeat themselves (pollution attacks) which
is a property achieved by PolyReconstruct ([35], [47]). Second,
our general scheme is secure for any list recoverable code sat-
isfying (1). Would there exist a code having a practically more
efficient list decoding algorithm? Third, in a more general as-
pect, it would be worth studying alternate approaches to list
recoverable codes and cryptographic accumulators in order to
handle adversarial injections of data as this is the central issue
for stream authentication. Indeed, existing provably secure tech-
niques are based on either techniques and we saw throughout
this paper that none of these approaches is yet able to provide
provable security, small overhead as well as both theoretical and
practical efficient computations.

APPENDIX I
PROOF OF THEOREM V.2

Assume that the scheme is either insecure or not -cor-
rect. By definition, a PPT opponent can break the scheme
security or correctness with a non-negligible probability
where is the security parameter setting up both the digital sig-
nature and the hash function. Therefore, we must have either
cases:

C1: With probability at least , breaks the scheme
correctness.
C2: With probability at least , breaks the scheme
security.

It should be noticed that since is a non-negligible function
of , so is .

Case C1: We will demonstrate by contradiction that if
can break the scheme correctness in polynomial time then either
he can forge the digital signature or he can find a collision for
the hash function in polynomial time with non-negligible prob-
ability.

This will be proved by turning an attack breaking the
-correctness of our construction into a successful attack

against either primitive.

6300 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

For this attack, will have access to the signing algorithm
(but will not have access to SK itself). He can use the

public key PK as well as the collision resistant hash function
. will be allowed to run Authenticator whose queries are

written as where is the set of
data packets of bit length to be authenticated. In order to get
the corresponding output, the signature is obtained by querying

as a black-box at Step 2 of Authenticator.
According to our hypothesis, broke the correctness of the

construction. This means that, following the previous process,
managed to obtain values , , , , and a set of received
packets RP such that:

• .
Denote the data packets
associated with this query and AP the response given to .
In particular, we denote the signature corresponding to
DP and generated as in Step 2 of Authenticator.

• and .
•

where for some .
As said in Section VI-C-2, it is assumed that the list of polyno-
mials contains only one polynomial per degree value so
that field operations are uniquely determined by this list.

Assume that the digital signature is secure against chosen
message attacks and the hash function is collision resistant.

Since and , Step 1 of
Decoder ends successfully. Given the fact that the parameters
of the list recoverable code satisfy (1), it is guaranteed that at
least original ’s are amongst the nonempty lists at the
end of Step 3. Thus, the original codeword is in the
list output at Step 4.

It should be noticed that can be recovered from Table I.
As a consequence, since the digital signature is unforgeable and
the hash function is collision resistant, the pair message/signa-
ture going through the verification process at Step 5.2 corre-
spond to DP. Therefore, at the end of Step 5, we have

For the same reason as before, at the end of Step 7, we have

Note that and the pad length can also be computed from
the values contained in Table I. Since ,
the MDS decoder output the original message
during Step 8. Thus, at the end of Step 9, Decoder returns to the
receiver the original data packets, i.e.,

We obtain a contradiction with our original hypothesis which
stipulated

As a consequence, a forgery of the digital signature or a collision
within the hash function occurred with non-negligible proba-
bility .

Case C2: We will demonstrate by contradiction that if
can break the scheme correctness in polynomial time then either
he can forge the digital signature or he can find a collision for
the hash function in polynomial time with non-negligible prob-
ability.

We consider the same kind of reduction as in Case C1. The
opponent breaks the security of the scheme if one of the fol-
lowing holds:

I. Authenticator was never queried on input BID,
, , , and the decoding algorithm Decoder

does not reject RP, i.e., where
.

II. Authenticator was queried on input BID, , , , for
some data packets . Nevertheless,
the output of Decoder verifies for some

.
Sub-Case C2-I: Since Decoder output some nonempty

packets, Step 5 had to terminate successfully. Thus, it has been
found a pair such that

If never queried Authenticator for block tag BID then the
previous pair is a forgery of the digital signature which was
obtained with non negligible probability .

If queried Authenticator for block tag BID then denote
his query. By hypothesis, we have

Therefore, the tag which was signed during ’s query on
block BID is different from the tag corresponding to the
pair . As a consequence, that pair
is a forgery of the signature scheme which was obtained with
non-negligible probability .

Sub-Case C2-II: We have the same situation as Case C1.

APPENDIX II
PROOF OF THEOREM VI.3

It should be pointed out that the value of a priori depends
on each receiver and so does .

Denote the number of points on which Poly-Reconstruct
is run and the number of original elements in this list. Since
the pair of rates is accurate, we have: and

. As noticed before, we have:
which guarantees Poly-Reconstruct to be run successfully. De-
note the size of the list output by Poly-Reconstruct.
We want to prove: .

Using Theorem III.7 with , we have the following
upper bound for

(5)

First Bound: We have: ,
. We deduce that is upper bounded by

TARTARY et al.: AUTHENTICATION OF DIGITAL STREAMS 6301

Because the receiver has deleted columns, we have:
and . We

obtain the following inequalities:

Due to our choice of , we have:
. As a consequence, is upper bounded by

which is equal to after simplifying numerators and
denominators by . Since is an integer, we get:

.
Second Bound: We start again from (5). For similar reasons

as above, it is easy to see that the numerator of the fraction is
upper bounded by

Using the same lower bound on as before,
we deduce: and thus

.
Finally:

which achieves the demonstration of our theorem.

APPENDIX III
PROOF OF THEOREM VI.5

Let and be as above. In order to prove ,
it is sufficient to demonstrate the following two inequalities:

(6)

(7)

Inequality (6): We compute the difference
. We have:

where

We will demonstrate that and
which will involve (6). Due to the definition of and , we

get

Since , we deduce: . There-

fore: which involves: . We obtain

(8)

We also have

Since , we deduce

(9)

Combining Inequalities (8) and (9), we obtain: .
As the mapping is strictly increasing over , we

get

(10)

Combining the fact that with (10), we obtain:
. Therefore, we deduce (6).

Inequality (7): As before, we compute the differ-
ence . We have:

where is
defined (see the equation at the bottom of the page).

Inequality (9) gives us a relation for the denominators of
. As , it is sufficient to demonstrate

(11)

in order to obtain . It is easy to see that (11) is
verified as soon as

Due to the definitions of and , we have

and

Therefore

and

This involves that (11) is verified. We deduce that (7) holds
which achieves the proof of our theorem.

6302 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their sug-
gestions to improve the quality of this paper.

REFERENCES

[1] J. Postel, User Datagram Protocol, Internet standard RFC 0768, 1980
[Online]. Available: http://www.ietf.org/rfc/rfc0768.txt

[2] Y. Challal, H. Bettahar, and A. Bouabdallah, “A taxonomy of multi-
cast data origin authentication: Issues and solutions,” IEEE Commun.
Surveys Tuts., vol. 6, no. 3, pp. 34–57, Oct. 2004.

[3] A. Perrig, R. Canetti, J. Tygar, and D. Song, “Efficient authentication
and signing of multicast streams over lossy channels,” in Proc. 2000
IEEE Symp. Security and Privacy., 2000, pp. 56–73.

[4] A. Perrig and J. D. Tygar, Secure Broadcast Communication in Wired
and Wireless Networks. Boston, MA: Kluwer, 2003.

[5] P. Golle and N. Modadugu, “Authenticating streamed data in the pres-
ence of random packet loss,” in Proc. 8th Annu. Symp. Network and
Distributed System Security., 2001, pp. 13–22.

[6] S. Miner and J. Staddon, “Graph-based authentication of digital
streams,” in Proc. 2001 IEEE Symp. Security and Privacy., 2001, pp.
232–246.

[7] V. Paxson, “End-to-end Internet packet dynamics,” IEEE/ACM Trans.
Netw., vol. 7, no. 3, pp. 277–292, Jun. 1999.

[8] M. Yajnik, S. Moon, J. Kurose, and D. Towsley, “Measurement and
modeling of the temporal dependence in packet loss,” in Proc. 1999
IEEE Conf. Computer Communications, 1999, vol. 1, pp. 345–352.

[9] M. Al-Ibrahim and J. Pieprzyk, “Authenticating multicast streams in
lossy channels using threshold techniques,” in Proc. 1st Int. Conf. Net-
working, 2001, vol. 2094, pp. 239–249.

[10] Y. Desmedt and G. Jakimoski, “Non-degrading erasure-tolerant infor-
mation authentication with an application to multicast stream authen-
tication over lossy channels,” in Proc. Topics in Cryptology—CT-RSA
2007, 2007, vol. 4377, pp. 324–338.

[11] A. Pannetrat and R. Molva, “Authenticating real time packet streams
and multicasts,” presented at the 7th Int. Symp. Computers and Com-
munications., 2002.

[12] J. M. Park, E. K. P. Chong, and H. J. Siegel, “Efficient multicast
packet authentication using signature amortization,” in Proc. 2002
IEEE Symp. Security and Privacy., 2002, pp. 227–240.

[13] Y. Park and Y. Cho, “The eSAIDA stream authentication scheme,”
Comput. Sci. Appl., vol. 3046, pp. 799–807, 2004.

[14] A. Lysyanskaya, R. Tamassia, and N. Triandopoulos, “Multicast au-
thentication in fully adversarial networks,” in Proc. 2003 IEEE Symp.
Security and Privacy., 2003, pp. 241–253.

[15] A. Lysyanskaya, R. Tamassia, and N. Triandopoulos, “Authenticated
error-correcting codes with applications to multicast authentication,”
ACM Trans. Inf. Syst. Security, vol. 13, no. 2, pp. 1–34, Feb. 2010.

[16] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North-Holland, 1977.

[17] C. Tartary and H. Wang, “Efficient multicast stream authentication for
the fully adversarial network,” in Proc. 6th Int. Workshop on Informa-
tion Security Applications, 2005, vol. 3786, pp. 108–125.

[18] C. Tartary and H. Wang, “Achieving multicast stream authentication
using MDS codes,” in Proc. 5th Int. Conf. Cryptology and Network
Security, 2006, vol. 4301, pp. 108–125.

[19] C. Tartary and H. Wang, “Rateless codes for the multicast stream au-
thentication problem,” in Proc. 1st Int. Workshop on Security, 2006,
vol. 4266, pp. 136–151.

[20] C. Tartary and H. Wang, “Combining prediction hashing and MDS
codes for efficient multicast stream authentication,” in Proc. 12th Aus-
tralasian Conf. Information Security and Privacy, 2007, vol. 4586, pp.
293–307.

[21] C. Tartary, H. Wang, and J. Pieprzyk, “An hybrid approach for efficient
multicast stream authentication over unsecured channels,” in Proc. 1st
Int. Conf. Provable Security, 2007, vol. 4784, pp. 17–34.

[22] C. Karlof, N. Sastry, Y. Li, A. Perrig, and J. D. Tygar, “Distillation
codes and applications to dos resistant multicast authentication,” pre-
sented at the 11th Network and Distributed Systems Security Symp.,
2004.

[23] J. Benaloh and M. de Mare, “One-way accumulators: A decentralized
alternative to digital signatures,” in Proc. Advances in Cryptology—Eu-
rocrypt ’93, 1993, vol. 765, pp. 274–285.

[24] R. Merkle, “A certified digital signature,” in Proc. Advances in Cryp-
tology—Crypto’89, 1989, vol. 435, pp. 218–238.

[25] R. Di Pietro, S. Chessa, and P. Maestrini, “Computation memory and
bandwidth efficient distillation codes to mitigate DoS in multicast,” in
Proc. 1st Int. Conf. Security and Privacy for Emerging Areas in Com-
munication Networks., 2005, pp. 13–22.

[26] J. He, G. Xu, X. Fu, and Z. Zhou, “A hybrid and efficient scheme
of multicast source authentication,” in Proc. 8th ACIS Int. Conf. Soft-
ware Engineering, Artificial Intelligence, Networking, and Parallel/
Distributed Computing, 2007, vol. 2, pp. 123–125.

[27] C. K. Wong and S. S. Lam, “Digital signatures for flows and multi-
casts,” IEEE/ACM Trans. Netw., vol. 7, no. 4, pp. 502–513, Aug. 1999.

[28] Y. Zhou and Y. Fang, “Multimedia broadcast authentication based on
batch signature,” IEEE Commun. Mag., vol. 45, no. 8, pp. 72–77, Aug.
2007.

[29] C. Tartary, “Authentication for Multicast Communication,” Ph.D. dis-
sertation, Dept. Comput., Macquarie Univ., NSW, Australia, 2007.

[30] C. Tartary and H. Wang, “Efficient multicast stream authentication for
the fully adversarial network,” Int. J. Security and Network, vol. 2, no.
3/4, pp. 175–191, 2007.

[31] L. Nguyen, “Accumulators from bilinear pairings and applications,”
in Proc. Topics in Cryptology CT-RSA 2005, 2005, vol. 3376, pp.
275–292.

[32] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F.
Vercauteren, Handbook of Elliptic and Hyperelliptic Curve Cryptog-
raphy, ser. Discrete Mathematics and Its Applications. Boca Raton,
FL: Chapman & Hall/CRC, 2006.

[33] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil
pairing,” J. Crypt., vol. 17, no. 4, pp. 297–319, Sep. 2004.

[34] R. J. McEliece, The Guruswami-Sudan Decoding Algorithm for
Reed–Solomon Codes, NASA—Jet Propulsion Laboratory, 2003,
Tech. Rep. IPN Progress Report 42-153.

[35] V. Guruswami and M. Sudan, “Improved decoding of Reed–Solomon
and algebraic-geometric codes,” IEEE Trans. Inf. Theory, vol. 45, no.
6, pp. 1757–1767, Sep. 1999.

[36] O. Goldreich, Foundations of Cryptography: Volume I—Basic Tools.
Cambridge, U.K.: Cambridge Univ. Press, 2001.

[37] D. R. Stinson, Cryptography: Theory and Practice, ser. Discrete Math-
ematics and Its Applications, 3rd ed. Boca Raton, FL: Chapman &
Hall/CRC, 2006.

[38] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. Boca Raton, FL: CRC, 1996.

[39] J.-P. Zanotti, Le Code Correcteur C.I.R.C [Online]. Available: http://
zanotti.univ-tln.fr/enseignement/divers/chapter3.html

[40] J. Lacan and J. Fimes, “Systematic MDS erasure codes based on Van-
dermonde matrices,” IEEE Commun. Lett., vol. 8, no. 9, pp. 570–572,
Sep. 2004.

[41] P. Elias, “List decoding for noisy channels,” in Proc. IRE Wescon Conf.
Record (Part2), 1957, pp. 94–104.

[42] J. M. Wozencraft, “List decoding,” in Quarterly Progr. Rep., Res. Lab.
Electron., Massachusetts Inst. Technol., 1958, vol. 48, pp. 90–95.

[43] V. Guruswami, Algorithmic Results in List Decoding, ser. Foundations
and Trends® in Theoretical Computer Science. Boston, MA: Now
Publishers, 2006, vol. 2.

[44] V. Guruswami, List Decoding of Error-Correcting Codes. New York:
Springer-Verlag, 2004.

[45] T. K. Moon, Error Correction Coding: Mathematical Methods and Al-
gorithms. Hoboken, NJ: Wiley Interscience, 2005.

[46] H. O’Keeffe and P. Fitzpatrick, “Gröbner basis solutions of con-
strained interpolation problems,” Linear Algebra Appl., vol. 351–352,
pp. 533–551, Aug. 2002.

[47] D. Bleichenbacher and P. Q. Nguyen, “Noisy polynomial inter-
polation and noisy Chinese remaindering,” in Proc. Advances in
Cryptology—Eurocrypt’00, May 2000, vol. 1807, pp. 53–69.

[48] D. Dolev and A. C.-C. Yao, “On the security of public key protocols,”
IEEE Trans. Inf. Theory, vol. 29, no. 2, pp. 198–208, Mar. 1983.

[49] D. Augot and M. Finiasz, “A public key encryption scheme based on
the polynomial reconstruction problem,” in Proc. Advances in Cryp-
tology—Eurocrypt ’03, 2003, vol. 2656, pp. 229–240.

[50] M. Sudan, “Decoding of Reed–Solomon codes beyond the error-cor-
rection bound,” J. Complexity, vol. 13, no. 1, pp. 180–193, Mar. 1997.

[51] P. V. Trifonov, “Efficient interpolation in the Guruswami-Sudan algo-
rithm,” IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4341–4349, Sep.
2010.

TARTARY et al.: AUTHENTICATION OF DIGITAL STREAMS 6303

[52] P. Trifonov, “Implementing the interpolation step in the Guruswami-
Sudan algorithm,” in Proc. XII Int. Symp. Problems of Redundancy in
Information and Control Systems, May 2009, pp. 109–113.

[53] L. Chen, R. A. Carrasco, and E. G. Chester, “Performance of Reed–
Solomon codes using the Guruswami-Sudan algorithm with improved
interpolation efficiency,” IET Commun., vol. 1, no. 2, pp. 241–250, Apr.
2007.

[54] R. Kötter, “Fast generalized minimum-distance decoding of algebraic-
geometric and Reed–Solomon codes,” IEEE Trans. Inf. Theory, vol. 42,
no. 3, pp. 721–736, May 1996.

[55] M. Naor and B. Pinkas, “Oblivious transfer and polynomial evalua-
tion,” in Proc. 31st Annu. ACM Symp. Theory of Computing, May 1999,
pp. 245–254.

[56] M. Naor and B. Pinkas, “Oblivious polynomial evaluation,” SIAM J.
Comput., vol. 35, no. 5, pp. 1254–1281, 2006.

[57] A. Kiayias and M. Yung, “Cryptographic hardness based on the de-
coding of Reed–Solomon codes,” IEEE Trans. Inf. Theory, vol. 54, no.
6, pp. 2752–2769, Jun. 2008.

[58] A. Kiayias and M. Yung, “Directions in polynomial reconstruction
based cryptography,” IEICE Trans., vol. E87-A, no. 5, pp. 978–985,
May 2004.

[59] , D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds., Post-Quantum
Cryptography. New York: Springer, 2009.

[60] O. Goldreich, R. Rubinfeld, and M. Sudan, “Learning polynomials with
queries: The highly noisy case,” SIAM J. Discrete Math., vol. 13, no.
4, pp. 535–570, 2000.

[61] A. Kiayias and M. Yung, “Cryptanalyzing the polynomial-reconstruc-
tion based public-key system under optimal parameter choice,” Des.
Codes Cryptogr., vol. 43, no. 2–3, pp. 61–78, Jun. 2007.

[62] P. Junod, A. Karlov, and A. K. Lenstra, “Improving the Boneh-Franklin
trator tracing scheme,” in Proc. 12th Int. Workshop on Practice and
Theory in Public Key Cryptography, Mar. 2009, vol. 5443, pp. 88–104.

Christophe Tartary (M’05) received his Ph.D. in Computer Science from Mac-
quarie University in 2008. He is currently an assistant professor at the Institute
for Theoretical Computer Science within the Institute for Interdisciplinary In-
formation Sciences at Tsinghua University (P. R. China). His research interests
are in cryptography, information security and coding theory.

Huaxiong Wang obtained a Ph.D. in Mathematics from the University of Haifa,
Israel (1996) and a Ph.D. in Computer Science from the University of Wollon-
gong, Australia (2001). He is currently with Nanyang Technological University,
Singapore. His research interests include cryptography, information security,
coding theory, combinatorics and theoretical computer science. He is on the ed-
itorial boards of Designs, Codes and Cryptography, Journal of Communications
and Journal of Communications and Networks and was the Program Co-Chair of
9th Australasian Conference on Information Security and Privacy (ACISP’04),
Sydney, Australia, July, 2004 and 4th International Conference on Cryptology
and Network Security (CANS05), Xiamen, Fujian, China, December, 2005. He
won the inaugural Prize of Research Contribution awarded by the Computer
Science Association of Australasia in 2004.

San Ling received the B.A. degree in mathematics from the University of Cam-
bridge, Cambridge, U.K., in 1985, and the Ph.D. degree in mathematics from
the University of California, Berkeley, in 1990. Since April 2005, he has been a
Professor with the Division of Mathematical Sciences, School of Physical and
Mathematical Sciences, Nanyang Technological University, Singapore. Prior to
that, he was with the Department of Mathematics, National University of Singa-
pore. His research fields include arithmetic of modular curves and application
of number theory to combinatorial designs, coding theory, cryptography, and
sequences.

