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Abstract. We consider the classic clique (or, equivalently, the indepen-
dent set) problem in two settings. In the streaming model, edges are given
one by one in an adversarial order, and the algorithm aims to output a
good approximation under space restrictions. In the communication com-
plexity setting, two players, each holds a graph on n vertices, and they
wish to use a limited amount of communication to distinguish between
the cases when the union of the two graphs has a low or a high clique
number. The settings are related in that the communication complexity
gives a lower bound on the space complexity of streaming algorithms.

We give several results that illustrate different tradeoffs between clique
separability and the required communication/space complexity under

randomization. The main result is a lower bound of Ω( n2

r2 log2 n
)-space

for any r-approximate randomized streaming algorithm for maximum
clique. A simple random sampling argument shows that this is tight
up to a logarithmic factor. For the case when r = o(log n), we present

another lower bound of Ω(n
2

r4
). In particular, it implies that any constant

approximation randomized streaming algorithm requires Ω(n2) space,
even if the algorithm runs in exponential time. Finally, we give a third
lower bound that holds for the extremal case of s − 1 vs. R(s) − 1,
where R(s) is the s-th Ramsey number. This is the extremal setting of
clique numbers that can be separated. The proofs involve some novel
combinatorial structures and sophisticated combinatorial constructions.

1 Introduction

Streaming for cliques. In the streaming model for graph problems, edges are
presented sequentially in the form of a data stream, and the objective is to
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compute a good near-optimal solution using working space significantly less than
the size of the data stream. The motivation for streaming comes from practical
applications of managing massive data sets such as, e.g., real-time network traffic,
on-line auctions, and telephone call records. These data sets are huge and arrive
at a very high rate, making it impossible to store more than a small part of the
input.

We consider the space requirements of finding or approximating the maximum
clique in a graph, or equivalently the maximum independent set. We assume that
the graph is given as a stream of edges, where the algorithm can view the stream
several times. In this paper, we assume the algorithm only views the stream a
constant number of times. More generally, we treat the following gap problem:
given a graph G and numbers U and L with L ≤ U , decide whether G contains a
U -clique, or contains no (L+1)-clique. When the clique number is greater than
L or less than U , the algorithm can answer arbitrarily. Here, U and L can be
functions of the order n of the input graph.

Several graph problems have been considered in the streaming setting, in-
cluding bipartite matching (weighted and unweighted cases) [14], diameter and
shortest paths [14,15], min-cut [1], and graph spanners [15]. Except for cer-
tain counting problems, such as counting triangles [5], cycles [24], K3,3 bipartite
cliques [9] and small graph minors [8], these use n · polylog(n) space.

Limited attention has been given to streaming algorithms for NP-hard prob-
lems; exceptions include Max-Cut [1,27] and certain clustering problems (e.g.,
[19]). In [17], the independent set problem in graphs and hypergraphs was con-
sidered, but with the primary focus on the fine-grained space requirements of
matching the Turán bound on sparse (hyper)graphs. Some additional upper
bounds are given in [23], but with a focus on general hypergraphs. We are not
aware of any lower bounds for the space complexity of computing any classical
NP-hard graph parameter like clique number (except for max-cut [27]).

The Max-Clique problem, and its sister the independent set problem, is
one of the central problems in optimization, and graph theory. For instance, the
algorithm textbook of Kleinberg and Tardos uses variations of the independent
set problem as a common theme for the whole book. It has long been one of the
cornerstones of complexity theory, including monotone circuit complexity [3],
decision tree complexity [7], fixed-parameter intractability [10], and interactive
proofs and approximation hardness [18]. The current best intractability bound

for Max-Clique is n/2(logn)3/4+ε [21], and the best approximation result is
O(n(log logn)2/ log3 n) [13].

Communication Complexity. Communication complexity, introduced by Yao
[26], is a powerful tool to solve a variety of problems in areas as disparate as
VLSI design, decision trees, data structures, and circuit complexity [22]. It is a
game between two parties, Alice and Bob, with unlimited computing power, that
want to compute the value of a function f : X × Y �→ {0, 1}. Alice only knows
x ∈ X , while Bob only knows y ∈ Y . To perform the computation, they are
allowed to send messages to each other in order to converge on a shared output
P (x, y). In a randomized protocol, Alice and Bob toss coins, and the messages
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can depend on the coin flips. We say a randomized (deterministic) protocol P
computes f if Pr[P (x, y) = f(x, y)] ≥ 2/3 (P (x, y) = f(x, y)) for any input x, y,
and define the randomized (deterministic) communication complexity R1/3(f)
(D(f)) to be the number of bits communicated for the worst input under the
best randomized (deterministic) protocol computing f , respectively. Here, 1/3
refers to the error rate. Since a deterministic protocol is a randomized protocol,
D(f) ≥ R1/3(f).

Our Results. We give several constructions that imply communication lower
bounds for clique separation, resulting in equivalent lower bounds for the space
complexity of streaming algorithms. The constructions differ in their range of
parameters U and L, as well as the strengths of the lower bounds.

The results are summarized in the table. R1/3(Clique-Gap(U,L)) denotes
the randomized communication complexity to determine whether the clique
number of the union of two graphs is at least U or at most L, and R(s) refers
the s-th diagonal Ramsey number (see Sec. 2 for formal definitions).

Table 1. A summary of our results

U L R1/3(Clique-Gap(U,L))

r 10 · 21/ε log n Ω(n2/r2)

r s O(n2/(r/s)2)

r 2
√
r − 1 Ω(n2/r2)

r = R(s)− 1 s− 1 Ω

(
max

(
n/r, n2

r3 exp(10
√

log r log n
2r2

)

))

r = R(s) s− 1 O(1)

The first two results in the table match up to a logarithmic factor. Thus,
except for the case of very small or very large cliques, this gives a fairly pre-
cise characterization of what cliques can be separated. For smaller cliques, the
bounds are still open to a large extent. The third result shows that any constant
approximation requires quadratic space, which is a supplement to the first result
when the clique number is a constant. Finally, the last two bounds give a sharp
threshold within which we can separate cliques: constant space suffices below
the threshold, while non-trivial and even superlinear space is necessary above
the threshold.

We note that our results hold equally for the Max Independent Set problem.
While the optimization and approximation of cliques and independent sets are
equivalent in general graphs, the streaming problems are not identical since the
stream is formed by edges and not non-edges. This distinction disappears in the
communication problem, as well as in the sampling-based upper bounds.

The clique problem appears at first to be strongly related to the previously
studied problem of counting triangles [5,6], and in fact, the known hardness
of detecting triangles and short cycles in stream [5,15] yields a starting point
for proving hardness of clique computation. Nevertheless, while a large clique
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implies many triangles, the converse is not true (viz. complete 3-partite graphs).
Indeed, different arguments are needed for the clique problem.

While our hardness results involve reductions to the prototypical problem
of set disjointness, our proofs involve some novel connections between Ramsey
theory and additive combinatorics. Obtaining superlinear constant-pass lower
bounds on graph problems via disjointness is often hampered by dependencies
between edges. The use of designs and random partitition to get around this
here may be useful for proving such lower bounds for other graph problems in
the semi-streaming model.

Outline of the Paper. We define the problems and notation formally in Section 2,
and introduce our methodology in Section 3. The bulk of the paper is in Section
4, where we give several different space-approximation tradeoffs for the clique
problem. Some upper bounds are given in Section 5. Some proofs of lemmas have
been deferred to the full version.

2 Problem Definitions

A clique in a graph is a subset of mutually adjacent vertices. The Max-Clique
problem is that of finding a clique of approximately maximum size. Let ω(G)
denote the clique number of graph G. Let n denote the number of vertices of
the graph input to Max-Clique. A t-subgraph refers to a subgraph induced by
t vertices. The Ramsey number R(r) is the smallest n so that for any graph G
of size n, either G or its complement, G, has a r-clique. By the classic results of
[11,12], R(r) = 2θ(r), and in particular

√
2
r
< R(r) < 4r.

Let [n] = {1, 2, . . . , n}. An edge stream is formally defined to be a sequence

〈a1, a2, ..., am〉, where aj ∈ (
[n]
2

)
, inducing the undirected graph G = (V,E) on

n vertices with V = [n] and E = {aj : j ∈ [m]}. Each edge may appear more
than once. Only in Sec. 4.1 do we need to allow edges to appear more than once
(specifically, twice), and only when r >

√
n.

Set disjointness, denoted Disj, is a communication complexity problem where
Alice and Bob hold two subsets, x and y, of [N ], respectively, and they want to
determine whether the intersection of their subsets is empty. Improving a result
in [4], Kalyanasundaram and Schnitger [20] proved that R1/3(Disj) = Ω(N).

The clique gap problem is the communication complexity problem for clique
approximation, where Alice and Bob hold two subgraphs GA = 〈Vn, EA〉 and
GB = 〈Vn, EB〉 and they want to approximately determine the clique number
of the combined graph GA ∪ GB = 〈Vn, EA ∪ EB〉. We define the value of the
function Clique-Gap(U,L) to be 1 if ω(G) ≥ U , 0 if ω(G) ≤ L, and arbitrary
(0 or 1) otherwise.

The communication complexity of a decision problem is closely related to the
space complexity of the problem, in that the former gives a lower bound for
the latter. Namely, for any decision problem Π , it holds that space1/3(Π) ≥
R1/3(Π), where space1/3(Π) denotes the space complexity of a randomized
streaming algorithm that answers correctly with at least 2/3-probability on any
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instance of Π . This holds, up to constant factors, even if we allow the streaming
algorithm passes through the input constant times.

3 Our Methodology

Reduction from the set disjointness problem is generally the method of choice
for proving communication complexity lower bounds for graph problems. Yet, to
come up with reductions with near-optimal parameters to Clique-Gap(U,L)
involves a number of combinatorial challenges.

Our starting point was the following reduction from the set disjointness prob-
lem with parameter N = (n/4)2 to Clique-Gap(4, 2):

For any input of set disjointness problem, where Alice holds x ∈ {0, 1}(n/4)2
and Bob holds y ∈ {0, 1}(n/4)2, we construct an input for the clique problem as
follows. We denote the vertices by {vi,j |i = 1, 2, 3, 4; j = 1, 2, 3, · · · , n/4}. Alice
has edges (v1,j , v3,j′) and (v2,j , v4,j′) if x[j, j

′] = 1. Bob has edges (v1,j , v4,j′) and
(v2,j , v3,j′ ) if y[j, j′] = 1. Finally, both of them have the edges (v1,j , v2,j) and
(v3,j , v4,j), for j = 1, 2, ..., n/4. In this construction, the graph has a 4-clique if x
intersects with y, and the clique number is only 2 if x doesn’t intersect with y.

The above construction can be viewed as an extension of constructions from
[5,15] on detecting triangles in streams. This argument can, however, not be ex-
tended further: proving an Ω(n2) lower bound for Clique-Gap(5, 2) is impos-
sible because of the counting version of the Szemerédi’s Regularity Lemma [25].
We will detail the reason and give a weaker lower bound for Clique-Gap(5, 2)
in Sec. 4.2. This obstacle shows that some non-trivial combinatorics lies beneath
our problem. We overcome this and other obstacles for different U,L pairs by
applying different arguments, and by exploiting properties of the worst case
distribution for the set disjointness problem. Along the way, we create some in-
teresting combinatorial structures, such as the one in Lemma 1, which we could
not find elsewhere in the literature.

4 Lower Bounds

We reduce the set disjointness problem to the approximate clique determina-
tion problem, thereby obtaining lower bounds on space for streaming algorithms
approximating cliques. We give several constructions that apply to different com-
binations of the parameters U and L.

The structure of the arguments is as follows. Given an instance (x, y) of Disj,
we form a graph G̃ that is a packing of “gadgets”, or clique subgraphs, each
corresponding to a single bitpair of the vectors x and y. Some of the edges of
each gadget are reserved for Alice, and the remaining edges for Bob. The actual
graphs GA and GB handed to Alice and Bob are subgraphs of G̃, where Alice
(Bob) receives her (his) edges of gadget i only if the corresponding bit xi (yi)
is set, respectively. This ensures that if xi = yi = 1 – the case of a positive
set intersection instance – then the corresponding gadget is a clique, yielding a
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positive answer to the clique separation problem. The main issue is to ensure
that for negative instances, the clique size of the whole graph GA ∪GB remains
small.

We present three constructions. The first gives optimal space lower bounds,
up to logarithmic factor, for all but very large clique numbers. The second yields
weaker lower bounds, but holds for sub-logarithmic values of L. The third one
gives optimal Ω(n2)-space lower bound for the case of constant clique sizes.

4.1 r vs. logn

Theorem 1. For 0 < ε < 1, r = n1−ε and s = 100 · 22/ε log n, it holds that
R1/3(Clique-Gap(r, s)) = Ω(n2ε). Thus, for some constant c, any randomized
streaming algorithm for Max-Clique with approximation ratio c·r

logn requires

Ω(n2/r2) space (when r = O(n1−ε)).

We reduce Disj to Clique-Gap(r, s) in such a way that positive instances will
have clique-size r, while negative instances will be like the Erdös-Renyi random
graphs Gn,p, and thus have clique-size s = O(log1/p n) (we shall specify p later).

We construct optimal reductions (up to a factor of logn) from the set-
disjointness when r = O(n1−ε). At the heart of the reduction, there is a combi-
natorial lemma:

Lemma 1. For every n > 22/ε and every r < n/2, there is a set system C on
[n] with n2/r2 sets of size r each, such that each pair of distinct points is covered
by at most d sets from C, where d = �2/ε� − 2.

Proof. Let P be the largest prime with the property that rP ≤ n. Then, rP >
n/2, by Bertrand’s postulate. We identify [P ] withGFP performing all arithmetic
modulo P . We also identify [r] with an arbitrary subset of GF d

P , and assume
that there is an injective mapping f : [r] �→ GF d

P because P d ≥ ( n
2r )

d > r. For
(x, y) ∈ GF 2

P we define the set

Cx,y = {(a1, a2, . . . , ad, a) | a = adx
d+. . .+a1x−y and (a1, a2, . . . , ad) ∈ f([r])}.

Notice that Cx,y has size exactly r, since given x and y the values of a1, a2, . . . , ad
determine the value of a. In particular, this implies that for two distinct points
that Cx,y covers, the first d coordinates are always different. Consider now two
distinct points (a1, a2, . . . , ad, a) and (b1, b2, . . . , bd, b). If they are covered by the
same Cx,y, we get that adx

d + . . . + a1x − y = a and bdx
d + . . . + b1x − y = b,

implying that
(ad − bd)x

d + . . .+ (a1 − b1)x = a− b. (1)

Notice that Cx,y and Cx,y′ are disjoint whenever y 
= y′. Thus, if Cx,y and
Cx′,y′ intersect in a point, and (x, y) 
= (x′, y′), then it is necessary that x 
= x′.
Thus, in particular, if there are (x1, y1), . . . , (xd+1, yd+1) such that Cxi,yi cover
the same two points, then x1, . . . , xd+1 are all distinct, and Eqn. 1 holds for all
x1, . . . , xd+1. Since by our earlier remark (a1, a2, . . . , ad) 
= (b1, b2, . . . , bd), we
get a contradiction by discovering that a degree d polynomial (namely (ad −
bd)x

d + . . .+ (a1 − b1)x− a+ b) has d+ 1 roots.



Streaming and Communication Complexity of Clique Approximation 455

Our reduction from the set disjointness problem of size N = n2/r2 will be the
following. First, we define N cliques (gadgets) of size r on n nodes, as shown
in the above lemma. Let us denote the ith clique by Ci (1 ≤ i ≤ N). We then
associate each edge of Ci to Alice or Bob with probability 1/2 independently.
We call the set of edges associated this way to Alice and Bob CA

i and CB
i ,

respectively. Note that it is possible that the same edge of the graph is associated
to both Alice and Bob, since an edge may occur in up to d different Cis.

The graph GA given to Alice consists of the edges in the union of those CA
i s,

for which the bit xi in the set disjointness problem is set to 1. Similarly, we give
to Bob the graph GB, which is the union of those CB

i s, for which the bit yi is
set to 1. Clearly, if xi = yi = 1 then the combined graph GA ∪ GB will contain
all of Ci, and thus have clique size at least r.

We argue now that in the negative case, we can embed the resulting graph in
an Erdös-Renyi random graph Gn,p with edge probability p = 1− 1/2d.

Lemma 2. For any negative instance (x, y) of Disj on s bits (x ∩ y = ∅), let
q1 be the probability that the graph GA ∪ GB, generated by the above described
randomized map of (x, y), contains an s-clique. Let q2 be the probability that an
Erdös-Renyi random graph, where each edge is drawn with probability 1− 1/2d,
contains an s-clique. Then q1 < q2.

Proof. For an edge e in the graph GA ∪ GB generated by (x, y), we consider
the set of cliques Ce = {Ci|e ∈ Ci and i ∈ x ∪ y}. In the method we described
above, we choose e in each clique in Ce with probability 1/2 independently, and e
appears in GA ∪GB if e is chosen in any clique in Ce. Thus, the probability that
GA ∪GB contains e is 1 − 1/2|Ce| ≤ 1 − 1/2d, because |Ce| ≤ |{Ci|e ∈ Ci}| ≤ d
by Lemma 1. However, in the Erdös-Renyi random graph, each edge is chosen
with probability 1− 1/2d. Therefore, GA ∪GB has sparser edges, and it has an
s-clique with less probability.

Proof (Proof of Theorem 1). Given instance x, y to Disj, we form and hand
the graphs GA and GB to Alice and Bob, as expressed above. On positive in-
stance, when xi = yi = 1, for some bit i, the corresponding subgraph in GA∪GB

is an r-clique. On negative instances, GA ∪GB is sparser than the Erdös-Renyi
random graph Gn,p, with p = 1 − 1/2d. As shown by Grimmett and McDi-
armid [16], ω(Gn,p) ≤ 2 logn/ log(1/p) + o(log n) ≤ 2d+1 logn + o(logn), with
high probability. The theorem now follows.

4.2 R(s) − 1 vs. s − 1

When proving an Ω(n2) lower bound for Clique-Gap(5, 2), the s = 3 case of
Clique-Gap(R(s) − 1, s− 1), we run into obstacles if we use the approach for
Clique-Gap(4, 2). To do so, we must pack Θ(n2) 5-clique gadgets in a graph on
n vertices. We then need to partition the

(
5
2

)
edges into two parts, one for Alice

and the other for Bob, such that each part has no triangles. In fact, the partition
is unique up to a permutation, and it does not contain “hard-wired” edges like
the gadget in the proof of Clique-Gap(4, 2) does. Furthermore, we require more
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properties of the packing: all the gadgets are edge-disjoint and each triangle must
lie fully within one gadget. The Triangle Removal Lemma, which can be proven
from Szemerédi’s Regularity Lemma [25], states that we can remove o(n2) edges
from a graph containing o(n3) triangles to make it triangle-free. If we take one
triangle from each gadget, these Θ(n2) triangles are edge-disjoint and o(n2) edges
do not suffice to destroy them all. Therefore, we cannot pack Θ(n2) gadgets in
a graph of size n.

Instead, we can prove the following result, using a different packing
requirement.

Theorem 2. For any r, R1/3(Clique-Gap(r, s − 1)) = Ω

(
n2

r3 exp(10
√

log r log n
2r2

)

)
,

where r = R(s)− 1.

For instance, this gives a n2/ exp(O(
√
logn)) = n2−o(1) lower bound for

Clique-Gap(5, 2). That is the best we can hope for in the sense that
Clique-Gap(6, 2) has a trivial upper bound, as we shall see in Section 5.

We shall use the following combinatorial structure and theorem of Alon and
Shapira.

Definition 1 (h-Sum-Free). [2] A set X ⊆ [n] is called h-sum-free if for
every three positive integers a, b, c ≤ h such that a+ b = c, if x, y, z ∈ X satisfy
the equation ax + by = cz, then x = y = z. That is, whenever a + b = c, and
a, b, c ≤ h, the only solution to the equation that uses values from X, is one of
the |X | trivial solutions.

Theorem 3. [2] For every positive integer n, there exists an h-sum-free subset
X ⊆ [n] of size at least |X | ≥ n

e10
√

log h log n

.
= g(n, h).

We say that a set system C = {Ci}i is edge-disjoint if any pair of points is
contained in at most a single set, and that it is triangle-free if whenever u, v ∈ Ci,
v, w ∈ Cj and w, u ∈ Ck, for some Ci, Cj , Ck ∈ C, then Ci = Cj = Ck.

Lemma 3. For any n, there is an edge-disjoint triangle-free set system on [n]
with g(n/(2r2), r) · n/r = Ω(n2/(r3 exp(10

√
log r logn/(2r2)))) sets of size r

each.

Proof. We first pick an r-sum-free set Z ⊆ [ n
2r2 ] such that

|Z| = m ≥ g(n/(2r2), r) =
n/(2r2)

exp(10
√
log r log n

2r2 )
.

Suppose Z = {z1, . . . , zm}. For i ∈ [m], let Si = (zir+1) · [r] = {(zir+1)a : a ∈
[r]}. We denote the set shift j from Si by S

(j)
i , namely we define S

(j)
i = Si + jr,

for i ∈ [m], j ∈ [n/(2r)]. Finally, we define the set family C = {S(j)
i |i ∈ [m], j ∈

[n/(2r)]}, and let G̃ = ([n], E), where E = {(u, v)|∃S ∈ C, u, v ∈ S}. It is clear
that for each S ∈ C, the subgraph on S induces an r-clique in G̃.
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The lemma follows from the following two claims.

Claim. C is edge-disjoint, i.e., any S
(j1)
i1

and S
(j2)
i2

intersect in at most one element
if (i1, j1) 
= (i2, j2).

Proof. Suppose they have two common elements u and v. From u, v ∈ S
(j1)
i1

, by
definition we have u = (zi1r + 1)b1 + j1r and v = (zi1r + 1)c1 + j1r, for some
b1, c1 ∈ [r]. Similarly, there are b2, c2 ∈ [r], such that u = (zi2r+1)b2+ j2r, and
v = (zi2r + 1)c2 + j2r. So we have

u = (zi1r+1)b1+j1r = (zi2r+1)b2+j2r , and v = (zi1r+1)c1+j1r = (zi2r+1)c2+j2r.
(2)

Modulo r, we have b1 = b2 and c1 = c2 (because |bi|, |ci| < r). We denote b =
b1 = b2 and c = c1 = c2. By computing u−v, (zi1r+1)(b−c) = (zi2r+1)(b−c).
Now, b 
= c because u 
= v. So, zi1 = zi2 , then we have i1 = i2. By (2) then,
j1 = j2. Therefore, (i1, j1) = (i2, j2), which is a contradiction.

Claim. C is triangle-free, i.e., for any distinct u, v, w, if v, w ∈ S
(j1)
i1

, w, u ∈ S
(j2)
i2

,

and u, v ∈ S
(j3)
i3

, then (i1, j1) = (i2, j2) = (i3, j3).

Proof (Proof of Theorem 2). We reduce the set disjointness problem with
N = t · q bits to

Clique-Gap(r, s − 1), where t = n/(2r2)

exp(10
√

log r log(n/(2r2)))
= g(n/(2r2), r) and

q = n/(2r).

By the definition of Ramsey number, for each S
(j)
i , there exists a subgraph

Q
(j)
i of the clique on S

(j)
i , such that neither Q

(j)
i nor Q

(j)
i has a clique of size s.

Given a Disj instance x, y ⊆ [t]× [q], we consider each S
(j)
i as a gadget and

construct a clique separation instance, in which we give Alice GA =
⋃

(i,j)∈x Q
(j)
i ,

and give Bob GB =
⋃

(i,j)∈y Q
(j)
i . We are going to prove that GA ∪ GB has an

r-clique if x ∩ y 
= ∅, and has no s-clique if x ∩ y = ∅.
On positive Disj instances, when xi,j = yi,j = 1, the corresponding gadget

S
(j)
i induces an r-clique in GA ∪GB. On negative Disj instance, for each (i, j),

each subgraph induced by S
(j)
i in GA∪GB is one of three possibilities: Q

(j)
i , Q

(j)
i

or empty. By construction, none of these contain a (2 log r)-clique, so if GA∪GB

contains one, there exists a triangle (u, v, w) which is not in any S ∈ C. This
contradicts the triangle-freeness property of C.

Therefore, if we have a protocol of the Clique-Gap(r, s−1) problem, we have
a protocol of set disjointness problem with the same communication complexity.
Hence, Clique-Gap(r, s − 1) problem has communication complexity lower of
Ω(N) = Ω(t · q).
For larger values of r (e.g., r = n/polylog(n)), a naive packing gives better
bounds: Simply combine �n/r� vertex -disjoint r-cliques. This yields an edge-
disjoint triangle-free set system with n/r sets of size r each.
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Theorem 4. For any n and any s, R1/3(Clique-Gap(r, s − 1)) = Ω(n/r),
where r = R(s)− 1.

4.3 r2 vs. 2r − 1

We now focus on graphs of constant clique number, for which we obtain optimal
quadratic space lower bounds.

Theorem 5. For any number r ≥ 18, R1/3(Clique-Gap(r2, 2r − 1)) =
Ω(n2/r4). Thus, any randomized ρ-approximation streaming algorithm for
Max-Clique requires Ω(n2/ρ4) space.

We construct a gadgetH = 〈VH , EH〉 on r2 vertices corresponding to a single bit
in Disj. We shall ensure that H is clique if the corresponding bits of both Alice
and Bob are both 1, and that H contains no 2r-clique otherwise. The vertex set
VH consists of r groups, r vertices each: VH = {ui,j|i, j ∈ [r]}. We color all the
(
r2

2

)
edges with three colors: A (Alice), B (Bob), and C (Common).

We say that a triplet u, v, w ∈ VH is a colorful triangle if all three mutual
edges are differently colored. The proof of the following lemma is based on the
probabilistic method.

Lemma 4. For large r, there exists a coloring of EH satisfying

1. Edge {ui,j, ui′,j′} is with color C if and only if i = i′ and j 
= j′.
2. Any 2r-subgraph of H contains a colorful triangle.

Let P be a prime in the range [n/(2r2), n/r2]. We reduce the Clique-Gap prob-
lem of size n from Disj problem of size N = P 2 by packing P 2 gadgets in a
graph of size n, where each gadget is of size r2. We isolate the remaining n−r2P
vertices, and focus on the r2P vertices {vi,j,k|i, j ∈ [r], k ∈ [P ]}. On these ver-
tices, the edges are given by EC

G = {{vi,j,k, vi,j′,k}| i, j, j′ ∈ [r], k ∈ [P ], j 
= j′},
EA

G = {{vi,j,(s+ti) mod P , vi′,j′,(s+ti′) mod P }|i, i′, j, j′ ∈ [r], i 
= i′ and {ui,j , ui′,j′}
is with color A and xs,t = 1}, and EB

G = {{vi,j,(s+ti) mod P , vi′,j′,(s+ti′) mod P }|
i, i′, j, j′ ∈ [r], i 
= i′ and {ui,j, ui′,j′} is with color B and ys,t = 1}.

Alice is given the edges in EA
G ∪ EC

G , and Bob given the edges in EB
G ∪ EC

G .

Lemma 5. If Disj(x, y) = 1, then ω(G) = r2.

Lemma 6. If Disj(x, y) = 0, then ω(G) < 2r.

Proof (Proof of Theorem 5). We reduce Disj problem of size N = P 2 to the
Clique-Gap(r2, 2r − 1) problem. Since R(Disj) = Ω(P 2), any randomized
protocol to separate graphs with r2-cliques from those with only (2r−1)-cliques
requires Ω(n2/r4) communication.



Streaming and Communication Complexity of Clique Approximation 459

5 Upper Bounds

The following simple random sampling argument shows that the lower bound of
Thm. 1 is within a logarithmic factor of optimal.

Theorem 6. There is a randomized streaming algorithm for
Clique-Gap(r, r/ρ) that uses O((n/ρ)2) space (for ρ = O(n/

√
logn)).

Thus,
R1/3(Clique-Gap(r, r/ρ)) ≤ space1/3(Clique-Gap(r, r/ρ) = O((n/ρ)2).

Proof. Assuming that the vertices are numbered 0, 1, . . . , n−1, we initially choose
a random number h from [n]. This specifies a set S consisting of the n/ρ vertices
numbered h through h+n/ρ−1 (mod n). In processing the stream, we only store
edges between pairs of vertices in S and afterwards output the maximum clique
within S. The probability that any given vertex falls within S is (n/ρ)/n = 1/ρ.
Thus, by linearity of expectation, the expected number of vertices within any
r-clique that fall inside S is r/ρ.

Finally, we cannot expect to get a non-trivial lower bound on the separation of
(s−1)-cliques vs. R(s)-cliques using communication complexity. Namely, by the
definition of Ramsey numbers, any 2-coloring of an R(s)-clique – or a splitting of
the clique edges between Alice and Bob – leaves a monochromatic s-clique. Thus,
at least one of Alice and Bob can detect a s-clique, without any communication.
The gap in Thm. 2 is therefore best possible, even though the space lower bound
is not optimal. In fact, we get a sharp transition for Clique-Gap(U,L) in terms
of the values of U and L for which non-trivial communication is needed.

Theorem 7. There is a deterministic communication protocol for
Clique-Gap(R(s), s−1) that uses O(1)-bits. That is, D(Clique-Gap(R(s), s−
1)) = O(1).
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