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Abstract

During the past twenty years, elliptic curves have atthatere and more attention from the cryptography community.
One of the core operations of elliptic curve cryptographgt@cols is the scalar multiplication. Any algorithm rechgi
the complexity of such multiplications will speed up crygtaphic primitives based on these algebraic structurethign
paper, we study two recently introduced techniques forascealltiplication: Double-Base Number System (DBNS) and
Double-Base Chain (DBC). Our results are twofold. Firstdeenonstrate a theoretical bouf¥dlog n) on the length of
any DBC used to decompose soffieg n)-bit integers. Second, we present a new algorithm to obtdi®, &}-integer
expansion ofr. The bound previously computed will imply the optimality thiis algorithm. Our scheme represents a
trade-off method between the DBNS approach and the DBC igatnExperimentally, our algorithm constructs shorter
chains on average than both the binary/ternary method angréedy algorithm approach.

Keywords: Elliptic Curve Cryptography, Scalar Multiplication, Dol@bBase Number System, Double-Base Chain.

1 Introduction

The first elliptic curve cryptographic schemes were indejeatly proposed by Koblitz_[Kob87] and Miller [Mil86] in
1985. The interest in these algebraic structures comestfierfact that there is no subexponential time algorithm kmow
for solving the discrete logarithm problem on elliptic ceswnlike the case of the multiplicative group of a finite field
[van05]. Thus, one can use smaller security parameterdliptiecurve protocols than for ordinary discrete loghrit
schemes while having the same level of security. This alltlv@smplementation of cryptographic primitives on devices
with limited memory capacity such as smart cards [CBA].

The fundamental operation in elliptic curve cryptographthie scalar multiplication: given a poiftton the curve and an
integern, one wants to compute the poinf P. This operation has beenthe subject of intense researc¢h'{@#]. One of
the central points is to represenappropriately to perform fast curve operations. In 2005piov et al. proposed to use
the Double-Base Number System (DBNS) for cryptographic purposes [DIM05]. The integeis expended into a sum of
{2, 3}-integers (i.e. integers written &8 3°). It was demonstrated that a greedy approach to exparging DBNS had
at mostO(lolg‘)ign) terms [DJM98]. Such an expansion is not unique and the graleyithm may return an expansion
which requires extra storage to keep intermediate redtsvercome this issue, Dimitrat al. introduced the concept of
Double-Base Chain (DBC) [DIMQO5]. A DBC is a DBNS where the powers @fand3 are both decreasing. This property

simplifies the computation of the poipt] P.

In this paper, we first compute a lower-boufidlog n) on the length of any DBC representation for sothe n)-bit
integers. We show that the length of the DBC returned by a fisatgreedy algorithm is optimal (tight). Secondly, we
propose a new method to speed up the computatign|&f. Our approach is based on the modification of DBCs that we
call p-DBC.

The rest of the paper is organized as follows. Tn Secflon Zyniedly recall some definitions about integers expansion and
we present greedy algorithms for both DBNS and DBC. Aftenjig the lower bound on the DBC length[in_Secfidn 3,
we present our trade-off method[In_Secfion 4 and some expatahresults are discussedin Secfibn 5. The last section
concludes the paper.

*The original version of this paper appears in Informatioadessing Letters, vol. 111, no. 10, pp 488 - 493, April 201seter.



2 Integer Expansion

In this section, we review some definitions and propertidBBINS and DBC. Both representations rely on the following
operations on the elliptic curve:

e addition (P + Q) and subtraction®f — @),
e doubling (2] P) and tripling (3] P).

Letn be a positive integer. In DBNS, the integers written as:
4
n=Y c;2% 3" wherec; € {~1,1} (1)
=1

One can construct a greedy algorithm to obtain a DBNS by fopdineach step the best approximation of a particular

integer as g2, 3}-integer (Algorithm 1).

Algorithm 1 GreedyDBNS
Input: An integern.

1. Initializet = n, p = 1 and IntegerSet 0.

2. Whilet # 0 do the following:
2.1. Find the best approximationbasz = 243°.
2.2. SetintegerSet = IntegerSet U {p - z}.
2.3.1ft < z,setp = —p.
24.Sett = |t — z|.

3. ReturnintegerSet.

Output: A DBNS expansion ofi.

The length of the DBNS expansionofis the size ointegerSet. We have the following demonstrated by Dimitrehal.
based on a result from Tijdemen [Tij74].

Lemma 1 ([DJM98]) For every positive integer n, the length ¢ of the DBNS expansion of n returned by[Algorithm 1jis

0 logn
loglogn

Snce the sequences of exponents may not simultaneously be decreasing, it may use

¢ 2
; (a; + b;) = O(logn - £) = O (kggmgn)
doublingsand triplingsin the worst case.
In DBC, the integer: is written as i Equation (IL) with the additional requirernen
ag > ag—1 > --->apandb, >bp_1>--- > by (2)

Using a DBC, one can compute]P with a, doublings,b, triplings and¢ — 1 additions/subtractions. One can easily
modify GreedyDBNS to get a greedy algorithm computing a DBC fofAlgorithm 2).

Lemma 2 Thelength of the DBC expansion of n returned by[Algorithm2lis
O(logn)

It only uses
O(logn + £) = O(logn)

doubling and triplings.



Algorithm 2 GreedyDBC
Input: An integern.

1. Initializet = n,p = 1, A = +00, B = 400 andIntegerSet = {.

2. Whilet # 0 do the following:
2.1. Find the best approximation bész = 2*3* where0 < a < Aand0 < b < B.
2.2. SetintegerSet = IntegerSet U {p - z}.
2.3.1ft < z, setp = —p.
2.4.Sett = |t — z|,A=aandB =b.

3. ReturnintegerSet.

Output: A DBC expansion of.

3 Lower Bound for DBCs

As said inSecfion]2, a DBC requires that the sequence of expsive simultaneously decreasing. With this additional
constraint, we can prove that, for any positive integeithere existL-bit integers for which any DBC representation
requires(2(L) terms. This implies that the bound stated’in Lemrha 2 for tigerithm GreedyDBC is tight. Before
demonstrating this claim, we need some intermediate sesult

Lemma 3 For any n and m, we have: () < (< )m where e is the value of the exponential function at 1.

en
m

Lemma 4 For any constant value ¢, there exists a constant value c», such that for any n > 1, we have:

2
3¢z log, n (Cl + 02) 10g2 n <n
calogy n -
Proof.
_ . 1 1 H .
For anyc;, we chooses = min{c;, 106 m}. First, we have:
3¢2 logomn _ nez log, 3 < n1/2 _ \/ﬁ

Applying[Lemma 3B, we obtain:

2
(Cl + 02) 10g2 n < p2e2 (logy(2ecy1)—logy c2)
calogy n -

Sincecy < we get:

1
8log,(2ecy)?’

2¢q logy(2ecq) <

A~ =

1

Tog» We have:

Forey <

1
—2c2logy co < 1

Pulling these results together, we obtain:

2
<(Cl + 62) 10g2 n) < p2e2 (logy(2eci)—logy c2) < \/ﬁ

colog, m -
Finally:
. los (c1 + ¢2) logy n 2
3¢z 082 1 <vn-vn<n
co logy n
U
Lemma5 Let n be any positive integer. Suppose that its shortest DBC expansion is written as in [Equation (I)] with

W\e have the following properties:
1. (ai,bi) 7é (ai+1,bi+1), for any1 <i</{-1



2. ¢co=1
3. a; <2logyn,forany1 <i </
4. b; <2logyn,foranyl <i </

Proof.

Property 1. Assume that there existsuch that(a;, b;) = (a;+1,bi+1). If ¢; = ¢;41, we can uséa; + 1, b;) instead of
(ai,b;) and(a;+1, bi+1) to obtain a shorter expansion. Otherwisgs# ¢; 1. In this case, we can delete bdih, b;) and
(a;+1,bi+1) to get a shorter expansion singe= —c;41.

-1
Property 2. Applying Property 1, we have+13b+1 > 2. 293%  We deduce2® 3% > > 2% 3" Sincen > 0, the

i=1
previous inequality implieg, = 1.

Properties 3and 4If ¢ = 1, thenn is a{2, 3}-integer and we have; < log, n andb; < log, n. We now considef > 2.

We claim that ifc,_; = —1, then2%¢3b¢ > 3. 221 3%-1_|ndeed, in the opposite case, we would haye:; + 1 = a,
andby,_; = by. Letk be the smallest number such that=cx11 = - - =cro1 = —1,ar = arp1 — 1 = apyo — 2 =
~~~:ae7(€*k)andbk:bk+1 =...=by.
¢ -1
Z cj 924 3b]' —_ Z 2ak+j7k 3bk 4 2ak+€7k’ 3bk
j=k j=k
-1
— _9ak 3bk Z 2]71& 4 2ak+€7k’ 3bk
j=k
— 72ak 3bk (2[—]6 o 1) + 2ak+é—k 3bk
= 20k 30

We can us@®r 3’ instead of the sum d¥ —k+1) {2, 3}-integersto get a shorter expansionifiqnote that —k+1 > 2).
This result would contradict the assumption made when gatinglCemma (5) on the minimality of the DBC expansion
of n.

We deduce that, whery_; = —1, we have:

¢
n= ZciQ‘“ 30 >
i=1

As a consequence, we getr 3% < 3n. This implies Property 3 and Property 4 (when, = —1).

20 3bs

wl

Assume that,_; = 1. We have:
0

n= Z c; 2% 3bi > 9ae gbe

i=1

Since2% 3¢ < n, Property 3 and Property 4 follow (whep_; = 1).

We can now demonstrate our lower bound on the length of DBCs.

Theorem 1 For any positive integer L, there exist L-bit integers for which any DBC representation requires (L) terms.

Proof.
Let L be a positive integer. In order to apply the previous resuléssetn = 2 — 1.

We choose:; = 2. According td Lemma (4), there exists a constansuch that:

2
3¢2 log, n (2 + 02) 10g2 n <n
c2 logs n -
Due tdLemma (), for any < ¢ < ¢, log, n, the number of different DBC expansions having lengtloes not exceed

ol—1 (2 logy, n+ ¢ — 1)2
l



because there ag¥~! possibilities for the(¢ — 1)-tuple (¢, ...,c,1) and at most(2 log, g’”_l) different increasing
families0 < ay <--- < ay < 2 log, n.

We have the following relation (parallel summation [GKPRA4]

‘ig: " (2 logy .+ £ — 1) _ ((2+C2) log, ”)
! _

co log, n
=0 2 1082

Therefore, the number of DBC expansions having; < 2 log, n and containing no more thag log, n terms does not
exceed

co logy n 2 c2 logy n 2
_1(2logon+£—1 _1(2logy, n+ ¢
2[ 1 2 2@ 1 2
O G A I g
(=1 =1
2
< 9¢ logy n—1 (2 + CQ) 1Og2 n
co logy n
1 2 c2 logy n
< L X 2 X
2“3 "
< n
3
Thus, using at most, log, n terms is not sufficient to represent a third of all integer§lire, - - - ,n = 2% — 1}. The set
of L-bit integers is{2-~1,... 2% — 1} and contain®“~* > £ values. Therefore, at least one of thdséit elements

cannot have any DBC representations using at moig, n = (L) terms.
O

4 Trade-off Method

Let n be a positive integer. We call @Double Base Chain (p-DBC) expansion ofn, any representation aof as in

with the following condition:

Qai gbi < 2@it1 3bit1

vie {1, 0—1}¢ %= minfadtp
< ;

bi < min {by} +p

where/ represents the length of the expansion ar@N.

The algorithmGreedyDBC can easily be modified to compute such-BBC (Algorithm (3)).

Algorithm 3 p-GreedyDBC
Input: An integern and the parameter.

1. Initializet = n,op = 1, A = 400, B = +0o0 andintegerSet = §.

2. Whilet # 0 do the following:
2.1. Find the best approximationbsz = 2¢ 3* whered < a < A+ pand0 < b < B + p.
2.2. SetintegerSet = IntegerSet U {op - z}.
2.3.Ift < z, setop = —op.
2.4.Sett = |t — z|, A =min{A, a} andB = min{ B, b}.

3. ReturnintegerSet.

Output: A p-DBC expansion of.

We now state our main result for this section.



Theorem 2 Thelength ¢ of the p-DBC(p > 1) expansion of n returned by[Algorithm (3)]is
0 (1ogn)
logp

I
O(logn+pt) =0 (1ogn+ W)
logp

It uses

doubling and triplings.

Before demonstrating this theorem, we need to prove theviallg lemma.

Lemma 6 Thereexistsa constant C' > 0 such that, for anyn < 2435, thereis always a number of the form 2¢3° between
n—n/pcandn,whereag A+pandb < B+ p.

Proof.

To prove this lemma, we only need to consider the case whenB > |p/3] and24-138 < n < 2438, Because when
A+ B < |p/3], using the result by Dimitroet al., we can prove that there is always a number of the ft8f between
n —n/(log n)c andn.

Whenp < 5, we can choos€' = logy 2, such thap® < 2 and24-13% > n/2 > n — n/p®, s024-138 is between
n —n/p® andn. It remains to prove the lemma wher> 6. We need the following result by Tijdeman.

Lemma 7 [Tij74] There exists a constant C' > 0 such that, for any N, there is a number of the form 23° between
N — N/(log N)¢ and N.

According td Lemma (7), there exists an constant 0, such that if we sett’ = max{0, A— |p/3]}, B’ = max{0, B—
|p/3|} andy = n/ (2’4'33/), there exists: = 293" satisfying
y—y/(logy) <z <y.
Considets’ = A’ + a andb’ = B’ + b. We have:
203V < g .2438" <. 2438 <
Sincen > 247138 > 1/2. 2435 we have
y>n/ (21“/33’) >1/2.24-A'3B-8'
SinceA + B > |p/3], we obtain:

log, y > log, (1/2.2@/34) > p/3] — 1

The previous inequality implielog, y = Q(p). Therefore, there exists a const@nt C’ < 1 such that, for any > 6,
we havelog, y > p© . We get:

x>y—y/(logy) >y—y/p”°
We deduce:
2(1/ 31)/ Z (y _ y/pC/C)QA—I_p/iﬂ 33—\_1)/3] Z n — n/pC/C

Sincez < y < 22/313lr/3] < 97 we haven < p andb < p. Therefore, the relations < A + p, b’ < B + p and
n—n/pCC < 243" < n are satisfied which terminates our proof.
O

We can now demonstrgte Theorem (2).

Proof.

According td Lemma (8), the length of theDBC expansion of: returned by Algorithm (3) is at most

logn
(0] (logpc n) =0 (logp) .

¢

Suppose the-DBC expansion of: returned by the greedy algorithmris= Z ¢; 2% 3% Denote the poin2®:3%] P by
=1

(ai, b;). We can use the following method to calculate(all, b;) pairs.



e Starting fromA = 0, B = 0 and we havéA, B) = [24 38]P = P.
o lterates from1 to /.
— SetA’' = Hklzi?{ak} andB’ = glé?{bk}

~ Compute(4’, B) = 24 37'1P and(a;, b;) = [2*3"]P.
— SetA= A, B= B and(A, B) = (A’, B').

Remark: At each iteration, we haveiA’, B') = [2435]([24'~435'~B|p) = 24'-435'-B (A B) and (a;,b;) =

[2A' 3B’]([2ai7A' 3bi*B/]P) — 2ai7A' 3bi7B' (A/, B/)

If we setay = by = 0, then the number of doublings and triplings required by mhithod does not respectively exceed
¢

k>it+1

K2

-1
> ( min {ax} —minf{a} + min {be} —min{by} + 2p)
and
r,gzn;{ak} - Iglzlg{ak} + r]?zl?{bk} - Iglzlg{bk} =ag+be+2pl
We can note that, < 2 log, n andb, < 2 log, n. Therefore, the number of doublings and triplings are

p logn
logp

O(logn+pf) =0 (logn +

The p-DBC expansion technique is indeed a trade-off method v BNS and DBC.

e If p = O(1), the length of expansion is

0 (1°g”) = O(log n)

logp
The number of doublings and triplings are

1
(0] (logn+ P Ogn) = O(logn)
logp

e If p = O(logn), then the length of expansion is

0 logn _0 logn
logp loglogn

The number of doublings and triplings are

1 log”
0] logner By _o(-—2 "
logp loglogn

We can apply the new method to compute sughlRBCs. The method to compute DBCs can be seen as a gendaalizat
of the binary/ternary approach [DKS09]. As in Dootteal.'s work, we can use a tree-based approach [DIMO05] for our

method. This is depicted jn Algorithm (4).

5 Experiments

In this part, we analyze the result of computations perfatme random integers of various sizes and represented as
[Table 1. The first observation is that even wheis 0, the length of the DBC expansion returnedBPBCTree is in
general less than what is obtained from the greedy technpigbieeedyDBC.[Table 1 also compares the lengths of DBCs
obtained from various method: binary/ternary, greedy mtlym, and our new approach. The average length of chains
returned by the tree-based algorithm is approxima26Bf shorter than the length of the chains returned by the greedy
method.



Algorithm 4 p-DBCTree
Input: An integern and the parameter.

1. Initializet = f(n), wheref(n) = n/ (2v2(™3v(™), andvy(n) = max{e|n is a multiple ofk®.}.
2. Whilet # 1 do the following:

2.1. Sett’ =t.

2.2. Fora from 0 to p, do:

Forb from 0 to p, do:
Sett’ = min(t, f(t —293°), f(t +223%)).
2.3.Sett =t'.
Output: A p-DBC expansion of..

Table 1: Parameters of DBCs obtained by various methods.

Bit Size ofn 256 320 384 448 512
Method {  ay by / ayg by / ay by {  ae be 4 ag be
Binary/Ternary| 58.3 116.2 87.4| 72.9 1455 108.6 87.2 175.2 131.2| 101.8 204.4 152.2 116.5 233.5 175.2
Greedy 58.3 150.7 87.1| 72.9 189.2 81.5| 87.0 228.0 97.3 | 101.3 266.3 113.7 115.7 305.0 129.5
Our Method 53.37 140.0 70.3 67.70 175.3 89.2 81.34 210.9 107.3 96.04 250.1 123.3 109.69 291.1 137.9

We also studied the impact gfon the average length of the chaifis (Figufe 1). For each mitheof n (namely
256, 320, 384, 448, 512), we ran the tree-based algorithm on 10,000 random integ#ndifferent choices op, namely
p=0,1,2,3,4,5and6.

120

I
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in:SZO

n=2384
o & W n=448f]

~4 n=512

100 i
9| .
80|
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Figure 1: Impact op on the average length pfDBCs



These implementations showed the decrease in the Iémjtthe integer expansion as expected.

6 Conclusion

In this paper, we first studied the properties of DBNS and DB .constructed a lower bound on the length of DBCs
which implied the tightness of the greedy algorithm techeitp construct them. Second, we introduced a new integer
expansion technique calledDBC representation. This new kind of expansion is a traffleaethod between DBNS and
DBC. We proved some bounds on the length-d@BCs. We conducted some implementations which confirmatitte
those chains were shorter on average than DBCs constriittied ley the binary/ternary method or the greedy algorithm
approach.
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