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Abstract An analysis is performed to study the heat transheat transfer properties compared to those of most solids. An
fer characteristics of steady two-dimensional boundary layennovative way of improving the heat transfer of fluids is to
flow past a moving permeable flat plate in a nanofluid. Thesuspend small solid particles in the fluids. This new kind
effects of uniform suction and injection on the flow field andof fluids named as “nanofluids” was introduced in 1995 by
heat transfer characteristics are numerically studied by usirghoi [1]. The term nanofluid is used to describe a solid lig-
an implicit finite diference method. It is found that dual so-uid mixture which consists of base liquid with low volume
lutions exist when the plate and the free stream move in thigaction of high conductivity solid nanoparticles. These flu-
opposite directions. The results indicate that suction delayds enhance enormously the thermal conductivity of the base
the boundary layer separation, while injection accelerates ifluid which is beyond the explanation of any existing theory.
They are also very stable and have no additional problems,
such as sedimentation, erosion, additional pressure drop and
non-Newtonian behavior, due to the tiny size of nanoele-
ments and the low volume fraction of nanoelements required
for conductivity enhancement. These, with their various po-
tential applications, have recently attracted intensive studies
on nanofluids [2-13]. The use of particles of nanometer di-
mension was first continuously studied by a research group

Itis well known that conventional heat transfer fluids such a&t the Argonne National Laboratory around a decade ago.
water, mineral oil and ethylene glycol have, in general, poop’hese suspended nanoparticles can change the transport an
thermal properties of the base fluid. The comprehensive ref-

erences on nanofluids can be found in the recent book [14]
and in review papers [15-21].

Keywords Nanofluid- Moving plate- Boundary layer Suc-
tion/injection- Dual solutions
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Boundary layer flow over a moving surface in a nanofluid with suction or injection 35

layer etc. This can lead to enhanced heating (or cooling) of, , = Knt ,

the system and can help to delay the transition from lam- (0Cp)nt

inar flow[24]. We mention to this end that studies of the, . = (1 — v)pr + gps,

boundary layer flows of a Newtonian (or regular) fluid past P

a permeable static or moving flat plate have been done bynt = W (6)
Merkin [25], Weidman et al. [26], Ishak et al. [27], Zheng et ¥

al. [28], and Zhu et al. [29,30], while Bachok et al. [31,32] (0Cp)nt = (1 = ¢)(0Cp)t + ¢(0Cp)s,

have considered the boundary layers over a vertical plate iR (ks + 2k;) — 2¢(K; — ks)

the regular Newtonian fluid. ?f = (ks + 2kf) + QD(kf —_ ks) >

whereg is the nanoparticle volume fractioneGp)ns is the
2 Problem formulation heat capacity of the nanoflui@ is the thermal conductiv-
ity of the nanofluid k; andks are the thermal conductivities
of the fluid and the solid fractions, respectively, @n@ndps
Consider a steady two-dimensional boundary layer flow pagre the densities of the fluid and the solid fractions, respec-
a moving semi-infinite permeable flat plate in a water basetively. It should be mentioned that the use of the above ex-
nanofluid containing dierent type of nanoparticles: Cu, Pression fokys is restricted to spherical nanoparticles where
Al,O; and TiQ. The nanofluid is assumed incompressiblet does not account for other shapes of nanoparticles [2].
and the flow is assumed laminar. It is also assumed th&so, the viscosity of the nanofluidy; has been approxi-
the base fluid (i.e. water) and the nanoparticles are in thefated by Brinkman [33] as viscosity of a base flyjdcon-
mal equilibrium and no slip occurs between them. Furtheftaining dilute suspension of fine spherical particles.
it is assumed that the plate moves with a constant veloc- Further, we introduce the boundary layer variables,
ity uy = AU, where is a constant antll is the constant which are defined as
free stream velocit_y or the veloqity of the _far field (invisci_d) x=X/L, y=REé2y/L), u=u/u,
flow [26]. We consider a Cartesian coordinate system)(
wherex andy are the coordinates measured along the plat/ = RE€/*(V/L),  Ue = Ue/U,
and normal to it, respectively, and the flow takes place ap _ (T = To)/(Tw — Too), ™
y > 0. ltis also assumed that the constant temperature of _
the moving surface i, and that of the ambient nanofiuid is P = (P = P«)/(0fU?), Uy = Un/U,

Te, whereTy, > T, (heated plate). where L is a characteristic length of the platp,, is the
Using the nanofluid model proposed by Tiwari andpressure of the ambient nanofluid aRé = UL/v; is the

Das [13], the basic steady conservation of mass, momentuReynolds number with; being the kinematic viscosity of

and energy equations in the coordinatemndy can be writ-  the nanofliud. Substituting Eq. (7) into Egs. (1)—(4) and

ten as taking into account the boundary layer approximations, and
— — the fact that the present is a flow under zero pressure gradi-
ou ov . . ) )
Fra + o 0, (1) ent, we obtain the following dimensionless boundary layer
X y equations
_du  _du 10p s (826 BZU) ou v
Uu—+Ve==———=4+ = + = 2 . —
X 0y pnr OX  pp\OX? Oy? @ ox " ay ®)
N oV 10p s (62\7 v ) ou  ou  up 0%u
-_— —_— = — = — |, 3 u— V— = 5> 9
Yox Ve T oy pw\0R  3y2 B Yox Yoy = pun o2 ©
0T 0T T 4T 00 90  an 0%0
R v -2 — V= — —, 10
“ox TVay T “”f< o | ay2 ) @ T Vay T oy (10
where we assume that the boundary conditions are and the boundary condition equation (5) become
V=V, =Uy=4AU, T=T, at y=0, U=Uy=4, V=V, 6=1 at y=0, (11)

u
G=o=U, V=0 T=Te. P=pe asy— o U=u.=1 6=0, as y— oo

_ _ . _ _ltshould also be mentioned tha < 0 is for suctiony, > 0
Hereu andv are the velocity components along th@ndy s for injection ands, = 0 is for impermeable surface.

axes, respectivelyl, is the temperature of the nanoflujolis We look for a similarity solution of Egs. (8)—(11) of the
the fluid pressureyys is the viscosity of the nanofluid. is following form

the thermal dtusivity of the nanofluid angy; is the density
of the nanofluid, which are given [12] n=y/)Y2, () =¢/(2X)Y?, o) =6, (12)
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wherey is the stream function and is defined in the usuallflems (see for example Ishak et al. [36,37]). We find the miss-
way asu = dy/dy andv = —dyr/dx, which identically satis- ing slopesf”(0) andg’(0), for some values of the governing
fies Eq. (8). In order that similarity solutions of Egs. (8)—(11)parameters, namely the nanoparticle volume fracgipthe

exist, we take moving parametei and the suctiofinjection parametef.
f Three types of nanoparticles were considered, namely, cop-
Vw(X) = NV (13)  per Cu, alumina AlOs, and titania TiQ. Following Oztop

and Abu—Nada [12], the value of Prandtl numBeris taken
wherefo = (0) is a non-dimensional constant which deter-a5 6.2 (for water) and the volume fraction of nanoparticles
mines the transpiration rate, witly > 0 for suction,fo <0 s from 0to 0.2 (0< ¢ < 0.2) in whichg = 0 corresponds

for injection andf, = 0 for impermeable surface. Itis worth g the regular Newtonian fluid. It is worth mentioning that
mentioning thak > 0in Egs. (12) and (13), since the bound-\ye have used data related to thermophysical properties of
ary layer does not start at the leading eage 0, but some-  the fluid and nanoparticles as listed in Table 1 [12] to com-
where upstream of the plate> 0 [34, 35]. Using Egs. (12) pyte each case of the nanofluid. The numerical results are

and (13), Egs. (9) and (10) are reduced to the following orsymmarized in Table 2 and Figs. 1 to 10.
dinary diferential equations

frrr Table 1 Thermophysical properties of fluid and nanoparticles
- g+ el T O (14) (Oztop and Abu-Nada [12])
1 Physical properties  Fluid phase Cu 2Bk TiO;
1
= 9 ke /e +fg =0, (15) t
Pr {1 - ¢+ ¢(pCp)s/(vCp)] (water)
where prime denotes fiiérentiation with respect tg and Cp/ (Fkg™-K™) 4179 885 765 686.2
Pr = v/as is the Prandtl number. The boundary conditions p/ (kg-m2) 997.1 8933 3970 4250
(11) become k/(W-m-L.K-1) 0.613 400 40 8.9538
f(0)=fo, f(0)=4, ¢g(0)=1,
, (16)
't =1 9m=0 as n— . Table 2 Values ofA, for different nanoparticles andftirent
The physical quantities of interest are the skin friction values offo whenPr = 6.2 andp = 0.1
coefﬁcient and the Nusselt number, which are, respectively, Nanoparticles f, Rohni et al. [22] Present
defined as ] 203 01657
Ci = T—WZ Nu= —— (17) Cu 0 -0.3541 -0.3541
pruy ki (Tw = Too)

) 0.3 -0.5997
wherer,, is the surface shear stress apds the surface heat
flux, which are given by —03 —0.1903

P oT Al,Oq 0 -0.3541 -0.3541

= -_— N = — - . 18 —
Tw unf( 6y)y:0 Cw knf( % )YZO (18) 0.3 0.5592
Substituting Egs. (7) and (12) into Eq. (17) and using -03 ~0.1887
Eqg. (18), we get TiO, 0 -0.3541 -0.3541
f7(0 0.3 -0.5617
(2Re)7Ci = - .
o (19)

(2/Re)?Nu = —rffg’(O). Figures 1 and 2 show the variation bf(0) and—g'(0)

) with A for Cu-water nanofluid and fierent values ofy when
Results forf, = 0 can be compared with those reported bypy = 6.2 andy = 0.1. It is seen that the solution is unique
Rohni et al. [19]. when > 0, while dual solutions are found to exist when
A < 0, i.e. when the plate and the free stream move in the
opposite directions. The values 6f(0) are positive when
A < 1, and they become negatives when the valug ek-
ceeds 1, for all values of the suctjorjection parametefy.
Numerical solutions to the nonlinear ordinaryffdiential Physically, positive value of”(0) means that the fluid ex-
equations (14) and (15) with the boundary conditions (16§Its a drag force on the plate, and negative value means the
were obtained using the Runge—Kutta—Fehlberg method wiPposite. The zero value df’(0) wheni = 1 does not
shooting technique. This method has been successfully usBtgan separation, but it corresponds to the equal velocity of
by the present authors to study various boundary value prof2e plate and the free stream. Figures 1 to 6 also show that

3 Results and discussion
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J"(0)

Fig. 1 Variation of f”(0) with A for Cu-water nanofluid and fier-
ent values off, whenPr = 6.2 andy = 0.1
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Fig. 2 Variation of —g'(0) with A for Cu-water nanofluid and dif-
ferent values off, whenPr = 6.2 andy = 0.1
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for a particular value ofy, the solution exists up to a certain 3.5

critical value of2, sayA.. Beyond this value, the bound- ;

ary layer approximations breakdown, and thus the numerical 3.0 ]

solution can not be obtained. The boundary layer separates

from the surface al = A, whered. denotes a critical value < 25

of 1. Based on our computations, the critical valuelp$ay =

A are presented in Table 2, which show a favorable agree- 2 20 1

ment with previous investigations for the cage= 0. More- §

over, from Table 2, we found that for all nanoparticles the 15

values oflA¢| increase ady increases. Hence, suction delays

the boundary layer separation, while injection accelerates it. 1.0 4
Figures 7 and 8 illustrate the variations of the skin 0.5 ‘ ‘ ‘

friction codficient and the local Nusselt number, given by 0 0.05 0.10 0.15 0.20

Eqg. (19) with the nanoparticle volume fraction parameter ®

for three diterent nanoparticles: copper Cu, alumina@,
and titania TiQ with different values of,. One can see that Fig. 8 Variation of the local Nusselt number withfor different
these quantities increase almost monotonically with increasmanoparticles anf, whenPr = 6.2 and = 0.5

ing ¢. In addition, it is noted that the lowest heat transfer

rate is obtained for nanoparticles Ti@ue to domination

of conduction mode of heat transfer. This is because, TIO  Figures 9 and 10 present the velocity profilé;) and

has the lowest value of thermal conductivity compared to Cthe temperature profilg(;) for Cu-water nanofluid and var-
and ALO;, as can be seen from Table 1. This behavior ofous values off whenPr = 6.2 and1 = —0.1. Itis seen that
local Nusselt number is similar to that reported by Oztopll these profiles satisfied asymptotically the far field bound-
and Abu-Nada [12]. However, theffirence in the values ary conditions equation (16). In these figures the solid lines
for Cu and AbOs is negligible. The thermal conductivity of and the dash lines are for the upper and lower branch solu-
Al, O3 is approximately one tenth for Cu, as given in Tabletions, respectively. These velocity and temperature profiles
1. However, a unique property of AD; is its low thermal support the existence of dual nature of solutions presented in
diffusivity. The reduced value of thermalfitisivity leads to  Figs. 1 and 2. The velocity profiles for the upper and lower
higher temperature gradients and, therefore, higher enhand#anch solutions whea = -0.1 (Fig. 9) show that, the ve-
ment in heat transfer. The Cu nanoparticles have high valocity gradient at the surface is positive, which produces pos-
ues of thermal dfusivity and, therefore, which reduces theitive value of the skin friction coicient. The temperature
temperature gradients and therefoféeet the performance gradient at the surface as shown in Fig. 10 is in agreement
of Cu nanoparticles. As volume fraction of nanoparticlegvith the curves of-g’(0) shown in Fig. 2.
increases, the local Nusselt number becomes larger espe-

cially in the case of suction. The highest heat transfer rate

is recorded for Cu-nanofluid for both cases, suction and in- T £=-03,0,03

jection.

NG
’5
[
Q
2=—0.1, p=0.1
—— Upper branch
— — Lower branch
0.2 s - ‘ . T .
0 0.05 0.10 0.15 0.20 15 20 25

p n

Fig. 7 Variation of skin friction coéficient with ¢ for different  Fig. 9 Velocity profiles for Cu-water nanofluid andftérent values
nanoparticles and, whenPr = 6.2 andi = 0.5 of fo whenPr = 6.2 andi1 = -0.1
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