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Abstract It is known that there exist obiviousfeéitrences 1 Introduction
between the two most commonly used definitions of frac-

tional derivatives—Riemann-Liouville (R-L) definition and

Caputo definition. The multiple definitions of fractional During the last two decades fractional calculus has been
derivatives in fractional calculus have hindered the applicancreasingly applied to physics, especially to rheology [1-
tion of fractional calculus in rheology. In this paper, we clar-4]. In particular, fractional calculus has played an important
ify that the R—L definition and Caputo definition are bothrole in the constitutive modeling of viscoelastic materials.
rheologically imperfect with the help of mechanical ana-Some characteristics of complex viscoelastic materials can
logues of the fractional element model (Scott—Blair model)be described by fractional derivatives. The fractional ele-
We also clarify that to make them perfect rheologically, thement model (Scott—Blair model), which is the most basic of
lower terminals of both definitions should be put+eo. all the fractional-order models of viscoelastic materials, was
We further prove that the R—L definition with lower termi- introduced by Scott—Blair, and its constitutive equation can
nala — —oco and the Caputo definition with lower terminal be expressed as [5]
a — —oo are equivalent in the ffierentiation of functions that .

are smooth enough and functions that have finite number of(t) = E/lad S(t),
singular points. Thus we can define the fractional deriva- dt

tives in rheology as the R-L derivatives with lower terminalyyhere £, 1, o are material-dependent constants and
a— —co (or, equivalently, the Caputo derivatives with lower qo(ty /dte denotes the time-fractional derivative of strain.
terminala — —eco) not only for steady-state processes, buigy replacing the springs and dashpots of the classical vis-

also for transient processes. Based on the above definitiofye|astic models by the Scott-Blair elements, several frac-
the problems of composition rules of fractional operators anglona| models, including the fractional Maxwell model,

the initial conditions for fractional dierential equations are fr4ctional \oigt model and fractional Kelvin model, have

discussed, respectively. As an example we study a fractiongben proposed [1,6]. The experimental results obtained by

oscillator with Scott-Blair model and give an exact solutionyerrandez—Jiranez et al. [7] show that the behavior of some

of this equation under given initial conditions. polymers shows good agreements with that of the fractional
Maxwell model. Experimental investigations done by Meral

Keywords Fractional derivatives Rheology- Riemann— et al. [8] also show that the fractional Voigt model can bet-

Liouville definition- Caputo definition ter simulate the surface wave response of some soft tissue-
like materials. These are successful applications of fractional
derivatives in rheology.

O<a<l, (1)

The applications of fractional calculus in physics is de-
The project was supported by the National Natural Science Fourpendent on the definitions of fractional derivatives. The most
dation of China (10972117). famous definition is the Riemann—Liouville (R-L) deriva-
tive, which can be expressed as [1, 9]
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whereq is the order of the derivative is the lower termi-  during the last twenty years. Heymans and Bauwens [12] and
nal, nis a nonnegative integer such tiret 1 < @ < nand Heymans [13] derived the constitute equation of the spring-
the superscript “R” represents the R—L fractional derivativedashpot fractal network in Fig. 1 using complex modulus and
Another most commonly used definition may be the Caputfound that the stress is proportional to th@-brder deriva-
fractional derivative, which was introduced in the late sixtiedive of strain. Hu and Zhu [14] also derived the constitu-
of the twentieth century [10]. It can be expressed as [9,10] tive equation of the tree model withiZtorder derivative us-
1 L0 ()de ing Heaviside operational calculus, and proved that using the
=, N-l<as<n (3) models shown in Fig. 1, springs and dashpots, one can get
rin-e)Ja (t-1 a multiple spring-dashpot fractal network which describes
wheren is a nonnegative integer such timat 1 < @ <nand fractional element models with an arbitrary order derivative
the superscript “C” is used to distinguish the Caputo frachetween 0 and 1. Schiessel and Blumen [15] presented a
tional derivative from the R—L fractional derivative. ladde-like structure consisting of springs along one of the
Unfortunately, the R—L definition and Caputo definition struts and dashpots along the rungs of the ladder, and proved
are not equivalent. Oneftierence between them is that thethat the mechanical construction is a fractional element with
Caputo derivative of a constant is zero, whereas in the cas@ arbitrary order derivative between 0 and 1. In the follow-
of a finite value of the lower terminal the R—-L fractional ing analysis, the tree model shown in Fig. 1 is used, because

SDrf(t) =

derivative of a constant is not equal to zero, but [9] it is much simpler than Schiessel’s ladder model.
Ct—-a)y™

DfC = ———, 0. 4

a—t I—v(l _ a,) a > ( )

This means that for the Scott—Blair model, the two defini-
tions will give different stress responses while the strain is
equal to a constant. The fact led, for example, Ochmann and
Makarov to use the R-L derivatives with the lower terminal
set to—oo, because formula (4) gives zeroaif— —oo [11]. [ 91 & Lr
Podlubny pointed out that & — —oo is put in both defi- | l
|

|
A

a, &

W
- W

o J :
nitions and reasonable behavior is required ff{t) and its = Y ' = & ' 3
derivatives as — —oo, Egs. (2) and (3) will give the same A N Emn 1
results [9]. It shows that for studying steady-state dynam- T T
ical processes the R—L definition and the Caputo definition
must give the same results. Podlubny also concluded that tifgy. 1 A self-similar tree model of fractional element
transient €ects can not be studied if the lower terminal (i.e.
the starting time of the process) is seti® [9]. One of the
purposes of this paper is to analyze the validity of the two ~ The remainder of this paper is organized as follows. In
definitions in the rheological sense and solve the contradiGect. 2, the stress responses of tfi2-drder Scott—Blair
tions between the R-L definition and the Caputo definitiormodel to a constant strain and to a strain jump are studied
for transient problems in rheology. physically using the tree model. The results based on R—

Another significant dterence between the two defini- L definition and Caputo definition are compared. It shows
tions is closely related to the applications of fractional calthat the R-L definition and the Caputo definition are both
culus. The solution of a linear fractionalfitirential equa- defective rheologically and some revisions are needed. In
tion defined in terms of the R—L derivatives will require Sect. 3, we show that to make the two definitions more rea-
fractional-order initial conditions which can cause troublesonable rheologically, the lower terminals should be put to
with their physical interpretation, while the solution of a lin- —co in them. Then the fractional derivatives of smooth func-
ear fractional dierential equation defined in terms of thetions and functions with finite number of singular points are
Caputo derivatives will require regular initial conditions thatconsidered, respectively. We prove that for the fractional
take on the same form as that for integer-ordéfedéntial  differentiation of these functions the R—L definition (lower
equations [9]. As a result, the Caputo derivatives are monerminala — —oo) and Caputo definition (lower terminal
popular with the physicists. Another purpose of this paper ia — —c0) must give the same results, that is, the two defini-
to re-examine the problems of initial conditions of fractionaltions with lower terminalss — —oco are equivalent not only
differential equations based on our definition of fractionaln the study of steady-state processes but also in the study
derivatives. of transient processes. Thus we define the fractional deriva-

Both the R—L definition and the Caputo definition aretives in rheology as the R—L derivatives with lower terminals
reasonable mathematically, whereas at most only one defi-— —oo (or, equivalently, the Caputo derivatives with lower
nition is allowed physically. To analyze the validity of the terminalsa — —o0). In Sect. 4, the composition rules of
two definitions in the rheological sense, the mechanical andractional operators that are of great importance to the appli-
logues of Scott—Blair model are used. They were developethtion of fractional calculus are studied based on the defini-
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868 F. Yang, K.-Q. Zhu

tion above. In Sect. 5, the problem about the initial condi- _ _ E4”  d" ft g 4
tions is discussed for fractionalftérential equations defined r(n-a)dt" Jo (t-7)e+t"
in terms of the above fractional derivatives with lower termi- —a
. . . ESo(t//l)

nalsa — —oo. In Sect. 6, we study a linear fractional oscilla- = ﬁ (8)
tor with Scott—Blair model and give an analytical solution of “
the equation under given conditions. Conclusions are finallwhile the Caputo derivative ef(t) is
drawn in Sect. 7. c

o(t) = EA*SDC

3 E/la t S(n)

2 Analysis of the ¥2-order tree model 0 dr = 0. 9)

TTh-a) Jo (=t

. Let us investigate the internal dynamical behavior of
Through analysis of the stress response of Y@otder the tree model in Fig. 1. After the strain jump, the dash-

tree model in Fig. 1 to a constant strain, we will show

that there exist obvious deficiencies in R—L definition wherPo.tS _|n_ the mo_de_l behave in a rigid manner as the strain rate
Is infinite at this instant. Therefore, the stress of the model

used in rheology. We denote the elasticity modulus of the o .
i : . goes to infinite when — 0+. Then the stress set up in the
springs and viscosity of the dashpots Byandr, respec- . i
. . ; R ; model will gradually relax and fade away as the pistons of
tively. Springs in the tree model in Fig. 1 obey Hooke’s law . . .
) the dashpots overcome the resistance of the damping fluid.
os = Eegand the dashpots obey Newton’s lay = ndey/dt. .
o ) R : \Whent — oo, the stress of the model will go to zero as the
The constitutive equation of the model in Fig. 1 is expressed . o )
case of a constant strain. Qualitatively, the behavior of the

as [14] tree model shows good agreement with the result obtained
0 = ELL2 dY2g(t) . from R-L definition. To calculate the stress response of the
o(t) = dt/z ®) model in Fig. 1 quantitatively, we use the Laplace trans-

whered = n/E is the relaxation time. When the strain of theform given by Lundberg et al. [16]

model is identically equal to a constas{t) = &g, the strain +oo ot

rate of each dashpot in the model is zero. Thus the stressksl F(O] = F(9) = fo f(te™dt, (10)

of the dashpots are equal to zero. There are infinitely many )

branches in the tree model between its upper and lower end¥here the domain of integral fully includes the origin and
while any branch that contains at least one dashpot can res®y singularities occurring at that time. We denote the
no stress at all. Therefore, the stresses of the whole model ds@Place transform of the stress of the tree modeLpyl],
applied to the leftmost branch of the model, the only brancgnd the strain by [¢]. As the strain of the model is equal to
that contains no dashpot. However, there are an infinite nurgero beford = 0, we have

ber of springs in series in this branch and the elasticity mod- _ K _ _ o

ulus of each spring in the branch is finite. As a result, thg( (0)=0 £50)=0 k=012 (11)
equivalent elasticity modulus of this branch is equal to zeraThus we can reasonably assume that the relationship be-
Then we obtain a zero stress of the model when the strain isweenL[o] andL[¢] is

a constant
L[o] = X(s)L[e], (12)
d1/280
o = EAl2 =0. (6) _ _ i :
dtl/2 wherelL[e] = L_[g0(t)] = eo/s. According to the self
Thus the 12-order derivative of a constant should be equaiSlmllar character of the model in Fig. 1, we also get that
to zero, in accordance with the result obtained from Cap.utlg[g-l] =XUe], L[oo] = XL[ea]. (13)
definition. We can reasonably conclude that the R—L defini-
tion has obvious rheological deficiencies. Then the tree model can be reduced to the second network

Further study shows that the Caputo definition has alsd"oWn in Fig. 2.
obvious deficiencies when applied to the Scott—Blair model.
To make this point clear, we will study the stress response of

the Y2-order tree model to a strain jump . ' |
= L e
0, t<0, — % & % N
g(t) = gof(t) = @) E . l bk M T E = | .._"”: Mx
g, t=0, fonalbd | Fon bbbl T = |
BARE N J_ | ,\-ll,\' T
whered(t) is a unit step function. The R—L derivative &(t) 2 ' f Hg BH:F HH —
is B ow o3 Eak Ba g &
o(t) = E/l“(F;D{’a(t) Fig. 2 The reduced model of the fractal tree model
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From Fig. 2, we can obtain an equation6f From Egs. (2) and (3) we can see that the R—L derivative and

! ! the Caputo derivative of (t) at the instant ot have noth-
X= (— + —) + (— + —) . (14) ing to do with the behaviors of(t) before the lower termi-

E X s X nal a. Let us consider the derivatives of constant function
From the equation above we obtain that &(t) = & and step functiore(t) = &6(t). We have ob-

X = (En9"2. (15) tained thafiD{'so = RD{[£06(t)] and SDfeo = SD{[0(t)]
in Sect. 2. The dferences betweesy andegd(t) before the
Thus, we get starting timea = 0 have no influence on the results either in
(1) = L-Ho(9)] the case of R—L definition or in the case of Caputo definition.
But our analysis of the tree model in Sect. 2 has showed that
. (@)” 2] the stress responses of the Scott-Blair model are completely
0 different from each other in the two cases, which means that
En\L/2 the behavior of the functions before the starting time 0
EO(H) must greatly influence the fractional derivatives. Thus we
guess that the loss of the information before the lower termi-
_ Egg(a/t)Y? nals may be an important reason accounting for the deficien-
- r@/2) cies of the two definitions.

which is in accordance with the result obtained from the ~ Now we will show that the R-L definition and the Ca-
R-L definition. This may be seen as the relaxatifiee puto definition give the same results not only in the study
of the Scott—Blair model. In Fig.3, we plot the stress-Of constant functions but also in the study of step functions

relaxation curve for 2-order Scott—Blair model. The time When the lower terminals are put ta. Consider the R-L
is non-dimensionalized as = t/1, the strain is non- derivative and the Caputo derivative of a step functit)
dimensionalized as* = /g9 = 6(t) and the stress is non- 0 t<b

dimensionalized as Hc(t) = Co(t—b) = { (18)

C, txh
o (t) = o () /() = (/D)2 17
® W/o@) = @/t a7 Forn-1 < a < nandt > b we get that, the R—L derivative
We can see that the stress of the model decays with the igf H(t) with lower terminala — —oo is
crease oft(— a), and the stress will decay to zero only when

= L_l

(16)

t
(t —a) — 0. Here the starting time ia = 0. R _D@Hc(t) = #(E)n‘[ _c r
r(n-a)\dt/ J, (t—r7)e+ln
Ct-b)™
1.0 = —— 19)
08 | rl-a)
- 32 [ while the Caputo derivative dfic(t) is
02} c t sty _ b
0 : ©D{Hc(t) = )
0 2 4 6 8 10 rn-a) J.o (-7t
i
5 C(t—-b)™@
2 = ———~_ =R DI¢Hc(t). 20
4t I"(l _ CY) —oo 't C( ) ( )
S g This result indicates that the two definitions with lower ter-
il minalsa — —oco may be equivalent not only in the study
of steady-state processes (i.e. functions that are smooth

0 2 4 6 8 10 enough) but also in the study of the transient problems (i.e.
t functions with finite number of singular points). We will

Fig. 3 The stress-relaxation curve fof2torder Scott—Blair model ~Prove it strictly using the theory of generalized functions in

this section. It should point out that the order of the deriva-

tive a is always taken as a non-integer number in this section.

3 Definition of fractional derivatives in rheology IRn thf case (C)f aninteger order= n, we can easily prove that

R.DPF(t) = S DPF(t) = FO(1).

According to the analysis in Sect. 2, the R-L definition has3.1 Proof for functions that are smooth enough

obvious deficiencies in the case of constant functions, while

the Caputo definition has obvious deficiencies in the caseet us suppose that the functidigt) is (n — 1)-times con-

of step functions. In this section, we attempt to revise théinuously diferentiable in the interval—{o, T], f((t) is

two definitions to make them more reasonable rheologicallyntegrable in oo, T] and the Caputo derivative, D f (t)
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(0 < mt— 1< a < m<c<n)exists fort < T (i.e. in-

tegral f™M(7)/(t - 7)>"™dr is convergent). Thus we
have that
f(M(7)
Tlmm m =0, t<T, (21)
and we further obtain that
()]
im D _g jo0l...m-1 t<T. (22
T——00 (t— )(’ j
According to Podlubny [9], the following holds
fM(7)
RDaf —
O sy
m=1 £k _ a)-a+k
f9()(t - a) (23)

— I'k+1-0a)

Then with the help of Eq. (22), we can get the R—L derivativ
of f(t) with lower terminala —» —c0

o 1 t oM7)
~DEi = im [I"(m 35 ), T
—a)l-@
+Z 1E(J)(a)F( a+ |+ 1)]
f(m)(T)
a—> 00 F(m a/) (t—T)" rml

= C. Dy (). (24)

This verifies the conclusion of Podlubny [9] that if the lower

terminal is put to-o in both definitions, they will give the

same results, which shows that for the study of steady-state
dynamical processes the R—L definition and the Caputo def-

inition must give the same results.

3.2 Proof for functions with finite number of singular points

To simplify the proof, first let us consider a function which

is expressed as

t<a,

25
a<t<T, (29)

~ 0,
f(t) = f(Oa(t - a) = { 0

with a singular point at = a. We suppose that the function
f(t) is (n—1)-times continuously dierentiable in the interval
[a, T] and f™(t) is integrable in§, T].

Firstly, let us calculate the R—L derivative 6ft). If
0<m-1<a<mx<n,fort <awe can easily obtain that
R Df(t) =0, (26)
and fort > awe get that
R.DYf(t) = EDY F ()

1 t
- r(m-a)

F(m) (1)
a (t _ T)m—l—m

@ Springer

m-1 £® _ay-a+k
Tt @
Next, we will consider the Caputo derivative 6ft). If
0<m-1<a<mx<n, we also obtain that
c.Def(y=0 (28)
fort < aand fort > awe get that
CDrf) = - (ml_ ” ; (tfimigz‘ffm. (29)

According to Kanwal, the generalized (in the sense of gener-
alized functions) derivative off(t) is [17]

fm ) = [f(ac - )™

m-1
= () + Z skt —a)f®@), t>a
k=0

(30)

Swhere f{™(t) is differentiation off(t) in the classical sense,

expressed as

t<a

t>a (31

£0() = 1 M)a - a) = {O
fM(t),

Therefore we can get

1 t
r(m-a)
3 1
" I'(m-a)

fM(r)dr
o (t — T)a+l—m

c.Def() =

m-1
ORI CEETR(C)
k=0
(t _ T)a+1—

()
T)o/+1 m

X dr

" I(m- a)f(t

1 U 1 0(@)6 ™D (7 — a)
F(m @) (t — 7)otl-m

m-1 f 10 (a)

= SDef(t) + Z —a)

X f Mz —a)(t - )™ dr

a

= 2Dy f (1)

m-1 (_1)m—k—lf(k)(a) dm—k—l(t _ T)m—a—l
r(m-a) ek

k=0 T=a

(t _ a)k—(t

Tkrl-a) (32)

m-1
=SDef) + ) 19)
k=0
Equations (26)—(28) and (32) lead to

. .Drf(t) =R Drf(t) (33)
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d(l

for t < T. This shows that if the lower terminal is put to —_f(t) := R _pef(t) = C_Drf(t). (41)
—oo in both definitions, they will give the same results in thedt”
study of the functions having the form of Eq. (25). The original R—L definition and Caputo definition with lower
Generally, let us consider an arbitrary function with aterminalsa can be regarded as special cases of definition
singular point at = a, expressed as equation (41). Fon-1 < a < nandt > a, we define
n { fit), t<a (34) that . .
ay = 1 o f(7)
fo(t <t<T Rpg = — _
2( ), ast=< |, aDt f(t) r(n _ a') dtn . (t _ T)n+1—n T
where f1(t), f2(t) and their derivatives have reasonable be- .
haviors as required. We can find an analytical continuation =R D¢ f(t) = — f(1), (42)
of f1(t) as follows dt
W), t<a, where
Fi(t) = (35 0, t<a,
o), a<t<T, f(t) = - (43)
>
whereg; (t) is properly chosen such thgj(t) is (n—1)-times ®. t=a
continuously dfferentiable in the intervaleo, T], F\"(t) is  and define that
integrable in {0, T] and thew-order derivative of1(t) ex- 1 t £ (7)
: : Cha P
:;s fort < T. Thus the functiorg(t) can be decomposed ;D{ f(t) := M) ). G-t T
5 N da N
g(t) = Fa(t) + g(t), (36) = C.DyfO(t) = s fO(), (44)
where where
0, t<a, el o
§(t) = o(t) - Fa() = { (37) 9@
B - ou(t). asts<T. £ - ZO - t<a
Thenfore (0<m-1<a<m<n)andt < T, we obtain £(t) t>a
RoDPg() = B DfFa(t) + B DY) o
a .
=C pe C Dy = f(t)o(t - : t-a)[l-ot-a)l, (4
CDgFa(t) +S.DFg0) (Dot -a) + Z;‘ et AR -et-al 45
= S.D{o(t). (38)
and

Finally, let us consider a functiofyt) with k singular points 1
ataj, a, -, a1, 8 (A1 < & < -+ < &1 < &) and require fOmy = FOMat—a) + > st — a
reasonable behaviors 6ft) and its derivatives in all the in- ® o ) Z ( )

k=0
tervals Eoo, &), (8, a41) (i=1,2,--- ,k—=1)and &, T). It

can be proved thatt(t) can be written as the summationlof L f0(a) 1®
. ®(q) — E — Y (t - 3q)
functions X{f @ [ e I+ 1)( 2 ] tza}

k
ft) =) fi(t), (39) = 1Ot - a) (46)

= according to Eq. (30). We see that the two definitions corre-
spond to two dierent extensions of the functidrft) on the
interval (-0, a).

where every functiorfi(t) has only one singular point. Then
according to Eqg. (38), we have

k
R.DIF() = > B.DI() 3 ,
i1 4 Composition rules of fractional operators

In this section, we cosider the composition rules of fractional
c operators, which are of greatimportance to the application of
= ZDYF(1), (40)  fractional calculus. The rules will be used in our drivation in

showing that the R—L definition and the Caputo definition are€ct: 6. In the present work, the Liouville integral is used
for our purpose, expressed as [9, 18]

equivalent for the study of the functions with finite number

k
= > C.DEfict)
i=1

of singular points. d- 1 t f(7)
Now we can define the-order fractional derivative as g f(t) = (@) ﬁ (t— 7)o+t dr, a>0. (47)
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872 F. Yang, K.-Q. Zhu

And the R—L integral with a finite value of the lower termi- and
nalsa can be regarded as special cases of definitions (47) R Dp[f(n)(t)] R D"*”[R D; “f(”)(t)]

_ f(7)
RDyof(t) := f dr
V= r(—a) e - 5opn{zor Y
f(r)
48 n-l
" T(-a) f R (48) +3>0D{“[ SOk — a)f<k>(a)]}
where f(t) = f(t)o(t —a). We will study the composition k=0
rules of the fractional operators defined in Egs. (41) and (47). - n-1 f(])(a)(t a)l
Only functions that are smooth enough and those with finite = kD! {f(t)
: : . o T(i+1)
number of singular points are considered. j=0
Podlubny has proved the composition rule of R—L inte- n-1
grals [9] £ 5Dt a)f® (a)}
- —a- k=0
2D (2D ] =BT, @ 520, (49) .
iy fO@)(t - a)
and the composition rule of =R p“‘{
p RDP £ (t) - kz D)
RD¢[RD”f(1)] = RO{PH(1), @, B2 0 (50) .
in his book. Equations (49) and (50) can be easily general- Z (k)( )}
ized to the composition rules of our fractional operators k=0 r(k+ 1)
o B - =RDP*f(t) = Dp+nft
s s (51) ADPE(M) = B.DP ()

o def s = f(l)(b)(t p)i-P-n

for smooth functions and functions with finite number of sin- - t>a (56)
i it i Td+j-p-n’

gular points. In general, the composition rule of fractional “j=0

derivatives Thus we can conclude that Eq. (53) is valid for any function
d* ff  dPf >0 50 that is smooth enough and for functions with finite number
o A (52)  of singular points.

is not valid for the R—L definition and Caputo definition in We suppose that the derivatives of functidit) —

the cases of a finite value of the lower terminals [9,18]. Howd" f/dt®, d’f/dt® and d*f/dt** existform-1 <a <m
ever, we will prove that the composition rule (52) is still valid @1dn—1 < 8 < n. If 8 = nanda = m, we can obviously get
for the fractional derivatives defined in Eq. (41). To com- the composition rule of tydt® and d'/dt’. If 8 # n, from the

@
R.DE| ()| =R DFf(t L =01,
R.Df| ()] R.DPE(D) Jm =0 §=0l-.n (57)

And if 8 = nanda # m, from the existence of the derivative

”Z‘}‘ fO(b)(t — b)i~P"

N2 T -p-m PSR 9 e we get
In fact, Podlubny proved that [9] lim & =0 j=0,1,---,n+m (58)
T——00 (t — )(Y+,B j ’ ’ ’ :
RDP[f™(1)] = RDP*"f (1) :
Then, using Egs. (51), (53), (57) and (58) we obtain
fA(b)(t — b)i-P" d” Pl R ~afc
Z I peR  (54) o = D €D f(1)]
t
From Eqg. (54), we can directly obtain Eg. (53) for functions [ fO(r)dr ]
that are smooth enough. Then for functidi() in Eq. (25) rn=p) J (t-op"
we have - R D¢[R.DF f<“>(t)] R Dy 10
R P[] —
R .DPIFO(1)] =0 L |
- fO(b)(t - b)i—F
—R_DP"f(t) [RD‘“ﬁf(t) O
—o I'l+j-a-
= fOb)(t — b)i-Pn " 4 &
-+
A JZ ravjpn <% - ddt(,ﬁﬁ(t)- 59)
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This is the composition rule of fractional derivatives we havef~(t) [0 t<O 0 = f(t), t<O, (65)
tried to get. It is of great importance in the application of */ — ft), t>0, 1o t>0.

fractional derivatives. It should note that the composition _

rule The functionf(t) contains the information abodui(t) before
do of g-atB the starting time and it is substituted into the original equa-
prreger f(t) = prreevs f(t), a, =20 (60) tion as given conditions, which can be viewed as the “initial

) o o conditions” of the fractional dierential equations. It reflects
is not valid in general. However, from the derivation of the influence of the behaviors 6ft) before the starting time

Eq. (59) we can see that Eq. (60) is valid as long as to the evolution of the system. Thus the original equation
fO)(b)(t — b)itep ) is reduced to the fractional fierential equation of (t) with
o Tt ita-p) 0, j=021--,n-1 (1) zeroinitial conditions at = 0_. In particular, for linear frac-

tional differential equations the Laplace transform method
can be used to obtain the solution of the equations

. " . . . . .
5 Initial conditions for fractional di fferential equations L_[% f(t)] _ L[ﬁwD{* f(t)] _ L[], (66)
As we have pointed in Sect. 1 that solution of a linear fracwhere the subscript=" is dropped just for convenience.

tional differential equation defined in terms of R—L deriva-
tives will require fractional initial conditions, while solution

of a linear fractional dierential equation defined in terms of
Caputo derivatives require only regular initial conditions tha
are familiar to us. This can also be seen from the formula for

the Laplace transform of R—L and Caputo fractional deriva; gt g study the linear vibration of the system depicted in

6 Discussion of a linear fractional oscillator with Scott—
Plair model

tives [9,10] Fig. 4. The spring is made of the fractional element material
n-1 whose constitutive equation can be expressed as
L[EDE ()] = L] - > SEDF ()], #u
k=0 F=-k¥—, 0<B<1, (67)
dis
n-1<a<n, (62) . .
whereu(t) denote the displacement of the partioie
and
n-1
L[SDef(1)] = s'LIF®] - ) &1 ®(0), o
k=0 Al F=-k—
/1 or’
n-l<a<n. (63) Y AAAA -
As a result, the Caputo derivatives are more popular with
Vv 7 7

the physicists. In this section we discuss the problem about
the initial condltlor_ls for the_cﬂfe_rentlal equations deflned in Fig. 4 Force diagram of the particle
terms of the fractional derivatives of Eq. (41) and give a

method to deal with the linear fractionalfidirential equa-

tions with arbitrary initial conditions. Thus we have
It is important to note that to solve the fractionaffdi- "y U
ential equations with lower termina#s — —co, we should —kﬂﬁw =M (68)
know the behavior of the solution before the starting time.
In other words, the fractional fierential equation can be re- Apply operator d?/dt™ to both sides of Eq. (68)
garded as a system with infinite number of “initial condi- 8 B 2
. ) . . i d? du d”* d?u
tions” which are given as the behaviors of the solution at anyk/lﬁdt_—ﬁ@ = mdt_—ﬁF' (69)

instant before the starting time. Thus the discussion about _ _ _ _
the initial conditions at the starting time would be meaningJn our problem the displacement functiat) and its deriva-
less. Let us consider a fractionafférential equation of (t).  tives are required to be bounded for> —co. Thus we have
The starting time is set tbo= 0 and we assume that the value () _h)j+s-2

X ) 3 . u(b)(t-Db) )
of f(t) at any instant before= 0 is already given. Then the lim ————- =0, j=01 (70)

k ) bo-co I'(1+]+8-2)
function f(t) can be written as
~ — Then according to Eqg. (59) we can obtain

f(t) = f(t) + f(1), (64)

d? d?u d*Fu
where =

P dE - dEr (71)
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Using Eq. (59) we also get

Oﬁ@ =u- lim u
dt=5 di8 ’

to-c0

(72)

Using Egs. (71) and (72), we finally obtain the fractional

vibration equation from Eq. (69)

u+ limu= 1 d*u
T W B dtzB

t——c0

(73)

wherew?”® = k#¥/m. Wheng = 1, Eq. (73) represents a

exponential decay equation. Whgn= 0, Eq. (73) repre-
sents a classical harmonic vibration equation, artknotes

(X, 1) = UEag| — (wt)*]

(t+ a2
rg-1)

t
= UO{EZ—ﬁ[ — (wt)*# ] - j; (t—1)"PErp2p

—uo{tl_ﬁ EZ—ﬁ,Zfﬁ’[ - (wt)z_ﬁ]}

><[ - WAt -

L B (r+ af" ————dr
re-1)

It can be easily verify thai(0) = E>_3(0)up = up, indicating

that the solution is continuous ait= 0. We also obtain the

(82)

the angular frequency of the system. In this paper, we set thgartial derivative ofi{x, t) with respect to time

“initial conditions” of the equation to

0,
() = {

Uo,

t<-a
—a<t<Q,

a> 0. (74)

Then we have limu = 0, and Eq. (73) can be reduced to

t——o00

2—
F L Pu=0  0<p<d (75)
a7 :
Fort > 0, we have
PP g o
e Dt ~u(t)
. 1
_ R 2By
=D P00 1) + —— %) e f - )1 ﬁ
B_ _ .
=R DZPGi(x 1) - uoﬂ (76)

re-1 -
from which we can obtain thé—Laplace transform of
d>Pu(x, t)/dt>* as

L[FFut (t+ay?
[ dt2# r@-1)

Then the Laplace transform of Eq. (74) is

] = AL[UW)] - s Pup + L[ ]Uo- (77)

SALIU(] - s-Puo + [(; " )ﬁl) ]u0+w2 ALIT)] = 0.(78)
Thus we have

) o5 1 (t+a)?
L[u) = B + 2B o~ PP + w2 P [ re-1)

] 0. (79)

Using the property [9]
1

L[t*1E, ,(-at?)] = ,
[ o(-at")] s1a

w1 (80)

s*+a’
where the Mittag—L#iler functionE,, and E, is defined
as[9]

a}’(z) Zr( k + )

we can obtain the inverse Laplace transform of Eq. (79)

L[E.(-at")] =

E(Y (Z) = Ea/,l(z)a (81)

@ Springer

T = tof - (2~ Bl e - w2
t
- f (t- 1) PEapag| - 0Pt - 1)*7|
x(;(;a)ﬁl)zd } 83)
Thus, for 0< 8 < 1, we have
daj N R
o~ MM | FapTE-DF
I U T)l L =0, (84)

We see that we can get the same values ahd di/dt at

= 0 for solutions with dferent values of. This is an
important conclusion. From Eq. (63) we know that the solu-
tion of the linear fractional dierential equation (75) defined
in terms of the original Caputo derivative is uniquely deter-
mined by the initial values af &nd di/dt at the starting time.
However, here we see that to solve the equation uniquely,
it is not enough that we only know the initial values at the
starting time. This verifys the statement in Sect. 5 that the
discussion about the initial conditions at the starting time for
a fractional system is meaningless and that infinite number
of “initial conditions” are needed to determine the solution
uniquely.

As motivation for the general case, let us first consider

three special cases of solution (82). Bot 1, we can get

1
00 = {Ert-ot - [ El-ot- 01D e
= e‘“’tuo, (85)
where
(—wt) v 1
Ex(-wt) = Z D ' 70~ ° (86)

Forp = 0, we can get

t
) = (B~ - [ (- DBeal-w?(t 7))
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(r+a)? dr}uo o Coswt (87) the fractional-order system. # < a., the system still has
r(-1) ' a strong memory of the displacement jumpt at —a and
where thus the material shows an overshofieet due to inertia;
o ok otherwise, the relaxatiorfiect play a dominant role and the
Eo[—(wt)?] = Z L (wt)™ _ = cosowt, displacement of the material monotonically decreases in the
rk+1) (9) neighbor oft = 0. Our calculation shows that, ~ 0.4 in
1 the case off = 0.5.
1"
We can see that Egs. (85) and (87) are the solutions of Y
exponential decay equation and classical harmonic vibra- ‘,.-‘ ".,‘
tion equation, respectively. Finally we consider the case of ! v
a— +oo !!' l"‘.
t ."l‘.- “
o) = Jim_{Eo sl-(@0?#] - [ (=0 PEa s oy
i — p=100%
2
_ 2B 2-8 (T+ a)ﬁ === =050 |“
X[~ P(t = 1) P+ TG-1) dr w f=025 '\“
=== =0 \ )i
= UoEy_g[—(wt)Z#]. (89) _ AN
6 8 10
Because we have prove0) = up and di(0)/dt = 0, in this .

case we can get'd/dt* = CDau from Eq. (44). In fact our
solution (89) is conS|stent W|th that obtained using Caputdig. 5 Evolution of the variables* for a* — +co
derivativegD;’u(t). It should note that if we taka = 0, we

have 1.0 s
AU _ rpyoyy, (90)
dtr 05 - / \
However, the improper integral in Eq. (82) is divergent at { 4
7 = 0 whena = 0. Thus Eq. (75) can not be solved using Pl .,_‘j'k
R—L definition§D{ u(t). =0 :

Now let us study the evolution of solution (82) through — B=100 }
numerical simulation. The variables t'anda are now, re- ~0.5 - =050 "-.!
spectively, expressed as the non-dimensional variables y e B=025 "\.._
b/up, t* = wtanda® = wa. We first study the influence of the N/ £=0 N
value ofg on the evolution ofr(t). Fora — +co, theu -t —1.00 ; et " . . ‘»--"']0

curve is plotted in Fig. 5. In the case®k 1, the solution is

an exponential decay, while a harmonic oscillation appears
in the system witlg = 0. For 0< g < 1, the behavior ofi  Fig. 6 Evolution of the variabler (t) for a“ = 1
is similar to that of damped vibration. The smaller the value

of 8, the more obvious the oscillation ofand the slower the 15
speed of the decay af Similar phenomenon is also found — B=100
in the case where the value afs finite (see Figs. 6 and 7). . e f=085

In Fig. 7, a phenomenon of overshootwft) in the neigh- 10

bor oft = 0 is observed in the system. It should be pointed

out that the slopes of curvgs= 0.85,8 = 0.5 andB = 0.05 0.5

in Fig. 8 are all equal to zero (see Fig. 9). Y
Then we study the influence of the valueaifon the 0

evolution ofu*(t). Let us consider the case gf= 0.5. The \

influence of the value o&* on the behavior oti* can be \ Y

........ -05 N
p=050 Y

..... B=005 [/ 7%,

p=0 ’."‘ .'\:'-\_

. . . . ) -0.5 Y *
observed in Fig. 8. We can find a critical valag of a*. N L e
For a* < ag, the behavior olu* is still similar to that of \ A \
damped vibration. However, fa* > ac, the phenomenon L 5, p 5 10

of overshoot oiu*(t) in the neighbor of = 0 is observed in
the system. In fact, the behavior of(t) is determined by
the combination of memoryfiect and relaxation féect of ~ Fig. 7 Evolution of the variabler(t) for a = 0.1
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position rule of fractional derivatives is given. Based on the
new definition of fractional derivatives, we discuss the prob-
lems about the initial conditions for fractionalfidirential
equations As an example we study a linear fractional oscil-
lator with Scott—Blair model and give an analytical solution
of the equation under given conditions.
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