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Abstract This paper analyses the bending of rectangulanew technique has good accuracy and better convergence
orthotropic plates on a Winkler elastic foundation. Appro-speed than other methods, especially in relation to internal
priate definition of symplectic inner product and symplectidorces. A fully clamped rectangular plate on Winkler foun-
space formed by generalized displacements establish duddtion is solved to validate application of the new methods,
variables and dual equations in the symplectic space. Theith solutions compared to those produced by the Galerkin
operator matrix of the equation set is proven to be a Hamilmethod.

ton operator matrix. Separation of variables and eigenfunc-

tion expansion creates a basis for analyzing the bending : . )
rectangular orthotropic plates on Winkler elastic foundatiori1)<feywOrds Orthotropic plate Symplectic spaceWinkler

and obtaining solutions for plates having any boundary cone-IaStIC foundation Analytical solution
dition. There is discussion of symplectic eigenvalue prob-
lems of orthotropic plates under two typical boundary cony
ditions, with opposite sides simply supported and opposite

sides clamped. Transcendental equations of eigenvalues and
symplectic eigenvectors in analytical form given. Analyti'Plates positioned on elastic foundations such as building

cal solutions using two example_s are_pres_,ented to show tri’gundation plates and pavement slabs are widely used in
use of the new methods described in th|s_ paper. To ve Sngineering as construction materials. The Winkler model
ify the accuracy and convergence, a fully simply supporte often used to describe the contact pressure of founda-

plate that is fully and simply supported under uniformly dis;@zns and plates, and plates often satisfy the Kir¢hhg-

Introduction

tEbul_ted load ';‘ l:jseddtohcompare thﬁ (éanSRS'C""II Na\;]ler mhetho othesis[1]. Due to mathematical complexity, analyzing the
the Levy method and the new method. Results show that t nding of plates on elastic foundations is limited to defi-

nite shape and boundary conditions of the plates. Classical
The project was supported by the National Natural Science Foufinethods like the Navier method and the Levy method can
dation of China (10772039 and 10632030) and the National Basige applied to plates with two opposite sides that are sim-
Research Program of China (973 Program) (2010CB832704).  ply supported but can not be applied to plates with other
boundary conditions and convergence of internal forces is

W.-A. Yao () - X.-F. Hu not satisfactory. Numerical approximations are often em-
State Key Laboratory of Structural Analysis ployed for other boundary conditions, such as in Selvadu-
for Industrial Equipment, rai's study of thin plates on soil-foundation, which uses a
Dalian University of Technology, finite difference method [2], Kong and Cheung [3] studied
116024 Dalian, China rectangular plates by using a finite strip method, Cheung and
e-mail: ywa@dlut.edu.cn Zienkiewicz [4] used a finite element method based on the
Winkler model to study rectangular plates. Sadecka [5] con-
F. Xiao ducted finitéinfinite element analysis of a thick plate on a
Department of Computer Science, layered foundation. Silva et al. [6] used a numerical method
Dalian Medical University, to analyze plates on elastic foundations. Sladek et al. [7]
116044 Dalian, China used the meshless local Petrov—Galerkin method to study or-
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930 W.-A. Yao, et al.

thotropic thick plates. The relationship between deflection and bending mo-
A new symplectic dual solution method can be used tanents is specified as

solve elasticity in symplectic space via separation of vari-

ables and eigenfunction expansion [8, 9]. Yao et al. [10 Mx Du Dz 0 OxoW

studied an elastic wedge to reveal paradoxical characterig- My, | _| D;; Dy O ByyW

tics. Zhong et al. [11] introduced bending moment func-

tions to propose new formulations of Kirchifiplate bending 2My 0 0 Des OxyW

problem and solve the pure bending of a long plate of semi- _ _
infinite dimension in symplectic space. Lim et al. [12, 13]WhereDi1, D12, D22, Des are bending stiness coficients of

used bending moment functions to provide a benchmark & orthotropic platedy andd, denote first order partial dif-
exact solutions for rectangular thin plates, which were sup/€rential with respect to variablesandy, respectively, the
ported at the corers or simply supported on the two opposif§hers are similar in the following derivation.

sides. Yao et al. [14, 15] applied the symplectic method to ~ Equilibrium equations for a thin plate on Winkler elas-
obtain solutions for an orthotropic thin plate and a Reissnelic foundation are

, )

plate. 0xQx +0,Qy +q—kw=0
Despite many advances, methods used to analyze thinXQX vQy+d '
plates can not be applied directly to plates on foundation du@xMx + dyMxy + Qx = 0, (2)

to deflection that does not appear in basic variables. ThigyMy +0xMyy + Q, = 0,
paper applies a new symplectic method to the bending of
orthotropic plates, based on the Winkler elastic foundationvherek > 0 is the modulus of Winkler foundation amgis
To start, this paper describes release of constraint betwedistributed load on the plate.
slope and deflection yields dual equations formed by dual  Equations (1) and (2) can be derived from the
variables in symplectic space. Schemes to separate variablasllinger—Reissner variation principle
and eigenfunction expansion are implemented. There is dis-
cussion follows of symplectic eigenvalue problems for or-s f My + MySyyW + 2Myydy W
thotropic plates with typical boundary conditions, namely, JJe
two opposite sides simply supported and two opposite sides 1
that are clamped. -U —qw+ Esz)dXdy =0, 3)

To verify accuracy and convergence of the new method o
presented here, a fully supported plate under uniformly dis¥here complementary energy density is
tributed load is compared using the Navier method and Levy 1
method. Results show that the new method has good accd-= m[
racy and better convergence speed than earlier methods, es- (D11D22 - D))
pecially regarc_iing internal fc_)rce.s. A fully F:Iamped recta}ngu— 4(D11D2p — sz) ,
lar plate on Winkler foundation is solved in order to validate ~ +——F——— Mxy]~ (4)
applicability of new methods. Solutions are also compared 66
with the Galerkin method. Assuming external normal and tangent directions of the
boundary to ba ands, respectively, ff, s) composes a right-
handed coordinate system and total equivalent shear forces
on sides of a rectangular plate are

D22M)2( + D]__‘]_M? — 2D12MXMy

2 Fundamental equations

The rectangular domain under consideratio®is- {-a < Vi = =0sMns + Qn = =9nMp — 20sMns. (®)
X < a, —b <y < b}. Directions of positive internal forces on

the plate are shown in Fig. 1. Thus, boundary conditions of a plate can be specified.

In general:
(1) For a free edge, bending moment and total equiva-

. @I lent shear force are
y e ‘ Mn=M,  Vp= V. (6a)
Z/ lA (2) For a simply supported edge, bending moment and
' deflection are
M, /v’l M, Mo= M W=W. (6b)
0, S=kw (3) For a clamped edge, the deflection and rotation are
Fig. 1 Directions of positive internal forces on a rectangular plate w = W, OnW = 6_?n (6¢)
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Symplectic system based analytical solution for bending of rectangular orthotropic plates on Winkler elastic foundation

3 Derivation of symplectic system

Bending momenM, and equivalent shear foradg in the x-
direction are denotel andV, respectively. The symbol™

and the symplectic inner product is

b
b
(V1,V2) = fb VIJVzdy + DGG(WlaXyWZ - WzaXyW]_)y:_b. (15)

Equation (15) satisfies the four conditions of the symplectic

in the foIIOWing derivation denotes fiierential with respect inner product [9]. Hence, vectorforms a symplectic geom-

to X, i.e.w = dy.

Introducing constraint
0 =w,

@)

and Lagrange multiplie¥ into variation formula Eq. (3),
produces the new variation formula

5ff [Mé+ My W + 2Myy0 — QW+ %ka
Q

—U + V(W 9)]dxdy 0. ®)

The variation of Eq. (8) with respect td, andM,y are

D1 D?

_ D _ Do
My = Gy + (D22 Dll)ayyw, )

Substituting Eq. (9) into Eq. (8) and eliminatiiy, andMyy
yields a mixed energy variational principle

D

(sff{var M6 — H}dxdy = 0, (10)
where
1 1 D?

H=V —-kV\F——(D —_12) 2

6+ qw > 5\P2-p (Oyyw)

D1, 1 , 1

-—M -2D — M2 11
D1 OyyW 2 66(0y0)* + 2D1, (11)

The stationary requirements of Eq. (10) yield a group of

equations that can be written in matrix form

v=Hv+q, (12)
in which the operator matrix is
0 1 0 0
D12 1
-—0 0 0 —
Dy D11
H= D2
D k]
12 12
k+(D22— D—)ayyyy 0 0 D—llayy
(13)

and the nonhomogeneous tegqm= {0 0 —q 0}" describes
the load acting in the domairnv. = {w 6 V M}T is the full
state vector.

etry space in accordance with the definition of the symplectic
inner product (15). Two vectors are symplectically orthogo-
nal if their symplectic inner product is zero. Otherwise, the
vectors are symplectic adjoint.

Integration by parts yields

(V1,HV2) = (va,Hvy)
D? D
+{W1[(D22 - i)ayyyWZ + —126yM2 + Desaxygz]
D11 D11

D? D
—Wz[(Dzz - D—Jl'i)ayyywl + D—anMl + D663xy91]

D2 D12
—GW[(D ——12)6W —M]
yWi|| D22 Du. yy2+D11 2
D2 D
+6yW2[(D22 - D—lz)ayyW]_ + D—12 Ml]
11 11

b

+D66[91(9y(6XW2 - 92) - 926y(c9xw1 - 91)]} ) (16)
y=—

Hence, ifv; andv; satisfy any of the three correspond-

ing homogeneous conditions of Eq. (6)yat +b and

oy(Oxw; —0j)=0, (j=12), aty==b, @7
there is identity
(V1, HVz) = (v, Hvy). (18)

Hence, the operator matrix is a Hamilton transforma-
tion (operator matrix) in the symplectic space.

Vectorsv; andv; in Identity (18) need not satisfy do-
main diferential equations (12). Equation (7) may be untrue,
so boundary conditions (17) are needed. But if the vectors
satisfy Eq. (12) in the domain, those vectors must also sat-
isfy boundary conditions (17).

4 Symplectic eigenfunction expansion

A homogeneous equation corresponds to Eq. (12)
vV = Hy, (29)

Equation (19) can be solved by separating variables, by
assuming that

For the purpose of discussing the property of operator

matrix H, the unit symplectic matrix is

TS

o (14)

Vv =2(¥(y). (20)
and substituting Eq. (20) into Eq. (19) gives

£(X) = explux), (21)
as well as the symplectic eigenvalue equation

HY =y, (22)
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932 W.-A. Yao, et al.

wherey is an eigenvalue, ang(y) is an eigenvector that General solution (26) can divide into two groups: par-
must satisfy boundary conditionsyat +h. tial solutions relevant t@\;, Bj, C;, D; (j = 1,3) relate to

It can be proven that eigenvalue zero does not exist fasymmetric deformation on thg-axis and partial solutions
Eqg. (22) with typical boundary conditions (6). For eigen-relevant toA;, Bj, C;, D; (j = 2,4) relate to asymmetric
solutions of nonzero eigenvalues, Eq. (22) is a system afeformation on the-axis.

ordinary diferential equations with respect ypwhich can In cases wher@? = —k/Di1 or i = 4kDyy/[(2D1 +
be solved py determ'inin'g eigenvaluen y-direction. The p¢)2 — 4D,;D,,], the general solution of Eq. (26) has dif-
corresponding equation is ferent forms because Eq. (24) has double roots. Such cases
—u 1 0 0 can be discussed similarly to cases discussed in the presen
D 1 paper and are not considered here.
—D—lzflz —H 0 D Substituting Egs. (26) and (27) into homogeneous
1 , R B (23y boundary conditions at = b yields a homogenous equa-
K+ (D22 _ D_lz)/l4 0 —u %/12 e tion for four unknown constantd; (j = 1,2,3,4). Allow-
D11 Di1 ing the determinant of its céiécient matrix to vanish gives
0 “Desl2 -1 —u a transcendental equation for symplectic eigenvalugolv-
ing the transcendental equation and substituting eigenvalue

Expanding the determinant yields eigenvalue equation ~ #n (N = 1,2,---) into the homogenous equation gives the
nontrivial solutionA; (j = 1,2,3,4), allowing eigenvector

D224* + (2D12 + Deg)A%u? + Dagut* + k= 0. (24)  y, that corresponds to eigenvalugto be obtained. Eigen-
Assuming thap* # —k/D1; andu® # 4kDyy/[(2D1, +  Valueu, and expression of eigenvecipy correlates with the

Des)2 — 4D11D22], roots of Eq. (24) must be unequal mutu- SPecific boundary condition gt= +b.

ally, i.e. two sets of mutually opposite value. Let After obtaining the eigenvalues and eigenvectors with

adjoint symplectic orthogonality property, the general solu-

tion of Eq. (12) can be expressed [9]

a =

(2D12 + Dge) ,
MR T )

1
\/f VI(2D12 + Degs)? — 4D11D5]u* — 4kDyp — D o
22 22 .
(25a) V=V'+ ) [CoexplnXynl, (28)
=1

B= . . . .
wherev* is a particular solution to transverse logdwhich

\/_L V(2D 12 + Do) — 4D11 D5l — 4kDyp — M#z, only needs to satisfy Eq. (12) and boundary conditions at
2Dz, 2D2 y = +b. Substituting Eq. (28) into boundary conditions at

(250) 5~ +a, allows constants, (n = 1,2, --) to be determined
anda, 8 should satisfy Ref) > 0, Refg) > 0, or Im@) > 0  and analytical solution to be given.
(Im(B) = 0) when Reg) = 0 (Ref3) = 0). Hence, the general It is hard to have explicit expression of the particular
solution of Eq. (22) is solution for the complex domain loagor nonhomogeneous
Asch(@y) + Assh@y) + Asch(@y) + Assh@y) boundary co_ndltl_ons at = +b. But an expand_lng form of _
that expression is possible by applying adjoint symplectic
y- Bich(ay) + Bzshay) + Bsch(@y) + Bash(y) (26) orthogonality property to eigenfunctions [9].
Cich(ay) + Coshiy) + Csch(y) + Cash@y) |
Dich(ey) + Dzshiy) + Dsch(By) + Dash(zy) 5 Plates with two opposite sides simply supported

where constant#\;, Bj, Cj, Dj (j = 1,2,3,4) are not all

independent. Only four independent constants, eAy. . . . L
(j = 1,2,3,4) are chosen as independent constants. SulBrJ a typical orthotropic plate with two opposite sides that are

stituting Eq. (26) into symplectic eigenvalue equation (22)3'mgIy s_u%)olrjted_arédgilgmged,_ble]r_lilgﬁDBBsE c;o?i?lgclants
yields relationships between the constants arébay = L, D1z = B.510, Doz = » Ve = £.90. FOr

a plate with two opposite sidgs= +b that are simply sup-

Bj = uA; (1=1234), ported, boundary conditions in terms of a full state vector
Cj = —u(D1y? + D120 + Dgsa®)A;  (j = 1,2), are
- 2 2 A (i D D?
Cj = —u(D1yu” + D128 + DegB)A;  (j =3,4), 27) w=0, D_lex 4 (D22 - D_lz)ayyw =0, at y==b, (29)
Dy, . 11 11
o 2, P12 2\ -
Dj = Dll('“ LY )A‘ (1=12) This problem divides into two sets, symmetric and

, Dn, _ asymmetric solutions with respect to theaxis. The sym-
Dj = D11<,U + D—llﬂ )Aj (1=3.4). metric solution is

@ Springer



Symplectic system based analytical solution for bending of rectangular orthotropic plates on Winkler elastic foundation

Aich(ay) + Asch(py) The determinant of cdkcient matrix vanishes to produce the
Bich(ey) + Bsch(3y) npntrivial solution. '_I'he transpendental equatign of nonzero
U= , (30) eigenvalues for antisymmetric plate deformation with both
Cich(ey) + Csch(sy) opposite sides that are simply supported is
Dich(ay) + Dsch(@y) sh@b)sh(@b) = 0. (38)
where constant8;, C;, Dj(j = 1,3) are determined by 5 of the above equation are specified by
Eq. (27). Substituting Eq. (30) into the homogeneous bound-
ary condition equation (29) gives Manb = £f £ig, (39)
ch(@b)A; + ch(Bb)Az = 0, where
D1ou? + Dose®)ch(ab)A 31
Dz + Daze)ch(@)As GO \/—2D12 + Dosjon2 1 [02214za 1 e, (40a)
+(D1ou? + D2yB?)ch(Bb)Az = 0. 4Dqq 2 N Dn
The determinant of cdicient matrix vanishes in order to 2D, + Degs
. ; ; g=/f2-—S5— %7 (40Db)
allow a nontrivial solution. The transcendental equation o 2Dy,

nonzero eigenvalues for symmetric plate deformation wit

two opposite sides that are simply supported is

ch@b)ch@b) = 0. (32)
The roots of Eq. (32) are

unb = xd xie, (33)
where

_ 2D15 + Degs 142 2 1 Dgz[( 1)4 2 ]
d—JTM(I'FE)ﬂ' +§ D—ll|+§7r+m4,

(34a)
2D + Des 1\2
— 2 _ = 2
e= \/d o (l + 2) 2, (34b)
m = /kb*/Dao. (34c)

For every given nonnegative intedée 0,1, 2,---), Eq. (33)
gives one group of four eigenvalues irfftdrent quadrants.

Simultaneously, a set of nontrivial solution &f, Az is
specified by

Ay = ch(gb), As = —ch(b). (35)

tl]:or every given positive integér(= 1,2,3,---), Eq. (39)
gives a group of four eigenvalues infidirent quadrants.

Substituting every rogt,, into Eq. (37) gives a non-
trivial solution of Ay, A4

Ay =sh@b), A4 =-sh@b). (41)

Other constants are determined by Eq. (27), allowing the
corresponding eigenvecteg.

The general solution in the form of Eq. (28) with un-
known codficientsc,(n = 1,2,---) can be given analyti-
cally. Unknown coficients can be determined by substi-
tuting Eqg. (28) into boundary conditionsat +a.

In practical applications, it is only necessary to solve
the firstN terms in Eq. (28) [9]

N
V=V ) o explmX)un). (42)

n=1
Expression (42) strictly satisfies basic equations in the do-
main and boundary conditionsyat +b, but does not satisfy
boundary conditions at = +a, so that finite terms can be se-
lected. Only wherN — oo, boundary conditions at = +a
in point-point can be satisfied strictly. Here, unknown con-

Substituting Eq. (35) into Egs. (26) and (27) produces corftantsey(n = 1,2,---, N) can be determined by the variation

responding eigenvectar,.
For antisymmetric deformation

Acshiay) + AsshBy)
B.sh(y) + B4sh(By)
Cash(y) + C4sh@By)
Dzshiay) + Dsshy)

(36)

where constant®;, C;, D; (j = 2,4) are determined by
Eq. (27). Substituting Eq. (36) into the homogeneous boun

ary conditions (29) gives
sh@b)A; + sh{Eb)A, = 0,
(D121? + Da2e®)sheb)A;
+(D121? + D228%)shBb)As = 0.

(37)

equation of boundary conditions at= +a.

Eigenvalues should be selected in ascending order of
the modulus at the same time that complex conjugate eigen-
values are selected.

Example 1 A rectangular plate that is fully and simply
supported on a Winkler elastic foundation can be solved un-
der uniformly distributed load). Ratio of the side length
is a/b = 1.5 and the modulus of Winkler foundation is
k = 200D/b*.

A special solution caused by distributed loadh the

Homain is selected

w(y) = asch(ty) costy) + azshty) sin(ty) + E (43)
where

t = K740, (44)
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934 W.-A. Yao, et al.

and codicientsa; anda, are determined by satisfying re- W= i Y. sin mrX (48)
guirements of the boundary conditions ~ m a’

w'(b) = 0, My (b) = 0. (45)  can be applied to solve this problem analytically. Table 1 lists
The problem is symmetric with respect to theaxis solutions of orthotropic plates given by the Navier method,

and the expanded expression can only be constructed frofe Levy method and the new method presented in this pa-

symmetric eigen-solutions of nonzero eigenvalues (30) arf€"- The solutions are obtained below, respectivelfec

(33). Substituting general solutions (42) and (43) into th&Nt expansion terms. The r.esult of the Navier method with
variational formula for the boundary conditionsxat +a, 500x 500 expansion terms is regarded as a benchmark. Re-
sults show that solutions produced by the new method pre-

fb(w(sv _ MoB_dy= 0. (46) sented in this paper converge more quickly than solutions
b produced by the Navier method or the Levy method, espe-

(n=1,2,---,N), providing analytical solution. method presented in this paper usiNg= 8 (two groups
The exact solution of the Navier method of eigenvalues) are quite satisfying and results produced by
o oo usingN = 12 (three groups of eigenvalues) are more pre-
W= Z Z AqnsSin X sin @, (47)  cise than the Navier method with = 80 80 and the Levy
=1 n=1 a b method withN = 80, especially for internal forces.

and the exact solution of the Levy method

Table 1 Analytical solutions of a plate that is supported fully and simply under uniformly distributed load

Number of ex- Dw(0, 0)/qb* My(0, 0)/gk? My/(0, 0)/qb? Dw(a/2,b/2)/ql*

pansion terms Solution Err86 Solution Errof% Solution Errof% Solution Errof%

4 0.004 766 50-0.000 056 14 —0.002428 82 0.004507 74 -0.116824 77-0.00053041 0.00344348 -0.006884 22
Present g 0.004 76651 0.00000000 —-0.00242871 0.00002542 —0.116 82539 0.00000038 0.00344371 —0.000007 76
method 12 0.004 76651 0.000 00000 -0.002428 71 0.00002420 -0.11682539 0.00000037 0.00344371 -0.00000002

16 0.004 76651 0.00000000 —0.00242871 0.00002420 -0.116 82539 0.00000037 0.00344371 0.00000000

10 0.004 766 35-0.003 34394 —-0.002 357 28-2.94112000 -0.116 80325-0.01895371 0.00344393 0.00619171
Levy's 20 0.004 766 50-0.000 107 45 —0.002 419 68-0.37204181 -0.116 82259-0.00239747 0.00344371 -0.00020661
method 40 0.004 766 51-0.000 003 38 —0.002 427 58-0.046 616 88 —0.116 825 04—0.00030021 0.00344371 -0.00000658

80 0.004 766 51-0.000 000 11 —0.002 428 57—0.005 81005 -0.116 825 35-0.000 03723 0.00344371 -0.00000020

10x 10 0.004 766 34-0.003 401 84 —0.002 356 45-2.975194 91 -0.116 772 37-0.04538554 0.003 44393 0.006 30563
Navier's 20x 20 0.004 766 50-0.000 109 34 -0.00241957-0.376 50307 —0.116 818 63—0.005 78663 0.00344371 -0.00021022
method 40x 40 0.004 766 51-0.000 003 44 —0.002 427 57-0.047 18594 -0.116 824 54-0.00072810 0.00344371 -0.000006 70

80x 80 0.004 766 51-0.000 000 11 —0.002 428 57—0.005 88185 —-0.116 82529-0.00009094 0.00344371 -0.00000021

500x 500 0.004 76651 — -0.00242871 — -0.11682539 — 0.00344371 —

When finite expanding terms are selected in the Naviesolutions degrades rapidly due to the existence of exponen-
method (47) and the Levy method (48), the Navier solutial term in eigen-solutions.
tion can strictly satisfy the boundary condition that is fully
and simply supp_orted anq thg Levy solution can satisfy t.hg Plates with two opposite sides clamped
boundary condition that is simply supported on opposite
sides but can not strictly satisfy the basicfeliential equa- ] o
tions in the domain. Convergence rates are very slow, espE9T @ Plate with two opposite sidgs= +b clamped, bound-
cially for internal forces. In contrast, the solution describedy conditions in terms of full state vector are

in the present paper has finite expanding terms that cap— o, dw=0, aty==zh (49)
strictly satisfy the domain élierential equation and bound- ] o ) )
ary conditions ay = +b, but does not strictly satisfy bound- This problem divides into two sets, symmetric and

ary conditions ak = +a. Fortunately, with more and more asymmetric solutions with the-axis. Substituting symmet-

expanding terms are selected, the influence ignored eigefic 9eneral solution (30) and formula (27) into the boundary
conditions (49) gives
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Symplectic system based analytical solution for bending of rectangular orthotropic plates on Winkler elastic foundation 9

ch(@b)A; + chb)As = 0, 5o duadrant are listed. Eagh has a corresponding symplec-
ash@b)A; + Bsh@b)As = 0. (50) tic adjoint eigenvalue-u, and there are a total of four com-

) i ) i , plex conjugate eigenvalues. Equation (51) shows that these
The determinant of cdicient matrix vanishes, allowing the on-er eigenvalues are all single roots.

nontrivial solution. Hence, the transcendental equation of
nonzero eigenvalues for symmetric plate deformation with
two opposite sides clamped is

Bch(ab)shb) — ash@b)ch(gb) = 0. (51) - > . 7

Rootsu, (n=1,2,---) of transcendental equation (51) Refunb) 3.4257 8.2839 13.1455 18.0080
do not have analytic expression as Egs. (33) and (34), but can

be obtained by numerical technique [16]. Substituting root Im(nb)
un into Eq. (50) gives nontrivial solutiody, As. Expres-
sion for Aq, As is still Eq. (35); eigenvectors of symmetric ) ] ]
plate deformation with two opposite sides clamped are still e asymmetric transcendental equation and eigenvec-
Eq. (30) with expressions of Egs. (27) and (35), but ther&e" for a plate with two opposite sides clamped are left to
are diferent eigenvalues. readers.

For modulus of Winkler foundatiok = 10D/b*, the Example 2 A fully clamped rectangular plate on Win-
first eigen\/a|ue3 of Symmetric p|ate deformation with twok|er elastic foundation is solved under uniformly distributed
opposite sides clamped are in Table 2, with roots in the firdpada.

Table 2 Eigenvalues of symmetric deformation when opposite
sides are clamped

2.6877 5.684 3 8.7219 11.7607

Table 3 Analytical solutions of a fully clamped plate undeffdrent modulus of Winkler foundation

Number of kb*/D
expansion terms 200 150 100 20 10 0.01
4 0.002390 0.002639 0.002946 0.003613 0.003718  0.003828
Present method g 0.002390 0.002639 0.002946 0.003613 0.003718  0.003828
DV(‘;(S; 0 12 0.002390 0.002639 0.002946 0.003613 0.003718  0.003828
3x3 0.002389 0.002637 0.002946 0.003612 0.003717 0.003827
Galerkin method 5, 5 0.002389 0.002639 0.002946 0.003613 0.003718  0.003 828
6x6 0.002389 0.002639 0.002946 0.003613 0.003718  0.003828
4 -0.002398 -0.002722 -0.003146 -0.004157 -0.004326 -0.004507
Present method g -0.002396 -0.002720 -0.003144 -0.004155 -0.004324 -0.004505
% 12 -0.002396 -0.002720 -0.003144 -0.004155 -0.004324 -0.004505
3x3 -0.002374 -0.002697 -0.003119 -0.004128 -0.004297 -0.004478
Galerkin method 5, 5 -0.002386 -0.002711 -0.003136 -0.004150 -0.004319 -0.004501
6x6 -0.002398 -0.002721 -0.003144 -0.004154 -0.004322 -0.004504
4 -0.102011 -0.113823 -0.128340 -0.159938 -0.164893 -0.170136
Present method g -0.102008 -0.113821 -0.128338 -0.159939 -0.164895 -0.170137
Mﬁg; 0 12 -0.102008 -0.113822 -0.128339 -0.159939 -0.164895 -0.170138
3x3 -0.101324 -0.113154 -0.127690 -0.159330 -0.164292 -0.169542
Galerkin method 5, 5 -0.101943 -0.113763 -0.128288 -0.159905 -0.164864 —0.170109
6x6 -0.102024 -0.113834 -0.128346 -0.159938 -0.164893 -0.170135
A special solution caused by distributed loadh the Since the problem is symmetric with respect to ihe
domain is still Eq. (43) with expression (44), but @itdents  axis, the expanded expression can only be constructed from
a; anda, are determined by boundary conditions symmetric eigen-solutions (30) with expressions (27) and
(35) for nonzero eigenvalues (51). Substituting general so-
wi(b) =0, 6(b) =0. (52) lutions (42) and (43) into the following variational formula
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under the boundary conditionsat +a, For a plate with dierent modulus of Winkler founda-
b tion with length-width ratica/b = 1.5, solutions using the
f (WoV + 05M);22,dy = O, (53) new method described in this paper by usiheg 4, 8,12 and
-b solutions using the Galerkin method are in Table 3. Using
gives a set of algebraic equations for unknown constants the new method wittN = 4, 8,12 and the Galerkin method,
(n=1,2,---,N) and an analytical solution. numerical solutions of a plate with Winkler foundation be
An approximated Galerkin method [17] with trial func- k = 10D/b* are listed in Table 4, in which fferent length-
tion width ratios are considered. Numerical results show excel-
o0 & lent agreement. The success of the present analysis indicates
w = (¢ - a%)(y* - b%)? Z Z amXTy?" (54)  that the new method described in this paper can be applied
m=0 n=0 to the clamped boundary condition.

is used to compare with the method presented in this paper.

Table 4 Analytical solutions of a fully clamped plate withférent length-width ratios

Number of a/b
expansion terms 1.0 15 2.0 2.5 3.0
4 0.003725 0.003718 0.003651 0.003645 0.003647
Present method g 0.003725 0.003718 0.003651 0.003 645 0.003647
DV:;(& 0 12 0.003725 0.003718 0.003651 0.003645 0.003647
3x3 0.003725 0.003717 0.003650 0.003631 0.003598
Galerkinmethod 5 5 0.003725  0.003718  0.003650  0.003645  0.003648
6x6 0.003725 0.003718 0.003651 0.003646 0.003647
4 -0.011280 -0.004326 -0.004279 -0.004501 —0.004521
Present method g -0.011282 -0.004324 -0.004279 -0.004501 -0.004521
%&0) 12 -0.011283 -0.004324 -0.004279 -0.004501 -0.004521
q 3x3 -0.011237 -0.004297 -0.004246 -0.004191 —0.003775
Galerkinmethod 5, 5 ~0011285 -0.004319 -0004263 -0.004492 —0.004537
6x6 -0.011280 -0.004322 -0.004282 -0.004510 —0.004530
4 -0.166333 -0.164893 -0161740 -0.161531 -0.161617
Presentmethod g -0.166357 -0.164895 -0.161739 -0.161531 -0.161617
My;g; 0 12 -0.166357 -0.164895 -0161739 -0.161531 -0.161617
3x3 -0.166131 -0.164292 -0.160827 -0.159868 -0.158366
Galerkinmethod 5, g ~0166362 -0.164864 -0161613 -0.161291 -0.161310
6x6 -0.166343 -0.164893 -0.161763 -0.161613 -0.161771
7 Conclusions (1) Analytical solutions of symplectic expansion form have

good convergence and precision, especially for internal

forces. These solutions leave ample room for authenti-

cation of benchmarks produced by numerical or approx-
Based on a symplectic system, the new analytical method for imation methods. Solutions of the new method by using
rectangular orthotropic plates on Winkler elastic foundation N = 8 (two groups of eigenvalues are selected) are par-
presented in this paper is superior to the methods of Navier ticularly striking.
and Levy, which can only be applied to plates with opposit€2) The symplectic method can solve not only the bending
sides simply supported. The new approach is more com- of an orthotropic plate with two opposite sides supported
plex than other methods, but can be used in any combination simply but also any other boundary condition. Besides,
of conventional boundary conditions. Numerical examples the new method is alsdfective for dynamic and stable
show two merits of the new method: problems of plates.
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Symplectic system based analytical solution for bending of rectangular orthotropic plates on Winkler elastic foundation

The present work expands the application of symplectic of Elasticity. Dalian University of Technology Press, Dalian
system and proves that symplectic methodology is a valid an- (1995) (in Chinese)

alytical method. Besides, this method can also be applied to® Yao, W.A., Zhong, W.X., Lim, C.W.: Symplectic Elasticity.
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