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Abstract This paper analyses the bending of rectangular
orthotropic plates on a Winkler elastic foundation. Appro-
priate definition of symplectic inner product and symplectic
space formed by generalized displacements establish dual
variables and dual equations in the symplectic space. The
operator matrix of the equation set is proven to be a Hamil-
ton operator matrix. Separation of variables and eigenfunc-
tion expansion creates a basis for analyzing the bending of
rectangular orthotropic plates on Winkler elastic foundation
and obtaining solutions for plates having any boundary con-
dition. There is discussion of symplectic eigenvalue prob-
lems of orthotropic plates under two typical boundary con-
ditions, with opposite sides simply supported and opposite
sides clamped. Transcendental equations of eigenvalues and
symplectic eigenvectors in analytical form given. Analyti-
cal solutions using two examples are presented to show the
use of the new methods described in this paper. To ver-
ify the accuracy and convergence, a fully simply supported
plate that is fully and simply supported under uniformly dis-
tributed load is used to compare the classical Navier method,
the Levy method and the new method. Results show that the
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new technique has good accuracy and better convergence
speed than other methods, especially in relation to internal
forces. A fully clamped rectangular plate on Winkler foun-
dation is solved to validate application of the new methods,
with solutions compared to those produced by the Galerkin
method.

Keywords Orthotropic plate· Symplectic space· Winkler
elastic foundation· Analytical solution

1 Introduction

Plates positioned on elastic foundations such as building
foundation plates and pavement slabs are widely used in
engineering as construction materials. The Winkler model
is often used to describe the contact pressure of founda-
tions and plates, and plates often satisfy the Kirchhoff hy-
pothesis [1]. Due to mathematical complexity, analyzing the
bending of plates on elastic foundations is limited to defi-
nite shape and boundary conditions of the plates. Classical
methods like the Navier method and the Levy method can
be applied to plates with two opposite sides that are sim-
ply supported but can not be applied to plates with other
boundary conditions and convergence of internal forces is
not satisfactory. Numerical approximations are often em-
ployed for other boundary conditions, such as in Selvadu-
rai’s study of thin plates on soil-foundation, which uses a
finite difference method [2], Kong and Cheung [3] studied
rectangular plates by using a finite strip method, Cheung and
Zienkiewicz [4] used a finite element method based on the
Winkler model to study rectangular plates. Sadecka [5] con-
ducted finite/infinite element analysis of a thick plate on a
layered foundation. Silva et al. [6] used a numerical method
to analyze plates on elastic foundations. Sladek et al. [7]
used the meshless local Petrov–Galerkin method to study or-
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thotropic thick plates.
A new symplectic dual solution method can be used to

solve elasticity in symplectic space via separation of vari-
ables and eigenfunction expansion [8, 9]. Yao et al. [10]
studied an elastic wedge to reveal paradoxical characteris-
tics. Zhong et al. [11] introduced bending moment func-
tions to propose new formulations of Kirchhoff plate bending
problem and solve the pure bending of a long plate of semi-
infinite dimension in symplectic space. Lim et al. [12, 13]
used bending moment functions to provide a benchmark or
exact solutions for rectangular thin plates, which were sup-
ported at the corners or simply supported on the two opposite
sides. Yao et al. [14, 15] applied the symplectic method to
obtain solutions for an orthotropic thin plate and a Reissner
plate.

Despite many advances, methods used to analyze thin
plates can not be applied directly to plates on foundation due
to deflection that does not appear in basic variables. This
paper applies a new symplectic method to the bending of
orthotropic plates, based on the Winkler elastic foundation.
To start, this paper describes release of constraint between
slope and deflection yields dual equations formed by dual
variables in symplectic space. Schemes to separate variables
and eigenfunction expansion are implemented. There is dis-
cussion follows of symplectic eigenvalue problems for or-
thotropic plates with typical boundary conditions, namely,
two opposite sides simply supported and two opposite sides
that are clamped.

To verify accuracy and convergence of the new method
presented here, a fully supported plate under uniformly dis-
tributed load is compared using the Navier method and Levy
method. Results show that the new method has good accu-
racy and better convergence speed than earlier methods, es-
pecially regarding internal forces. A fully clamped rectangu-
lar plate on Winkler foundation is solved in order to validate
applicability of new methods. Solutions are also compared
with the Galerkin method.

2 Fundamental equations

The rectangular domain under consideration isΩ = {−a <
x < a, −b < y < b}. Directions of positive internal forces on
the plate are shown in Fig. 1.

Fig. 1 Directions of positive internal forces on a rectangular plate

The relationship between deflection and bending mo-
ments is specified as

Mx

My

2Mxy

 =


D11 D12 0

D12 D22 0
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

∂xxw

∂yyw

∂xyw

 , (1)

whereD11, D12, D22, D66 are bending stiffness coefficients of
an orthotropic plate.∂x and∂y denote first order partial dif-
ferential with respect to variablesx andy, respectively, the
others are similar in the following derivation.

Equilibrium equations for a thin plate on Winkler elas-
tic foundation are

∂xQx + ∂yQy + q− kw= 0,

∂xMx + ∂yMxy + Qx = 0,

∂yMy + ∂xMxy + Qy = 0,

(2)

wherek > 0 is the modulus of Winkler foundation andq is
distributed load on the plate.

Equations (1) and (2) can be derived from the
Hellinger–Reissner variation principle

δ

∫∫
Ω

(
Mx∂xxw+ My∂yyw+ 2Mxy∂xyw

−U − qw+
1
2

kw2
)
dxdy = 0, (3)

where complementary energy density is

U =
1

2(D11D22 − D2
12)

[
D22M2

x + D11M2
y − 2D12MxMy

+
4(D11D22 − D2

12)

D66
M2

xy

]
. (4)

Assuming external normal and tangent directions of the
boundary to ben ands, respectively, (n, s) composes a right-
handed coordinate system and total equivalent shear forces
on sides of a rectangular plate are

Vn = −∂sMns+ Qn = −∂nMn − 2∂sMns. (5)

Thus, boundary conditions of a plate can be specified.
In general:
(1) For a free edge, bending moment and total equiva-

lent shear force are

Mn = M̄n, Vn = V̄n. (6a)

(2) For a simply supported edge, bending moment and
deflection are

Mn = M̄n, w = w̄. (6b)

(3) For a clamped edge, the deflection and rotation are

w = w̄, ∂nw = θ̄n. (6c)
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3 Derivation of symplectic system

Bending momentMx and equivalent shear forceVx in the x-
direction are denotedM andV, respectively. The symbol “·”
in the following derivation denotes differential with respect
to x, i.e. ẇ = ∂x.

Introducing constraint

θ = ẇ, (7)

and Lagrange multiplierV into variation formula Eq. (3),
produces the new variation formula

δ

∫∫
Ω

[
Mθ̇ + My∂yyw+ 2Mxy∂yθ − qw+

1
2

kw2

−U + V(ẇ− θ)
]
dxdy = 0. (8)

The variation of Eq. (8) with respect toMy andMxy are

My =
D12

D11
Mx +

(
D22 −

D2
12

D11

)
∂yyw, Mxy =

D66

2
∂yθ. (9)

Substituting Eq. (9) into Eq. (8) and eliminatingMy andMxy

yields a mixed energy variational principle

δ

∫∫ {
Vẇ+ Mθ̇ − H

}
dxdy = 0, (10)

where

H = Vθ + qw−
1
2

kw2 −
1
2

(
D22 −

D2
12

D11

)
(∂yyw)2

−
D12

D11
M∂yyw−

1
2

D66(∂yθ)2 +
1

2D11
M2. (11)

The stationary requirements of Eq. (10) yield a group of
equations that can be written in matrix form

v̇ = Hv + q, (12)

in which the operator matrix is

H =



0 1 0 0

−
D12

D11
∂yy 0 0

1
D11

k+

D22 −
D2

12

D11

 ∂yyyy 0 0
D12

D11
∂yy

0 −D66∂yy −1 0


,

(13)

and the nonhomogeneous termq = {0 0 −q 0}T describes
the load acting in the domain.v = {w θ V M}T is the full
state vector.

For the purpose of discussing the property of operator
matrixH, the unit symplectic matrix is

J =

 0 I

−I 0

 , I =

 1 0

0 1

 , (14)

and the symplectic inner product is

〈v1, v2〉 =

∫ b

−b
vT

1 Jv2dy+ D66

(
w1∂xyw2 − w2∂xyw1

)b
y=−b

. (15)

Equation (15) satisfies the four conditions of the symplectic
inner product [9]. Hence, vectorv forms a symplectic geom-
etry space in accordance with the definition of the symplectic
inner product (15). Two vectors are symplectically orthogo-
nal if their symplectic inner product is zero. Otherwise, the
vectors are symplectic adjoint.

Integration by parts yields

〈v1,Hv2〉 = 〈v2,Hv1〉

+

{
w1

[(
D22 −

D2
12

D11

)
∂yyyw2 +

D12

D11
∂yM2 + D66∂xyθ2

]
−w2

[(
D22 −

D2
12

D11

)
∂yyyw1 +

D12

D11
∂yM1 + D66∂xyθ1

]
−∂yw1

[(
D22 −

D2
12

D11

)
∂yyw2 +

D12

D11
M2

]
+∂yw2

[(
D22 −

D2
12

D11

)
∂yyw1 +

D12

D11
M1

]
+D66

[
θ1∂y
(
∂xw2 − θ2

)
− θ2∂y

(
∂xw1 − θ1

)]}b
y=−b

. (16)

Hence, ifv1 andv2 satisfy any of the three correspond-
ing homogeneous conditions of Eq. (6) aty = ±b and

∂y(∂xw j − θ j)= 0, ( j = 1,2), at y = ±b, (17)

there is identity

〈v1,Hv2〉 ≡ 〈v2,Hv1〉. (18)

Hence, the operator matrixH is a Hamilton transforma-
tion (operator matrix) in the symplectic space.

Vectorsv1 andv2 in Identity (18) need not satisfy do-
main differential equations (12). Equation (7) may be untrue,
so boundary conditions (17) are needed. But if the vectors
satisfy Eq. (12) in the domain, those vectors must also sat-
isfy boundary conditions (17).

4 Symplectic eigenfunction expansion

A homogeneous equation corresponds to Eq. (12)

v̇ = Hv, (19)

Equation (19) can be solved by separating variables, by
assuming that

v = ζ(x)ψ(y), (20)

and substituting Eq. (20) into Eq. (19) gives

ζ(x) = exp(µx), (21)

as well as the symplectic eigenvalue equation

Hψ = µψ , (22)
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whereµ is an eigenvalue, andψ(y) is an eigenvector that
must satisfy boundary conditions aty = ±b.

It can be proven that eigenvalue zero does not exist for
Eq. (22) with typical boundary conditions (6). For eigen-
solutions of nonzero eigenvalues, Eq. (22) is a system of
ordinary differential equations with respect toy, which can
be solved by determining eigenvalueλ in y-direction. The
corresponding equation is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ 1 0 0

−
D12

D11
λ2 −µ 0

1
D11

k+
(
D22 −

D2
12

D11

)
λ4 0 −µ

D12

D11
λ2

0 −D66λ
2 −1 −µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (23)

Expanding the determinant yields eigenvalue equation

D22λ
4 + (2D12 + D66)λ2µ2 + D11µ

4 + k = 0. (24)

Assuming thatµ4 , −k/D11 andµ4 , 4kD22/[(2D12 +

D66)2 − 4D11D22], roots of Eq. (24) must be unequal mutu-
ally, i.e. two sets of mutually opposite value. Let

α =√
1

2D22

√
[(2D12 + D66)2 − 4D11D22]µ4 − 4kD22 −

(2D12 + D66)
2D22

µ2,

(25a)

β =√
−

1
2D22

√
[(2D12 + D66)2 − 4D11D22]µ4 − 4kD22 −

(2D12 + D66)
2D22

µ2,

(25b)

andα, β should satisfy Re(α) ≥ 0, Re(β) ≥ 0, or Im(α) ≥ 0
(Im(β) ≥ 0) when Re(α) = 0 (Re(β) = 0). Hence, the general
solution of Eq. (22) is

ψ =



A1ch(αy) + A2sh(αy) + A3ch(βy) + A4sh(βy)

B1ch(αy) + B2sh(αy) + B3ch(βy) + B4sh(βy)

C1ch(αy) +C2sh(αy) +C3ch(βy) +C4sh(βy)

D1ch(αy) + D2sh(αy) + D3ch(βy) + D4sh(βy)


, (26)

where constantsA j , Bj , C j , D j ( j = 1,2,3,4) are not all
independent. Only four independent constants, e.g.A j

( j = 1,2,3,4) are chosen as independent constants. Sub-
stituting Eq. (26) into symplectic eigenvalue equation (22)
yields relationships between the constants

Bj = µA j ( j = 1,2,3,4),

C j = −µ(D11µ
2 + D12α

2 + D66α
2)A j ( j = 1,2),

C j = −µ(D11µ
2 + D12β

2 + D66β
2)A j ( j = 3,4),

D j = D11

(
µ2 +

D12

D11
α2
)
A j ( j = 1,2),

D j = D11

(
µ2 +

D12

D11
β2
)
A j ( j = 3,4).

(27)

General solution (26) can divide into two groups: par-
tial solutions relevant toA j , Bj , C j , D j ( j = 1,3) relate to
symmetric deformation on thex-axis and partial solutions
relevant toA j , Bj , C j , D j ( j = 2,4) relate to asymmetric
deformation on thex-axis.

In cases whereµ4 = −k/D11 or µ4 = 4kD22/[(2D12 +

D66)2 − 4D11D22], the general solution of Eq. (26) has dif-
ferent forms because Eq. (24) has double roots. Such cases
can be discussed similarly to cases discussed in the present
paper and are not considered here.

Substituting Eqs. (26) and (27) into homogeneous
boundary conditions aty = ±b yields a homogenous equa-
tion for four unknown constantsA j ( j = 1,2,3,4). Allow-
ing the determinant of its coefficient matrix to vanish gives
a transcendental equation for symplectic eigenvalueµ. Solv-
ing the transcendental equation and substituting eigenvalue
µn (n = 1,2, · · · ) into the homogenous equation gives the
nontrivial solutionA j ( j = 1,2,3,4), allowing eigenvector
ψn that corresponds to eigenvalueµn to be obtained. Eigen-
valueµn and expression of eigenvectorψn correlates with the
specific boundary condition aty = ±b.

After obtaining the eigenvalues and eigenvectors with
adjoint symplectic orthogonality property, the general solu-
tion of Eq. (12) can be expressed [9]

v = v∗ +
∞∑

n=1

[cn exp(µnx)ψn], (28)

wherev∗ is a particular solution to transverse loadq, which
only needs to satisfy Eq. (12) and boundary conditions at
y = ±b. Substituting Eq. (28) into boundary conditions at
x = ±a, allows constantscn (n = 1,2, · · · ) to be determined
and analytical solution to be given.

It is hard to have explicit expression of the particular
solution for the complex domain loadq or nonhomogeneous
boundary conditions aty = ±b. But an expanding form of
that expression is possible by applying adjoint symplectic
orthogonality property to eigenfunctions [9].

5 Plates with two opposite sides simply supported

In a typical orthotropic plate with two opposite sides that are
simply supported and clamped, bending stiffness coefficients
areD11 = D, D12 = 0.31D, D22 = 11.1D, D66 = 2.3D. For
a plate with two opposite sidesy = ±b that are simply sup-
ported, boundary conditions in terms of a full state vector
are

w = 0,
D12

D11
Mx +

(
D22 −

D2
12

D11

)
∂yyw = 0, at y = ±b, (29)

This problem divides into two sets, symmetric and
asymmetric solutions with respect to thex-axis. The sym-
metric solution is
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ψ =



A1ch(αy) + A3ch(βy)

B1ch(αy) + B3ch(βy)

C1ch(αy) +C3ch(βy)

D1ch(αy) + D3ch(βy)


, (30)

where constantsBj , C j , D j( j = 1,3) are determined by
Eq. (27). Substituting Eq. (30) into the homogeneous bound-
ary condition equation (29) gives

ch(αb)A1 + ch(βb)A3 = 0,

(D12µ
2 + D22α

2)ch(αb)A1

+(D12µ
2 + D22β

2)ch(βb)A3 = 0.

(31)

The determinant of coefficient matrix vanishes in order to
allow a nontrivial solution. The transcendental equation of
nonzero eigenvalues for symmetric plate deformation with
two opposite sides that are simply supported is

ch(αb)ch(βb) = 0. (32)

The roots of Eq. (32) are

µnb = ±d ± ie, (33)

where

d =

√√
2D12 + D66

4D11

(
l +

1
2

)2
π2 +

1
2

√
D22

D11

[(
l +

1
2

)4
π4 +m4

]
,

(34a)

e=

√
d2 −

2D12 + D66

2D11

(
l +

1
2

)2
π2, (34b)

m= 4
√

kb4/D22. (34c)

For every given nonnegative integerl (= 0,1,2, · · · ), Eq. (33)
gives one group of four eigenvalues in different quadrants.

Simultaneously, a set of nontrivial solution ofA1,A3 is
specified by

A1 = ch(βb), A3 = −ch(αb). (35)

Substituting Eq. (35) into Eqs. (26) and (27) produces cor-
responding eigenvectorψn.

For antisymmetric deformation

ψ =



A2sh(αy) + A4sh(βy)

B2sh(αy) + B4sh(βy)

C2sh(αy) +C4sh(βy)

D2sh(αy) + D4sh(βy)


, (36)

where constantsBj , C j , D j ( j = 2,4) are determined by
Eq. (27). Substituting Eq. (36) into the homogeneous bound-
ary conditions (29) gives

sh(αb)A2 + sh(βb)A4 = 0,

(D12µ
2 + D22α

2)sh(αb)A2

+(D12µ
2 + D22β

2)sh(βb)A4 = 0.

(37)

The determinant of coefficient matrix vanishes to produce the
nontrivial solution. The transcendental equation of nonzero
eigenvalues for antisymmetric plate deformation with both
opposite sides that are simply supported is

sh(αb)sh(βb) = 0. (38)

Roots of the above equation are specified by

µanb = ± f ± ig, (39)

where

f =

√
2D12 + D66

4D11
l2π2 +

1
2

√
D22

D11
(l4π4 +m4), (40a)

g =

√
f 2 −

2D12 + D66

2D11
l2π2. (40b)

For every given positive integerl (= 1,2,3, · · · ), Eq. (39)
gives a group of four eigenvalues in different quadrants.

Substituting every rootµan into Eq. (37) gives a non-
trivial solution ofA2, A4

A2 = sh(βb), A4 = −sh(αb). (41)

Other constants are determined by Eq. (27), allowing the
corresponding eigenvectorψan.

The general solution in the form of Eq. (28) with un-
known coefficientscn(n = 1,2, · · · ) can be given analyti-
cally. Unknown coefficients can be determined by substi-
tuting Eq. (28) into boundary conditions atx = ±a.

In practical applications, it is only necessary to solve
the firstN terms in Eq. (28) [9]

v = v∗ +
N∑

n=1

[cn exp(µnx)ψn]. (42)

Expression (42) strictly satisfies basic equations in the do-
main and boundary conditions aty = ±b, but does not satisfy
boundary conditions atx = ±a, so that finite terms can be se-
lected. Only whenN → ∞, boundary conditions atx = ±a
in point-point can be satisfied strictly. Here, unknown con-
stantscn(n = 1,2, · · · ,N) can be determined by the variation
equation of boundary conditions atx = ±a.

Eigenvalues should be selected in ascending order of
the modulus at the same time that complex conjugate eigen-
values are selected.

Example 1 A rectangular plate that is fully and simply
supported on a Winkler elastic foundation can be solved un-
der uniformly distributed loadq. Ratio of the side length
is a/b = 1.5 and the modulus of Winkler foundation is
k = 200D/b4.

A special solution caused by distributed loadq in the
domain is selected

w∗(y) = a1ch(ty) cos(ty) + a2sh(ty) sin(ty) +
q
k
, (43)

where

t = 4
√

k/4D22, (44)
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and coefficientsa1 anda2 are determined by satisfying re-
quirements of the boundary conditions

w∗(b) = 0, M∗y(b) = 0. (45)

The problem is symmetric with respect to thex-axis
and the expanded expression can only be constructed from
symmetric eigen-solutions of nonzero eigenvalues (30) and
(33). Substituting general solutions (42) and (43) into the
variational formula for the boundary conditions atx = ±a,∫ b

−b
(wδV − Mδθ)a

x=−ady = 0. (46)

gives a set of algebraic equations for unknown constantscn

(n = 1,2, · · · ,N), providing analytical solution.
The exact solution of the Navier method

w =
∞∑

m=1

∞∑
n=1

Amnsin
mπx

a
sin

nπy
b
, (47)

and the exact solution of the Levy method

w =
∞∑

m=1

Ym sin
mπx

a
. (48)

can be applied to solve this problem analytically. Table 1 lists
solutions of orthotropic plates given by the Navier method,
the Levy method and the new method presented in this pa-
per. The solutions are obtained below, respectively, differ-
ent expansion terms. The result of the Navier method with
500× 500 expansion terms is regarded as a benchmark. Re-
sults show that solutions produced by the new method pre-
sented in this paper converge more quickly than solutions
produced by the Navier method or the Levy method, espe-
cially for internal forces. Solutions produced by the new
method presented in this paper usingN = 8 (two groups
of eigenvalues) are quite satisfying and results produced by
using N = 12 (three groups of eigenvalues) are more pre-
cise than the Navier method withN = 80× 80 and the Levy
method withN = 80, especially for internal forces.

Table 1 Analytical solutions of a plate that is supported fully and simply under uniformly distributed load

Number of ex- Dw(0,0)/qb4 Mx(0,0)/qb2 My(0,0)/qb2 Dw(a/2,b/2)/qb4

pansion terms Solution Error/% Solution Error/% Solution Error/% Solution Error/%

Present
method

4 0.004 766 50−0.000 056 14 −0.002 428 82 0.004 507 74 −0.116 824 77−0.000 530 41 0.003 443 48 −0.006 884 22

8 0.004 766 51 0.000 000 00 −0.002 428 71 0.000 025 42 −0.116 825 39 0.000 000 38 0.003 443 71 −0.000 007 76

12 0.004 766 51 0.000 000 00 −0.002 428 71 0.000 024 20 −0.116 825 39 0.000 000 37 0.003 443 71 −0.000 000 02

16 0.004 766 51 0.000 000 00 −0.002 428 71 0.000 024 20 −0.116 825 39 0.000 000 37 0.003 443 71 0.000 000 00

Levy’s
method

10 0.004 766 35−0.003 343 94 −0.002 357 28−2.941 120 00 −0.116 803 25−0.018 953 71 0.003 443 93 0.006 191 71

20 0.004 766 50−0.000 107 45 −0.002 419 68−0.372 041 81 −0.116 822 59−0.002 397 47 0.003 443 71 −0.000 206 61

40 0.004 766 51−0.000 003 38 −0.002 427 58−0.046 616 88 −0.116 825 04−0.000 300 21 0.003 443 71 −0.000 006 58

80 0.004 766 51−0.000 000 11 −0.002 428 57−0.005 810 05 −0.116 825 35−0.000 037 23 0.003 443 71 −0.000 000 20

Navier’s
method

10× 10 0.004 766 34−0.003 401 84 −0.002 356 45−2.975 194 91 −0.116 772 37−0.045 385 54 0.003 443 93 0.006 305 63

20× 20 0.004 766 50−0.000 109 34 −0.002 419 57−0.376 503 07 −0.116 818 63−0.005 786 63 0.003 443 71 −0.000 210 22

40× 40 0.004 766 51−0.000 003 44 −0.002 427 57−0.047 185 94 −0.116 824 54−0.000 728 10 0.003 443 71 −0.000 006 70

80× 80 0.004 766 51−0.000 000 11 −0.002 428 57−0.005 881 85 −0.116 825 29−0.000 090 94 0.003 443 71 −0.000 000 21

500× 500 0.004 766 51 — −0.002 428 71 — −0.116 825 39 — 0.003 443 71 —

When finite expanding terms are selected in the Navier
method (47) and the Levy method (48), the Navier solu-
tion can strictly satisfy the boundary condition that is fully
and simply supported and the Levy solution can satisfy the
boundary condition that is simply supported on opposite
sides but can not strictly satisfy the basic differential equa-
tions in the domain. Convergence rates are very slow, espe-
cially for internal forces. In contrast, the solution described
in the present paper has finite expanding terms that can
strictly satisfy the domain differential equation and bound-
ary conditions aty = ±b, but does not strictly satisfy bound-
ary conditions atx = ±a. Fortunately, with more and more
expanding terms are selected, the influence ignored eigen-

solutions degrades rapidly due to the existence of exponen-
tial term in eigen-solutions.

6 Plates with two opposite sides clamped

For a plate with two opposite sidesy = ±b clamped, bound-
ary conditions in terms of full state vector are

w = 0, ∂yw = 0, at y = ±b. (49)

This problem divides into two sets, symmetric and
asymmetric solutions with thex-axis. Substituting symmet-
ric general solution (30) and formula (27) into the boundary
conditions (49) gives
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ch(αb)A1 + ch(βb)A3 = 0,

αsh(αb)A1 + βsh(βb)A3 = 0.
(50)

The determinant of coefficient matrix vanishes, allowing the
nontrivial solution. Hence, the transcendental equation of
nonzero eigenvalues for symmetric plate deformation with
two opposite sides clamped is

βch(αb)sh(βb) − αsh(αb)ch(βb) = 0. (51)

Rootsµn (n = 1,2, · · · ) of transcendental equation (51)
do not have analytic expression as Eqs. (33) and (34), but can
be obtained by numerical technique [16]. Substituting root
µn into Eq. (50) gives nontrivial solutionA1, A3. Expres-
sion for A1, A3 is still Eq. (35); eigenvectors of symmetric
plate deformation with two opposite sides clamped are still
Eq. (30) with expressions of Eqs. (27) and (35), but there
are different eigenvalues.

For modulus of Winkler foundationk = 10D/b4, the
first eigenvalues of symmetric plate deformation with two
opposite sides clamped are in Table 2, with roots in the first

quadrant are listed. Eachµn has a corresponding symplec-
tic adjoint eigenvalue−µn and there are a total of four com-
plex conjugate eigenvalues. Equation (51) shows that these
nonzero eigenvalues are all single roots.

Table 2 Eigenvalues of symmetric deformation when opposite
sides are clamped

n 1 2 3 4

Re(µnb) 3.425 7 8.283 9 13.145 5 18.008 0

Im(µnb) 2.687 7 5.684 3 8.721 9 11.760 7

The asymmetric transcendental equation and eigenvec-
tor for a plate with two opposite sides clamped are left to
readers.

Example 2 A fully clamped rectangular plate on Win-
kler elastic foundation is solved under uniformly distributed
loadq.

Table 3 Analytical solutions of a fully clamped plate under different modulus of Winkler foundation

Number of kb4/D

expansion terms 200 150 100 20 10 0.01

Dw(0,0)
qb4

Present method
4 0.002 390 0.002 639 0.002 946 0.003 613 0.003 718 0.003 828

8 0.002 390 0.002 639 0.002 946 0.003 613 0.003 718 0.003 828

12 0.002 390 0.002 639 0.002 946 0.003 613 0.003 718 0.003 828

Galerkin method
3× 3 0.002 389 0.002 637 0.002 946 0.003 612 0.003 717 0.003 827

5× 5 0.002 389 0.002 639 0.002 946 0.003 613 0.003 718 0.003 828

6× 6 0.002 389 0.002 639 0.002 946 0.003 613 0.003 718 0.003 828

Mx(0,0)
qb2

Present method
4 −0.002 398 −0.002 722 −0.003 146 −0.004 157 −0.004 326 −0.004 507

8 −0.002 396 −0.002 720 −0.003 144 −0.004 155 −0.004 324 −0.004 505

12 −0.002 396 −0.002 720 −0.003 144 −0.004 155 −0.004 324 −0.004 505

Galerkin method
3× 3 −0.002 374 −0.002 697 −0.003 119 −0.004 128 −0.004 297 −0.004 478

5× 5 −0.002 386 −0.002 711 −0.003 136 −0.004 150 −0.004 319 −0.004 501

6× 6 −0.002 398 −0.002 721 −0.003 144 −0.004 154 −0.004 322 −0.004 504

My(0,0)

qb2

Present method
4 −0.102 011 −0.113 823 −0.128 340 −0.159 938 −0.164 893 −0.170 136

8 −0.102 008 −0.113 821 −0.128 338 −0.159 939 −0.164 895 −0.170 137

12 −0.102 008 −0.113 822 −0.128 339 −0.159 939 −0.164 895 −0.170 138

Galerkin method
3× 3 −0.1013 24 −0.113 154 −0.127 690 −0.159 330 −0.164 292 −0.169 542

5× 5 −0.101 943 −0.113 763 −0.128 288 −0.159 905 −0.164 864 −0.170 109

6× 6 −0.102 024 −0.113 834 −0.128 346 −0.159 938 −0.164 893 −0.170 135

A special solution caused by distributed loadq in the
domain is still Eq. (43) with expression (44), but coefficients
a1 anda2 are determined by boundary conditions

w∗(b) = 0, θ∗y(b) = 0. (52)

Since the problem is symmetric with respect to thex-
axis, the expanded expression can only be constructed from
symmetric eigen-solutions (30) with expressions (27) and
(35) for nonzero eigenvalues (51). Substituting general so-
lutions (42) and (43) into the following variational formula
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under the boundary conditions atx = ±a,∫ b

−b
(wδV + θδM)x=a

x=−ady = 0, (53)

gives a set of algebraic equations for unknown constantscn

(n = 1,2, · · · ,N) and an analytical solution.
An approximated Galerkin method [17] with trial func-

tion

w = (x2 − a2)2(y2 − b2)2
∞∑

m=0

∞∑
n=0

amnx
2my2n (54)

is used to compare with the method presented in this paper.

For a plate with different modulus of Winkler founda-
tion with length-width ratioa/b = 1.5, solutions using the
new method described in this paper by usingN = 4,8,12 and
solutions using the Galerkin method are in Table 3. Using
the new method withN = 4,8,12 and the Galerkin method,
numerical solutions of a plate with Winkler foundation be
k = 10D/b4 are listed in Table 4, in which different length-
width ratios are considered. Numerical results show excel-
lent agreement. The success of the present analysis indicates
that the new method described in this paper can be applied
to the clamped boundary condition.

Table 4 Analytical solutions of a fully clamped plate with different length-width ratios

Number of a/b

expansion terms 1.0 1.5 2.0 2.5 3.0

Dw(0,0)
qb4

Present method
4 0.003 725 0.003 718 0.003 651 0.003 645 0.003 647

8 0.003 725 0.003 718 0.003 651 0.003 645 0.003 647

12 0.003 725 0.003 718 0.003 651 0.003 645 0.003 647

Galerkin method
3× 3 0.003 725 0.003 717 0.003 650 0.003 631 0.003 598

5× 5 0.003 725 0.003 718 0.003 650 0.003 645 0.003 648

6× 6 0.003 725 0.003 718 0.003 651 0.003 646 0.003 647

Mx(0,0)
qb2

Present method
4 −0.011 280 −0.004 326 −0.004 279 −0.004 501 −0.004 521

8 −0.011 282 −0.004 324 −0.004 279 −0.004 501 −0.004 521

12 −0.011 283 −0.004 324 −0.004 279 −0.004 501 −0.004 521

Galerkin method
3× 3 −0.011 237 −0.004 297 −0.004 246 −0.004 191 −0.003 775

5× 5 −0.011 285 −0.004 319 −0.004 263 −0.004 492 −0.004 537

6× 6 −0.011 280 −0.004 322 −0.004 282 −0.004 510 −0.004 530

My(0,0)

qb2

Present method
4 −0.166 333 −0.164 893 −0.161 740 −0.161 531 −0.161 617

8 −0.166 357 −0.164 895 −0.161 739 −0.161 531 −0.161 617

12 −0.166 357 −0.164 895 −0.161 739 −0.161 531 −0.161 617

Galerkin method
3× 3 −0.166 131 −0.164 292 −0.160 827 −0.159 868 −0.158 366

5× 5 −0.166 362 −0.164 864 −0.161 613 −0.161 291 −0.161 310

6× 6 −0.166 343 −0.164 893 −0.161 763 −0.161 613 −0.161 771

7 Conclusions

Based on a symplectic system, the new analytical method for
rectangular orthotropic plates on Winkler elastic foundation
presented in this paper is superior to the methods of Navier
and Levy, which can only be applied to plates with opposite
sides simply supported. The new approach is more com-
plex than other methods, but can be used in any combination
of conventional boundary conditions. Numerical examples
show two merits of the new method:

(1) Analytical solutions of symplectic expansion form have
good convergence and precision, especially for internal
forces. These solutions leave ample room for authenti-
cation of benchmarks produced by numerical or approx-
imation methods. Solutions of the new method by using
N = 8 (two groups of eigenvalues are selected) are par-
ticularly striking.

(2) The symplectic method can solve not only the bending
of an orthotropic plate with two opposite sides supported
simply but also any other boundary condition. Besides,
the new method is also effective for dynamic and stable
problems of plates.
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The present work expands the application of symplectic
system and proves that symplectic methodology is a valid an-
alytical method. Besides, this method can also be applied to
free to force vibration of plates and shells, it will be reported
in the future.
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