Symplectic system based analytical solution for bending of rectangular orthotropic plates on Winkler elastic foundation

Wei-An Yao • Xiao-Fei Hu \cdot Feng Xiao

Received: 7 May 2010 / Revised: 13 November 2010 / Accepted: 25 March 2011
(C)The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag Berlin Heidelberg 2011

Abstract

This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation. Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish dual variables and dual equations in the symplectic space. The operator matrix of the equation set is proven to be a Hamilton operator matrix. Separation of variables and eigenfunction expansion creates a basis for analyzing the bending of rectangular orthotropic plates on Winkler elastic foundation and obtaining solutions for plates having any boundary condition. There is discussion of symplectic eigenvalue problems of orthotropic plates under two typical boundary conditions, with opposite sides simply supported and opposite sides clamped. Transcendental equations of eigenvalues and symplectic eigenvectors in analytical form given. Analytical solutions using two examples are presented to show the use of the new methods described in this paper. To verify the accuracy and convergence, a fully simply supported plate that is fully and simply supported under uniformly distributed load is used to compare the classical Navier method, the Levy method and the new method. Results show that the

The project was supported by the National Natural Science Foundation of China (10772039 and 10632030) and the National Basic Research Program of China (973 Program) (2010CB832704).

[^0]new technique has good accuracy and better convergence speed than other methods, especially in relation to internal forces. A fully clamped rectangular plate on Winkler foundation is solved to validate application of the new methods, with solutions compared to those produced by the Galerkin method.

Keywords Orthotropic plate • Symplectic space • Winkler elastic foundation • Analytical solution

1 Introduction

Plates positioned on elastic foundations such as building foundation plates and pavement slabs are widely used in engineering as construction materials. The Winkler model is often used to describe the contact pressure of foundations and plates, and plates often satisfy the Kirchhoff hypothesis [1]. Due to mathematical complexity, analyzing the bending of plates on elastic foundations is limited to definite shape and boundary conditions of the plates. Classical methods like the Navier method and the Levy method can be applied to plates with two opposite sides that are simply supported but can not be applied to plates with other boundary conditions and convergence of internal forces is not satisfactory. Numerical approximations are often employed for other boundary conditions, such as in Selvadurai's study of thin plates on soil-foundation, which uses a finite difference method [2], Kong and Cheung [3] studied rectangular plates by using a finite strip method, Cheung and Zienkiewicz [4] used a finite element method based on the Winkler model to study rectangular plates. Sadecka [5] conducted finite/infinite element analysis of a thick plate on a layered foundation. Silva et al. [6] used a numerical method to analyze plates on elastic foundations. Sladek et al. [7] used the meshless local Petrov-Galerkin method to study or-
thotropic thick plates.
A new symplectic dual solution method can be used to solve elasticity in symplectic space via separation of variables and eigenfunction expansion [8, 9]. Yao et al. [10] studied an elastic wedge to reveal paradoxical characteristics. Zhong et al. [11] introduced bending moment functions to propose new formulations of Kirchhoff plate bending problem and solve the pure bending of a long plate of semiinfinite dimension in symplectic space. Lim et al. [12, 13] used bending moment functions to provide a benchmark or exact solutions for rectangular thin plates, which were supported at the corners or simply supported on the two opposite sides. Yao et al. $[14,15]$ applied the symplectic method to obtain solutions for an orthotropic thin plate and a Reissner plate.

Despite many advances, methods used to analyze thin plates can not be applied directly to plates on foundation due to deflection that does not appear in basic variables. This paper applies a new symplectic method to the bending of orthotropic plates, based on the Winkler elastic foundation. To start, this paper describes release of constraint between slope and deflection yields dual equations formed by dual variables in symplectic space. Schemes to separate variables and eigenfunction expansion are implemented. There is discussion follows of symplectic eigenvalue problems for orthotropic plates with typical boundary conditions, namely, two opposite sides simply supported and two opposite sides that are clamped.

To verify accuracy and convergence of the new method presented here, a fully supported plate under uniformly distributed load is compared using the Navier method and Levy method. Results show that the new method has good accuracy and better convergence speed than earlier methods, especially regarding internal forces. A fully clamped rectangular plate on Winkler foundation is solved in order to validate applicability of new methods. Solutions are also compared with the Galerkin method.

2 Fundamental equations

The rectangular domain under consideration is $\Omega=\{-a<$ $x<a,-b<y<b\}$. Directions of positive internal forces on the plate are shown in Fig. 1.

Fig. 1 Directions of positive internal forces on a rectangular plate

The relationship between deflection and bending moments is specified as
$\left\{\begin{array}{c}M_{x} \\ M_{y} \\ 2 M_{x y}\end{array}\right\}=\left[\begin{array}{lll}D_{11} & D_{12} & 0 \\ D_{12} & D_{22} & 0 \\ 0 & 0 & D_{66}\end{array}\right]\left\{\begin{array}{c}\partial_{x x} w \\ \partial_{y y} w \\ \partial_{x y} w\end{array}\right\}$,
where $D_{11}, D_{12}, D_{22}, D_{66}$ are bending stiffness coefficients of an orthotropic plate. ∂_{x} and ∂_{y} denote first order partial differential with respect to variables x and y, respectively, the others are similar in the following derivation.

Equilibrium equations for a thin plate on Winkler elastic foundation are

$$
\begin{align*}
& \partial_{x} Q_{x}+\partial_{y} Q_{y}+q-k w=0, \\
& \partial_{x} M_{x}+\partial_{y} M_{x y}+Q_{x}=0, \tag{2}\\
& \partial_{y} M_{y}+\partial_{x} M_{x y}+Q_{y}=0,
\end{align*}
$$

where $k>0$ is the modulus of Winkler foundation and q is distributed load on the plate.

Equations (1) and (2) can be derived from the Hellinger-Reissner variation principle

$$
\begin{gather*}
\delta \iint_{\Omega}\left(M_{x} \partial_{x x} w+M_{y} \partial_{y y} w+2 M_{x y} \partial_{x y} w\right. \\
\left.-U-q w+\frac{1}{2} k w^{2}\right) \mathrm{d} x \mathrm{~d} y=0 \tag{3}
\end{gather*}
$$

where complementary energy density is

$$
\begin{align*}
U= & \frac{1}{2\left(D_{11} D_{22}-D_{12}^{2}\right)}\left[D_{22} M_{x}^{2}+D_{11} M_{y}^{2}-2 D_{12} M_{x} M_{y}\right. \\
& \left.+\frac{4\left(D_{11} D_{22}-D_{12}^{2}\right)}{D_{66}} M_{x y}^{2}\right] . \tag{4}
\end{align*}
$$

Assuming external normal and tangent directions of the boundary to be n and s, respectively, (n, s) composes a righthanded coordinate system and total equivalent shear forces on sides of a rectangular plate are
$V_{n}=-\partial_{s} M_{n s}+Q_{n}=-\partial_{n} M_{n}-2 \partial_{s} M_{n s}$.
Thus, boundary conditions of a plate can be specified.
In general:
(1) For a free edge, bending moment and total equivalent shear force are
$M_{n}=\bar{M}_{n}, \quad V_{n}=\bar{V}_{n}$.
(2) For a simply supported edge, bending moment and deflection are
$M_{n}=\bar{M}_{n}, \quad w=\bar{w}$.
(3) For a clamped edge, the deflection and rotation are
$w=\bar{w}, \quad \partial_{n} w=\bar{\theta}_{n}$.

3 Derivation of symplectic system

Bending moment M_{x} and equivalent shear force V_{x} in the x direction are denoted M and V, respectively. The symbol "." in the following derivation denotes differential with respect to x, i.e. $\dot{w}=\partial_{x}$.

Introducing constraint
$\theta=\dot{w}$,
and Lagrange multiplier V into variation formula Eq. (3), produces the new variation formula

$$
\begin{align*}
& \delta \iint_{\Omega}\left[M \dot{\theta}+M_{y} \partial_{y y} w+2 M_{x y} \partial_{y} \theta-q w+\frac{1}{2} k w^{2}\right. \\
& \quad-U+V(\dot{w}-\theta)] \mathrm{d} x \mathrm{~d} y=0 . \tag{8}
\end{align*}
$$

The variation of Eq. (8) with respect to M_{y} and $M_{x y}$ are
$M_{y}=\frac{D_{12}}{D_{11}} M_{x}+\left(D_{22}-\frac{D_{12}^{2}}{D_{11}}\right) \partial_{y y} w, \quad M_{x y}=\frac{D_{66}}{2} \partial_{y} \theta$.
Substituting Eq. (9) into Eq. (8) and eliminating M_{y} and $M_{x y}$ yields a mixed energy variational principle
$\delta \iint\{V \dot{w}+M \dot{\theta}-H\} \mathrm{d} x \mathrm{~d} y=0$,
where

$$
\begin{align*}
H= & V \theta+q w-\frac{1}{2} k w^{2}-\frac{1}{2}\left(D_{22}-\frac{D_{12}^{2}}{D_{11}}\right)\left(\partial_{y y} w\right)^{2} \\
& -\frac{D_{12}}{D_{11}} M \partial_{y y} w-\frac{1}{2} D_{66}\left(\partial_{y} \theta\right)^{2}+\frac{1}{2 D_{11}} M^{2} . \tag{11}
\end{align*}
$$

The stationary requirements of Eq. (10) yield a group of equations that can be written in matrix form
$\dot{v}=\mathbf{H} \boldsymbol{v}+\boldsymbol{q}$,
in which the operator matrix is

$$
\mathbf{H}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{13}\\
-\frac{D_{12}}{D_{11}} \partial_{y y} & 0 & 0 & \frac{1}{D_{11}} \\
k+\left(D_{22}-\frac{D_{12}^{2}}{D_{11}}\right) \partial_{y y y y} & 0 & 0 & \frac{D_{12}}{D_{11}} \partial_{y y} \\
0 & -D_{66} \partial_{y y} & -1 & 0
\end{array}\right],
$$

and the nonhomogeneous term $\boldsymbol{q}=\left\{\begin{array}{lll}0 & 0 & -q\end{array}\right\}^{\mathrm{T}}$ describes the load acting in the domain. $\boldsymbol{v}=\left\{\begin{array}{lll}w & \theta & V\end{array}\right\}^{\mathrm{T}}$ is the full state vector.

For the purpose of discussing the property of operator matrix \mathbf{H}, the unit symplectic matrix is

$$
\boldsymbol{J}=\left[\begin{array}{ll}
\mathbf{0} & \boldsymbol{I} \tag{14}\\
-\boldsymbol{I} & \mathbf{0}
\end{array}\right], \quad \boldsymbol{I}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

and the symplectic inner product is

$$
\begin{equation*}
\left\langle\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\rangle=\int_{-b}^{b} \boldsymbol{v}_{1}^{\mathrm{T}} \boldsymbol{J} \boldsymbol{v}_{2} \mathrm{~d} y+D_{66}\left(w_{1} \partial_{x y} w_{2}-w_{2} \partial_{x y} w_{1}\right)_{y=-b}^{b} . \tag{15}
\end{equation*}
$$

Equation (15) satisfies the four conditions of the symplectic inner product [9]. Hence, vector v forms a symplectic geometry space in accordance with the definition of the symplectic inner product (15). Two vectors are symplectically orthogonal if their symplectic inner product is zero. Otherwise, the vectors are symplectic adjoint.

Integration by parts yields

$$
\begin{align*}
& \left\langle\boldsymbol{v}_{1}, \mathbf{H} \boldsymbol{v}_{2}\right\rangle=\left\langle\boldsymbol{v}_{2}, \mathbf{H} \boldsymbol{v}_{1}\right\rangle \\
& \quad+\left\{w_{1}\left[\left(D_{22}-\frac{D_{12}^{2}}{D_{11}}\right) \partial_{y y y} w_{2}+\frac{D_{12}}{D_{11}} \partial_{y} M_{2}+D_{66} \partial_{x y} \theta_{2}\right]\right. \\
& \quad-w_{2}\left[\left(D_{22}-\frac{D_{12}^{2}}{D_{11}}\right) \partial_{y y y} w_{1}+\frac{D_{12}}{D_{11}} \partial_{y} M_{1}+D_{66} \partial_{x y} \theta_{1}\right] \\
& \quad-\partial_{y} w_{1}\left[\left(D_{22}-\frac{D_{12}^{2}}{D_{11}}\right) \partial_{y y} w_{2}+\frac{D_{12}}{D_{11}} M_{2}\right] \\
& \quad+\partial_{y} w_{2}\left[\left(D_{22}-\frac{D_{12}^{2}}{D_{11}}\right) \partial_{y y} w_{1}+\frac{D_{12}}{D_{11}} M_{1}\right] \\
& \left.\quad+D_{66}\left[\theta_{1} \partial_{y}\left(\partial_{x} w_{2}-\theta_{2}\right)-\theta_{2} \partial_{y}\left(\partial_{x} w_{1}-\theta_{1}\right)\right]\right\}_{y=-b}^{b} . \tag{16}
\end{align*}
$$

Hence, if \boldsymbol{v}_{1} and \boldsymbol{v}_{2} satisfy any of the three corresponding homogeneous conditions of Eq. (6) at $y= \pm b$ and

$$
\begin{equation*}
\partial_{y}\left(\partial_{x} w_{j}-\theta_{j}\right)=0, \quad(j=1,2), \quad \text { at } \quad y= \pm b, \tag{17}
\end{equation*}
$$

there is identity
$\left\langle\boldsymbol{v}_{1}, \mathbf{H} \boldsymbol{v}_{2}\right\rangle \equiv\left\langle\boldsymbol{v}_{2}, \mathbf{H} \boldsymbol{v}_{1}\right\rangle$.
Hence, the operator matrix \mathbf{H} is a Hamilton transformation (operator matrix) in the symplectic space.

Vectors \boldsymbol{v}_{1} and \boldsymbol{v}_{2} in Identity (18) need not satisfy domain differential equations (12). Equation (7) may be untrue, so boundary conditions (17) are needed. But if the vectors satisfy Eq. (12) in the domain, those vectors must also satisfy boundary conditions (17).

4 Symplectic eigenfunction expansion

A homogeneous equation corresponds to Eq. (12)
$\dot{v}=\mathbf{H} \boldsymbol{v}$,
Equation (19) can be solved by separating variables, by assuming that
$\boldsymbol{v}=\zeta(x) \boldsymbol{\psi}(y)$,
and substituting Eq. (20) into Eq. (19) gives
$\zeta(x)=\exp (\mu x)$,
as well as the symplectic eigenvalue equation
$\mathbf{H} \psi=\mu \psi$,
where μ is an eigenvalue, and $\psi(y)$ is an eigenvector that must satisfy boundary conditions at $y= \pm b$.

It can be proven that eigenvalue zero does not exist for Eq. (22) with typical boundary conditions (6). For eigensolutions of nonzero eigenvalues, Eq. (22) is a system of ordinary differential equations with respect to y, which can be solved by determining eigenvalue λ in y-direction. The corresponding equation is
$\left|\begin{array}{cccc}-\mu & 1 & 0 & 0 \\ -\frac{D_{12}}{D_{11}} \lambda^{2} & -\mu & 0 & \frac{1}{D_{11}} \\ k+\left(D_{22}-\frac{D_{12}^{2}}{D_{11}}\right) \lambda^{4} & 0 & -\mu & \frac{D_{12}}{D_{11}} \lambda^{2} \\ 0 & -D_{66} \lambda^{2} & -1 & -\mu\end{array}\right|=0$.
Expanding the determinant yields eigenvalue equation
$D_{22} \lambda^{4}+\left(2 D_{12}+D_{66}\right) \lambda^{2} \mu^{2}+D_{11} \mu^{4}+k=0$.
Assuming that $\mu^{4} \neq-k / D_{11}$ and $\mu^{4} \neq 4 k D_{22} /\left[\left(2 D_{12}+\right.\right.$ $\left.D_{66}\right)^{2}-4 D_{11} D_{22}$], roots of Eq. (24) must be unequal mutually, i.e. two sets of mutually opposite value. Let
$\alpha=$
$\sqrt{\frac{1}{2 D_{22}} \sqrt{\left[\left(2 D_{12}+D_{66}\right)^{2}-4 D_{11} D_{22}\right] \mu^{4}-4 k D_{22}}-\frac{\left(2 D_{12}+D_{66}\right)}{2 D_{22}} \mu^{2}}$,
$\beta=$
$\sqrt{-\frac{1}{2 D_{22}} \sqrt{\left[\left(2 D_{12}+D_{66}\right)^{2}-4 D_{11} D_{22}\right] \mu^{4}-4 k D_{22}}-\frac{\left(2 D_{12}+D_{66}\right)}{2 D_{22}} \mu^{2}}$,
and α, β should satisfy $\operatorname{Re}(\alpha) \geq 0, \operatorname{Re}(\beta) \geq 0$, or $\operatorname{Im}(\alpha) \geq 0$ $(\operatorname{Im}(\beta) \geq 0)$ when $\operatorname{Re}(\alpha)=0(\operatorname{Re}(\beta)=0)$. Hence, the general solution of Eq. (22) is
$\psi=\left[\begin{array}{c}A_{1} \operatorname{ch}(\alpha y)+A_{2} \operatorname{sh}(\alpha y)+A_{3} \operatorname{ch}(\beta y)+A_{4} \operatorname{sh}(\beta y) \\ B_{1} \operatorname{ch}(\alpha y)+B_{2} \operatorname{sh}(\alpha y)+B_{3} \operatorname{ch}(\beta y)+B_{4} \operatorname{sh}(\beta y) \\ C_{1} \operatorname{ch}(\alpha y)+C_{2} \operatorname{sh}(\alpha y)+C_{3} \operatorname{ch}(\beta y)+C_{4} \operatorname{sh}(\beta y) \\ D_{1} \operatorname{ch}(\alpha y)+D_{2} \operatorname{sh}(\alpha y)+D_{3} \operatorname{ch}(\beta y)+D_{4} \operatorname{sh}(\beta y)\end{array}\right]$,
where constants $A_{j}, B_{j}, C_{j}, D_{j}(j=1,2,3,4)$ are not all independent. Only four independent constants, e.g. A_{j} ($j=1,2,3,4$) are chosen as independent constants. Substituting Eq. (26) into symplectic eigenvalue equation (22) yields relationships between the constants

$$
\begin{array}{ll}
B_{j}=\mu A_{j} & (j=1,2,3,4), \\
C_{j}=-\mu\left(D_{11} \mu^{2}+D_{12} \alpha^{2}+D_{66} \alpha^{2}\right) A_{j} & (j=1,2), \\
C_{j}=-\mu\left(D_{11} \mu^{2}+D_{12} \beta^{2}+D_{66} \beta^{2}\right) A_{j} & (j=3,4), \\
D_{j}=D_{11}\left(\mu^{2}+\frac{D_{12}}{D_{11}} \alpha^{2}\right) A_{j} & (j=1,2), \\
D_{j}=D_{11}\left(\mu^{2}+\frac{D_{12}}{D_{11}} \beta^{2}\right) A_{j} & (j=3,4) . \tag{27}
\end{array}
$$

$\psi=\left\{\begin{array}{c}A_{1} \operatorname{ch}(\alpha y)+A_{3} \operatorname{ch}(\beta y) \\ B_{1} \operatorname{ch}(\alpha y)+B_{3} \operatorname{ch}(\beta y) \\ C_{1} \operatorname{ch}(\alpha y)+C_{3} \operatorname{ch}(\beta y) \\ D_{1} \operatorname{ch}(\alpha y)+D_{3} \operatorname{ch}(\beta y)\end{array}\right\}$,
where constants $B_{j}, C_{j}, D_{j}(j=1,3)$ are determined by Eq. (27). Substituting Eq. (30) into the homogeneous boundary condition equation (29) gives
$\operatorname{ch}(\alpha b) A_{1}+\operatorname{ch}(\beta b) A_{3}=0$,

$$
\begin{align*}
& \left(D_{12} \mu^{2}+D_{22} \alpha^{2}\right) \operatorname{ch}(\alpha b) A_{1} \tag{31}\\
& \quad+\left(D_{12} \mu^{2}+D_{22} \beta^{2}\right) \operatorname{ch}(\beta b) A_{3}=0
\end{align*}
$$

The determinant of coefficient matrix vanishes in order to allow a nontrivial solution. The transcendental equation of nonzero eigenvalues for symmetric plate deformation with two opposite sides that are simply supported is
$\operatorname{ch}(\alpha b) \operatorname{ch}(\beta b)=0$.
The roots of Eq. (32) are
$\mu_{n} b= \pm d \pm \mathrm{i} e$,
where
$d=\sqrt{\frac{2 D_{12}+D_{66}}{4 D_{11}}\left(l+\frac{1}{2}\right)^{2} \pi^{2}+\frac{1}{2} \sqrt{\frac{D_{22}}{D_{11}}\left[\left(l+\frac{1}{2}\right)^{4} \pi^{4}+m^{4}\right]}}$,
$e=\sqrt{d^{2}-\frac{2 D_{12}+D_{66}}{2 D_{11}}\left(l+\frac{1}{2}\right)^{2} \pi^{2}}$,
$m=\sqrt[4]{k b^{4} / D_{22}}$.
For every given nonnegative integer $l(=0,1,2, \cdots)$, Eq. (33) gives one group of four eigenvalues in different quadrants.

Simultaneously, a set of nontrivial solution of A_{1}, A_{3} is specified by
$A_{1}=\operatorname{ch}(\beta b), \quad A_{3}=-\operatorname{ch}(\alpha b)$.
Substituting Eq. (35) into Eqs. (26) and (27) produces corresponding eigenvector ψ_{n}.

For antisymmetric deformation
$\psi=\left\{\begin{array}{l}A_{2} \operatorname{sh}(\alpha y)+A_{4} \operatorname{sh}(\beta y) \\ B_{2} \operatorname{sh}(\alpha y)+B_{4} \operatorname{sh}(\beta y) \\ C_{2} \operatorname{sh}(\alpha y)+C_{4} \operatorname{sh}(\beta y) \\ D_{2} \operatorname{sh}(\alpha y)+D_{4} \operatorname{sh}(\beta y)\end{array}\right\}$,
where constants $B_{j}, C_{j}, D_{j}(j=2,4)$ are determined by Eq. (27). Substituting Eq. (36) into the homogeneous boundary conditions (29) gives

$$
\begin{align*}
& \operatorname{sh}(\alpha b) A_{2}+\operatorname{sh}(\beta b) A_{4}=0 \\
& \left(D_{12} \mu^{2}+D_{22} \alpha^{2}\right) \operatorname{sh}(\alpha b) A_{2} \tag{37}\\
& \quad+\left(D_{12} \mu^{2}+D_{22} \beta^{2}\right) \operatorname{sh}(\beta b) A_{4}=0 .
\end{align*}
$$

The determinant of coefficient matrix vanishes to produce the nontrivial solution. The transcendental equation of nonzero eigenvalues for antisymmetric plate deformation with both opposite sides that are simply supported is
$\operatorname{sh}(\alpha b) \operatorname{sh}(\beta b)=0$.
Roots of the above equation are specified by
$\mu_{a n} b= \pm f \pm \mathrm{i} g$,
where
$f=\sqrt{\frac{2 D_{12}+D_{66}}{4 D_{11}} l^{2} \pi^{2}+\frac{1}{2} \sqrt{\frac{D_{22}}{D_{11}}\left(l^{4} \pi^{4}+m^{4}\right)}}$,
$g=\sqrt{f^{2}-\frac{2 D_{12}+D_{66}}{2 D_{11}} l^{2} \pi^{2}}$.
For every given positive integer $l(=1,2,3, \cdots)$, Eq. (39) gives a group of four eigenvalues in different quadrants.

Substituting every root $\mu_{a n}$ into Eq. (37) gives a nontrivial solution of A_{2}, A_{4}
$A_{2}=\operatorname{sh}(\beta b), \quad A_{4}=-\operatorname{sh}(\alpha b)$.
Other constants are determined by Eq. (27), allowing the corresponding eigenvector $\psi_{a n}$.

The general solution in the form of Eq. (28) with unknown coefficients $c_{n}(n=1,2, \cdots)$ can be given analytically. Unknown coefficients can be determined by substituting Eq. (28) into boundary conditions at $x= \pm a$.

In practical applications, it is only necessary to solve the first N terms in Eq. (28) [9]
$\boldsymbol{v}=\boldsymbol{v}^{*}+\sum_{n=1}^{N}\left[c_{n} \exp \left(\mu_{n} x\right) \psi_{n}\right]$.
Expression (42) strictly satisfies basic equations in the domain and boundary conditions at $y= \pm b$, but does not satisfy boundary conditions at $x= \pm a$, so that finite terms can be selected. Only when $N \rightarrow \infty$, boundary conditions at $x= \pm a$ in point-point can be satisfied strictly. Here, unknown constants $c_{n}(n=1,2, \cdots, N)$ can be determined by the variation equation of boundary conditions at $x= \pm a$.

Eigenvalues should be selected in ascending order of the modulus at the same time that complex conjugate eigenvalues are selected.

Example 1 A rectangular plate that is fully and simply supported on a Winkler elastic foundation can be solved under uniformly distributed load q. Ratio of the side length is $a / b=1.5$ and the modulus of Winkler foundation is $k=200 D / b^{4}$.

A special solution caused by distributed load q in the domain is selected
$w^{*}(y)=a_{1} \operatorname{ch}(t y) \cos (t y)+a_{2} \operatorname{sh}(t y) \sin (t y)+\frac{q}{k}$,
where

$$
\begin{equation*}
t=\sqrt[4]{k / 4 D_{22}}, \tag{44}
\end{equation*}
$$

and coefficients a_{1} and a_{2} are determined by satisfying requirements of the boundary conditions
$w^{*}(b)=0, \quad M_{y}^{*}(b)=0$.
The problem is symmetric with respect to the x-axis and the expanded expression can only be constructed from symmetric eigen-solutions of nonzero eigenvalues (30) and (33). Substituting general solutions (42) and (43) into the variational formula for the boundary conditions at $x= \pm a$,
$\int_{-b}^{b}(w \delta V-M \delta \theta)_{x=-a}^{a} \mathrm{~d} y=0$.
gives a set of algebraic equations for unknown constants c_{n} ($n=1,2, \cdots, N$), providing analytical solution.

The exact solution of the Navier method
$w=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{m n} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}$,
$w=\sum_{m=1}^{\infty} Y_{m} \sin \frac{m \pi x}{a}$.
can be applied to solve this problem analytically. Table 1 lists solutions of orthotropic plates given by the Navier method, the Levy method and the new method presented in this paper. The solutions are obtained below, respectively, different expansion terms. The result of the Navier method with 500×500 expansion terms is regarded as a benchmark. Results show that solutions produced by the new method presented in this paper converge more quickly than solutions produced by the Navier method or the Levy method, especially for internal forces. Solutions produced by the new method presented in this paper using $N=8$ (two groups of eigenvalues) are quite satisfying and results produced by using $N=12$ (three groups of eigenvalues) are more precise than the Navier method with $N=80 \times 80$ and the Levy method with $N=80$, especially for internal forces.
and the exact solution of the Levy method

Table 1 Analytical solutions of a plate that is supported fully and simply under uniformly distributed load

	Number of expansion terms	$D w(0,0) / q b^{4}$		$M_{x}(0,0) / q b^{2}$		$M_{y}(0,0) / q b^{2}$		$D w(a / 2, b / 2) / q b^{4}$	
		Solution	Error/\%	Solution	Error/\%	Solution	Error/\%	Solution	Error/\%
Present method	4	0.00476650	-0.000 05614	-0.002 42882	0.00450774	-0.11682477	-0.000 53041	0.00344348	-0.00688422
	8	0.00476651	0.00000000	-0.002 42871	0.00002542	-0.116825 39	0.00000038	0.00344371	-0.000 00776
	12	0.00476651	0.00000000	-0.002 4287	0.00002420	-0.116825 39	0.00000037	0.00344371	-0.000 00002
	16	0.00476651	0.00000000	-0.002 42871	0.00002420	-0.116825 39	0.00000037	0.00344371	0.00000000
Levy's method	10	0.00476635	-0.003 34394	-0.00235728	-2.94112000	-0.11680325	-0.01895371	0.00344393	0.00619171
	20	0.00476650	-0.000 10745	-0.00241968	-0.372041 81	-0.11682259	-0.00239747	0.00344371	-0.000 20661
	40	0.00476651	-0.00000338	-0.002 42758	-0.04661688	-0.11682504	-0.00030021	0.00344371	-0.000 00658
	80	0.00476651	-0.00000011	-0.00242857	-0.00581005	-0.11682535	-0.00003723	0.00344371	-0.00000020
Navier's method	10×10	0.00476634	-0.003 40184	-0.00235645	-2.975 19491	-0.11677237	-0.04538554	0.00344393	0.00630563
	20×20	0.00476650	-0.000 10934	-0.002 41957	-0.37650307	-0.11681863	-0.005 78663	0.00344371	-0.000 21022
	40×40	0.00476651	-0.00000344	-0.002 42757	-0.04718594	-0.11682454	-0.00072810	0.00344371	-0.000 00670
	80×80	0.00476651	-0.00000011	-0.002 42857	-0.00588185	-0.116825 29	-0.000 09094	0.00344371	-0.000 00021
	500×500	0.00476651	-	-0.002 42871		-0.11682539		0.00344371	-

When finite expanding terms are selected in the Navier method (47) and the Levy method (48), the Navier solution can strictly satisfy the boundary condition that is fully and simply supported and the Levy solution can satisfy the boundary condition that is simply supported on opposite sides but can not strictly satisfy the basic differential equations in the domain. Convergence rates are very slow, especially for internal forces. In contrast, the solution described in the present paper has finite expanding terms that can strictly satisfy the domain differential equation and boundary conditions at $y= \pm b$, but does not strictly satisfy boundary conditions at $x= \pm a$. Fortunately, with more and more expanding terms are selected, the influence ignored eigen-
solutions degrades rapidly due to the existence of exponential term in eigen-solutions.

6 Plates with two opposite sides clamped

For a plate with two opposite sides $y= \pm b$ clamped, boundary conditions in terms of full state vector are
$w=0, \quad \partial_{y} w=0, \quad$ at $\quad y= \pm b$.
This problem divides into two sets, symmetric and asymmetric solutions with the x-axis. Substituting symmetric general solution (30) and formula (27) into the boundary conditions (49) gives
$\operatorname{ch}(\alpha b) A_{1}+\operatorname{ch}(\beta b) A_{3}=0$,
$\alpha \operatorname{sh}(\alpha b) A_{1}+\beta \operatorname{sh}(\beta b) A_{3}=0$.
The determinant of coefficient matrix vanishes, allowing the nontrivial solution. Hence, the transcendental equation of nonzero eigenvalues for symmetric plate deformation with two opposite sides clamped is
$\beta \operatorname{ch}(\alpha b) \operatorname{sh}(\beta b)-\alpha \operatorname{sh}(\alpha b) \operatorname{ch}(\beta b)=0$.
Roots $\mu_{n}(n=1,2, \cdots)$ of transcendental equation (51) do not have analytic expression as Eqs. (33) and (34), but can be obtained by numerical technique [16]. Substituting root μ_{n} into Eq. (50) gives nontrivial solution A_{1}, A_{3}. Expression for A_{1}, A_{3} is still Eq. (35); eigenvectors of symmetric plate deformation with two opposite sides clamped are still Eq. (30) with expressions of Eqs. (27) and (35), but there are different eigenvalues.

For modulus of Winkler foundation $k=10 D / b^{4}$, the first eigenvalues of symmetric plate deformation with two opposite sides clamped are in Table 2, with roots in the first
quadrant are listed. Each μ_{n} has a corresponding symplectic adjoint eigenvalue $-\mu_{n}$ and there are a total of four complex conjugate eigenvalues. Equation (51) shows that these nonzero eigenvalues are all single roots.

Table 2 Eigenvalues of symmetric deformation when opposite sides are clamped

n	1	2	3	4
$\operatorname{Re}\left(\mu_{n} b\right)$	3.4257	8.2839	13.1455	18.0080
$\operatorname{Im}\left(\mu_{n} b\right)$	2.6877	5.6843	8.7219	11.7607

The asymmetric transcendental equation and eigenvector for a plate with two opposite sides clamped are left to readers.

Example 2 A fully clamped rectangular plate on Winkler elastic foundation is solved under uniformly distributed load q.

Table 3 Analytical solutions of a fully clamped plate under different modulus of Winkler foundation

		Number of expansion terms	$k b^{4} / D$						
		200	150	100	20	10	0.01		
$\frac{D w(0,0)}{q b^{4}}$	Present method		4	0.002390	0.002639	0.002946	0.003613	0.003718	0.003828
		8	0.002390	0.002639	0.002946	0.003613	0.003718	0.003828	
		12	0.002390	0.002639	0.002946	0.003613	0.003718	0.003828	
	Galerkin method	3×3	0.002389	0.002637	0.002946	0.003612	0.003717	0.003827	
		5×5	0.002389	0.002639	0.002946	0.003613	0.003718	0.003828	
		6×6	0.002389	0.002639	0.002946	0.003613	0.003718	0.003828	
$\frac{M_{x}(0,0)}{q b^{2}}$	Present method	4	-0.002398	-0.002 722	-0.003 146	-0.004 157	-0.004 326	-0.004 507	
		8	-0.002 396	-0.002 720	-0.003 144	-0.004 155	-0.004 324	-0.004 505	
		12	-0.002 396	-0.002 720	-0.003 144	-0.004 155	-0.004 324	-0.004 505	
	Galerkin method	3×3	-0.002 374	-0.002 697	-0.003 119	-0.004 128	-0.004 297	-0.004 478	
		5×5	-0.002 386	-0.002 711	-0.003 136	-0.004 150	-0.004319	-0.004 501	
		6×6	-0.002 398	-0.002721	-0.003 144	-0.004 154	-0.004 322	-0.004 504	
$\frac{M_{y}(0,0)}{q b^{2}}$	Present method	4	-0.102 011	-0.113823	-0.128 340	-0.159938	-0.164 893	-0.170 136	
		8	-0.102 008	-0.113821	-0.128 338	-0.159 939	-0.164 895	-0.170 137	
		12	-0.102 008	-0.113822	-0.128 339	-0.159 939	-0.164 895	-0.170 138	
	Galerkin method	3×3	-0.1013 24	-0.113 154	-0.127 690	-0.159330	-0.164 292	-0.169 542	
		5×5	-0.101 943	-0.113763	-0.128 288	-0.159 905	-0.164 864	-0.170 109	
		6×6	-0.102 024	-0.113834	-0.128 346	-0.159938	-0.164 893	-0.170 135	

A special solution caused by distributed load q in the domain is still Eq. (43) with expression (44), but coefficients a_{1} and a_{2} are determined by boundary conditions

$$
\begin{equation*}
w^{*}(b)=0, \quad \theta_{y}^{*}(b)=0 . \tag{52}
\end{equation*}
$$

Since the problem is symmetric with respect to the x axis, the expanded expression can only be constructed from symmetric eigen-solutions (30) with expressions (27) and (35) for nonzero eigenvalues (51). Substituting general solutions (42) and (43) into the following variational formula
under the boundary conditions at $x= \pm a$,
$\int_{-b}^{b}(w \delta V+\theta \delta M)_{x=-a}^{x=a} \mathrm{~d} y=0$,
gives a set of algebraic equations for unknown constants c_{n} ($n=1,2, \cdots, N$) and an analytical solution.

An approximated Galerkin method [17] with trial function
$w=\left(x^{2}-a^{2}\right)^{2}\left(y^{2}-b^{2}\right)^{2} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_{m n} x^{2 m} y^{2 n}$
is used to compare with the method presented in this paper.

For a plate with different modulus of Winkler foundation with length-width ratio $a / b=1.5$, solutions using the new method described in this paper by using $N=4,8,12$ and solutions using the Galerkin method are in Table 3. Using the new method with $N=4,8,12$ and the Galerkin method, numerical solutions of a plate with Winkler foundation be $k=10 \mathrm{D} / b^{4}$ are listed in Table 4, in which different lengthwidth ratios are considered. Numerical results show excellent agreement. The success of the present analysis indicates that the new method described in this paper can be applied to the clamped boundary condition.

Table 4 Analytical solutions of a fully clamped plate with different length-width ratios

		Number of expansion terms	a / b					
		1.0	1.5	2.0	2.5	3.0		
$\frac{D w(0,0)}{q b^{4}}$	Present method		4	0.003725	0.003718	0.003651	0.003645	0.003647
		8	0.003725	0.003718	0.003651	0.003645	0.003647	
		12	0.003725	0.003718	0.003651	0.003645	0.003647	
	Galerkin method	3×3	0.003725	0.003717	0.003650	0.003631	0.003598	
		5×5	0.003725	0.003718	0.003650	0.003645	0.003648	
		6×6	0.003725	0.003718	0.003651	0.003646	0.003647	
$\frac{M_{x}(0,0)}{q b^{2}}$	Present method	4	-0.011280	-0.004 326	-0.004 279	-0.004 501	-0.004 521	
		8	-0.011282	-0.004 324	-0.004279	-0.004 501	-0.004 521	
		12	-0.011283	-0.004324	-0.004279	-0.004 501	-0.004 521	
	Galerkin method	3×3	-0.011237	-0.004 297	-0.004246	-0.004 191	-0.003 775	
		5×5	-0.011285	-0.004319	-0.004 263	-0.004 492	-0.004 537	
		6×6	-0.011280	-0.004 322	-0.004282	-0.004 510	-0.004 530	
$\frac{M_{y}(0,0)}{q b^{2}}$	Present method	4	-0.166333	-0.164 893	-0.161740	-0.161 531	-0.161 617	
		8	-0.166357	-0.164 895	-0.161739	-0.161531	-0.161 617	
		12	-0.166357	-0.164 895	-0.161739	-0.161 531	-0.161 617	
	Galerkin method	3×3	-0.166 131	-0.164 292	-0.160 827	-0.159 868	-0.158366	
		5×5	-0.166362	-0.164 864	-0.161 613	-0.161 291	-0.161310	
		6×6	-0.166343	-0.164 893	-0.161763	-0.161 613	-0.161771	

7 Conclusions

Based on a symplectic system, the new analytical method for rectangular orthotropic plates on Winkler elastic foundation presented in this paper is superior to the methods of Navier and Levy, which can only be applied to plates with opposite sides simply supported. The new approach is more complex than other methods, but can be used in any combination of conventional boundary conditions. Numerical examples show two merits of the new method:
(1) Analytical solutions of symplectic expansion form have good convergence and precision, especially for internal forces. These solutions leave ample room for authentication of benchmarks produced by numerical or approximation methods. Solutions of the new method by using $N=8$ (two groups of eigenvalues are selected) are particularly striking.
(2) The symplectic method can solve not only the bending of an orthotropic plate with two opposite sides supported simply but also any other boundary condition. Besides, the new method is also effective for dynamic and stable problems of plates.

The present work expands the application of symplectic system and proves that symplectic methodology is a valid analytical method. Besides, this method can also be applied to free to force vibration of plates and shells, it will be reported in the future.

References

1 Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. Mc-Graw-Hill, New York (1970)
2 Selvadurai, A.P.S.: Elastic Analysis of Soil-Foundation Interaction. Elsevier, Amsterdam (1979)
3 Kong, J., Cheung, Y.K.: A generalized spline finite strip for the analysis of plates. Thin. Wall Struct. 22, 181-202 (1995)
4 Cheung, Y.K., Zienkiewicz, O.C.: Plates and tanks on elastic foundation-an application of the finite element method. International Journal of Solids and Structures 1, 451-461 (1965)
5 Sadecka, L.: A Finite/infinite element analysis of thick plate on a layered foundation. Computers and Structures 76, 603-610 (2000)

6 Silva, A.R.D., Silveira, R.A.M., Goncalves, P.B.: Numerical methods for analysis of plates on tensionless elastic foundations. International Journal of Solids and Structures 38, 20832100 (2001)
7 Sladek, J., Sladek, V., Zhang, C., et al.: Analysis of orthotropic thick plates by meshless local Petrov-Galerkin (MLPG) method. International Journal for Numerical Methods in Engineering 67, 1830-1850 (2006)
8 Zhong, W.X.: A New Systematic Methodology for Theory
of Elasticity. Dalian University of Technology Press, Dalian (1995) (in Chinese)

9 Yao, W.A., Zhong, W.X., Lim, C.W.: Symplectic Elasticity. World Scientific, Singapore (2009)
10 Yao, W.A., Xu, C.: A restudy of the paradox on an elastic wedge based on the Hamiltonian system. ASME Journal of Applied Mechanics 68, 678-681 (2001)
11 Zhong, W.X., Yao, W.A.: New solution system for plate bending. Computational Mechanics in Structural Engineering 31, 17-30 (1999)
12 Lim, C.W., Yao, W.A., Cui, S.: Benchmark symplectic solutions for bending of corner-supported rectangular thin plates. The IES Journal Part A: Civil \& Structural Engineering 1, 106115 (2008)
13 Lim, C.W., Cui, S., Yao, W.A.: On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported. International Journal of Solids and Structures 44, 5396-5411 (2007)
14 Yao, W.A., Su, B., Zhong, W.X.: Hamiltonian system for orthotropic plate bending based on analogy theory. Science in China (series E) 44, 258-264 (2001)
15 Yao, W.A. Sui, Y.F.: Symplectic solution system for Reissner plate bending. Applied Mathematics and Mechanics 25, 178185 (2003)
16 Long, Y.L., Wen, X.L., Xie, C.F.: An implementation of a root finding algorithm for transcendental functions in a complex plane. Journal on Numerical Methods and Computer Applications 15, 88-92 (1994) (in Chinese)
17 Mbakogu, F.C., Pavlovic, M.N.: Bending of clamped orthotropic rectangular plates: a variational symbolic solution. Computers and Structures 77, 117-128 (2000)

[^0]: W.-A. Yao (®) • X.-F. Hu

 State Key Laboratory of Structural Analysis
 for Industrial Equipment,
 Dalian University of Technology,
 116024 Dalian, China
 e-mail: ywa@dlut.edu.cn
 F. Xiao

 Department of Computer Science,
 Dalian Medical University, 116044 Dalian, China

