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Abstract A numerical method is presented for the large
deflection in elastic analysis of tensegrity structures includ-
ing both geometric and material nonlinearities. The geo-
metric nonlinearity is considered based on both total La-
grangian and updated Lagrangian formulations, while the
material nonlinearity is treated through elastoplastic stress–
strain relationship. The nonlinear equilibrium equations are
solved using an incremental-iterative scheme in conjunction
with the modified Newton–Raphson method. A computer
program is developed to predict the mechanical responses
of tensegrity systems under tensile, compressive and flexu-
ral loadings. Numerical results obtained are compared with
those reported in the literature to demonstrate the accuracy
and efficiency of the proposed program. The flexural be-
havior of the double layer quadruplex tensegrity grid is suf-
ficiently good for lightweight large-span structural applica-
tions. On the other hand, its bending strength capacity is not
sensitive to the self-stress level.

Keywords Nonlinear analysis· Tensegrity structures· Ge-
ometric nonlinearity·Material nonlinearity· Large displace-
ments

1 Introduction

Over the past few decades, tensegrity structures first pro-
posed by Fuller [1] have attracted considerable attention in
a wide diversity of fields including aerospace [2], architec-
ture [3,4], civil engineering [5–7], biology [8–11], mathe-
matics [12,13] and robotics [14,15]. They belong to a class
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of free-standing pre-stressed pin-jointed cable-strut system
where contacts are allowed among the struts [16]. Their
classification is presented as Class 1 (where bars do not
touch) and Class 2 (where bars do connect to each other at a
pivot) [17,18]. A complete analysis of the tensegrity systems
comprises two steps; the first one is form-finding which is
the process of finding an equilibrium configuration; and the
second is the study of behavior under external loads. Many
researchers have made important contributions to the form-
finding step in which Tibert and Pellegrino [19] classified
the existing methods into two categories: kinematical meth-
ods and statical methods. Analysis step for behavior is still
a difficult issue for structural engineers since tensegrity sys-
tems are in general both kinematically and statically indeter-
minate. Kebiche et al. [5] presented a geometrical nonlin-
ear elastic analysis for a basic quadruplex module (four-strut
tensegrity prism) subjected to axial, flexural and torsional
loads and a five-quadruplex module tensegrity system un-
der traction based on total Lagrangian formulation. Kahla
and Kebiche [20] presented both geometrically nonlinear-
ity and elastoplastic analysis of a five-quadruplex module
tensegrity beam using an updated Lagrangian formulation.
Recently, Murakami [21] investigated the elastic behavior of
a three-strut tensegrity module under static load at various
pre-stress levels by applying the updated Lagrangian formu-
lation. More recently, using a set of well-chosen general-
ized coordinates and the virtual work approach Crane III
et al. [22] developed a mathematical model derivation ad-
dressing the static analysis problem and found the displace-
ments of the structure under applied external forces. The
research was performed for only three- and four-strut tenseg-
rities based on regular prisms. For more complex structures,
numerical method has to be considered.

The objective of this paper is to investigate the behavior
of tensegrity systems considering both geometric and mate-
rial nonlinearities when they are subjected to various types
of loadings by using both total Lagrangian and updated La-
grangian formulations. In order to capture the structural be-
havior, principle of virtual work by Bathe et al. [23], Bathe
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and Ozdemir [24] and Bathe [25] including both geometric
and material nonlinearities for a truss element is applied with
an incremental-iterative solution strategy in conjunction with
the modified Newton–Raphson method. Two types of anal-
yses are put forward, i.e. geometric nonlinear elastic and
geometric nonlinear elastoplastic analyses. Response of a
quadruplex module in a state of self-stress under tension,
compression and flexure is studied, as well as behavior char-
acterization of a double layer quadruplex tensegrity grid and
a five-quadruplex module tensegrity beam. The influence of
the self-stress level is investigated. A comparison between
the two formulations is also presented based on the results
obtained. The updated Lagrangian formulation is recom-
mended for the large deflection analysis of tensegrity struc-
tures.

2 Fundamental assumptions and constitutive modeling
of element behavior

2.1 Fundamental assumptions

In establishing the stress–strain relation to account for yield-
ing behavior of an axially-loaded bar, the following assump-
tions are adopted for tensegrity structures:

(1) Members are connected by pin joints;

(2) The cross-sectional area of each member remains
unchanged during the deformation process;

(3) Buckling of the strut is not considered;

(4) There are no dissipative forces acting on the system.

2.2 Constitutive modeling of element behavior

The elastoplastic stress–strain relationship (Fig. 1) to model
linear elastic and yielding behavior of a truss element can be
expressed as

Fig. 1 Engineering stress–strain constitutive model for elastoplas-
tic material

σxx =

 Eεxx, if σxx < σy,

f (εxx), if σxx ≥ σy,
(1)

whereεxx, σxx, σy and E are the engineering axial strain,
stress, yield stress and the essential elastic modulus, respec-
tively. f (εxx) is a one-dimensional plastic flow rule. Regard-
ing cable element,f (εxx) is defined by experiment whereas
for strut, it is assumed to exhibit elastic-ideal plastic behavior
(i.e., f (εxx) = σy).

3 Finite element model

In an incremental-iterative analysis, three typical configu-
rations can be identified for the structure under considera-
tion: the self-stressed initial undeformed configurationC0,
the last calculated deformed configurationC1 and the current
deformed configurationC2 (Fig. 2). In this paper, the left su-
perscript of a symbol is used to indicate the configuration in
which the quantity occurs, and the left subscript indicates the
configuration to which the quantity is referred. Those quan-
tities generated as increments within the step fromC1 to C2

will be denoted with no left superscript. And an indexj has
the values of zero and unity (j = 0,1) unless otherwise men-
tioned. The quantities in the equation established by the to-
tal Lagrangian (TL) formulation and the updated Lagrangian
(UL) formulation will be referred toC0, C1, respectively.

Fig. 2 Reference and deformed configurations of a body in three
dimensions

By the TL formulation, the virtual work equation of
equilibrium by Bathe [25] for a space truss element atC2

can be linearized and referred toC0, as
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0V. (2)

Similarly, by the UL formulation, the virtual work equation
of equilibrium by Bathe [25] for a space truss element atC2

can be linearized and referred toC1, as∫
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= 2
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x-, y- andz-directions, respectively;1E
(
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)3)
is a tan-

gent modulus;jL and jV are the length and the volume of an
element, respectively;1

0Sxx and1τxx are 2nd Piola–Kirchhoff
and Cauchy stress, respectively; the Cauchy stress can be re-

lated to the 2nd Piola–Kirchhoff stress by1τxx =
1
0Sxx

( 1L
0L

)
;

and2
j R is the external virtual work.
The incremental strains of Eqs. (2) and (3) are, respec-

tively, related to the Green–Lagrange strain0εxx and Almansi
strain1εxx as

0εxx =
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∂0x
+

1
2
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)2
+

(
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∂0x

)2
+

(
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)2]
= 0exx + 0ηxx, (4a)

1εxx =
∂u
∂1x
−

1
2
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∂u
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)2
+

(
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∂1x

)2
+

(
∂w
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)2]
= 1exx − 1ηxx. (4b)
Substituting linear shape functions for the displacement

variables, Eqs. (2) and (3) can be, respectively, derived for a
single space truss element as(1
0ke +

1
0kg
)
∆0u = 2

0 f − 1
0 f , for TL, (5a)(1

1ke +
1
1kg
)
∆1u = 2

1 f − 1
1 f , for UL, (5b)

where1
j ke and 1

j kg are element elastic and geometric stiff-
ness matrices, respectively;∆ ju is element displacement in-
crement vector, which consists of three translations at each
node;2j f and1

j f are external and internal element forces act-
ing atC2 andC1, respectively. By the element assembly pro-
cedure, Eq. (5) can be constructed for the structure as(1
0KE +

1
0KG
)
∆0U = 2

0P− 1
0F, for TL, (6a)(1

1KE +
1
1KG
)
∆1U = 2

1P− 1
1F, for UL. (6b)

The final forms of the tangent stiffness matrices derived
above are equivalent to those by Murakami [26], Masic et

al. [27], Deng and Kwan [28], Zhang and Ohsaki [29] and
Ohsaki and Zhang [30]. It should be noted that if an in-
finitesimal mechanism is applied to a tensegrity system, the
material elastic stiffnessKE in Eq. (6) vanishes. Accord-
ingly, its initial stiffness at the initial state (or the stability of
the structure) involves with the geometric stiffnessKG only,
which can be created by its self-stress modes.

4 Nonlinear solution method

The solution of nonlinear equations usually requires the use
of an incremental-iterative solution scheme. In this pa-
per, modified Newton–Raphson method is employed and ex-
pressed as

(m)1
0KT∆0U(i) = (m+1)λ(i)P− (m+1)1

0F(i−1), for TL, (7a)

(m)1
1KT∆1U(i) = (m+1)λ(i)P− (m+1)1

1F(i−1), for UL, (7b)

where(m)1
j KT
(
= (m)1

j KE +
(m)1

j KG
)

is the tangent stiffness
evaluated atC1 for load levelm referred toC j ; “m” is the be-
ginning load level for the current, “m+ 1”, load step;jU , P
and1

j F are the structure displacement, the reference external
load and the equilibrated internal force vectors, respectively;
λ is a load parameter;∆ symbolizes iterative change; and the
parenthetical superscript signifies the iteration number. The
accumulated incremental displacement vector and the load
parameter through iteration “i ” within incremental load step
“m+ 1” are defined as

d jU(i) = d jU(i−1) + ∆ jU(i), (8a)

dλ(i) = dλ(i−1) + ∆λ(i), (8b)

where djU(0) = 0; dλ(0) = 0; and “d ” symbolizes incremen-
tal change within the load step. Accumulated variable quan-
tities through iteration “i ” for incremental load step “m+ 1”
are defined as

(m+1)
jU(i) = (m+1)

jU(i−1) + ∆ jU(i), (9a)

(m+1)λ(i) = (m+1)λ(i−1) + ∆λ(i), (9b)

(m+1)1
j F

(i) = (m+1)1
j F

(i−1) + ∆1
j F

(i), (9c)

(m+1)
jR(i) = (m+1)λ(i)P− (m+1)1

j F
(i), (9d)

where jR is the out-of-balance force vector. For “i − 1” =0,
the variables are equal to those of the previous incremental
step. For the solution of Eq. (7b) by UL formulation, it is
required to update the nodal coordinate vectorX to calculate
the updated coordinate transformation matrices as

(m+1)X(i) = (m+1)X(i−1) + ∆1U(i). (10)

The iterative process is repeated until the convergence condi-
tion is satisfied. The slackening of cable elements is treated
in the following manner: the actual length of each cable is
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computed and compared to its free length within each itera-
tion. If the actual length is shorter than the free length, then
the cable is slack. Its axial force is equal to zero and there is
no contribution of its stiffness to the global structure one.

5 Numerical examples

5.1 Geometric nonlinear elastic analysis

5.1.1 A quadruplex module

A quadruplex system (Fig. 3) comprising four struts and 12
cables, which was studied by Kebiche et al. [5], is herein

used for verification purpose. Three types of loading are
considered: tension, compression and flexure (upward and
downward). The influence of the self-stress level is also in-
vestigated. Before applying external load, the initial self-
stress design procedure proposed by Tran and Lee [7] was
performed to define the force density coefficient (force-to-
length ratio) vector for the given and free-standing quadru-
plex system was performed. Note that the statically inde-
terminate foundation constraints (boundary conditions) are
imposed in the manner which does not cause any effect
on the self-equilibrium state of the system. Based on the
rank deficiency of equilibrium matrix, the number of self-
stress modes and infinitesimal mechanisms of this system are
found to be one and three, respectively, as presented in Pel-
legrino and Calladine [31] and Tran and Lee [32].

Fig. 3 The quadruplex module under tensile, compressive and flexural loads.a Plan view;b Tension compression;c Upward flexure
downward flexure

It is observed from Eq. (6) that this single self-stress
mode stiffens the infinitesimal mechanisms. In other words,
the geometric stiffnessKG of the system induced by single
self-stress mode exhibits positive stiffness to all directions
within the infinitesimal displacements. Force density coef-
ficients, initial self-stress values, geometrical and material
properties of the quadruplex module are given in Table 1.
The self-stress level (γ) in this case is equal to 55 N/cm. Con-
centrated loads are applied on Nodes 6, 7 and 8. The abso-
lute value of displacement at the gravity center of the loaded
cross-section (triangle 6,7,8) is plotted against the total ap-
plied loads for all loading cases.

(a) Tensile and compressive loads

As indicated in Fig. 3b, the tensile or compressive loads
are applied on Nodes 6, 7 and 8 along thex-direction. The
value of each load (P) varies from 0 to 2 kN. The present re-
sults, as plotted in Fig. 4, agree well with those of Ref. [5]

for geometric nonlinear elastic analysis by using either TL
or UL formulation. Furthermore, solutions obtained by the
TL and UL formulations coincide with each other. The sys-
tem becomes stiffer for increasing tension while it becomes
softer for increasing compression.

(b) Flexural loads

Flexural loads (Fig. 3c) from 0 to 3.9 kN (3P) are ap-
plied on Nodes 6, 7 and 8 along thez-direction. The solutions
(Fig. 5) by both formulations agree well with the results from
Ref. [5]. Regardless of the load direction, the structure is
stiffened as the external loads increase. The deformation in
downward flexure is larger than that in upward flexure. This
leads to the conclusion that the rigidity of lower “fibers” in
the quadruplex system is larger than that of upper “fibers”.
From Figs. 4 and 5, it is clearly seen that the load-carrying
capacity under tension and compression is better than that
under flexure in the quadruplex system.
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Table 1 Initial self-stress values, geometrical and material properties of the quadruplex module

Ele. Nodes Category Force density coefficient/(daN·cm−1) Length/cm Initial self-stress/kN Cross section/cm2 Modulus/GPa

1 1 6 Lower γ 5.5 100 5.5 0.280 40

2 2 7 cables γ 5.5 100 5.5

3 1 2 γ 5.5 100 5.5

4 6 7 γ 5.5 100 5.5

5 3 4 Upper 2γ 11.0 70.71 7.778 2 0.280 40

6 3 5 cables 2γ 11.0 70.71 7.778 2

7 4 8 2γ 11.0 70.71 7.778 2

8 5 8 2γ 11.0 70.71 7.778 2

9 2 5 Bracing 2γ 11.0 70.71 7.778 2 0.280 40

10 7 8 cables 2γ 11.0 70.71 7.778 2

11 4 6 2γ 11.0 70.71 7.778 2

12 1 3 2γ 11.0 70.71 7.778 2

13 3 6 Struts −2γ −11.0 122.47 −1.347 22 0.325 200

14 2 8 −2γ −11.0 122.47 −1.347 22

15 1 5 −2γ −11.0 122.47 −1.347 22

16 4 7 −2γ −11.0 122.47 −1.347 22

Fig. 4 Behavior of the quadruplex module under:a Tensile loads;b Compressive loads

(c) Influence of the self-stress level

Obviously, the stiffness of tensegrity system in Eq. (6)
depends partly on the self-stress level. The influence of this
level (γ = 2–9) on the behavior of the quadruplex system
under tensile, compressive and flexural loads is investigated.

Based on the load level, thisγ’s value range is so chosen as
to avoid buckling in the strut. The relationship between the
displacements inx- andz-directions (u, w) and the self-stress
level (γ) are displayed in Figs. 6 and 7 for tensile, compres-
sive and flexural loads, respectively. Total external load (3P)
is assumed to be at a specified value, 4.5 kN.
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Fig. 5 Behavior of the quadruplex module under:a “Upward” flexural loads;b “Downward” flexural loads

Fig. 6 Influence of the self-stress level on the quadruplex module under:a Tensile loads;b Compressive loads

Fig. 7 Influence of the self-stress level on the quadruplex module
under flexural loads

Figure 6 shows the comparison of the present results
with those in Ref. [5]. In all cases, the displacement de-
creases when the self-stress level increases indicating that
increasing the self-stress level makes the tensegrity system
stiffer. This phenomenon becomes more sensitive for com-
pressive loading. Figure 7 confirms that the lower “fibers” in
the quadruplex system is more rigid than the upper “fibers”.
Figures 6 and 7 also confirm that load-carrying capacity un-
der tension and compression is higher than that under flex-
ure in the quadruplex system. The stiffness of both top and
bottom surfaces of the module contributes to the module’s
global stiffness in the case of tensile and compressive load-
ings. While in the case of flexural loading they have little
contribution to the module’s global stiffness. It is observed
from Figs. 6 and 7 that the results of two different formula-
tions are in excellent agreement.
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5.1.2 Double layer quadruplex tensegrity grid

Consider a tensegrity grid assembled from 20 (5×4) quadru-
plex modules (Fig. 3a) which consists of 79 nodes, 80 struts
and 209 cables as described in Fig. 8. Similarly, in order
to define the force density coefficient (force-to-length ra-
tio) vector the initial self-stress design procedure proposed
by Tran and Lee [7] was performed for the given and free-
standing double layer quadruplex tensegrity grid before ap-

plying external load. Note that the statically indeterminate
foundation constraints (boundary conditions) are imposed in
the manner which causes no effect on the self-equilibrium
states of the system. There exist 59 independent self-stress
modes from the analysis of the equilibrium matrix of the sys-
tem. The structure has only one infinitesimal mechanism
when its six rigid-body motions are constrained, indicating
that it is statically and kinematically indeterminate.

Fig. 8 A 20 (5× 4) quadruplex module double layer tensegrity grid.a Perspective view;b Top view
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According to the symmetry of the grid, all elements can
be properly divided into seven groups as shown in Table 2 for
the purpose of obtaining single integral feasible self-stress
mode (see Tran and Lee [7] for more details). By imposing
the constraint in which elements in the same group have the

same force density coefficient (i.e., symmetric properties),
the force density coefficients of seven groups and their corre-
sponding initial self-stress values can be obtained and listed
in Table 2. All the upper nodes of the double layer tensegrity
grid are loaded by the same vertical downward loadP.

Table 2 Initial single integral self-stress values of the 20 module quadruplex double layer tensegrity grid

Group No. Ele. Force density coefficient/(N·cm−1) Initial self-stress/kN

1 1–10 γ 80 8.00

2 11–18 γ 80 8.00

3 19–33 2γ 160 16.00

4 34–49 2γ 160 16.00

5 50–129 2γ 160 113.137

6 130–209 2γ 160 113.137

7 210–289 −2γ −160 −195.959

(a) Vertical loads

The vertical displacementw of node 48 against the ap-
plied loadP for both TL and UL formulations is shown in
Fig. 9. The global load-displacement behavior of the struc-
ture is nearly linear. The structure is softened as the external
loads increase. The results of two formulations are in very
good agreement. When the vertical loadP reaches a value of
300 N, the maximum deflection (the vertical displacement of
node 48) is 1.492 9 cm which is less than 1/250 of the short
span. It indicates that the double layer quadruplex tensegrity
grid is sufficiently good for lightweight large-span structural
applications. However, a detailed study needs to be further
conducted, which is beyond the scope of this paper. The ax-
ial force in typical elements is shown in Fig. 10. An average
of 62% fall in tension (Fig. 10a) appears in the upper cables
of 78 and 80 while a 19% average rise occurs in the lower
cables of 39 and 43. An average of 10% increase in com-
pression (Fig. 10b) occurs in all of typical struts (238–241).

Fig. 9 The vertical displacement of node 48 against vertical loads
in the double layer quadruplex tensegrity grid

Fig. 10 Typical element axial forces.a Tensile forces in cables;b Compressive forces in struts
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(b) Influence of the self-stress level

The influence of the self-stress level (γ = 2–9) on the
behavior of the double layer quadruplex tensegrity grid is in-
vestigated for a specified value of the uniform vertical load
P(= 300 N) on every node is investigated. The relationship
between the vertical displacement (w) at node 48 and the
self-stress level (γ) is displayed in Fig. 11. Whenγ increases
from 2 to 9, the vertical deflection of the structure decreases
by 6% only. Accordingly, the bending strength capacity of
the double layer quadruplex tensegrity grid is not sensitive
to the self-stress level. In other words, the increment of self-
stress level contributes little to the bending stiffness of the
structure.

Fig. 11 Influence of the self-stress level on the behavior of the
double layer quadruplex tensegrity grid under vertical loads

5.2 Geometric nonlinear elastoplastic analysis

The five-module (numbered from M1 to M5) tensegrity
beam (Fig. 12) analyzed by Kahla and Kebiche [20] is con-
sidered. The quadruplex system shown in Fig. 3 is cho-
sen as a unit module. Eight infinitesimal mechanisms and
nine independent self-stress modes are determined based on
the rank deficiency of equilibrium matrix for the tensegriy
beam. Eight modes are from the beam itself. The last one,
in which only Element 2 of each module is pre-stressed, is
caused by the nonzero reaction forces due to the statically
indeterminate supports at Nodes 2 and 27 in thex-direction.
The aim of this mode is to strengthen the bending stiffness
of the tensegrity beam.

In order to eliminate all the infinitesimal mechanisms,
this tensegrity beam should be in the integral feasible self-
stress mode which is a linear combination of the above nine
independent self-stress modes (Tran and Lee [7]). The ini-
tial integral self-stress values and material properties for all
elements of the beam are presented in Table 3. The experi-
mental stress–strain relationship of cable elements (Fig. 13)
proposed in Ref. [20] is adopted in this study, which shows
yield stressσy = 480 MPa and rupture stressσr = 750 MPa
corresponding to yield strainεy = 1.2% and rupture strain
εr = 3.3%, respectively. Here struts are assumed to ex-
hibit an elastic-ideal plastic behavior. All the upper nodes
of this tensegriy beam are loaded by the same vertical down-
ward loadP, and the self-weight of the beam is also taken
into account. The unit weight of the cable and the strut are
0.020 5 N/cm and 0.279 N/cm, respectively.

Fig. 12 A 5 quadruplex module tensegrity beam under vertical loads.a Perspective view;b Top view
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Table 3 Initial integral self-stress values and material properties of the 5 module quadruplex tensegrity beam

Ele. Category Module 1/ Module 2/ Module 3/ Module 4/ Module 5/ Cross section/ Modulus/ Yield stress/

kN kN kN kN kN cm2 GPa GPa

1 Lower 3.889 3.753 3.723 3.679 3.719 0.280 40 0.480

2 cables 6.870 6.517 6.552 6.559 6.963

3 3.700 7.253 6.875 6.913 6.913

4 7.253 6.875 6.913 6.913 3.705

5 Upper 5.173 4.639 4.681 4.639 5.180 0.280 40 0.480

6 cables 5.158 5.040 5.053 5.040 5.180

7 5.129 4.639 4.681 4.639 5.180

8 5.250 5.084 5.095 5.084 5.180

9 Bracing 5.262 5.084 5.095 5.084 5.180 0.280 40 0.480

10 cables 4.950 4.459 4.488 4.671 5.180

11 5.158 4.639 4.681 4.639 5.180

12 5.233 5.158 5.312 5.296 5.477

13 Struts −9.063 −8.472 −8.514 −8.472 −9.041 3.250 200 0.235

14 −9.063 −8.472 −8.514 −8.472 −8.971

15 −9.063 −8.780 −8.776 −8.780 −8.971

16 −8.934 −8.034 −8.108 −8.034 −8.971

Fig. 13 Experimental stress–strain constitutive model of cable ele-
ment [20]

Figure 14 shows the vertical displacementw of node 14
against applied loadP computed using the two types of anal-
yses, i.e. geometric nonlinear elastic and geometric nonlin-
ear elastoplastic ones for both TL and UL formulations. As
can be seen in Fig. 14, a good agreement is found between
the present results and those of Ref. [20]. The predicted crit-
ical load by the UL formulation isPcr = 1 181 N compared
to 1 175 N given by Ref. [20]. Using the TL formulation,
the structure is still sustainable at this load level. Another

observation from Fig. 14 is that rather small difference can
be seen between the results based on the two formulations.
The vertical displacements obtained by geometric nonlinear
elastic analysis are smaller than those obtained by geometric
nonlinear elastoplastic analysis in both formulations at the
same external load level.

6 Concluding remarks

A numerical method implemented into a computer program
has been proposed for the large deflection inelastic analy-
sis of tensegrity systems by using both the total Lagrangian
and updated Lagrangian descriptions. Both geometric and
material nonlinearities have been taken into account. Two
types of analyses, i.e. geometric nonlinear elastic and ge-
ometric nonlinear elastoplastic ones are put forward. The
proposed program traces the responses of the quadruplex
unit module, the double layer quadruplex tensegrity grid and
the five-quadruplex module tensegrity beam under external
loads. From the numerical results obtained, the following
conclusions can be made:

(1) The response of tensegrity structures has been observed
to show a geometric stiffening, and the stiffness of
tensegrity structures increases with the self-stress level.

(2) Regarding the quadruplex unit module, the stretching
stiffness is dominated rather than the bending one.
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Fig. 14 The vertical displacement of node 14 against vertical loads in the 5 quadruplex module tensegrity beam by:a Geometric nonlinear
elastic analysis;b Geometric nonlinear elastoplastic analysis

(3) The flexural behavior of the double layer quadruplex
tensegrity grid is sufficiently good for lightweight large-
span structural applications. On the other hand, its bend-
ing strength capacity is not sensitive to the self-stress
level.

(4) It can be concluded that the proposed program can ac-
curately predict the geometric and material nonlinear be-
havior of the tensegrity grid structures by using both total
and updated Lagrangian descriptions.

Additional research including buckling of struts and dy-
namic behavior of tensegrity systems awaits further atten-
tion.
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