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Abstract A numerical method is presented for the largeof free-standing pre-stressed pin-jointed cable-strut system
deflection in elastic analysis of tensegrity structures includwhere contacts are allowed among the struts [16]. Their
ing both geometric and material nonlinearities. The geoelassification is presented as Class 1 (where bars do not
metric nonlinearity is considered based on both total Latouch) and Class 2 (where bars do connect to each other at a
grangian and updated Lagrangian formulations, while theivot) [17,18]. A complete analysis of the tensegrity systems
material nonlinearity is treated through elastoplastic stresssomprises two steps; the first one is form-finding which is
strain relationship. The nonlinear equilibrium equations ar¢he process of finding an equilibrium configuration; and the
solved using an incremental-iterative scheme in conjunctiosecond is the study of behavior under external loads. Many
with the modified Newton—Raphson method. A computeresearchers have made important contributions to the form-
program is developed to predict the mechanical responséiading step in which Tibert and Pellegrino [19] classified
of tensegrity systems under tensile, compressive and flexthe existing methods into two categories: kinematical meth-
ral loadings. Numerical results obtained are compared witbds and statical methods. Analysis step for behavior is still
those reported in the literature to demonstrate the accuraeydifficult issue for structural engineers since tensegrity sys-
and dficiency of the proposed program. The flexural betems are in general both kinematically and statically indeter-
havior of the double layer quadruplex tensegrity grid is sufminate. Kebiche et al. [5] presented a geometrical nonlin-
ficiently good for lightweight large-span structural applica-ear elastic analysis for a basic quadruplex module (four-strut
tions. On the other hand, its bending strength capacity is né¢énsegrity prism) subjected to axial, flexural and torsional
sensitive to the self-stress level. loads and a five-quadruplex module tensegrity system un-
der traction based on total Lagrangian formulation. Kahla

Keywords Nonlinear analysis Tensegrity structuresGe- ~and Kebiche [20] presented both geometrically nonlinear-

ometric nonlinearity Material nonlinearity Large displace- 1ty and elastoplastic analysis of a five-quadruplex module
ments tensegrity beam using an updated Lagrangian formulation.

Recently, Murakami [21] investigated the elastic behavior of

a three-strut tensegrity module under static load at various

1 Introduction pre-stress levels by applying the updated Lagrangian formu-
lation. More recently, using a set of well-chosen general-

_ ] ized coordinates and the virtual work approach Crane lli

Over the past few decades, tensegrity structures first prey ) [22] developed a mathematical model derivation ad-
posed by Fuller [1] have attracted considerable attention iHressing the static analysis problem and found the displace-
a wide diversity of fields including aerospace [2], architeCynents of the structure under applied external forces. The
ture [3,4], civil engineering [5-7], biology [8-11], mathe- research was performed for only three- and four-strut tenseg-
matics [12,13] and robotics [14,15]. They belong to a clasgities hased on regular prisms. For more complex structures,

numerical method has to be considered.

H.C. Tran- J. Lee &) The objective of this paper is to investigate the behavior

Department of Architectural Engineering, of tensegrity systems considering both geometric and mate-
Free Form Architecture Institute, Sejong University, rial nonlinearities when they are subjected to various types
98 Kunja Dong, Kwangjin Ku, of loadings by using both total Lagrangian and updated La-

Seoul 143-747, Korea grangian formulations. In order to capture the structural be-

e-mail: jhlee@sejong.ac.kr havior, principle of virtual work by Bathe et al. [23], Bathe
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Geometric and material nonlinear analysis of tensegrity structures 939

and Ozdemir [24] and Bathe [25] including both geometric { Eex, I oux <oy, )

and material nonlinearities for a truss element is applied witfl > =

an incremental-iterative solution strategy in conjunction with

the modified Newton—Raphson method. Two types of analwheree,y, oxx, oy and E are the engineering axial strain,

yses are put forward, i.e. geometric nonlinear elastic anstress, yield stress and the essential elastic modulus, respec

geometric nonlinear elastoplastic analyses. Response oftigely. f(eyy) is a one-dimensional plastic flow rule. Regard-

quadruplex module in a state of self-stress under tensioing cable elementf (s«x) is defined by experiment whereas

compression and flexure is studied, as well as behavior ch&br strut, it is assumed to exhibit elastic-ideal plastic behavior

acterization of a double layer quadruplex tensegrity grid and.e., f(ex) = o).

a five-quadruplex module tensegrity beam. The influence of

the self-stress level is investigated. A comparison between

the two formulations is also presented based on the resuls Finite element model

obtained. The updated Lagrangian formulation is recom-

mended for the large deflection analysis of tensegrity struc-

tures. In an incremental-iterative analysis, three typical configu-

rations can be identified for the structure under considera-
tion: the self-stressed initial undeformed configuratity;

2 Fundamental assumptions and constitutive modeling  the last calculated deformed configurat®nand the current

of element behavior deformed configuratio@, (Fig. 2). In this paper, the left su-

perscript of a symbol is used to indicate the configuration in

which the quantity occurs, and the left subscript indicates the

configuration to which the quantity is referred. Those quan-

tities generated as increments within the step fono C,

In establishing the stress—strain relation to account for yieldgij| pe denoted with no left superscript. And an indpkas

ing behavior of an axially-loaded bar, the following assumpyhe values of zero and unity & 0, 1) unless otherwise men-

tions are adopted for tensegrity structures: tioned. The quantities in the equation established by the to-
(1) Members are connected by pin joints; tal Lagrangian (TL) formulation and the updated Lagrangian

(2) The cross-sectional area of each member remairfy/L) formulation will be referred t&o, Cy, respectively.
unchanged during the deformation process;

(3) Buckling of the strut is not considered;

flexn), If o =0y,

2.1 Fundamental assumptions

(4) There are no dissipative forces acting on the system. C, e
2_1’
2.2 Constitutive modeling of element behavior X /
WYY [ »
The elastoplastic stress—strain relationship (Fig. 1) to model A r: C i
linear elastic and yielding behavior of a truss element can be BTN e
expressed as /
/b
y |
Fz o\
o ‘ “_"' (-.,
o A o Yl
et
Oyl e ’.u

”Z. ]Z. _’Z

Fig. 2 Reference and deformed configurations of a body in three
dimensions

By the TL formulation, the virtual work equation of
Fig. 1 Engineering stress—strain constitutive model for elastoplasequilibrium by Bathe [25] for a space truss elemenCat
tic material can be linearized and referred®g, as
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940 H.C. Tran, J. Lee

f 0Eoeud (080 OV + f 1S, (0m)dV al. [27], Deng and Kwan [28], Zhang and Ohsaki [29] and
oy oy Ohsaki and Zhang [30]. It should be noted that if an in-
5 N 0 finitesimal mechanism is applied to a tensegrity system, the
=oR- ﬁ , 0Sxd(0ex)d V. (2)  material elastic sfinessKe in Eq. (6) vanishes. Accord-
o ) ) ~ingly, its initial stiffness at the initial state (or the stability of

of equilibrium by Bathe [25] for a space truss elemer€at \yhich can be created by its self-stress modes.
can be linearized and referred@g, as

f 1E1800(1800d™V + f b (1) d'V 4 Nonlinear solution method
v v
1 1
= iR‘ IV Tx0 (1890 V, (3 The solution of nonlinear equations usually requires the use

of an incremental-iterative solution scheme. In this pa-
1( ou )2 .+ pern modified Newton—Raphson method is employed and ex-

ouy . : ;
Where,-exx( = 6Tx) is a linear stram;,—nxx( A pressed as

2

100v\2 1/0w\? . i , d L . ey i1
E(ﬂ) + é(ﬂ) )lsa nonlinear strainy, vandw are cen- (m)OKTAOU(I) = M) Op _ (m+ )O;:(If ), for TL, (7a)
troidal displacements of the element in its local coordinate in

1 MK A, U0 = MDH0p - (MeDIEED | for UL, (7b)
X-, y- andz-directions, respectiveIM;E(= OE(—) ) is a tan- )

_ . oL where™MiKy (= MIKe + MIKe) is the tangent sfiness
gent modulus!L a_deV are the length and the vqu_me of an gyaluated a€; for load levelm referred toC;; “n" is the be-
element, respectivelgS,y and'r,, are 2nd Piola—Kirchhi® ginning load level for the currentyi+ 17, load step;U, P

and Cauchy stress, respectively; the Cauchy stress can be 841 F are the structure displacement, the reference external

lated to the 2nd Piola—Kirchitibstress bytry, = éSxx(o—L); Iof';\of and the equilibrated inter_nal f_orce yectors, respectively;
o0 . L Ais aload parametens symbolizes iterative change; and the
andj Ris the external virtual work.

arenthetical superscript signifies the iteration number. The
The incremental strains of Egs. (2) and (3) are, respeg P P SId

. ) ! ccumulated incremental displacement vector and the load
tively, related to the Green—Lagrange strgig, and Almansi

: parameter through iteratiom™within incremental load step
strainy ey as

“m+ 1" are defined as

0= :Tl; ’ %[(%)2 ! (;T\;)Z ¥ (:TVZ()Z] dju® = d;ut + A U0, (8a)
= 08xx + 077xxs (4a) da® =dal=D + AQ0, (8b)
_ou 1piouy (9vyE o owy? where gU© = 0; d1© = 0; and “d” symbolizes incremen-
180c= iy~ E[(GTX) (3Tx) (6Tx) ] tal change within the load step. Accumulated variable quan-
= 18 — 1773 (4b) tities through iterationi™ for incremental load steprfi + 1”
Substituting linear shape functions for the displacemerf?re defined as
\S/ie;]réallslse;éseqfr.u(szs) :Ir;crjn (eisr)]tc;n be, respectively, derived f0r(81+1)jU(i) _ (m+1)jU(i—1) + AJ‘U(i), (9a)
(3ke + Skg)Aou = 2f —1f, for TL, (5a) A0 = MDD+ A0, (9b)
(tke + tkg)Agu = 2f —1f, for UL, (5b) MIFO = MDIFED + ALFO, (9c)
wherelke and Tky are element elastic and geometridfsti (RO = (M 0p — M DIED, (9d)

ness matrices, respectivelyju is element displacement in- here,R is the out-of-balance force vector. For=1" =0,

crement vector, which consists of three translations at ea(\{ﬁe variables are equal to those of the previous incremental

node;2f andf are external and internal element forces act- . . o
'] ]
ing atC, andC,, respectively. By the element assembly pro_step. For the solution of Eq. (7b) by UL formulation, it is

cedure. Eq. (5) can be constructed for the structure as required to update the nodal coordinate veetdo calculate

the updated coordinate transformation matrices as
(Ke + §Ke)AgU = 3P - IF, for TL, (6a)

(%KE + iKG)Alu = %P - %F, for UL. (6b)

(meD)x () = MDY -1 4 A YO, (10)

The iterative process is repeated until the convergence condi-
The final forms of the tangent fitiess matrices derived tion is satisfied. The slackening of cable elements is treated
above are equivalent to those by Murakami [26], Masic ein the following manner: the actual length of each cable is
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Geometric and material nonlinear analysis of tensegrity structures 941

computed and compared to its free length within each iteratsed for verification purpose. Three types of loading are

tion. If the actual length is shorter than the free length, theagonsidered: tension, compression and flexure (upward and

the cable is slack. Its axial force is equal to zero and there @ownward). The influence of the self-stress level is also in-

no contribution of its sfthess to the global structure one.  vestigated. Before applying external load, the initial self-
stress design procedure proposed by Tran and Lee [7] was
performed to define the force density dbgent (force-to-

5 Numerical examples length ratio) vector for the given and free-standing quadru-
plex system was performed. Note that the statically inde-
terminate foundation constraints (boundary conditions) are

5.1 Geometric nonlinear elastic analysis imposed in the manner which does not cause dfigce
on the self-equilibrium state of the system. Based on the
5.1.1 A quadruplex module rank deficiency of equilibrium matrix, the number of self-

stress modes and infinitesimal mechanisms of this system are
ound to be one and three, respectively, as presented in Pel-

A I Fig. ising f 1
quadruplex system (Fig. 3) comprising four struts and iegrino and Calladine [31] and Tran and Lee [32].

cables, which was studied by Kebiche et al. [5], is herei

50cm

‘ 50cm
!
Yr.v

Fig. 3 The quadruplex module under tensile, compressive and flexural l@aB$an view;b Tension compressiorg Upward flexure
downward flexure

It is observed from Eq. (6) that this single self-stresfor geometric nonlinear elastic analysis by using either TL
mode stifens the infinitesimal mechanisms. In other wordspr UL formulation. Furthermore, solutions obtained by the
the geometric sfinessKg of the system induced by single TL and UL formulations coincide with each other. The sys-
self-stress mode exhibits positivefBiess to all directions tem becomes dfer for increasing tension while it becomes
within the infinitesimal displacements. Force density coefsofter for increasing compression.
ficients, initial self-stress values, geometrical and materi
properties of the quadruplex module are given in Table i(.i)) Flexural loads
The self-stress leve}j in this case is equal to 558m. Con- Flexural loads (Fig. 3c) from 0 to 3.9kN 3 are ap-
centrated loads are applied on Nodes 6, 7 and 8. The abggied on Nodes 6, 7 and 8 along théirection. The solutions
lute value of displacement at the gravity center of the loade(Fig. 5) by both formulations agree well with the results from
cross-section (triangle 6,7,8) is plotted against the total agref. [5]. Regardless of the load direction, the structure is
plied loads for all loading cases. stiffened as the external loads increase. The deformation in
downward flexure is larger than that in upward flexure. This
leads to the conclusion that the rigidity of lower “fibers” in

As indicated in Fig. 3b, the tensile or compressive loadshe quadruplex system is larger than that of upper “fibers”.
are applied on Nodes 6, 7 and 8 along #direction. The From Figs. 4 and 5, it is clearly seen that the load-carrying
value of each loadR) varies from 0 to 2kN. The present re- capacity under tension and compression is better than that
sults, as plotted in Fig. 4, agree well with those of Ref. [5Junder flexure in the quadruplex system.

(a) Tensile and compressive loads
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942 H.C. Tran, J. Lee

Table 1 Initial self-stress values, geometrical and material properties of the quadruplex module

Ele. Nodes Category Force density fiimenf(daNcm™) Lengthicm Initial self-stres&kN  Cross sectiglen?  ModulugGPa

1 1 6 Lower vy 55 100 55 0.280 40
2 2 7 cables vy 5.5 100 5.5

3 1 2 Y 55 100 55

4 6 7 y 5.5 100 55

5 3 4 Upper 2 11.0 70.71 7.7782 0.280 40
6 3 5 cables 72 11.0 70.71 7.7782

7 4 8 % 11.0 70.71 7.7782

8 5 8 % 11.0 70.71 7.7782

9 2 5 Bracing 2 11.0 70.71 7.7782 0.280 40
10 7 8 cables 2 11.0 70.71 7.7782

11 4 6 . 11.0 70.71 7.7782

12 1 3 . 11.0 70.71 7.7782

13 3 6 Struts -2y -110 122.47 -1.34722 0.325 200
14 2 8 -2y -110 122.47 -1.34722

15 1 5 -2y -110 122.47 -1.34722

16 4 7 =2y -110 122.47 -1.34722

a | b . | |
6! o . 6 |- --+--- Kebiche etal. [5] (TL)
--+--- Kebiche et al. [5] (TL) — Prsent (TL)
—— Prsent (TL)

| 5 - —*— Prsent (UL) .

—+— Prsent (UL)

: z
Z <
- —_— - -
N 1 g 3
= [ag]
i 2 .
| - —
0 / 1 1 1 I
1.5 0 0.5 1.0 15 20 25 30
u/em u/cm
Fig. 4 Behavior of the quadruplex module undarTensile loadsb Compressive loads
(c) Influence of the self-stress level Based on the load level, thigs value range is so chosen as

to avoid buckling in the strut. The relationship between the
Obviously, the stfness of tensegrity system in Eq. (6) displacements in- andz-directions (i, w) and the self-stress
depends partly on the self-stress level. The influence of thisvel (y) are displayed in Figs. 6 and 7 for tensile, compres-
level (y = 2-9) on the behavior of the quadruplex systensive and flexural loads, respectively. Total external lod?) (3
under tensile, compressive and flexural loads is investigatei$. assumed to be at a specified value, 4.5 kN.
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Geometric and material nonlinear analysis of tensegrity structures 943

3P/kN

T

Prsent (TL)

—+— Prsent (UL)

--a-.- Kebiche et al. [5] (TL)

w/cm

b T T T T
4.50 - -
--4+..- Kebiche et al. [5] (TL)
3751 Prsent (TL) _
—— Prsent (UL)
3.00 + -1
z
N 225 - -
[ag]
1.50 + -
0.75 + -
04+~ I 1 1 I ] |
0 2.5 5.0 7.5 10.0 125 150

w/em

Fig. 5 Behavior of the quadruplex module undar:Upward” flexural loadshb “Downward” flexural loads

90 - -

80 -

70

60 -

#/(N-cm N

40 +

30

-4 -- Kebiche et al. [5] (TL)
Prsent (TL)

—— Prsent (UL)

20

0.8 1.0

1.2 1.4

u/cm

b ! ' '
90 - . ™ |
_ --a... Kebiche et al. [5] (TL)
gol —— Prsent (TL) N
—— Prsent (UL)
70} i
T 60 ]
=
o
£ s0t i
o
40 - i
301 ]
20

1.0 1.5 2.0 2.5 3.0 3.5 4.0
w/cm

Fig. 6 Influence of the self-stress level on the quadruplex module uadBgnsile loadsh Compressive loads

90 -

80

70

60 -

y/(N-em™)

40 +

30+

Upward (TL)
—s— Upward (UL)
Downward (TL)
»» o Downward (UL)

20 i

Fig. 7 Influence of the self-stress level on the quadruplex modul

under flexural loads

|
14

w/em

20

Figure 6 shows the comparison of the present results
with those in Ref. [5]. In all cases, the displacement de-
creases when the self-stress level increases indicating that
increasing the self-stress level makes the tensegrity system
stiffer. This phenomenon becomes more sensitive for com-
pressive loading. Figure 7 confirms that the lower “fibers” in
the quadruplex system is more rigid than the upper “fibers”.
Figures 6 and 7 also confirm that load-carrying capacity un-
der tension and compression is higher than that under flex-
ure in the quadruplex system. Thefstess of both top and
bottom surfaces of the module contributes to the module’s
global stifness in the case of tensile and compressive load-
ings. While in the case of flexural loading they have little
contribution to the module’s global fitiess. It is observed
from Figs. 6 and 7 that the results of twdtdrent formula-
éions are in excellent agreement.
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944 H.C. Tran, J. Lee

5.1.2 Double layer quadruplex tensegrity grid plying external load. Note that the statically indeterminate

. ) . foundation constraints (boundary conditions) are imposed in
Consider a tensegrity grid assembled from 2843 quadru-  the manner which causes néieet on the self-equilibrium
plex modules (Fig. 3a) which consists of 79 nodes, 80 strut§aies of the system. There exist 59 independent self-stress
and 209 cables as described in Fig. 8. Similarly, in ordepgges from the analysis of the equilibrium matrix of the sys-
to define the force density cfigient (force-to-length ra- (e The structure has only one infinitesimal mechanism
tio) vector the initial self-stress design procedure proposegnen its six rigid-body motions are constrained, indicating
by Tran and Lee [7] was performed for the given and freega¢ it is statically and kinematically indeterminate.
standing double layer quadruplex tensegrity grid before ap-

61

s 100¢cm
—{" =
.E ~
3 i |

[‘(}E

100cm

60)

100cm
T
g
g
v

2 1 3 27
x Kl
g .
n s 0
g 3) & YO 28
- LE
LN
~ [, AV k]
(i I 7%

100em B 100cm i 100cm v 100cm Y 100cm )

Fig. 8 A 20 (5x 4) quadruplex module double layer tensegrity gedRerspective viewp Top view
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Geometric and material nonlinear analysis of tensegrity structures 945

According to the symmetry of the grid, all elements carsame force density céiicient (i.e., symmetric properties),
be properly divided into seven groups as shown in Table 2 fahe force density cdicients of seven groups and their corre-
the purpose of obtaining single integral feasible self-stressponding initial self-stress values can be obtained and listed
mode (see Tran and Lee [7] for more details). By imposingn Table 2. All the upper nodes of the double layer tensegrity
the constraint in which elements in the same group have thgrid are loaded by the same vertical downward |&ad

Table 2 Initial single integral self-stress values of the 20 module quadruplex double layer tensegrity grid

Group No. Ele. Force density ciieient/(N-cm™?) Initial self-stresgkN
1 1-10 v 80 800

2 11-18 y 80 800

3 19-33 .4 160 1600

4 34-49 Y. 160 1600

5 50-129 7 160 113137

6 130-209 2 160 113137

7 210-289 -2y -160 —-195959

(a) Vertical loads . T . T

The vertical displacement of node 48 against the ap- 000 o N

plied loadP for both TL and UL formulations is shown in . e WL

Fig. 9. The global load-displacement behavior of the struc- 750 I
ture is nearly linear. The structure is softened as the external
loads increase. The results of two formulations are in very
good agreement. When the vertical Idddeaches a value of
300 N, the maximum deflection (the vertical displacement of
node 48) is 1.492 9 cm which is less thg230 of the short
span. Itindicates that the double layer quadruplex tensegrity
grid is suficiently good for lightweight large-span structural
applications. However, a detailed study needs to be further
conducted, which is beyond the scope of this paper. The ax- 0 , ; : :
ial force in typical elements is shown in Fig. 10. An average 0 1 2 3 4 5 6
of 62% fall in tension (Fig. 10a) appears in the upper cables w/em

of 78 and 80 while a 19% average rise occurs in the lower

cables of 39 and 43. An average of 10% increase in CONEig. 9 The vertical displacement of node 48 against vertical loads
pression (Fig. 10b) occurs in all of typical struts (238—-241).in the double layer quadruplex tensegrity grid

600 - I

PIN

450 - .

300

T
1

150

T
1

20 - Cee 2l o
s e w-26
4 =}
. .5 -3- - @ e 30
17 - P D R

78
— 79
80
81
158
-+- 159
= 160
+= 161

2

—24 1 L 1 L

0 200 400 600 800 100 1200 0 150 300 450 600 750 900
P/N P/N

Fig. 10 Typical element axial forces Tensile forces in cablef; Compressive forces in struts

@ Springer



946 H.C. Tran, J. Lee

(b) Influence of the self-stress level 5.2 Geometric nonlinear elastoplastic analysis

The influence of the self-stress level £ 2-9) on the
behavior of the double layer quadruplex tensegrity grid is inThe five-module (numbered from M1 to M5) tensegrity
vestigated for a specified value of the uniform vertical loacheam (Fig. 12) analyzed by Kahla and Kebiche [20] is con-
P(= 300N) on every node is investigated. The relationshigidered. The quadruplex system shown in Fig. 3 is cho-
between the vertical displacement)(at node 48 and the sen as a unit module. Eight infinitesimal mechanisms and
self-stress levely) is displayed in Fig. 11. Whepincreases nine independent self-stress modes are determined based ot
from 2 to 9, the vertical deflection of the structure decreasege rank deficiency of equilibrium matrix for the tensegriy
by 6% only. Accordingly, the bending strength capacity ofbeam. Eight modes are from the beam itself. The last one,
the double layer quadruplex tensegrity grid is not sensitivén which only Element 2 of each module is pre-stressed, is
to the self-stress level. In other words, the increment of selfeaused by the nonzero reaction forces due to the statically
stress level contributes little to the bendingfstess of the indeterminate supports at Nodes 2 and 27 inxfakrection.
structure. The aim of this mode is to strengthen the bendinffretss

of the tensegrity beam.

90 - . In order to eliminate all the infinitesimal mechanisms,

this tensegrity beam should be in the integral feasible self-

i stress mode which is a linear combination of the above nine

70 - R independent self-stress modes (Tran and Lee [7]). The ini-
o~ tial integral self-stress values and material properties for all
E 60 elements of the beam are presented in Table 3. The experi-
E, 50 - _ mental stress—strain relationship of cable elements (Fig. 13)
-

proposed in Ref. [20] is adopted in this study, which shows
yield stressry = 480 MPa and rupture stress = 750 MPa
corresponding to yield strain, = 1.2% and rupture strain
g = 3.3%, respectively. Here struts are assumed to ex-
2? PR '49 ts o= 1 ';5 LS hibit an elastic-ideal plastic behavior. All the upper nodes
' ’ : - - ' ’ of this tensegriy beam are loaded by the same vertical down-
wrem ward loadP, and the self-weight of the beam is also taken
Fig. 11 Influence of the self-stress level on the behavior of thento account. The unit weight of the cable and the strut are
double layer quadruplex tensegrity grid under vertical loads 0.0205Ncm and 0.279 &&m, respectively.

" o Die e 10¢
100cm » 100cm A 100cm L 100cm 1A 100em

Fig. 12 A 5 quadruplex module tensegrity beam under vertical load®erspective viewh Top view
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Geometric and material nonlinear analysis of tensegrity structures 947

Table 3 Initial integral self-stress values and material properties of the 5 module quadruplex tensegrity beam

Ele. Category Module/L Module2/ Module3 Module4 Moduley Crosssectioh Modulug Yield stresg

kN kN kN kN kN cn? GPa GPa
1 Lower 3.889 3.753 3.723 3.679 3.719 0.280 40 0.480
2 cables 6.870 6.517 6.552 6.559 6.963
3 3.700 7.253 6.875 6.913 6.913
4 7.253 6.875 6.913 6.913 3.705
5 Upper 5.173 4.639 4.681 4.639 5.180 0.280 40 0.480
6 cables 5.158 5.040 5.053 5.040 5.180
7 5.129 4.639 4.681 4.639 5.180
8 5.250 5.084 5.095 5.084 5.180
9 Bracing 5.262 5.084 5.095 5.084 5.180 0.280 40 0.480
10 cables 4.950 4.459 4.488 4.671 5.180
11 5.158 4.639 4.681 4.639 5.180
12 5.233 5.158 5.312 5.296 5.477
13 Struts -9.063 -8.472 -8514 -8.472 -9.041 3.250 200 0.235
14 -9.063 -8.472 -8514 -8.472 -8971
15 -9.063 -8.780 -8.776 -8.780 -8971
16 -8.934 -8.034 -8.108 -8.034 -8971

' j observation from Fig. 14 is that rather smalffdience can

be seen between the results based on the two formulations.

0.7 + ;- The vertical displacements obtained by geometric nonlinear
: elastic analysis are smaller than those obtained by geometric

nonlinear elastoplastic analysis in both formulations at the

PR - e - same external load level.
© 04+ ~
9 03 L i 6 Concluding remarks
0.2 -
: : A numerical method implemented into a computer program
0.1 f - has been proposed for the large deflection inelastic analy-
0 ! P | | L sis of tensegrity systems by using both the total Lagrangian
0 0.005 0.010 0.015 0.020 0.025 0.030 0.035 and updated Lagrangian descriptions. Both geometric and
€ material nonlinearities have been taken into account. Two
Fig. 13 Experimental stress—strain constitutive model of cable eletypes of analyses, i.e. geometric nonlinear elastic and ge-
ment [20] ometric nonlinear elastoplastic ones are put forward. The

proposed program traces the responses of the quadruplex
unit module, the double layer quadruplex tensegrity grid and

inst lied loaR ted usina the two t ¢ | the five-quadruplex module tensegrity beam under external
against appiied load computed using the two types otanar ,,4s - From the numerical results obtained, the following
yses, i.e. geometric nonlinear elastic and geometric non“rl:'onclusions can be made:

ear elastoplastic ones for both TL and UL formulations. As

can be seen in Fig. 14, a good agreement is found betweg) The response of tensegrity structures has been observec
the present results and those of Ref. [20]. The predicted crit- to show a geometric sfening, and the sfiness of

ical load by the UL formulation i®, = 1181 N compared tensegrity structures increases with the self-stress level.
to 1 175N given by Ref. [20]. Using the TL formulation, (2) Regarding the quadruplex unit module, the stretching
the structure is still sustainable at this load level. Another stiffness is dominated rather than the bending one.

Figure 14 shows the vertical displacemendf node 14
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a T T T T b T T T T T
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Fig. 14 The vertical displacement of node 14 against vertical loads in the 5 quadruplex module tensegrity be@uadayetric nonlinear
elastic analysisy Geometric nonlinear elastoplastic analysis

(3) The flexural behavior of the double layer quadruplex 6 Rhode-Barbarigos, L., Ali, N.B.H., Motro, R., et al.: Designing
tensegrity grid is sfliciently good for lightweight large- tensegrity modules for pedestrian bridges. Eng. Stra2),
span structural applications. On the other hand, its bend- 1158-1167 (2010)

ing strength capacity is not sensitive to the self-stress? Tran, H.C., Lee, J.: Self-stress design of tensegrity grid struc-
level. tures with exostresses. Int. J. Solids Strdd(20), 2660—2671

_ (2010)
(4) It can be COUCIUded that th? proposed ngra”f' can ac8 Ingber, D.E.: The architecture of life. Sci. ArA781), 48-57
curately predict the geometric and material nonlinear be- (1998)

havior of the tenseg“tY grid stru.ctl.Jres by using both total 9 Ingber, D.E.: Tensegrity I. Cell structure and hierarchical sys-
and updated Lagrangian descriptions. tems biology. J. Cell SciL1§7), 11571173 (2003)

Additional research including buckling of struts and dy- 10 Stamenovic, D.: ffects of cytoskeletal prestress on cell rheo-

. . . . logical behavior. Acta Biomatef(3), 255262 (2005)
nami havior of ten ri ms awaits further n-
tign ¢ behavior of tensegrity systems awaits further atte 11 Feng, X.Q., Li, Y., Cao, Y.P,, et al.: Design methods of rhom-

bic tensegrity structures. Acta Mech. Sini2&4), 559-565
(2010)

Acknowledgments The support of the research reported here by12 Connelly, R., Whiteley, W.: Second-order rigidity and prestress

Basic Science Research Program through the National Research stability for tensegrity frameworks. SIAM J. Discrete Math.
Foundation of Korea (NRF) funded by the Ministry of Educa- 9(3), 453-491 (19_96) . . .
tion, Science and Technology (NRF2010-0019373) is gratefullyt3 ©rdan, T., Recski, A., Szabadka, Z.: Rigid tensegrity labelings
acknowledged. The authors also would like to thank the anony- of graphs. Eur. J. Combir80(8), 1887-1895 (2009)

mous reviewers for their suggestions in improving the standard of4 Paul, C., Lipson, H., Valero-Cuevas, F.: Design and control of
the manuscript. tensegrity robots for locomotion. IEEE T. Rob@2(5), 944—

957 (2006)

15 Rovira, A.G., Tur, J.M.M.: Control and simulation of a
tensegrity-based mobile robot. Robot. Auton. SyS#(5),
526-535 (2009)

16 Wang, B.B.: Free-standing Tension Structures: From Tenseg-

1 Fuller, R.B.: Synergetics-Explorations in the Geometry of rity Systems to Cable Strut Systems. Spon Press, London and
Thinking. Macmillan Publishing Co. Inc., London, UK (1975) New York (2004)

2 Tibert, A.G., Pellegrino, S.: Deployable tensegrity reflectors17 pinaud, J.P., Solari, S., Skelton, R.E.: Deployment of a class 2

References

for small satellites. J. Spacecraft Rock&&(5), 701-709 tensegrity boom. In: Proceedings of SPIE Smart Structures and
(2002) Materials, SPIE Press 155-162 (2004)

3 Fu, F.: Structural behavior and design methods of tensegrityg Motro, R.: Tensegrity: Structural Systems for the Future. (1st
domes. J. Constr. Steel R&xd(1), 23-35 (2005) edn.) Kogan Page Science, London (2003)

4 Tran, H.C., Lee, J.: Initial self-stress design of tensegrity grid19 Tibert, A.G., Pellegrino, S.: Review of form-finding methods
structures. Comput. Stru@8(9-10), 558-566 (2010) for tensegrity structures. Int. J. Space Stru(4), 209-223

5 Kebiche, K., Kazi-Aoual, M.N., Motro, R.: Geometrical non- (2003)
linear analysis of tensegrity systems. Eng. Str@df9), 864— 20 Kahla, N.B., Kebiche, K.: Nonlinear elastoplastic analysis of
876 (1999) tensegrity systems. Eng. Stru2g(11), 1552—-1566 (2000)

@ Springer



Geometric and material nonlinear analysis of tensegrity structures 949

21 Murakami, H.: Static and dynamic analyses of tensegrity struc27 Masic, M., Skelton, R., Gill, P.: Algebraic tensegrity form-
tures. Part Il. Quasi-static analysis. Int. J. Solids Struct.  finding. Int. J. Solids Struc#2(16-17), 4833—4858 (2005)

38(20), 3615-3629 (2001) 28 Deng, H., Kwan, A.S.K.: Unified classification of stability of
22 Crane lll, C.D., Dfty, J., Correa, J.: Static analysis of tenseg-  pin-jointed bar assemblies. Int. J. Solids Str4&(15), 4393—
rity structures. J. Mech. Desidi27(2), 257-268 (2005) 4413 (2005)

23 Bathe, K.J., Ramm, E., Wilson, E.: Finite element formulations29 Zhang, J.Y., Ohsaki, M.: Adaptive force density method for
for large deformation dynamic analysis. Int. J. Numer. Meth.  form-finding problem of tensegrity structures. Int. J. Solids

Eng.9(2), 353-386 (1975) Struct.43(18-19), 5658-5673 (2006)

24 Bathe, K.J., Ozdemir, H.: Elastic-plastic large deformation30 Ohsaki, M., Zhang, J.Y.: Stability conditions of prestressed
static and dynamic analysis. Comput. Stru&(2), 81-92 pin-jointed structures. Int. J. Nonlinear Mect1(10), 1109—
(1976) 1117 (2006)

25 Bathe, K.J.: Finite Element Procedures. Englewoodf<li 31 Pellegrino, S., Calladine, C.R.: Matrix analysis of statically and
New Jersey: Prentice-Hall (1996) kinematically indeterminate frameworks. Int. J. Solids Struct.

26 Murakami, H.: Static and dynamic analyses of tensegrity struc- 22(4), 409-428 (1986)
tures. Part 1. Nonlinear equations of motion. Int. J. Solids32 Tran, H.C., Lee, J.: Advanced form-finding for cable-strut
Struct.38(20), 3599-3613 (2001) structures. Int. J. Solids Struet7(14-15), 1785-1794 (2010)

@ Springer



