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Abstract This study deals with stress analysis of annular ro-
tating discs made of functionally graded materials (FGMs).
Elasticity modulus and density of the discs are assumed to
vary radially according to a power law function, but the ma-
terial is of constant Poisson’s ratio. A gradient parametern is
chosen between 0 and 1.0. Whenn = 0, the disc becomes a
homogeneous isotropic material. Tangential and radial stress
distributions and displacements on the disc are investigated
for various gradient parametersn by means of the diverse
elasticity modulus and density by using analytical and nu-
merical solutions. Finally, a homogenous tangential stress
distribution and the lowest radial stresses along the radius
of a rotating disc are approximately obtained for the gra-
dient parametern = 1.0 compared with the homogeneous,
isotropic casen = 0. This means that a disc made of FGMs
has the capability of higher angular rotations compared with
the homogeneous isotropic disc.

Keywords Functional graded materials· Stress analysis·
Analytical analysis· Finite element analysis (FEA)

1 Introduction

Many materials with mechanical and physical properties that
vary continuously as a function of position within the ma-
terials occur in nature and they are known as continuously
non-homogeneous materials. The mechanical benefits ob-
tained by a material gradient may be significant, as can be
seen by the excellent structural performance of some of these
materials. These materials are sometimes called functionally
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graded materials (FGMs) when synthetic materials are
graded for specific applications [1]. FGMs are being used as
an interfacial zone to improve the bonding strength of lay-
ered composites in order to reduce the residual and thermal
stresses in bonded dissimilar materials and as wear resistant
layers in machine and engine components [2, 3]. Therefore,
composites made of FGMs have been attracting considerable
attention in recent years.

With increasing demand to achieve high strength to
weight ratios, optimizing the geometrical and physical prop-
erties of the disc configuration becomes more significant. A
closed form solution for the stress analysis in a homogeneous
isotropic rotating disc or a disc under pressure can be found
in Ref. [4]. Chiba [5] analytically derived the second-order
statistics in an axisymmetrically heated, functionally graded,
annular disc with spatially random heat transfer coefficients
on the upper and lower surfaces using an integral transform
method and a perturbation method. Wang and Noda [6] in-
vestigated the fracture behavior of a cracked, functionally
graded actuator on a substrate under thermal load. They uti-
lized the integral transform method in the numerical solu-
tion. Sladek et al. [7] presented a meshless local bound-
ary integral equation method (LBIEM) for dynamic analy-
sis of an anti-plane crack in functionally graded materials.
Peng and Li [8] analyzed thermoelastic problem of a rotat-
ing, functionally graded, hollow circular disk. The numeri-
cal results obtained by using the Fredholm integral equation
were presented graphically to show the effects of gradient
parameter, temperature change, angular velocity and thick-
ness of the disk on the distribution of thermal stresses and
radial displacement. Sladek et al. [9] derived local integral
equations (LIE) for numerical solutions of 3D problems in
linear elasticity of functionally graded materials viewed as
2D axisymmetric problems. The convergence and accuracy
of these numerical methods are investigated using the exact
solution for a functionally graded hollow cylinder subjected
to internal pressure. Singh and Ray [10] investigated creep in
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an orthotropic aluminum-silicon carbide composite rotating
disc by using Hill’s anisotropic yield. In that study, the re-
sults obtained have been compared with the results obtained
using von Mises yield criterion for the isotropic, heteroge-
neous composites.

Much of the work on FGMs has generally been car-
ried out numerically, e.g. using the finite element method
(FEM) and the boundary element method (BEM). Neverthe-
less, the mechanical and mathematical modeling of FGMs
is currently an active research area. Analytical solutions to
benchmark problems provide invaluable checks on the ac-
curacy of numerical or approximate analytical schemes and
allow for widely applicable parametric studies.

Horgan and Chan [11] investigated the stress response
on a pressurized hollow cylinder or disk made of function-
ally graded, isotropic, linearly elastic materials. They inves-
tigated a body with Young’s modulus varying radially only.
Ying and Wang [12] presented an analytical solution for a
rotating multiferroic composite hollow cylinder made of ra-
dially polarized piezoelectric and piezomagnetic materials.
Zenkour [13] dealt with a solution for a rotating annular disk
which is assumed to be graded in the radial direction accord-
ing to a simple exponential-law distribution. Durodola and
Attia [14] investigated deformation and stresses in function-
ally graded rotating disks. They compared two methods, the
finite element method (ABAQUS) and direct numerical inte-
gration of governing differential equations, with each other.
In these papers in general, the modulus varies in radial di-
rection whereas the density remains constant. Çallioğlu [15]
studied the stress of functionally graded rotating discs sub-
jected to internal and external pressures.

In the present study, elasticity modulusE and density
ρ of the discs are a function of radiusr, so that those ma-
terials are called functionally graded materials. However,
Poisson’s ratio is assumed to be constant, because its vari-
ation has much less practical significance than that of the
elasticity modulus and density. So, the discs can be clas-
sified as radial orthotropic material discs. For functionally
graded annular rotating discs at constant angular velocity,
closed-form solutions using the infinitesimal theory of elas-
ticity are obtained by means of a FORTRANr program pre-
sented. For the numerical solution, a commercial finite ele-
ment program ANSYSr is used. Functionally graded rotat-
ing discs are modeled by axisymmetric element, Plane42 in
ANSYSr [16]. In the solutions for both methods, the power
law function is used, and the gradient parametern is chosen
between 0 and 1.0. Results obtained from analytical and nu-
merical solutions are compared with each other and are in
good agreement.

2 Stress analysis

The governing differential equation of equilibrium for a thin
rotating disc is

dσr

dr
+
σr − σθ

r
+ ρ(r)ω2r = 0, (1)

whereρ(r) is density of the material and it is assumed to
vary in the radial direction, andω is the angular velocity of
the disc.

Due to the rotational symmetry, the strain-displacement
relations are given by

εr =
du
dr
, εθ =

u
r
, (2)

whereu is the displacement component in the radial direc-
tion. The strain compatibility equation is

εr =
d
dr

(rεθ). (3)

The strain–stress relation can be given by

εr =
1

E(r)
(σr − νσθ),

εθ =
1

E(r)
(σθ − νσr ).

(4)

The material elasticity modulusE is assumed to vary along
the radius of the disc. Since variation of Poisson’s ratio has
much less practical significance than that of the elasticity
modulus and density, Poisson’s ratioν is assumed as a con-
stant value.

The equilibrium equation (1) is satisfied by the stress
functionF defined as

σr =
F
r
, σθ =

dF
dr
+ ρ(r)ω2r2. (5)

Substituting Eqs. (4) and (5) into compatibility Eq. (3) yields

r2F′′ + rF ′
(
1− r

E′(r)
E(r)

)
− F
(
1− νr

E′(r)
E(r)

)
= −ρ(r)ω2r3

(
3+ ν − r

E′(r)
E(r)

)
− ρ′(r)ω2r4. (6)

Now suppose that

E(r) = E
( r
b

)n
, ρ(r) = ρ

( r
b

)n
, (7)

wheren is gradient parameter, and then the differential equa-
tion (6) reduces to

r2F′′ + rF ′(1− n) − F(1− νn) = −
ρω2rn+3(3+ ν)

bn
. (8)

As n = 0, Eq. (8) reduces to the equation of the homoge-
neous, isotropic disc [3],

r2F′′ + rF ′ − F = −ρω2r3(3+ ν). (9)

The stress function,F, can be written as

F = C1r
n+m

2 +C2r
n−m

2 +Crn+3, (10)

where,C1 andC2 are the integration constants and the posi-
tive constantm is

m= (n2 − 4νn+ 4)
1
2 , (11)
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and the termC is

C = −ρω2 3+ ν
bn(8+ 3n+ νn)

. (12)

The stress components can be obtained from the stress func-
tion as

σr = C1r
n+m−2

2 +C2r
n−m−2

2 +Crn+2, (13)

σθ =
(n+m

2

)
C1r

n+m−2
2 +

(n−m
2

)
C2r

n−m−2
2

+(n+ 3)Crn+2 +
ρω2rn+2

bn
. (14)

The integration constants,C1 andC2, can be obtained from
the boundary conditions. Since the discs are subjected to an-
gular velocity only, the radial stresses at the inner and the
outer surfaces of the disc are equal to zero, i.e.σr = 0 at
r = a andr = b. Herea andb are, respectively, inner and
outer radii of disc illustrated in Fig. 1. By using these condi-
tions,C1 andC2 are determined as

C1 =
C
(
a

n+m+6
2 − b

n+m+6
2
)

bm − am
,

C2 =
C
(
amb

n+m+6
2 − bma

n+m+6
2
)

bm − am
.

(15)

Fig. 1 A functionally graded rotating disc

2.1 Radial displacement component

Radial displacement,u, in the elastic solution for small de-
formation can be determined from Eq. (2) as

u =
r

E(r)
(σθ − νσr ). (16)

3 Analytical and numerical solutions

In this work, a stress analysis is carried out on annular rotat-
ing discs made of FGMs by using analytical and numerical
methods. The inner and outer radii of the disc area = 40 mm
andb = 100 mm, and the thickness of the disc is ignored
since it is very small (t � r), as shown in Fig. 1. For
the numerical method, the disc is modeled and meshed by
an axisymmetric element (Plane42 2D Structural Solid) in
ANSYSr, which is a commercial finite element program,
as can be seen in Fig. 2. In mesh refinement, an element
is utilized per millimeter of the radius. This means that 60
axisymmetric elements are utilized for 60 mm in the radial
direction, as seen in Fig. 2b. The disc material can be as-
sumed as a functionally graded material, which can be made
of various contents of Al and ceramic powder particles using
powder metallurgy and also called an aluminum metal matrix
composite. It is considered that elasticity modulus and den-
sity vary in the radial direction in accordance with Eq. (7).
So that, each mesh element has different material properties.
Thus, in order to apply the theory, an aluminum alloy (7075-
T6) is selected as a disc material and its elasticity modulus is
E = 72 000 MPa, and mass density isρ = 2.8 t/m3. The gra-
dient parametern is chosen as 0, 0.5 and 1.0. Forn = 0, the
disc becomes an isotropic, homogeneous disc. Stresses, dis-
placements, variations of elasticity modulus and density in
the radial direction are obtained by using both analytical and
numerical solutions for angular velocity,ω = 15 000 min−1.

Fig. 2 aPlane42 geometry andb Cross-section of disc meshed by 60 axisymmetric elements



Stress analysis of functionally graded rotating discs: analytical and numerical solutions 953

As for boundary conditions of the disc, they are assumed to
be free at the inner and outer radii.

Figure 3 illustrates variations of the elasticity modulus
E(r) in the radial direction of the disc forn = 0, n = 0.5
and n = 1.0. For n = 0, elasticity modulus is a constant
value in the radial direction. This indicates a homogeneous,
isotropic material case. Forn = 0.5 andn = 1.0, the elas-
ticity modulus decreases approximately linearly throughout,
from outer surface to inner surface of the disc depending on
the function,E(r) = E(r/b)n. They are used for analytical
and numerical solutions.

Fig. 3 Variations of elasticity modulusE(r) in the radial direction
of disc forn = 0,n=0.5 andn = 1.0

Figure 4 illustrates variations of the densityρ(r) in the
radial direction of the disc forn = 0, n = 0.5, n = 1.0. For
n = 0, the density is a constant value in the radial direction.

Forn = 0.5 andn = 1.0, the density decreases approximately
linearly from the outer surface to the inner surface of the disc
depending on the function,ρ(r) = ρ(r/b)n. Values of density
for n = 1.0 are lower than the others. They are also used for
analytical and numerical solutions. If it is given asn = −0.5
andn = −1.0, elasticity moduli and densities of the discs are
going to be increased about linearly from the inner surface
to outer surface.

Fig. 4 Variations of densityρ(r) in the radial direction of disc for
n = 0,n=0.5 andn = 1.0

The radial stress, tangential stress and radial displace-
ments obtained by ANSYSr are shown on a half model of a
disc in color contour graphs in Fig. 5 forn = 0.5. It can be
seen from Figs. 6–8 that radial stress, tangential stress and
radial displacement obtained from analytical and numerical
solutions are in good agreement.

a b c

Fig. 5 Variations of thea Radial stressσr ; b Tangential stressσθ; c Radial displacementu in the radial direction of disc forn = 0.5 from
ANSYSr solution

In Fig. 6, variations of radial stressesσr obtained from
analytical and numerical solutions, are shown in the radial
direction of the disc forn = 0, n = 0.5 andn = 1.0. They
are zero at the inner and outer surfaces but they are higher
at radiusr � (a+ b)/2 for n = 0.5, n = 1.0 andr =

√
ab

for n = 0. They decrease gradually with an increase in
the gradient parametern. Radial stresses have lower values
for n = 1.0 when compared with the results forn = 0 and
n = 0.5. This is the result of being FGMs of the disc. On the

other hand, it increases rotating capacity of the disc.

In Fig. 7, variations of tangential stressesσθ are shown
in the radial direction of the disc forn = 0, n = 0.5 and
n = 1.0. They decrease gradually at the inner surface, while
increasing very little at the outer surface with increasing gra-
dient parametern. They are also higher at the inner surface
than those at the outer surface. Tangential stresses get nearly
constant values in the radial direction of the disc forn = 1.0,
and they are also lower values untilr/b � 0.85 when com-
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pared with the results forn = 0 andn = 0.5. This means that
the rotating capacity of disc can be increased approximately
twice as much.

Fig. 6 Variations of radial stressσr in the radial direction of disc
for n = 0,n=0.5 andn = 1.0

Fig. 7 Variations of tangential stressσθ in the radial direction of
disc forn = 0,n=0.5 andn = 1.0

Fig. 8 Variations of displacementu in the radial direction of disc
for n = 0,n=0.5 andn = 1.0

Figure 8 shows variations of displacementu in the ra-
dial direction of a disc forn = 0, n = 0.5 andn = 1.0. All
displacements are higher at the inner surface, and vary with
parallel curves in the radial direction of the disc. They in-
crease gradually with an increase in the gradient parameter

n. Values of displacements forn = 1.0 are higher than the
others.

4 Conclusions

In the present study, tangential and radial stress equations are
derived from the governing differential equation of equilib-
rium for a thin rotating disc including elasticity modulusE
and mass densityρ assumed as a function ofr which repre-
sents FGMs. To apply the theory, an aluminum alloy mate-
rial with FGM is chosen. Results obtained are concluded as
following:

(1) It is found that the stresses and displacements obtained
from the analytical and numerical solutions are in good
agreement.

(2) Radial stressσr and tangential stressσθ are varying in
the radial direction of the disc depending on the power
law function for elasticity modulus and mass density.
Accordingly, radial stresses are zero at the inner and
outer surfaces but they are of higher values at the inte-
rior parts of the discs. They get lower values forn = 1.0
when compared with the results forn = 0 andn = 0.5.
As for tangential stresses, they are higher at the inner
surface forn = 0 andn = 0.5 than at the outer surface.
For n = 1.0 they get nearly constant values in the radial
direction of the disc, and they are of also lower values
when compared with the results forn = 0 andn = 0.5.

(3) The radial displacements increase gradually with a par-
allel curve with increasing the gradient parametern. As
a result of decreasing the tangential stresses, rotating ca-
pacity of the disc is increased nearly twice as much.
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