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Abstract Free vibration analysis of quadrilateral multi-
layered graphene sheets (MLGS) embedded in polymer ma-
trix is carried out employing nonlocal continuum mechanics.
The principle of virtual work is employed to derive the equa-
tions of motion. The Galerkin method in conjunction with
the natural coordinates of the nanoplate is used as a basis for
the analysis. The dependence of small scale effect on thick-
ness, elastic modulus, polymer matrix stiffness and interac-
tion coefficient between two adjacent sheets is illustrated.
The non-dimensional natural frequencies of skew, rhombic,
trapezoidal and rectangular MLGS are obtained with vari-
ous geometrical parameters and mode numbers taken into
account, and for each case the effects of the small length
scale are investigated.

Keywords Small scale· Free vibration· Quadrilateral mul-
tilayered graphene sheet· Polymer matrix· Nonlocal elastic-
ity theory

1 Introduction

Much research has been carried out on carbon nanotubes
since their invention in 1991 by Ijima [1] and nanostructured
elements have attracted a great deal of attention in scientific
community due to their superior properties. Understanding
the vibration behavior of nanostructures is an important issue
from design perspective of many NEMS devices like oscil-
lators, clocks and sensor devices. In structures with small
dimensions, long-range inter-atomic and inter-molecular co-
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hesive forces can not be neglected because they strongly af-
fect the static and dynamic properties [2, 3]. To use graphene
sheets suitably as MEMS/NEMS component, their vibration
response with small scale effects should be studied.

Owing to their discrete structure, atomistic methods
such as molecular dynamic simulations, density functional
theory, etc. are more appropriate for accurate mechani-
cal analyses of nanostructures. As controlled experiments
in nano scale are difficult and molecular dynamic simula-
tions are computationally expensive, theoretical modeling
of nanostructures would be an important approach as long
as approximate analysis of nanostructures is concerned [4].
Although classical continuum elasticity is a scale-free the-
ory and can not foretell the size effects, however, continuum
modeling of nanostructures has gained ever-broaden atten-
tion. Using local theory for the small size analysis leads
to over-predicting results. To predict micro/nano structures
correctly, it is necessary to consider the small scale effects.
Some size-dependent continuum theories which take small
scale effects into consideration are couple stress elasticity
theory [5], strain gradient theory [6], and modified couple
stress theory [7]. Besides the above-mentioned models, con-
tinuum models with surface stress effects can successfully
predict mechanical behaviors of plates at nano scales [8, 9].
However, the nonlocal elasticity theory initiated by Erin-
gen [10] is the most common continuum theory used for an-
alyzing the small-scale structures. In order to capture the
small scale effects in nonlocal continuum theory, it is as-
sumed that the stress at a point depends on the strain at all
points in the domain. This is contrary to the classical (local)
continuum theory in which it is assumed that the stress at
a point is just a function of the strain at that point. So, the
nonlocal theory contains information about long range inter-
actions between atoms and at internal scale length. Besides
the nonlocal continuum theory based models are physically
reasonable from the atomistic viewpoint of lattice dynamics
and molecular dynamics (MD) simulations [11].
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A great deal of attention in the literature has
been focused on static, dynamic and stability anal-
ysis of micro/nano structures, including analysis of
nanobeams [12], nanorods [13], circular nanoplates [14],
rectangular nanoplates [15, 16], nanorings [17], and car-
bon nanotubes (CNTs) [18–21]. Majority of the studies on
buckling and vibration of nanoplates are focused on single-
layered (SLGS) and multilayered graphene sheets (MLGS).
Graphene is a new class of two-dimensional carbon nanos-
tructure which holds great promise for vast applications in
many technological fields. Reports related to its applica-
tions as strain sensor, mass and pressure sensors, atomic
dust detectors, enhancer of surface image resolution are ob-
served [22]. Therefore the attention is attracted to the re-
search of graphene in the field of physics, engineering and
material science.

An investigation of the free vibration of arbitrary
quadrilateral multilayered graphene sheets embedded in
elastic polymer matrix is presented in this paper using non-
local plate theory with focus laid on the small scale effects
and number of layers. The small scale effects are taken into
consideration using the nonlocal continuum mechanics. The
nonlocal governing equations are derived using the principle
of virtual work. The analysis is carried out on the basis of the
Galerkin method. Natural coordinates in conjunction with
the Galerkin method is used to provide a single superelement
which represents the whole plate. The non-dimensional nat-
ural frequencies of skew, rhombic, trapezoidal and rectan-
gular nanoplates are obtained with various geometrical pa-
rameters, mode numbers and scale coefficients taken into ac-
count. The small-scale effects on the natural frequencies of
quadrilateral graphene sheets considering various parameters
are examined. It is anticipated that the results of the present
work would be useful for designing NEMS/MEMS devices
using quadrilateral graphene sheets.

2 Formulation

2.1 Single layered nanoplates

The coordinate system used for the nanoplate is shown in
Fig. 1.

Fig. 1 Model of quadrilateral single layered graphene sheet.
a Discrete model;b Continuum model

Following stress resultants are used in the present for-
mulation

Nxx =

∫ h/2

−h/2
σxxdz, Nyy =

∫ h/2

−h/2
σyydz,

Nxy =

∫ h/2

−h/2
σxydz, Mxx =

∫ h/2

−h/2
zσxxdz,

Myy =

∫ h/2

−h/2
zσyydz, Mxy =

∫ h/2

−h/2
zσxydz,

(1)

whereh denotes the height of the plate.
According to classical plate theory (CLPT), the dis-

placement field can be written as

ux = u(x, y, t) − z
∂w
∂x
,

uy = v(x, y, t) − z
∂w
∂y
,

uz = w(x, y, t),

(2)

where u, v and w denote displacements inx-, y- and z-
directions, respectively. The strains can be expressed as

εxx =
∂u
∂x
− z

∂2w
∂x2

, εyy =
∂v
∂x
− z

∂2w
∂y2

,

εzz= 0, εxy =
1
2

(
∂u
∂y
+
∂v
∂x
− 2z

∂2w
∂x∂y

)
,

εxz = 0, εyz = 0.

(3)

In traditional local elasticity theories, stress at a point de-
pends only on the strain at that point. While here in nonlo-
cal continuum theory it is assumed that the stress at a point
depends on strain at all the points of the continuum. By ne-
glecting the body force using nonlocal elasticity theory [10],
stress components for a linear homogenous nonlocal elastic
body can be represented by the following differential consti-
tutive relation

(1− µ∇2)σ = t , (4)

where

µ = (αle)2, α = e0l i/le. (5)

Hereα is the scale coefficient or nonlocal parameter of the
length unit describing the effect of micro and nanoscale
on the mechanical behavior that depends on internal char-
acteristic lengths (lattice parameter, granular size, distance
between C-C bonds)l i and external characteristic lengths
(crack length, wave length)le. The parametere0 is so es-
timated that the relations of the nonlocal elasticity model
could provide satisfactory approximation of atomic disper-
sion curves of plane waves with respect to those of atomic
lattice dynamics. Eringen [10] has used the value of 0.39
for e0. Wang and Hu [23] used strain gradient method to
propose an estimate of valuee0, 0.288. Zhang et al. [24]
reportede0 = 0.82 from their buckling analysis of carbon
nanotubes via Donnell shell theory and molecular mechan-
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ics simulations. Duan et al. [25] reported the value ofe0

ranging from 0–19 for carbon nanotubes with nonlocal Tim-
oshenko beam theory and using molecular dynamics results.
Duan and Wang [26] used the value ofe0l i ranging from 0–
2 nm for bending analysis of circular micro/nanoplates. In
Eq. (4),∇2 is the Laplacian operator and is expressed as
∇2 = (∂2/∂x2 + ∂2/∂y2) and t is the local stress tensor at a
point which is related to strain by generalized Hooke’s law

t = S : ε , (6)

whereS is the fourth order elasticity tensor and “:” denotes
the double dot product.

Since the principle of virtual work is independent of
constitutive relations this can be applied to derive the equi-
librium equations for nonlocal plates. Using the principle of
virtual work, the following governing equation can be ob-
tained [27]

∂Nxx

∂x
+
∂Nxy

∂y
= m0

∂2u
∂t2

, (7a)

∂Nyy

∂y
+
∂Nxy

∂x
= m0

∂2v
∂t2

, (7b)

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2Myy

∂y2
+ q+

∂

∂x

(
Nxx

∂w
∂x

)
+
∂

∂x

(
Nxy

∂w
∂y

)
+
∂

∂y

(
Nyy

∂w
∂y

)
+
∂

∂y

(
Nxy

∂w
∂x

)
= m0

∂2w
∂t2
−m2

(
∂4w
∂x2∂t2

+
∂4w
∂y2∂t2

)
, (7c)

wherem0 andm2 are mass moments of inertia and are de-
fined as follows

m0 =

∫ h/2

−h/2
ρdz, m2 =

∫ h/2

−h/2
ρh2dz, (8)

whereρ denotes the density of the material. Using Eq. (4)
the two-dimensional nonlocal constitutive relations can be
expressed as
σxx

σyy

σxy

 − µ∇2


σxx

σyy

σxy



=
E

1− ν2


1 ν 0

ν 1 0

0 0
1− ν

2



εxx

εyy

εxy

 , (9)

whereE andν denote elastic modulus and Poisson’s ratio,
respectively. Using strain displacement relationship Eq. (3),
stress–strain relationship Eq. (9) and stress resultants defini-
tion Eq. (1), one obtains the following nonlocal constitutive
relation based on classical plate’s theory in terms of displace-
ments

Mxx − µ
(
∂2Mxx

∂x2
+
∂2Mxx

∂y2

)
= −D

(
∂2w
∂x2
+ v

∂2w
∂y2

)
, (10a)

Myy − µ
(∂2Myy

∂x2
+
∂2Myy

∂y2

)
= −D

(
∂2w
∂y2
+ ν

∂2w
∂x2

)
, (10b)

Mxy − µ
(∂2Mxy

∂x2
+
∂2Mxy

∂y2

)
= −D(1− ν)

∂2w
∂x∂y

, (10c)

whereD denotes the bending rigidity defined as

D =
Eh3

12(1− ν2)
. (11)

If we let M∗ denote the moment sum defined by

M∗ =
Mxx + Myy

1+ ν
, (12)

then using Eqs. (7c), (10) and (12) we obtain the nonlo-
cal governing simultaneous differential equations in terms of
displacement and moment sum

M∗ + D∇2w− µ∇2M∗ = 0,

µ∇4M∗ − ∇2M∗ + (µ∇2 − 1)(A− B) = 0,
(13)

where

A = m0
∂2w
∂t2
−m2

(
∂4w
∂x2∂t2

+
∂4w
∂y2∂t2

)
, (14)

B = q+
∂

∂x

(
Nxx

∂w
∂x

)
+
∂

∂x

(
Nxy

∂w
∂y

)
+
∂

∂y

(
Nyy

∂w
∂y

)
+
∂

∂y

(
Nxy

∂w
∂x

)
. (15)

Note that governing equations given in Eq. (13) will be re-
duced to that of the classical relation when the nonlocal pa-
rameterµ is set to zero.

The transverse displacement and sum moment for free
vibration is taken as

w(x, y, t) =W(x, t)eiωt, M∗(x, y, t) = M(x, t)eiωt. (16)

Substituting Eq. (16) into Eq. (13), one obtains the normal-
ized equations of

M + D∇2W− µ∇2M = 0,

µ∇4M − ∇2M + (µ∇2 − 1)(A− B) = 0,
(17)

where

A = ω2(m0W−m2∇
2W), (18)

B = q+
∂

∂x

(
Nxx

∂W
∂x

)
+
∂

∂x

(
Nxy

∂W
∂y

)
+
∂

∂y

(
Nyy

∂W
∂y

)
+
∂

∂y

(
Nxy

∂W
∂x

)
. (19)

2.2 Multilayered nanoplates embedded in polymer matrix

In the previous section, differential equation governing the
vibration of single layered graphene sheet is derived. Anal-
ysis of multilayered graphene sheets embedded in polymer
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matrix is more important than single layered graphene sheet
from practical point of view. In this section this model is
extended to multilayered graphene sheets embedded in poly-
mer matrix. The continuum model representing multilayered
graphene sheets are shown in Fig. 2. It can be observed that
the 1st (topmost) layer and then-th layers are interacted by
polymer matrix and the adjacent layer. Whereas all other
in-between layers are acted by two neighboring sheets. As-
suming displacements of the sheets asw1,w2, · · · ,wn for the
1st, 2nd,· · · , n-th sheets, respectively, the effective trans-
verse load for various sheets can be written as follows.

Topmost (1st) layer

qeff
1 = q− Kww1 + Kp

(
∂2w1

∂x2
+
∂2w1

∂y2

)
−C(w1 − w2). (20a)

Bottommost (n-th) layer

qeff
n = q− Kwwn + Kp

(
∂2wn

∂x2
+
∂2wn

∂y2

)
−C(wn − wn−1). (20b)

Any in-between (i-th layer where 1< i < n) layer

qeff
i = q−C(wi − wi−1) −C(wi − wi+1), (20c)

whereC, Kw andKp denote interaction coefficient between
two adjacent sheets (representing van der Walls forces), Win-
kler and shear modulus of polymer matrix, respectively. Us-

ing Eqs. (17) and (20), the governing equation for vibration
of n layered graphene sheets embedded in a polymer matrix
can be written asn number of coupled differential equations
as follows

M1 + D∇2W1 − µ∇
2M1 = 0,

µ∇4M1 − ∇
2M1 + (µ∇2 − 1)(A1 − B1) = 0,

...

Mi + D∇2Wi − µ∇
2Mi = 0, 1 < i < n,

µ∇4Mi − ∇
2Mi + (µ∇2 − 1)(Ai − Bi) = 0,

...

Mn + D∇2Wn − µ∇
2Mn = 0,

µ∇4Mn − ∇
2Mn + (µ∇2 − 1)(An − Bn) = 0,

(21)

where

Ai = ω
2(m0Wi −m2∇

2Wi),

Bi = qeff
i +

∂

∂x

(
Nxx

∂Wi

∂x

)
+
∂

∂x

(
Nxy

∂Wi

∂y

)
+
∂

∂y

(
Nyy

∂Wi

∂y

)
+
∂

∂y

(
Nxy

∂Wi

∂x

)
.

(22)

Fig. 2 Continuum model of multilayered graphene sheet embedded in a polymer matrix

3 Solution by Galerkin method

3.1 Geometric definition of the plate

An arbitrary-shaped quadrilateral plate in Cartesian coordi-
nates may be expressed by the mapping of a square plate
defined in its natural coordinates with simple boundary equa-
tionsξ = ±1 andη = ±1, as shown in Fig. 3.

For a general quadrilateral plate with straight edge, the

displacement transformation from the physical coordinate
system to the computational coordinate system is achieved
in exact form since the physical coordinate system itself is
interpolated exactly. The mapping of the Cartesian coordi-
nate system may be expressed as

x(ξ, η) =
N∑

i=1

xiNi(ξ, η), y(ξ, η) =
N∑

i=1

yiNi(ξ, η), (23)

wherexi , yi (i = 1,2, · · · ,N) are the coordinates ofN points
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Fig. 3 Mapping of arbitrary quadrilateral plate onto natural coor-
dinates

on the boundary of the quadrilateral region andNi(ξ, η) are
the interpolation functions. For an element with straight
edges, the interpolation functions are defined by

Ni(ξ, η) =
1
4

(1+ ξiξ)(1+ ηiη), (24)

in which ξi andηi are the natural coordinates of thei-th cor-
ner. In order to evaluate the operators∇2 and∇4, we use the
chain rule of differentiation. After some mathematical ma-
nipulation, it can be shown that the first-order and second-
order derivatives of a function can be expressed by

∂

∂x
∂

∂y

 = J 11


∂

∂ξ

∂

∂η

, (25)



∂2

∂x2

∂2

∂y2

∂2

∂x∂y


= J −1

22





∂2

∂ξ2

∂2

∂η2

∂2

∂ξ∂η


− J 21J −1

11


∂

∂ξ

∂

∂η




, (26)

whereJ i j are the Jacobian matrixes. These are expressed as
follows

J 11 =


∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

, (27)

J 21 =



∂2x
∂ξ2

∂2y
∂ξ2

∂2x
∂η2

∂2y
∂η2

∂2x
∂ξ∂η

∂2y
∂ξ∂η


, (28)

J 22 =



(
∂x
∂ξ

)2 (
∂y
∂ξ

)2
2
(
∂x
∂ξ

)(
∂y
∂ξ

)
(
∂x
∂η

)2 (
∂y
∂η

)2
2
(
∂x
∂η

)(
∂y
∂η

)
(
∂x
∂ξ

)(
∂x
∂η

) (
∂y
∂ξ

)(
∂y
∂η

) (
∂x
∂ξ

)(
∂y
∂η

)
+

(
∂y
∂ξ

)(
∂x
∂η

)


. (29)

In this stage, consider the following differential operators

R =
∂2

∂x2
, Q =

∂2

∂y2
. (30)

Thus, the fourth-order derivatives can be given in terms of
the second-order derivatives [24–28]. The operators∇2 and
∇4 can be expressed by

∇2 =
∂2

∂x2
+
∂2

∂y2
= R+Q, (31)

∇4 =
∂4

∂x4
+
∂4

∂y4
+ 2

∂4

∂x2∂y2

=
∂2

∂x2
R+

∂2

∂y2
Q+ 2

∂2

∂x2
Q. (32)

3.2 Shape functions

Consider an arbitrary joint (m,n) on a meshed plate which
is actually a mapping of the real physical domain, as shown
in Fig. 3. If the displacement of the adjoining points in the
η-direction is assumed to be zero, then the interpolation func-
tion for this point in theξ-direction will be defined by

ψm(ξ) =

M+1∏
i=0

(ξ − ξi)

M+1∏
i=0

(ξi − ξm)

, i , m, (33)

and, similarly, the interpolation function for the point (m,n)
in theη-direction may be expressed by

ψn(η) =

N+1∏
j=0

(η − η j)

N+1∏
j=0

(ηn − η j)

, j , n. (34)

Therefore, the interpolation function for point (m,n) in both
directionsξ andη are defined by

ψmn(ξ, η) = ψm(ξ)ψn(η). (35)

The out-of-plane displacement of the plateW is expressed
by

W =
M∑

m=1

N∑
n=1

Amnψm(ξ)ψn(η), (36)

whereM and N are the number of points in theξ- andη-
directions, respectively. If any point (m,n) is assigned an
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integerk by the relationship

k = (m− 1)× N + n, (37)

then the flexural displacementW may be defined by

W =
K∑

k=1

akψk(ξ, η), (38)

whereK = M × N.

The advantages of expressingW in this way are:

(1) Althoughak or Amn is used as a generalized coordinate,
each of quantities is exactly equal to the buckling displace-
ment at point (m,n).

(2) If point (p,q) is introduced as a point support, then the
correspondingar = Apq can be eliminated in Eqs. (36) and
(38). Moreover, for line supports parallel to theξ- andη-
directions, all unknown coefficientsak for points on the cor-
responding row or column are eliminated.

Therefore, for a plate with point or line supports, the
flexural displacement can be written as

W =
M∑

m=1

N∑
n=1

Amnψm(ξ)ψn(η),

m, p1, p2, · · · , pR; n , q1,q2, · · · ,qR, (39)

where vectorsp andq show the coordinates of theR (inte-
ger number) restrained joints. An alternative expression for
Eq. (39) is

W =
K∑

k=1

akψk(ξ, η), k , k1, k2, · · · , kR. (40)

The moment functionM is expressed similarly to the func-
tion of W, but without restraints, and thus

M =
K∑

k=1

bkψk(ξ, η), (41)

where the coefficientsbk are defined in a manner similar to
the coefficients ofak. When there are no point or line sup-
ports, the number of base functions in Eqs. (40) and (41)
are equal. However, when some restraint exists, the number
of base functions in Eq. (40) is obviously less than those in
Eq. (41).

3.3 Solution

Substituting Eqs. (40) and (41) into Eq. (21) and multiply-
ing both sides of the equations byψi(ξ, η) and integrating
over the whole region yields the following simultaneous lin-
ear equations in terms of unknown coefficientsai andbi

K mmb1 + DK mwa1 = 0,

K wmb1 + ω
2K ww

1 a1 + K 2
wwa1

+K ww
3 a1 − K 3

wwa2 = 0,

...

K mmbi + DK mwai = 0, 1 < i < n

K wmbi + ω
2K ww

1 ai + 2K 3
wwai

−K ww
3 ai−1 − K 3

wwai+1 = 0,

...

K mmbn + DK mwan = 0,

K wmbn + ω
2K ww

1 an + K 2
wwan

+K ww
3 an − K 3

wwan−1 = 0.

(42)

Here the components ofK mm, K mw, K wm and K ww
i (i =

1,2,3) are given by

Kmm
i j =

∫ 1

−1

∫ 1

−1
ψiψ j − µψi(∇

2ψ j)|J|dξdη, (43a)

Kmw
i j =

∫ 1

−1

∫ 1

−1
ψi(∇

2ψ j)|J|dξdη, (43b)

Kwm
i j =

∫ 1

−1

∫ 1

−1
[µψi(∇

4ψ j) − ψi(∇
2ψ j)]|J|dξdη, (43c)

Kww
1i j
=

∫ 1

−1

∫ 1

−1
ψi(µ∇

2 − 1)[m0ψ j −m2(∇2ψ j)]|J|dξdη, (43d)

Kww
2i j
=

∫ 1

−1

∫ 1

−1
ψi(µ∇

2 − 1)[Kwψ j − Kp(∇2ψ j)]|J|dξdη,(43e)

Kww
3i j
=

∫ 1

−1

∫ 1

−1
ψi(µ∇

2 − 1)(Cψ j)|J|dξdη. (43f)

Considering nontrivial solution of system of Eqs. (42), we
have

det



γ1 γ2 0 0 0 0 0 0 0 0

γ4 γ3 γ6 0 0 0 0 0 0 0

...
...

...
. . .

. . .
. . .

...
...

...
...

0 0 0 0 0 γ1 γ2 0 0 0

0 0 0 γ6 0 γ5 γ3 γ6 0 0

...
...

...
...

...
. . .

. . .
. . .

. . .
...

0 0 0 0 0 0 0 0 γ1 γ2

0 0 0 0 0 0 γ6 0 γ4 γ3


= 0, (44)

where
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γ1 = DK mw, γ2 = K mm,

γ3 = K wm, γ4 = ω
2K ww

1 + K ww
2 + K ww

3 ,

γ5 = ω
2K ww

1 + 2K ww
3 , γ6 = −K ww

3 .

(45)

This equation can be solved forω, for a given number of
layers.

4 Results and discussion

To illustrate the small scale or nonlocal effect on the vibra-
tion response, we define frequency ratio as follows [29]

frequency ratio

=
natural frequency calculated from nonlocal theory

natural frequency calculated from local theory
.

For single layered sheet, it was observed that the frequency
ratio is independent of the thickness of the sheets [29]. But it
can be seen from Eq. (44) that frequency ratio for embedded
multilayered plate is dependent on the thickness of the plate.
Further in this case, this frequency ratio can be seen to be

dependent on even the material properties of graphene. To
illustrate the dependence of small scale effect on thickness,
elastic modulus, polymer matrix stiffness and interaction co-
efficient between two adjacent sheets a general simply sup-
ported skew shaped embedded multilayered graphene sheet
with the following properties [29] is considered. The elas-
tic modulus are taken asE = 1 765 GPa, Poisson’s ratios
ν = 0.3, thickness of each plateh = 0.34 nm, interaction
coefficient between two layersC = 45 × 1018 Pa/m, poly-
mer matrix Winkler modulusKw = 1.13× 1018 Pa/m, poly-
mer matrix shear modulusKp = 1.13 Pa/m, number of lay-
ers is 5, skew angleβ = 45◦ (see Fig. 4a) and aspect ratio
L/b = 1 (see Fig. 4a). The scale coefficients or nonlocal
parameter are taken ase0l i = 2 nm and the external char-
acteristic lengths are taken asle = 5 nm. These value are
taken becausee0l i should be smaller than 2.0 nm for carbon
nanotubes as described by Wang and Wang [30]. It should
be noted that the value of nonlocal parameter is not exactly
known for graphene sheet [22]. Frequency ratio has been
plotted against percentage change ofh, E, Kw, Kp andC one
at a time in Figs. 5 and 6.

Fig. 4 Various geometry of quadrilateral embedded multilayered graphene sheet.a Skew MLGS,b Rhombic MLGS;c Trapezoidal MLGS

Fig. 5 Variation of frequency ratio of embedded multilayered
graphene sheet with percentage change ofh andE

Fig. 6 Variation of frequency ratio of embedded multilayered
graphene sheet with percentage change ofKw, Kp andC
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It can be seen that nonlocal effect decreases whenh in-
creases. This is obvious because the small size effect reduces
with increase of MLGS’ thickness. Further it is observed that
the frequency ratio converges to 0.38 when the percentage
change ofh is 200 as shown in Fig. 5. Also nonlocal effect
decreases asE increases. Figure 6 shows that nonlocal effect
is independent of shear and Winkler modulus while it can be
seen to be increased with increase in interaction coefficient.

To illustrate the dependence of small scale effect on
number of layers, a general simply supported skew multi-
layered graphene sheet is considered for the same properties
as described in the previous section. Four modes of vibra-
tion for different nonlocal parameters are considered and fre-
quency ratio is plotted against number of layers in Fig. 7.

Fig. 7 Variation of frequency ratio with number of layers for vari-
ous mode numbers (m) and nonlocal parameter

It can be clearly observed that number of layer effect is
negligible for lower (first, second and third) modes while it is
significant for higher modes. Further it can be observed that
the effect of number of layer on small scale effect continues
to decrease up to a specific number of layer (e.g. five lay-
ers for the fifth mode and seven layers for the seventh mode)
and then the frequency ratio converges to certain value cor-
responding to lower modes.

To illustrate the influence of small length scale on the
vibration of general simply supported quadrilateral MLGS,
the non-dimensional natural frequency parameters (Ω =

ωb2√ρ/π2) is studied for different scale coefficients and ge-
ometrical parameters. At first skew MLGS embedded in a
polymer matrix is considered. For various nonlocal parame-
ters and aspect ratios of the plates the natural frequencies are
plotted in Fig. 8. A value ofβ = 45◦ is taken for skew angle
(see Fig. 4a). This figure shows a profound scale effect for

smaller aspect ratios and higher values of nonlocal parame-
ter. From this figure it can also be observed that lower natural
frequency is obtained at higher values of nonlocal parameter.
Further it can be observed that as the aspect ratios increases,
the natural frequency decreases. Natural frequencies for var-
ious nonlocal parameters and skew angles of the plate are
plotted in Fig. 9. A value ofL/b = 1 is taken for the as-
pect ratio. It is observed that the natural frequency increases
when the skew angle increases from 0◦ to 75◦.

Fig. 8 Variation of non-dimensional natural frequencies of skew
embedded multilayered graphene sheet versus nonlocal parameter
for different aspect ratios

Fig. 9 Variation of non-dimensional natural frequencies of skew
embedded multilayered graphene sheet versus nonlocal parameter
for different skew angles
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Natural frequencies for skew MLGS with higher skew
angles (e.g.β = 75◦) are strongly affected by small scale in
comparison with skew MLGS with lower skew angles (e.g.
β = 0◦).

From Figs. 8 and 9 it is seen that as the value of small
scale coefficient increases the value of non-dimensional nat-
ural frequency of small-scale plates decreases. Also the
effects of aspect ratio and skew angle on the natural fre-
quency decrease when the scale coefficient increases. This
phenomenon is attributed to the size effects. At micro/nano
level the plate structure can no longer be considered as ho-
mogenous but discrete in nature. Hence there is a softening
of the plate. Also many experimental evidences show size-
dependent mechanical properties when the scale is small
enough. Compared with classical plate theories [31] where
buckling load do not vary with the scale parameters, the non-
local plate theories can predict changes of natural frequency
induced by the scale effects. Therefore, the classical contin-
uum mechanics fails to capture the nature of size dependent
properties.

Next we will illustrate the effect of nonlocal parameter
on the natural frequencies of rhombic MLGS.

Figure 10 shows the variation of natural frequency with
nonlocal parameter for various values of the rhombic angle
(α) (see Fig. 4b) of rhombic MLGS. The range of this an-
gle is 15◦– 45◦. It is observed that the natural frequency de-
creases when rhombic angle increases from 15◦ to 45◦. Fur-
ther it is found that the nonlocal effects are more pronounced
for higher rhombic angle.

Fig. 10 Variation of non-dimensional natural frequencies of rhom-
bic embedded multilayered graphene sheet versus nonlocal param-
eter for different rhombic angles

Finally the variation of natural frequency versus scale
coefficient for various aspect ratios (r/L) (see Fig. 4c) of
trapezoidal MLGS is studied (Fig. 11). The range of varia-

tion is r/L = 0–1. It is observed that the natural frequency
decreases when the aspect ratio increases from 0 to 1.

Fig. 11 Variation of non-dimensional natural frequencies of trape-
zoidal embedded multilayered graphene sheet versus nonlocal pa-
rameter for different aspect ratios

5 Conclusion

This study is concentrated on the free vibration analysis of
general simply supported quadrilateral MLGS embedded in
polymer matrix via nonlocal continuum mechanics. Equa-
tions of motion of the plates were derived based on Erin-
gen’s differential constitutive equations of nonlocal elastic-
ity. The Galerkin method was introduced as a numerical pro-
cedure for the vibration analysis of general simply supported
quadrilateral MLGS. The straight-sided quadrilateral domain
is mapped onto a square domain in the computational space
using a four-node element. The discretizing and program-
ming procedures are straightforward and easy. The depen-
dence of small scale effect on thickness, elastic modulus,
polymer matrix stiffness and interaction coefficient between
two adjacent sheets was illustrated. It is clearly observed
that number of layer effect is negligible for lower (first, sec-
ond and third) modes while it is significant for higher modes.
Further it is found that the effect of the number of layer on
small scale effect continues to decrease up to a specific num-
ber of layer (e.g. five layers for the fifth mode and seven
layers for the seventh mode) and then the frequency ratio
converges to certain value corresponding to lower modes.
The non-dimensional natural frequencies were obtained for
skew, rhombic, rectangular and trapezoidal MLGS embed-
ded in polymer matrix with various geometrical parameters
and scale coefficients taken into account, and for each case
the significance of the small scale effects was discussed.
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