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Abstract  Free vibration analysis of quadrilateral multi- hesive forces can not be neglected because they strongly af-
layered graphene sheets (MLGS) embedded in polymer méect the static and dynamic properties [2, 3]. To use graphene
trix is carried out employing nonlocal continuum mechanicssheets suitably as MEMSEMS component, their vibration
The principle of virtual work is employed to derive the equa-response with small scaléfects should be studied.

tions of motion. The Galerkin method in conjunction with Owing to their discrete structure, atomistic methods

the natural_ coordinates of the nanoplate is used as a_basis lch as molecular dynamic simulations, density functional
the analysis. The dependence of small scéleceon thick- theory, etc. are more appropriate for accurate mechani-

Pess, e‘li%St_'C ngt‘lus' pct)lyme(rj_matrnt:tl‘shtesst and }l?tetrac;— cal analyses of nanostructures. As controlled experiments
ion codficient between two adjacent sheets is illustratedy, \an6 scale are flicult and molecular dynamic simula-

The non-dlmen5|onal natural frequencies of ;kew, r,homb'_ciions are computationally expensive, theoretical modeling
trapezoidal and rectangular MLGS are obtained with varige o0 < tires would be an important approach as long

ous geometgcfal pararr]neters ?%2 mod;e Eumberﬁ ltaker;} IniQ approximate analysis of nanostructures is concerned [4].
account, and for each case theets of the small lengt Although classical continuum elasticity is a scale-free the-

scale are investigated. ory and can not foretell the sizéfects, however, continuum
modeling of nanostructures has gained ever-broaden atten-

Keywords Small scale Free vibration Quadrilateral mul- tion. Using local theory for the small size analysis leads

tilayered graphene shed?olymer matrix Nonlocal elastic- to over-predicting results. To predict mi¢gnano structures

ity theory correctly, it is necessary to consider the small scéleces.
Some size-dependent continuum theories which take small
scale dfects into consideration are couple stress elasticity

1 Introduction theory [5], strain gradient theory [6], and modified couple
stress theory [7]. Besides the above-mentioned models, con-

tinuum models with surface stresffexts can successfully

MUCh res.e.arch has.been carrigd out on carbon nanotubgs, jict mechanical behaviors of plates at nano scales [8, 9].
since their invention in 1991 by ljima [1] and nanostructure owever, the nonlocal elasticity theory initiated by Erin-

elements have attracted a great deal of attention in scientif&‘en [10] is the most common continuum theory used for an-
community due to their superior properties. Understanding,»ing'the small-scale structures. In order to capture the
the vibration behavior of nanostructures is animportant issug 411 'scale ects in nonlocal continuum theory, it is as-
from design perspective of many NEMS devices I|k_e 0sCilsmed that the stress at a point depends on the strain at all
lators, clocks and sensor devices. In structures with smgllyinig in the domain. This is contrary to the classical (local)
dimensions, long-range inter-atomic and inter-molecular €Oz ntinuum theory in which it is assumed that the stress at
a point is just a function of the strain at that point. So, the

Babaei HK) - Shahidi A.R. nonlocal theory contains information about long range inter-
Department of Mechanical Engineering, actions between atoms and at internal scale length. Besides
Isfahan University of Technology, the nonlocal continuum theory based models are physically
Isfahan 8415683111, Iran reasonable from the atomistic viewpoint of lattice dynamics
e-mail: h.babaei@me.iut.ac.ir and molecular dynamics (MD) simulations [11].
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968 Babaei H., Shahidi A.R.

A great deal of attention in the literature has Following stress resultants are used in the present for-
been focused on static, dynamic and stability analmulation
ysis of micrgnano structures, including analysis of h/2 h/2
nanobeams[12], nanorods[13], circular nanoplates [14]Nxx = f oxxdz, Ny = f /foyde,

rectangular nanoplates [15, 16], nanorings [17], and car- hy2

bon nanotubes (CNTs) [18-21]. Majority of the studies on ("2 d Mo = 2 d 1
buckling and vibration of nanoplates are focused on single-™ ~ fh/z Tz N I 2002, @
layered (SLGS) and multilayered graphene sheets (MLGS). h/2 h/2

Graphene is a new class of two-dimensional carbon nanosy,, = Zrydz, My = 24,0z,

tructure which holds great promise for vast applications in ~h/2 -h/2

many technological fields. Reports related to its applicawhereh denotes the height of the plate.
tions as strain sensor, mass and pressure sensors, atomic According to classical plate theory (CLPT), the dis-
dust detectors, enhancer of surface image resolution are 9facement field can be written as
served [22]. Therefore the attention is attracted to the re-

. . . . . oW
search of graphene in the field of physics, engineering and, = u(x,y, t) - z—,
material science. X

An investigation of the free vibration of arbitrary y, = v(x,y,1) - Za_W, (2)

quadrilateral multilayered graphene sheets embedded in 0
elastic polymer matrix is presented in this paper using nont, = w(x, y, t),
local plate theory with focus laid on the small scafteets
and number of layers. The small scatéeets are taken into
consideration using the nonlocal continuum mechanics. T
nonlocal governing equations are derived using the principle ou _Pw o _Pw
of virtual work. The analysis is carried out on the basis of the™* = 35 ~ %52 W= 75~ Za_yz’
Galerkin method. Natural coordinates in conjunction with 1700 ov 52w 3)
the Galerkin method is used to provide a single superelemegi, = 0, Exy = _(_ +— - z_),
which represents the whole plate. The non-dimensional nat- 2\gy  ox  9xdy
ural frequencies of skew, rhombic, trapezoidal and rectane,, = 0, gyz=0.
gular nanoplates are obtained with various geometrical p

whereu, v and w denote displacements ix, y- and z
h%irections;, respectively. The strains can be expressed as

. : T traditional local elasticity theories, stress at a point de-
rameters, mode numbers and scalditcients taken into ac- : ; ; .
pends only on the strain at that point. While here in nonlo-

count. The small-scalefects on the natural frequencies of : o :
. . . cal continuum theory it is assumed that the stress at a point
guadrilateral graphene sheets considering various parameters

: . L pends on strain at all the points of the continuum. By ne-
are examined. It is anticipated that the results of the presenﬁaCtin the body force using nonlocal elasticity theory [10]
work would be useful for designing NEMMEMS devices 9 9 y 9 Y Y '

using auadrilateral araphene sheets stress components for a linear homogenous nonlocal elastic
g9 grap ' body can be represented by the followingfeliential consti-
tutive relation

2 Formulation A-uvVo =t, 4)
where

= (ale)?, a = epli/le. )

Werea is the scale cdcient or nonlocal parameter of the
length unit describing thefiect of micro and nanoscale
on the mechanical behavior that depends on internal char-
acteristic lengths (lattice parameter, granular size, distance
A b between C-C bondd) and external characteristic lengths
5 s 0 0 0 (crack length, wave lengtH). The parametegy is so es-

timated that the relations of the nonlocal elasticity model
could provide satisfactory approximation of atomic disper-

2.1 Single layered nanoplates

The coordinate system used for the nanoplate is shown
Fig. 1.

1 /Y sion curves of plane waves with respect to those of atomic

_ lattice dynamics. Eringen [10] has used the value of 0.39

-~ for . Wang and Hu [23] used strain gradient method to
X propose an estimate of valeg, 0.288. Zhang et al. [24]
Fig. 1 Model of quadrilateral single layered graphene sheet. reportedey = 0.82 from their buckling analysis of carbon

aDiscrete modelp Continuum model nanotubes via Donnell shell theory and molecular mechan-
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Vibration of quadrilateral embedded multilayered graphene sheets based on nonlocal continuum models using the Galerkin method

ics simulations. Duan et al. [25] reported the valuesgpf MXX—,u(aZMXX N BzMxx) _ _D(@V . V@V) (10a)
ranging from 0—19 for carbon nanotubes with nonlocal Tim- X2 ay? o2 oy )

oshenko beam theory and using molecular dynamics results. PMyy, My, Pw 2w

Duan and Wang [26] used the valueagf; ranging from 0— My — ( e oy ) =- (8_3/2 + vﬁ), (10b)

2nm for bending analysis of circular migmanoplates. In
Eq. (4),V?is the Laplacian operator and is expressed as My *Myy

2 _ (92/9v2 1 42/ 5\2 : xy— Ul —— + ——]=-D(1—v)———, (10c)
Ve = (07/0x° + 0°/dy°) andt is the local stress tensor ata 92 3y2 N,

point which is related to strain by generalized Hooke’s law whereD denotes the bending rigidity defined as

t=S:e, (6) ER

D= ———. (12)
whereS is the fourth order elasticity tensor and “:” denotes 12(1-v?)
the double dot product. If we let M* denote the moment sum defined by
Since the principle of virtual work is independent of My + Myy
constitutive relations this can be applied to derive the equiM* = ———, (12)

1+v

then using Egs. (7c¢), (10) and (12) we obtain the nonlo-
cal governing simultaneousftiérential equations in terms of

librium equations for nonlocal plates. Using the principle of
virtual work, the following governing equation can be ob-

tained [27] ;
displacement and moment sum
ONyyx ONyy d%u 5 5
+ = mMy—, 7a M* + DVew — uV-M* = Q,
Ix ay "o 50 (7a) K (13)
uVAM* = V2M* + (uV? - 1)(A-B) =
ONyy . ONyy 6%v

By ax - e (7b)  where 2 ) )
0w aw a'w
2 2 2 A=mp—r —m| o 4 2 14
0"Mxx 25 Mxy N 9“Myy rq+ 9 (Nxxaw) 050 <6x26t2 " ay26t2)’ (14)
X2 axay oy ax\ ™ ax
o ay, owy . d (., ow
L0 (NLOWY O (WY A oW B=a+a5 (Nxxax) ax( xyay)
2l Moay)* ayMay)* 3y Nog)
ax ay/) oy ay/) oy ox
+£(N 8"") a(N 6W) (15)
_%@v_mz( o*w .\ &*w ) 70 ay\ ay) " ay\ ™ ax
ot2 oxeot2 - ay2ot2) Note that governing equations given in Eq. (13) will be re-

wherem, andm, are mass moments of inertia and are deduced to that of the classical relation when the nonlocal pa-
fined as follows rametelu is set to zero.
The transverse displacement and sum moment for free

/2 0/2 L
my = f pdz, m, = f oh?dz, 8) vibration is taken as

o " W(X, Y, t) = W(x, t)et, M*(x,y,t) = M(x, )e“t.  (16)
wherep denotes the density of the material. Using Eq. (4 )
the two-dimensional nonlocal constitutive relations can bé& :zséltUtzlart]%Esqo f(16) into Eq. (13), one obtains the normal-
expressed as 1z quati

M + DV2W — 4V2M = 0,

O xx T xx 4 2 2 (17)
) LVAM — V2M + (uV2 - 1)(A— B) = 0,
Y K 7 where
g g
N i A= W2(oW — mpV2W), (18)
Ly 0 e o a(N aw) 0( aw)
__E v oo |}, @  ax\™ax )T ax Mgy
1-v2 - || [ o/ oW\ 9/ OW
oo il NN 1
2 Y +6y Way )" ay\l ™ ox (19)

whereE andv denote elastic modulus and Poisson’s ratio,

respectively. Using strain displacement relationship Eq. (3R.2 Multilayered nanoplates embedded in polymer matrix
stress—strain relationship Eq. (9) and stress resultants defini-

tion Eg. (1), one obtains the following nonlocal constitutiveln the previous section, fierential equation governing the
relation based on classical plate’s theory in terms of displacesdbration of single layered graphene sheet is derived. Anal-
ments ysis of multilayered graphene sheets embedded in polymer
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matrix is more important than single layered graphene sheetg Egs. (17) and (20), the governing equation for vibration

from practical point of view. In this section this model is of n layered graphene sheets embedded in a polymer matrix

extended to multilayered graphene sheets embedded in polyan be written as number of coupled dierential equations

mer matrix. The continuum model representing multilayereés follows

graphene sheets are shown in Fig. 2. It can be observed that ’ )

the 1st (topmost) layer and timeth layers are interacted by +DVWL - V"M, = 0,

polymer matrix and the adjacent layer. Whereas all othepv4|\/|1 —V2M1 + (uV?-1)(A1-B)) =0

in-between layers are acted by two neighboring sheets. As-

suming displacements of the sheetsvasw,, - - - , w, for the

1st, 2nd,-- -, n-th sheets, respectively, théfective trans- 2 5 .

verse load for various sheets can be written as follows. Mi+DVW - V"M =0, 1<i<n, 1)
AN _ T2NA. 2 _ - _R) =

Topmost (1st) layer UV M = VEM + (Ve - 1)(A - B) =0

(92W1 + (92W1

X2  oy?

Bottommost §-th) layer

65" = q- Kuwa + K ) - Cws - we).  (202)
My + DV2Wy — £V2M, = 0,

uViMp = V2Mp + (uV? - 1)(A, — By) = 0,

Pw, 0w,
ef _ n n
gy =qg- Kyw, + KP(W + 6_)/2) — C(Wh —Wn-1). (20Db) where
Any in-betweeni¢th layer where Xk i < n) layer A = WA (MeW, — mpV2W),
qleff =0- C(WI - V\Ii,l) - C(VV| - WH]_), (20C) q (9 (N BW ) 0 ( aW)
. . . XX xy
whereC, K, andK, denote interaction cdicient between ' ox ) ox\' " dy (22)
two adjacent sheets (representing van der Walls forces), Win- 0 oW 0 oW
kler and shear modulus of polymer matrix, respectively. Us- +@< W ooy ) 6y( XY 9% )
] == Shear layer for matrix
g § § § § g mlpe- \Winkler layer for matrix
Sheet | i
Sheet 2 m—ipe--
Interaction
between layers
Sheet n—1 wip-
Sheet 1 e
Fig. 2 Continuum model of multilayered graphene sheet embedded in a polymer matrix
3 Solution by Galerkin method displacement transformation from the physical coordinate

system to the computational coordinate system is achieved
in exact form since the physical coordinate system itself is
3.1 Geometric definition of the plate interpolated exactly. The mapping of the Cartesian coordi-
nate system may be expressed as
An arbitrary-shaped quadrilateral plate in Cartesian coordi- N
nates may be expressed by the mapping of a square plat
defined in its natural coordinates with simple boundary equa® Xe.n) = Z xiNi€.m). &) = Z yiNi€.m).  (23)
tions¢ = +1 andn = +1, as shown in Fig. 3. =t

For a general quadrilateral plate with straight edge, th&herex;, yi (i = 1,2,--- ,N) are the coordinates & points
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2 2
) @ G AR

| Do el @@ A2 | e

: ___——-——,3 Ny 7
./ / S0 () GG ()G (53,
g A / » =< In this stage, consider the followingftérential operators
I‘_&/ : L R Q= L (30)

) 2 G162 Sn M T o2 - ay? '

) ) ) _ Thus, the fourth-order derivatives can be given in terms of
Fig. 3 Mapping of arbitrary quadrilateral plate onto natural coor-the second-order derivatives [24-28]. The opera‘\‘ﬂrand

dinates V4 can be expressed by
92 82
2- —+—=S=R+Q, 31
on the boundary of the quadrilateral region aw¢g, n) are X2 oy? Q (31)
the interpolation functions. For an element with straight Py P Py
edges, the interpolation functions are defined by Vi= —+ —+2——
oxt oyt OX2oy?
N(E7) = Z(L+ &)L+ ) (24) P
i\&,1n) = 4 1 nin), = ﬁR-’- a_y2Q+2WQ (32)

in which & andn; are the natural coordinates of thh cor-
ner. In order to evaluate the operat®isandV*, we use the

chain rule of diferentiation. After some mathematical ma-

nipulation, it can be shown that the first-order and second=Onsider an arbitrary jointng n) on a meshed plate which
order derivatives of a function can be expressed by is actually a mapping of the real physical domain, as shown
in Fig. 3. If the displacement of the adjoining points in the

3.2 Shape functions

P 9 n-direction is assumed to be zero, then the interpolation func-
7% Y tion for this point in thet-direction will be defined by
0 =1J 11 9 ) (25) M+1
Y o [[e-4)
Un@) = o, i#m (33)
I > 1_[(5- —&m)
Fre 022 9 o
6_2 -3 5_2 P 9 , (26) and, similarly, the interpolation function for the poimh, ()
ay? 21 o a8 in then-direction may be expressed by
& 92 on N+1
oxdy d&dn l_[(n )
=0 .
whereJ;; are the Jacobian matrixes. These are expressed ‘éﬁ(n) = Ne1 - I#FN (34)
follows l_[(;;n .
i=0
[ OX oy : i i ) i )
6_§ B_f Therefore, the interpolation function for poimt,(n) in both
Ju= ox oy | (27) directions¢ andn are defined by
| o Ymnl&,1) = Um(EWn(n)- (35)
The out-of-plane displacement of the plateis expressed
Px oy by
0£2  0¢? M N
Ia=| X P 28) W=D Anthm(€)un). (36)
6772 6772 ' m=1 n=1
Px oy whereM andN are the number of points in the andn-
| o¢on ooy | directions, respectively. If any pointn(n) is assigned an
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972 Babaei H., Shahidi A.R.

integerk by the relationship K™Mp; + DK™a; =0,
meb]_ + wZK‘i"Wal + K 2""""a1

+K‘§’Wa1 -K 3""Wa2 =0,

k=(m-1)xN+n, (37)

then the flexural displacemewt may be defined by

) :
W= ) aidéin). (38) K™b +DK™a =0, 1<i<n

k=1 KWmp, + sz‘i"Wai + 2K ?MVq; (42)
whereK = M x N. -K¥"a_; - K a1 = 0,

The advantages of expressiigin this way are:

(1) Althoughay or Ay is used as a generalized coordinate,' o -

each of quantities is exactly equal to the buckling displace-K b, + DK™a, = 0,

ment at point, n). KM, + w?K ™, + K 3%a,

(2) If point (p, ) is introduced as a point _support, then the +KWa, — K ™a, ; = 0.

corresponding, = Apq can be eliminated in Egs. (36) and

(38). Moreover, for line supports parallel to theandn-  Here the components d{™", K™/, K"™ and K" (i =
directions, all unknown cdgcientsay for points on the cor- 1,2, 3) are given by

responding row or column are eliminated.

1 1
mm _ N vz
Therefore, for a plate with point or line supports, theKiJ' - Il Il iy = i (V) Jldg . (432)
flexural displacement can be written as

1 1
v <= [ [ i (43b)
W= Anm(En(m), e

m=1n=1

1 1
K™ = f f [k (V403) = i (V2] JIccn, (43¢)
m ;t pl’ p29 Tt pRv n ;t q_‘]_, qz, ceey, QR, (39) ~1J-1

1 1
where vector andq show the coordinates of tHe(inte-  jcww _ f f (uV2 -1 (V2 13Idédn. (43d
ger number) restrained joints. An alternative expression for i -1J-1 il Ao = M3y ]ldsd, (43¢)

Eq.(39)is 'R

) k= [ a9 - DKo = Ky(Tu)]1 ki (43e)
W= auén), k#kiko, ke (40) .

k=1

k= [ [ s - 1ycoiadea (430

The moment functioM is expressed similarly to the func- -1J-1
tion of W, but without restraints, and thus Considering nontrivial solution of system of Egs. (42), we

K have
M =" bl ), (41) 71 72 0 0 0 0 0

P

vya vy3 y¢ 0 0O O O O O O
where the cofficientsby are defined in a manner similar to

the codficients ofa,. When there are no point or line sup-

ports, the number of base functions in Eqgs. (40) and (41)
are equal. However, when some restraint exists, the numb 0 0 0 0 0 71 72 O
of base functions in Eq. (40) is obviously less than those in 0 0 0 7 O %5 73 7
Eq. (41).

3.3 Solution 0 0 0 0 0 0 0 0 Y1 v
Substituting Egs. (40) and (41) into Eq. (21) and multiply- © 0 0 0 0 0 0 v 0 4 ¥s|
ing both sides of the equations lpy(¢,n) and integrating =0, (44)
over the whole region yields the following simultaneous lin-

ear equations in terms of unknown ¢deentsa; andb; where
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y1=DK™, y2=KM™, dependent on even the material properties of graphene. To
y3 = KWM ya = WKW 4 KWW KWW, (45) illustrate the dependence of small scafeeet on thickness,
o ww - - elastic modulus, polymer matrix ftiess and interaction co-
vs = K™+ 2KY, ye = —K3" efficient between two adjacent sheets a general simply sup-
This equation can be solved far, for a given number of ported skew shaped embedded multilayered graphene shee
layers. with the following properties [29] is considered. The elas-
tic modulus are taken a8 = 1765 GPa, Poisson’s ratios
v = 0.3, thickness of each plate = 0.34 nm, interaction
4 Results and discussion codficient between two layer€ = 45 x 108 Pgm, poly-
mer matrix Winkler modulu,, = 1.13x 10 Pgm, poly-
mer matrix shear modulus, = 1.13 Pgm, number of lay-
ers is 5, skew anglg = 45° (see Fig. 4a) and aspect ratio
L/b = 1 (see Fig. 4a). The scale d¢beients or nonlocal
frequency ratio parameter are taken &sl; = 2nm and the external char-
_ natural frequency calculated from nonlocal theory acteristic lengths are taken ks= 5nm. These value are
~ Thatural frequency calculated from local theory taken becauseyl; should be smaller than 2.0 nm for carbon

) ] nanotubes as described by Wang and Wang [30]. It should
For single layered sheet, it was observed that the frequengy noted that the value of nonlocal parameter is not exactly

ratio is independent of the thickness of the sheets [29]. But jtnown for graphene sheet [22]. Frequency ratio has been
can be seen from Eq. (44) that frequency ratio for embeddeg|sited against percentage changé,dt, Ky, K, andC one
multilayered plate is dependent on the thickness of the platg; 5 time in Figs. 5 and 6.

Further in this case, this frequency ratio can be seen to be

To illustrate the small scale or nonlocdtext on the vibra-
tion response, we define frequency ratio as follows [29]

T L 7

0.385 0.40
4 035 ¥ - - - - L
e,
9 o "\.\
o = By
2 g 030 -t
g ] . “E
Z ] ey &, S
= = —t— K, S~
025 —v= C "y
k4
-I L 1 1 1 020 1 1 1 1 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Percentage change Percentage change

Fig. 5 Variation of frequency ratio of embedded multilayered Fig. 6 Variation of frequency ratio of embedded multilayered
graphene sheet with percentage changearfdE graphene sheet with percentage changé,of, andC
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It can be seen that nonlocdtect decreases whénin-  smaller aspect ratios and higher values of nonlocal parame-
creases. This is obvious because the small sfeeteeduces ter. From this figure it can also be observed that lower natural
with increase of MLGS'’ thickness. Further it is observed thafrequency is obtained at higher values of nonlocal parameter.
the frequency ratio converges to 0.38 when the percentageirther it can be observed that as the aspect ratios increases
change oh is 200 as shown in Fig. 5. Also nonlocafect the natural frequency decreases. Natural frequencies for var-
decreases dsincreases. Figure 6 shows that nonlodé¢et  ious nonlocal parameters and skew angles of the plate are
is independent of shear and Winkler modulus while it can belotted in Fig. 9. A value oL/b = 1 is taken for the as-
seen to be increased with increase in interactiofificdent.  pect ratio. It is observed that the natural frequency increases

To illustrate the dependence of small scaffeet on  when the skew angle increases from@®75.
number of layers, a general simply supported skew multi-
layered graphene sheet is considered for the same properties
as described in the previous section. Four modes of vibra-
tion for different nonlocal parameters are considered and fre-

guency ratio is plotted against number of layers in Fig. 7. 124
& —=— [/b=0.5
=
5 — sa e ffh=1
Es 10
£
T 8F
=
1.0 Nonlocal parameter=0 '__,‘E_ 6
m=1,m=3 __ o 2 &=
e 08 Cm=5_-"__  _ -~ Nonlocal parameter=0.5 5 4}
g LT 8
= -—= B g ]
- - = e —— - ] 5
15 b ¢ o =SS S =1 | e e T
5 0.6 |- .’.,-’ /_,-’ Nonlocal parameter=1 2 2 3
=2 s P I _
E 0.4 (T " Nonlocal parameter=1.5 0 L L .
E = - 0 0.5 1.0 1.5 2.0
= Nonlocal parameter
0.2 F
Fig. 8 Variation of non-dimensional natural frequencies of skew
0k 1 1 ! 1 embedded multilayered graphene sheet versus nonlocal parametel

4 6 8 10 for different aspect ratios
Number of layers

Fig. 7 Variation of frequency ratio with number of layers for vari-
ous mode numbersr) and nonlocal parameter

=]
wn

It can be clearly observed that number of laygeet is
negligible for lower (first, second and third) modes while itis
significant for higher modes. Further it can be observed that
the dfect of number of layer on small scalffext continues
to decrease up to a specific number of layer (e.g. five lay-
ers for the fifth mode and seven layers for the seventh mode)
and then the frequency ratio converges to certain value cor-
responding to lower modes.

To illustrate the influence of small length scale on the
vibration of general simply supported quadrilateral MLGS,
the non-dimensional natural frequency paramet@s =
wb? \Jp/n?) is studied for diferent scale cdicients and ge-
ometrical parameters. At first skew MLGS embedded in a Nonlocal parameter
polymer matrix is considered. For various nonlocal parame-
ters and aspect ratios of the plates the natural frequencies #&ig. 9 Variation of non-dimensional natural frequencies of skew
plotted in Fig. 8. A value o = 45° is taken for skew angle embedded multilayered graphene sheet versus nonlocal parameter
(see Fig. 4a). This figure shows a profound scdllect for  for different skew angles

Non-dimensional natural frequency
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Natural frequencies for skew MLGS with higher skewtion isr/L = 0-1. It is observed that the natural frequency
angles (e.gB = 75°) are strongly fiected by small scale in decreases when the aspect ratio increases from 0 to 1.
comparison with skew MLGS with lower skew angles (e.g.

B =0).

From Figs. 8 and 9 it is seen that as the value of small 5.0
scale cofficient increases the value of non-dimensional nat- - —— =0
ural frequency of small-scale plates decreases. Also the - - = 7I=02
effects of aspect ratio and skew angle on the natural fre- — == r/[=04
guency decrease when the scaleffoent increases. This e ’ﬁ =3§
Lo pli=0;

phenomenon is attributed to the sizéeets. At micrgnano

level the plate structure can no longer be considered as ho-
mogenous but discrete in nature. Hence there is a softening
of the plate. Also many experimental evidences show size-
dependent mechanical properties when the scale is small

Non-dimensional natural frequency

~ o
enough. Compared with classical plate theories [31] where I5F ‘4‘:-:%\;
buckling load do not vary with the scale parameters, the non- 1.0 - R
local plate theories can predict changes of natural frequency 05 F
induced by the scaldfects. Therefore, the classical contin- i : , ,
uum mechanics fails to capture the nature of size dependent 0 0.5 1.0 1.5 2.0

properties.

Nonlocal parameter

Next we will illustrate the &ect of nonlocal parameter

on the natural frequencies of rhombic MLGS. Fig. 11 Variation of non-dimensional natural frequencies of trape-
Figure 10 shows the variation of natural frequency withzoidal embedded multilayered graphene sheet versus nonlocal pa-

nonlocal parameter for various values of the rhombic angleameter for difterent aspect ratios

(@) (see Fig. 4b) of rhombic MLGS. The range of this an-

gle is 15—-45. It is observed that the natural frequency de-

creases when rhombic angle increases fromtd%35. Fur- )

ther it is found that the nonlocatfects are more pronounced © Conclusion

for higher rhombic angle.

This study is concentrated on the free vibration analysis of
general simply supported quadrilateral MLGS embedded in
polymer matrix via nonlocal continuum mechanics. Equa-
tions of motion of the plates were derived based on Erin-
gen’s diferential constitutive equations of nonlocal elastic-
ity. The Galerkin method was introduced as a numerical pro-
cedure for the vibration analysis of general simply supported
quadrilateral MLGS. The straight-sided quadrilateral domain
is mapped onto a square domain in the computational space
using a four-node element. The discretizing and program-
ming procedures are straightforward and easy. The depen-
dence of small scaleffect on thickness, elastic modulus,
polymer matrix stifness and interaction cfigient between
two adjacent sheets was illustrated. It is clearly observed
that number of layerféect is negligible for lower (first, sec-
ond and third) modes while it is significant for higher modes.
Further it is found that thefiect of the number of layer on
small scale ffect continues to decrease up to a specific num-
Fig. 10 Variation of non-dimensional natural frequencies of rhom-ber of layer (e.g. five layers for the fifth mode and seven
bic embedded multilayered graphene sheet versus nonlocal paratayers for the seventh mode) and then the frequency ratio
eter for diferent rhombic angles converges to certain value corresponding to lower modes.
The non-dimensional natural frequencies were obtained for
skew, rhombic, rectangular and trapezoidal MLGS embed-
Finally the variation of natural frequency versus scaleled in polymer matrix with various geometrical parameters
codficient for various aspect ratios/() (see Fig. 4c) of and scale cd@cients taken into account, and for each case
trapezoidal MLGS is studied (Fig. 11). The range of variathe significance of the small scalffects was discussed.

Non-dimensional natural frequency

1.0 2.0

Nonlocal parameter
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