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Abstract Instead of using the previous straight beam eled Introduction
ment to approximate the curved beam, in this paper, a curvi-

linear coordinate is employed to d‘?sc“be the demrm""tiomff)ynamic performance of rotating flexible structures such
and a new curved beam element IS pfopos?d tc,) model ”?;1% spacecrafts, robotics and high-speed turbine blades have
curvgd begm. Based on egact ponlmear stralr}—dlsplacemegéen studied for a long time. A rotating system is charac-
reIan_n, wfrtual worl_< prmuplz Itf used t(;] dgve d¥nam'cterized by the coupling between rotating motion and elastic
equations for a rotating curved beam, with tkBets Of ax-  yefiaction. The fiect of the elastic deformation can signifi-

lal extensibility, shear deformation and rotary inertia taken., \ influence the large overall motion of the system. Par-
'nFl‘? gcco;:nt. GThe constgnt matrices are SOIVedhmijmelr\'lcalchuIarly, with the increase of the angular velocity, the ac-
uti 'kag é € auss quah ratur'e Integratlonh n;et od. q EWs racy in modeling the deformation plays an important role,
mark and Newton-Raphson iteration methods are adoptgfle e gre thus many studies focused on geometrically nonlin-

to solve the dferential equations of the rigid-flexible cou- ear behavior. By using an axial stretch variable, a criterion on

pling system. The prgsent results are cpmpared with tho‘T’l‘?cIusion of stifening terms of a beam was put forward us-
obtained by commercial programs to validate the present flr,, o influence ratio [1], and then an experiment was carried

nite method. In order tg f.urther illustrate the CONVETgence t to verify the correctness of the nonlinear formulation [2].
and dficiency characteristics of the present modeling an

i X ; oreover, absolute nodal coordinate formulation [3] was de-
computation formulation, comparison of the results of th'%/eloped to solve large deformation problems. On the basis

present formulation with those of the ADAMS software areot axact strain-displacement relation, Liu et al. [4] proposed

made. Furthermore, the present results obtained from linegr ., hybrid-coordinate formulation to consider geometric

formulation are compared with those from nonlinear formu'nonlinear &ect, such formulation is suitable for simulating

lation, and the special dynamic characteristics of the curvegl, ip|a multi-body systems with large deformation. How-
beam are concluded by comparison with those of the straighife; these investigations are limited to straight beams and

beam. rectangular thin plates. Few researchers have shown inter-
est on the research of rigid-flexible dynamics of irregular
Keywords Curved beam elemenGeometric nonlinear for-  shaped complex structures, such as curved beams and shells
mulation- Rigid-flexible coupling Liu et al. [5] combined the characteristics of hybrid coordi-
nate formulation and absolute nodal coordinate formulation
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beams. Owing to the straight beam element approximatiomserendipity formulation, and the completely integrated cubic
even if lots of straight beam elements are used, the accuratggrange element exhibits no locking, no spurious eigenval-
of the results can not be guaranteed. ues and rapid convergence to thin plated solution [20], one
In the finite element analysis of curved structures, thgimensional cubic Lagrange e'e”.‘em Is devgloped t(.) discrete
e curved beam by isoparametric formulation in this paper.

use of curved beam elements based on curvilinear strain fie%q1 i . o o
description is an fiicient alternative to the employment of e basic idea of isoparametric interpolation is to interpolate

large numbers of straight beam elements to approximate tﬁ@e I(_alement ge;)metry from the coordinates of the nodes by
true curve shape. Ganapathi et al. [9] proposed a curvéHe agrgnge element. , .
cubic B-spline beam element for free vibrations and static !N this study, the curved beam with large curvature is se-
analysis. According to thin shell theory, Raveendranatifcted for rigid-flexible coupling dynamic analysis, and the
et al. [10] proposed a two-node locking free shear flexidynamic behaviors of curved beams driven by external forces
ble curved beam element which can circumvent shear arff€ investigated. The isoparametric formulation is employed
membrane locking problem, subsequently, Raveendranalfi’ discretization. Owing to the complexity the rational al-
et al. [11] further extended it to a three-node shear-flexibl@€Praic functions involved in the integrals, Gauss quadra-

curved beam element based on coupled displacement fidigre is introduced for calculating the constant matrix. Based
interpolations. Friedman et al. [12] utilized the trigonomet-on exact strain-displacement relation and using virtual work

ric functions as the interpolation function. Wu et al. [13]principle, equations of motion for a rotating curved beam are

presented the curved element by a set of simple implicit inderived. Newmark time integration scheme associated with

terpolation function on the basis of Ref. [12], and establishell€Wton—-Raphson iteration is used to improve thiiency.
transformation relations between the curved beam and tHedreementof the presentresults with those obtained by com-
straight beam elements to investigate the in plane vibratiof€rcial programs verifies the correctness of the present for-
of hybrid beam. By adding the shear and torsion degree Jpulation. Finally, the results for the curved beam obtained
freedom, Wu et al. [14] extended this method to solve th@Y the proposed formulation are compared with those for the
out-of-plane problem. Stari et al. [15] and Yang et al. [16] stralght' beam to show specific rigid-flexible coupling char-
presented the three-node beam element based on the cur@geristics of the curved beam.

ture by the transformation matrix between nodal curvatures

and nodal displacements, the final finite element equilibrium The displacement field

equation were written in terms of the displacement compo-

nents of the two edge nodes. Leung et al. [17] presented i i

Fourier p-elements for in-plane vibration of thin and thick A curved beam with constant curvature cantilevered onto a
curved beams by introducing additional internal degrees ¢f9id hub is shown in Fig. 1, in whicl is the subtended
freedom which are sine functions to Fourier trigonometric@ndle Of the curved beanR is the curvature radius of the
functions to avoid membrane and shear locking and to incurved beam, ang is the radius of the hub. The displace-
crease the convergence and stability of the curved elemefgent fields of an arbitrary Poiri at subtended angjgare

Based on an identical concept, Kim et al. [18] added bubdiven as follows

ble functions to the displacement field interpolation so as tgyx y, t) = u(x, t) — ye(x, t), 1)
enhance substantially the numerical accuracy, especially in
predicting high vibration modes. Although most of the above/(%. ¥: t) = V(X 1), (2

studies adopted the curved beam element to approximate fferex is the arc length along the neutral axis from the left
curved beam, they focused mainly on the free vibration andyq anqy is the distance along the thickness direction, and
static problems, few researchers have considered the r|g|9L(X’ y,t) andv(x, y, t) are the tangential and transverse elastic

flexible coupling dynamics for curved beams. Moreover, thejeformation, respectively, angrepresents the rotation angle
suitability of these curved elements for dynamic analysis Wags ihe cross section.

not verified, and the influences of geometrical nonlinearity of

) The nonlinear longitudinal and shear strain are defined,
the curved beam were not included.

respectively, as [19]
For the rigid-flexible coupling dynamics, Park et

2 2
al.[19] investigated the dynamic characteristics of a rotats, = (% - X) + }[($) + (S—V) ] - ygi, (3)
ing curved beam with a tip mass. It was indicated that the xR/ 2dx X x
curved beam with moderate curvature is important for un- _ dv U (4)

. .. = — 4+ = — 0.
derstanding the characteristic of the curved structures, hot® ~dx "R ¥

ever, in Ref. [19], the radius of the curvature of the curvedp Eq. (3), the terms in the first and the second bracket are the

beam is so large that the curved beam approaches a straigfiear and the nonlinear strains, respectively. Especially, the
beam, therefore the finite element method used in this pa- 1/duy2 . . o
(d_x) arising from the longitudinal stretch-

per is not persuasive enough. Since Lagrange element fdionlinear term;
mulation is much less susceptible to shear locking than thieg is taken into account in this paper, which is always ig-
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Geometric nonlinear dynamic analysis of curved beams using curved beam element 102

nored in the previous studies on dynamics of straight beastraight beams, therefore, the negligence of such term may
system. Since the longitudinal deformation of the straighlkead to simulation error in case that the quadratic term of

beams is small, such term can be neglected in the equatiotige gradient of the longitudinal deformation approaches the

of motion for straight beam systems. However, the longituguadratic term of the gradient of the transverse deformation.
dinal deformation of curved beams is larger compared with

€

Fig. 1 Configure of a rotating curved beam

The stress—strain relations of the curved beam includepresent the coordinate matrix of deformation displacement
ing shear &ects are given by of Point P which is also defined in frame;. A, represents
the transformation matrix of frama, with respect to frame
eo, and A represents the transformation matrix of frame
whereE is the modulus of elasticity ar@ is the shear mod- Wwith respect to framey, which are, respectively, given by

oy = Esgy, Txy = nyy, (5)

ulus. . _ _ cosd —sing cos3 —sing
The virtual work of the elastic force can be writtenas A, = I . ] Ag = [ ] (8)
L L sind  cosY sing  cosB
oWe = —A( fo oexEexdx + fo k‘SnyG?’xde)s (6) Differentiation of Eq. (7) leads to
wherek denotes the shear correction factor. P=TAB(r,+sy+ Agph+ Agl’) + AgAgll, 9)
and the second fierentiation of Eq. (7) leads to
3 The kinematics description of the curved beam F = — A1)+ Sh+ Asply + Agll)
The kinematics relations of an arbitrary point on the beam  +1Ag8(ry+ sy + Agppy + Agu’)
are described with the aid of three coordinate systems as Lo A eéAﬁu" N AgAﬁU", (10)

shown in Fig. 1: an inertial frameg located atO, a hub
body-fixed rotating frame, and a local curvilinear frame where i represents a skew-symmetric matrix and can be
ec(ocxcYc) fixed on an arbitrary Poiry of the neutral axis 0o -1
of the curved beam, witbcx along the tangent of the neu- Written asl = 0 ]
tral axis, ando.y. along the normal vector, which is directed The virtual displacement coordinate vector reads
to the center of the arc of the beam. N

The coordinate matrix of the displacement of an arbidr = I Ad6(rg + sg + Agpg + Agu’) + AgAgdu’. (11)
trary point with respect te, can be written as

r=Ag(ry+sy+ Agpl+ Agu’), (7) 4 Lagrange elements and isoparametric formulation

wherery = [R, 0]" represents the coordinate matrix rof

defined ineg, s = [X Y]" represent the coordinates &f 4.1 One dimensional Lagrange elements

defined iney, pg = [0 y]" is the transverse coordinate ma-

trix of arbitrary pointP on the cross sectionand = [u v]T  The shape functiol; of a Lagrange element with nodes
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n
coincides with arf — 1)-th Lagrange polynomial, which is — &—¢§
inci wi —1) grange poly ial, which i Ni(§)=l_[ i

given by j=1,j#i = _gl
X=X i=12---,n -1<é<l (14)
Ni(X) = , i=12---,n, 12 T T
(%) j_]:j[M_Xj (12)
] o 4.2 The parametric interpolation of the element geometry
whereXy, X, - - - , X, are the coordinates of node pointss and elastic deformation

the total number of nodes of the curved beam element.
A dimensionless natural coordinatés introduced as  The Cartesian coordinates of the initial configure of axis line

f curved beam element, can be defined as
2(X — 0 '
g = %7 (13) n _ n _
° X@ =Y NX, Y@ =) NYE, (15)
whereX; is the Cartesian coordinate of the element midpoint i=1 i=1
andle is the length of the element. where K¢, Y®) is the nodes coordinate defined in fraegeIn

After substituting Eg. (13) into Eq. (12), the shapethis paper, a cubic Lagrange element with four nodes 4)
functions can be written in terms of the natural coordinate ais selected, as shown in Fig. 2b.

Node 3 Node 4
b Node 2

Node |
Mapping

Fig. 2 Elements transformation by isoparametric formulatianPart of the curved beanty Natural coordinate systeghand 4-noded
element

According to Eq. (15), the infinitesimal arc element d From Egs. (16) and (17), the Cartesian derivatives of
can be mapped into natural coordinated system, which cahe elastic deformation can be expressed as
be expressed as

~ du_dudé 1 hdN
dx = Je(¢)d, 18) T~ % le s (18)
whereJe(¢) = /(dX/d€)? + (dY/dé)?. ]
Elastic deformations and rotational angle of the crosglv _ dvdé 1 24: d__iV, (19)
section are interpolated as dx dédx  Je L ¢ "
4
_ 4
u(.t) = Zl N (©)ui(t). dp_dpdk 1 ndN o 20)
iz dx dédx  Je & dE
4
V(£ 1) = Z Ni(€)Vi (1), (17) The displacement can be rewritten as
i=1
4 _ u= Nl(f)pe’ V= N2(§)pe’ ¢ = N3(§)pes (21)
o6y = ; Ni(€)eei (1)- where matrixN;(¢) is the shape function, which reads
Ni@=[Ni¢) 0 0 N 0 0 Ng¢) 0 0 Ny 0 0], (22)
No@)=[0 Ni§) 0 0 No) 0 0 N3(®) 0 0 Ny¢) Ol (23)
Na@)=[0 0 Ni® 0 0 N§) 0 0 Ny® 0 0 N&)l, (24)
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andpe = [U Vi @1 -+ U Vo ¢n]"isthe L &l . T
time-dependent vector of generalized coordinate of a curve(a" - _292 IlpA(rO +So+ AsSH)
beam element. Substituting Eqgs. (21)—(24) into Egs. (1) and el

(2), one obtains that XApSP Jeds, (35)
_ Ne 1
uix,y,t) = N — YN 3pe, 25
( y ) 1Pe —YN3Pe ( ) Qp — Zf pA(STA;)
V(X Y, 1) = Nope. (26) =1Vl
For the convenience of expression, letdenote the X[6%(rg + sy + AS P) — 21 0ALS Pl ek, (36)

global nodal coordinate vector, a®k denote the element whereA is the area of the cross section axigis the number
Boolean matrix, the relation betwegn and p are given by  of elements.

Pe = Bep. Then, Egs. (1) and (2) can be written as Considering Egs. (11) and (27), the virtual work of the
other external forces can be written as

u
’ = =S 27
! M B @D s = f&rTf dV + 66T = 69" Qp, 37)
\%
where wheref represents the gravitational force vector defined in
N, Nj the inertial frame, and represents the external moment ap-
= [ } Be - y[ } Be (28) plied on the hub, respectively. The generalized external force
N2 0 Qr is given by

Ne 1
. . A rh+sh+ASPTANT Tflde + T
5 Equations of motion ;Il( o+ So+ AsSP Ay dé

o (38)
TATAT
The virtual work of the inertial force is defined as AZ fl S AgA f Jedé
e=1%"
SW = —pférT'r'dV — 660 I, (29) By substituting Egs. (3), (4) , (27) and (28) into Eq. (6),
v the virtual work of the internal force considering geometric

whereV represents the volume of the curved beam, @il  nonlinear &ect can be written as
the mass density of the beam, ahds the moment of inertia
ihe mass density o 6We = 6G7Qe = ~5p"[Ke + Kn(Pe)]P. (39)

Substituting Egs. (10), (11) and (27) into Eq. (29), onewhereKe is the constant dtiness matrix and ,(pe) is the
obtains time-variant nonlinear stiness matrix, which are given by
W = —6q"M § + 69" Qnm, 30 e 1

: q'™™M§ +69"Qm (30) Ke:ZBg{f [EA(Dngel_%DllNZ
whereq = [6  p]" is the generalized coordinate of sys- e=1 -1
tem, and the generalized mass and inertia force matrices take 1.+ 1 T
the form of _§N2D91+§N2N2)+E|De3De3
Moag My Qo T
M:[ p}, sz[ ] (31) +GkA(De2+3N1—N3)
Mp  Mpp Qp R

where X(Dez + F%Nl - NS)]Jedf}Be» (40)

Ne 1
Mg = Jn + plaR + pr(r’+s'+A sp’ e 1
;‘ LT Kn(pe)=zBl{EAfll(Dll-NZ/R)pl
e=1 -

X(ri + s, + AgS p)Jeds, (32)
NO 0T AT e (DT, Des + DL, De)/2 + (DT, - NI/R)pe
e 1
Mop = Z[f pA(ry + S+ AgSPTATTT x(D] De1 + DL, De) + pl(D]; Des + DL, De2)
e=1 V-1
) xPe(DL, Des + D;Dez)/zpedg}ae, (41)
X AgApSJeds + j:lpl N3Jed§Be]’ (33) whereDg; = dN;/(Jedé), i = 1,2,3. The time-variant non-
linear stithessK(pe) is highly nonlinear and updated in
S & each integration, for which, matrix separation method pro
Mp=M] Mpp = ASTSJe0é, 34 \ g e _ i
e op PP ; j:lp edé (34) posed in Ref. [4] is employed to improve th@ieiency.
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; 1 _ 1 1 -
The elastic forces take the forms of e (_ _ ) ]
. I ae®* aditlog 1)qe|. (51)
Qe = [ ] (42)  Equations (50) and (51) show th&t, F are functions of
* 7| -[Ke+ Kn(pe)lp

Otsat, therefore Eq. (49) are highly nonlinear algebraic equa-

Considering Egs. (30), (37) and (38), application of thgions. Newton—Raphson iterations are adopted to improve
variation principle leads to the following variational equa-the accuracy of the solution. The iteration process can be
tions outlined as follows

. (1) Definingq?, ,, as an accurate solution of Eq. (49),
W + OWE + 0We = 67 (- M =0. (43 : LAt _ ,
[+ OWE + OWe = 67(-M G + Qm + Qr + Qe) (43) andq”, as an approximate solution @, ,,, expanding Eq.

B Supposg the independent coordinate matrix of systeqg) atﬁf?m in a truncated Taylor Series
isq=[6 p| Considering the constraint conditions, the 0 - 0
relationship between the independent and dependent coor@{duat) = P (A, x) + Paa(Atrat — Ay (52)

nate matrix can be written as whered ., = d® /30y, is the Jacobian matrix, for which,

q=Dq, (44) the calculation process is most critical and most compli-

. ) . cated, especially for the rigid-flexible coupling problem. In
where D represents the transformation matrix to satisfy th@q. (52),i represents the iteration number.

boundary condition of the beam. _ _ (2) Defining ") as a modified approximate solution
According to Eq. (43), the equations of motion of thein the { + 1)-th iteration, the correction solutiamq(') =
system can be obtained as —i+1) =) trat
. Oi,ar — Oisa @re calculated as
Mqg+Kq=Q, (45) _ , ,
50 _ 50 - ~10]
where AGy = [Paun (AL -2 (000 . (53)
— - Then, the modified approximate solutig’,’ can be ob-
M =DTMD, Q= DT(Qm + Qp), tained. pp d{tm
_ 0 0 (3) Additional iterations are needed to perform with
_ T . . . .
= 0 Ke+ Kn(po) being replaced b+ 1 and the calculations are resumed with
e RniPe Eq. (51) until the norm of correctiond'”,  is less than a pre-
scribed error. In the present simulation examples; 1/4,

6 Numerical method for solving differential equations [3 =1/2.

In this paper, dierential equation of (45) will be solved 7 Numerical simulation and discussions
numerically by using Newmark time stepping scheme with
Newton—Raphson iteration method.

The nonlinear equations of motion at tinhe- At are
given by

In the rigid-flexible coupling dynamic analysis of the hub-
beam system, the properties of the beam are given as follows:
2 _ _ the mass density = 2 7667 kgm?, the modulus of elastic-

M (Qeeat) Geat + K (Great) Qeat = Queat(Gteats Great).  (46) ity E = 68952 GPa, the cross-section area 80 mn?, and

the moment of inertia = 1.066 67 c.

In order to check the accuracy and the convergence of
the modeling method proposed in this study, the results of the
present model are compared with those obtained by commer-
= — B\ .« B, _ o cial programs (ANSYS, ADAMS), in which straight beam
Queat = G + (1 B Zl)Atqt + m(q“m — 0t~ QA (47)  glements are used to discrete curved beams.

By using Newmark algorithm, the relation among ve-
locity gtiat, accelerationyi,a; and displacement vectag, at
is given by

. 1 _ _ 1 .- 1 . I .
= - -0 -= - 1) , 48 7.1 Validation of the present modeling method
Queat = 33 (Q+at — Gi) A (2/1 Qt (48) P 9
whereAt is the time stepd andj are the integration param- 10 guarantee the accuracy, the results of commercial pro-
eters, respectively. grams are derived using ficient number of straight beam

Substituting Egs. (47) and (48) into Eq. (46) leads to elements to approximate the curved beam. The natural fre-
quencies results for the stationary curved beam obtained by

@ = K(Qesat)Qesat — F (rear) = 0, (49)  using the proposed modeling method are compared with
where those obtained by ANSYS. Four groups of dimensions for
N B 1\ — the curved beam are employed, which are represented by
K(Qtsat) = K(Qerat) + (W)M (Qtsat), (50) the following curvature radius and subtended an&le: 6,

_ - a=30C;R=6,a =60; R=10,a = 30°; andR = 10,
F (Qreat) = Q(qaat) + M (Treat) a = 60°, respectively. Table 1 shows the lowest seven
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natural frequencies of the stationary curved beam with thgram ANSYS, therefore the results in Table 1 verify the cor-
cantilevered-free boundary condition. It clearly shows thatectness of the present geometric nonlinear model by using
the results obtained by the present modeling method are aurved beam element.

good agreement with those obtained from commercial pro-

Table 1 Comparisons of natural frequencies for stationary beam (unit: Hz)

¢ R=6,a =30 R=6,a =60 R=10,a =30 R=10,a = 60°
Present ANSYS Errgto Present ANSYS Err¢o Present ANSYS Err¢o Present ANSYS Err¢io
1 3.2860 3.2865 -0.0152 0.85139 0.84586 0.6495 1.1831 1.1831 O 0.3056 0.3008 1.5707
2 19.849 19.862 -0.0655 4.6026 4.6457 -09364 7.1502 7.1514 -0.0168 1.6564 1.652 0.2656
3 56.546 56.615 -0.1220 13.714 13.875 -1.174 20.389 20.389 O 49374 4.9343 0.0628
4 111.34 11151 -0.1527 27.459 27.758 -1.0889 40.208 40.172 0.0895 9.8824 9.8726 0.0992
5 184.50 184.64 -0.0759 45953 46.294 -0.7421 66.772 66.555 0.325 16.510 16.467 0.2604
6 276.17 275.84 0.1195 69.550 69.468 0.1179 100.26 99.518 0.74 24860 24.715 0.5833
7 385.07 383.6 0.3818 99.315 97.264 2.0651 140.85 139.04 1.285 35.035 34.612 1.2074

Secondly, the straight beam finite element approximate
model of the curved beam established by ANSYS are input

into the ADAMS software for verification of the dynamic re-

sults. The radius and the rotary inertia of the hub are given by

R = 0.05m andJ, = 0.3kg-m?, respectively. The length of
the beams are equal tae 8B m, and the corresponding sub-
tended angle i&x = 30° anda = 60, respectively. The
following torque drives the hub in the numerical analysis

T = 10singt) N - m, (54)

wherewg = 2rrads™.

0<t<2s

The dynamic results of the present model are compared

with those of the commercial program ADANRBex. The
time histories of the tip longitudinal and tranverse deforma:
tions of the curved beam far = 60° are shown in Figs. 3

— ADAMS
-=-- Present model

0.10
0.08
0.06
0.04
0.02
0
-0.02
-0.04
-0.06
-0.08 |-
—0.10

v/m

1.0 1.5 2.0

Time/s

0.5

Fig. 4 The tip transverse deformation of the curved beam

and 4, respectively. It can be seen in Fig. 3 that the longitu-

dinal deformation results obtained by ADAMS are in good
agreement with those obtained by the present model, and tw

702 Convergence rate anflieiency of the present modeling

results for the transverse deformation shown in Fig. 4 als§ret od

coincide very well, which further verify the correctness of
the present model.

0.10 T T T
0.08 — ADAMS
0.06 - ---- Present model

0.04 +
0.02
0
-0.02
—0.04
-0.06
—-0.08 +

-0.10
0

u/m

1.0
Time/s

Fig. 3 The tip longitudinal deformation of the curved beam

The convergence of the hub angular velocities obtained from
the present model and the ADAMS program for= 30°

are shown in Figs. 5 and 6, respectively. It can be seen in
Fig. 5, convergence can be achieved just using at most 4 fi-
nite elements, however, at least 15 finite elements are needec
to converge for the ADAMS program in Fig. 6. There-
fore, the results in Figs. 5 and 6 verify that the proposed
curved beam element possesses better convergence charac
teristic compared to the ADAMS software.

Furthermore, as can be seen in Table 2, although with

the same length of 3Gcurved beam, for a curved beam with

a subtended angle of 608 elements and 20 elements are
needed to achieve convergence in the present model and in
the ADAMS program, respectively. Therefore, it is con-
cluded that for the case of the same length of the curved
beam, the curved beam with larger curvature needs more el-
ements to converge.
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T T
—— Elements=2
===« Elements=4

and the ADAMS software for simulating the dynamic model
with time step 0.001 s and end time 2s. It can be seen that, for
the present model, 6 seconds and 12 seconds are time cost fo

- - - Elements=20

simulating the curved beam with 3&nd 60 subtended an-
gle, respectively, nevertheless, for the ADAMS program, the
corresponding simulation time far = 30° anda = 60° are

70 s and 80 s, respectively. It is shown that computational ef-
ficiency of the present formulation is improved significantly
compared with the ADAMS software.

o/(rad-s ')

7.3 Example of the curved beam pendulum

1.0

Time/s As shown in Fig. 7, a curved beam pendulum under the ef-

fect of gravitational force is connected to the ground by a
revolute joint. The radius of the hub &, = 0 and the mo-
ment of inertialyo = 0. To investigate thefBect of geometric
nonlinearity and beam shallowness, the lengths of the axis

Fig. 5 Results obtained by the present model

0.30 ' ' line of all the beams aren33 m, and the subtended angles
025 | are 60, 30° and 20, respectively.
0.20 F /i

w/(rad-s™")

0.10

0.05

—— Elements=5 Gravity force Cross section
--=---- Elements=15
0 - - - Elements=50
0 0.5 1.0 1.5 2.0
Time/s

Fig. 6 Results obtained by the ADAMS software Fig. 7 The curved beam pendulum

The cross-section area is given By= 4 cn?, and the
moment of inertia is given by = 4/3 cnf. The pendulum is
released at the horizontal position with the initial conditions

Table 2 Comparison of the time cost and the number of beam
elements needed for convergence

N Time cosfs Element number thatd = 0, p = 0, p = 0. All the deformations results are
Present model ADAMS Present model ADAMS relative to the hub body-fixed franes.

30 6 70 15 " . e

60 12 80 20 7.3.1 Hject of the geometric nonlinearity

Figures 8 and 9 show the dynamic response of the linear and
In the present study, Newmark time integration schemeaonlinear formulation of the curved beam with a subtended
which are usually used for the problem of structural dynamangle of 20. At the initial phase between 0s-0.7 s, no mat-
ics associated with the Newton—Raphson iteration is introter it is the longitudinal or the transverse deformation, the
duced to solve the rigid-flexible coupling problem. It islinear and nonlinear results totally coincide. The reason is
worth notice that the present numerical method is uncorthat, under the inertia force arising from the rotating mo-
ditionally stable ford = 1/4, 3 = 1/2 and not too small tion, the original curved configuration of the curved beam
time step can be chosen to guarantee necessary accuraends to extend to straight configuration. During this pro-
Since the mass, $iiness and internal forces matrices arecess, the deformation is so small that the nonlindéceis
functions of the system generalized coordinate, the interot easily excited. As the angular velocity of the pendulum
gration process can not be completed directly by the Newincreases during the period of 0.7 s-1.6 s, the nonlinear re-
mark method, which must be used in conjunction with thesults still posses the same vibration frequency and amplitude
Newton—Raphson iteration. as before, however, for the solutions of the linear formula-
Table 2 compares the time cost of the present modeion, vibration frequency change suddenly and the amplitude
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of the deformation became large which is about three times
larger than the nonlinear results, so that the linear model can
not explain the dynamic stening phenomenon. It can be
shown that when the pendulum moves near the horizontal
position during the period of 1.6 s-2.5s, th&eliences be-
tween the linear and nonlinear results nearly vanish, which
indicate that the nonlineaffect is excited only at the posi-
tion with large inertial force. Figures 10 and 11 show the
longitudinal and transverse deformation of the curved beam
with a subtended angle of 60 The dynamic performance
of the linear and the nonlinear model is similar to that of
20, except that the phenomenon of the dynami@esting is

u/m

o6k T ' ]

. Ja- o
—— Linear a=060

05F 1

““““ Monlinear

0.4
0.3
0.2
0.1

2 1 I I 1 I 1 1 I
0 05 1.0 1.5 2.0 25 3.0 35 4.0 45

more obvious at the plumb position.

0.15- —— Linear a=20° -

------ Nonlinear

u/m
=
[
h

010 b
0 05 1.0 15 2.0 25 3.0 35 4.0 45

Time/s

Fig. 8 The tip longitudinal deformation of the curved beam

y: —°
—— Linear =20

MNonlinear

vim

L

0 05 1.0 1.5 20 25 3.0 35 4.0 45

Time/s

Fig. 9 The tip transverse deformation of the curved beam

7.3.2 Hfect of the shallowness of the curved beam

Time/s

Fig. 10 The tip longitudinal deformation of the curved beam

04 T T T T T T T T

—— Linear a=60°

---=-- Nonlinear

08 1

0 05 1.0 15 20 25 3.0 35 40 45
Time/s

Fig. 11 The tip transverse deformation of the curved beam

Figure 12 shows the longitudinal deformation of the
beam with dfferent subtended angles. It can be seen that
the deepest beam (with subtended angle 6j 6@periences
the largest amplitude oscillations, and the beam with sub-
tended angle of 20experiences least amplitude of vibra-
tions, similarly, the results for the transverse deformation are
the same, as shown in Fig. 13. In particular, the longitudinal
deformation for the cases of 68ubtended angle is approx-
imately 2 times larger than that of 38ubtended angle, and
5 times larger than that of 2Gsubtended angle. Further-
more, as shown in Figs. 12 and 13, the vibration frequencies
for the three cases of subtended angle are nearly identical at
the beginning phase of motion, however, when the pendu-
lum approaches the plumb position, the vibration frequency
of the deepest beam becomes smaller than that of the shallow
beams. Therefore, the subtended angle also influences the
overall motion of the pendulum. It can be seen that the deep-

Generally speaking, curved beams (arches) have, basest beam obviously experiences the largest angle rotation and
on curvature, been classified as [19]: shallow arch (sutangular velocity in Figs. 14 and 15, respectively. It can be
tended angle< 40°) and deep arch (40< subtended angle summarized that the deepest curved beam exhibits both the
< 18C). All the results below are obtained by nonlinear for-largest amplification elastic deformation and the largest an-

mulation.

gular rotation, but the least vibration frequency.
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Particularly, as shown in Figs. 12 and 13, although the 0.5 . . —— . . ——
length for the straight and curved beams is the same, the dy- 0  a=60°
namic results are entirely fierent. For the curved beam, 0.5 e @ =30° o
there are two wave crests for longitudinal deformation and —1ol - @=20° i
: - - = Straight beam

two wave troughs for transverse deformation, however, for
the straight beam, there is only one wave trough for the trans-
verse deformation. Furthuremore, the logitudinal deforma-
tion of the straight beam in Fig. 12 is negligibly small, on

the contrary, the logitudinal deformation of curved beam are =3.0
approximately 1%—5% of the beam length at two troughs.

030} —a=60° ;
L e @ =30°
ol ]
0.25 e g=20°
0.20 - - = Straight beam

u/m

0 05 1.0 15 2.0 25 3.0 35 40 45
Time/s

Fig. 12 The tip longitudinal deformation
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Fig. 13 The tip longitudinal deformation

8 Conclusions
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Fig. 14 The rotation angle of the rigid hub
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Fig. 15 The angular velocity of the rigid hub

mulation using straight beam elements, two times the num-
ber of elements is needed to obtain accurate results com-
pared with the present formulation using curved beam ele-
ments. Newmark and Newton—Raphson iteration methods
are used for solving the filerential equations of the rigid-
flexible coupling system. Comparison of the present numer-
ical method with the ADAMS program verifies thieiency

of the present method, which can be extended to solve rigid-
flexible coupling problems of complicated mechanical sys-
tems.

The geometrically nonlinearfliect of the straight and
curved beams is analyzed. It is shown that for curved beams,
the transverse and longitudinal vibration frequencies ob-
tained by geometric nonlinear formulation are higher than

Instead of using the previously-used straight beam finite elehose obtained by the linear formulation. In addition, the
ment to approximate the curved beam, a curvilinear coordiongitudinal deformation of the curved beam is so large that
nate is employed to describe the deformations, and a curveflould be paid attention in engineering practice. It is ob-
beam finite element is, based on the isoparametric formulaerved that for dferent curved beams with the same lengths,
tion, proposed to model the curved beam. The convergengge deepest curved beam exhibits both the largest amplifica-
and eficiency of the curved beam elements is verified by nution elastic deformation and the largest angular rotation, but
merical examples. It is shown that for the approximate forthe least vibration frequency.
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