·图形图像处理·

文章编号: 1000-3428(2012)04-0188-03 文献标识码: A

中图分类号: TP391

基于 NSCT 的遥感图像模糊增强算法

杜超本¹,贾振红¹,覃锡忠¹,杨 杰²,胡英杰³,李殿均¹

(1. 新疆大学信息科学与工程学院,乌鲁木齐 830046; 2. 上海交通大学图像处理与模式识别研究所,上海 200240;3. 奥克兰理工大学知识工程与发现研究所,新西兰 奥克兰 1020)

摘 要:针对传统小波变换增强方法无法调整图像亮度的问题,提出一种基于非下采样 Contourlet 变换(NSCT)的遥感图像模糊增强算法。 对遥感图像进行 NSCT 变换,得到图像的高通子带和低通子带,在高通子带设置阈值,对大于阈值的高通子带系数进行线性增强,小于阈 值的系数置为 0,对低通子带进行模糊对比增强。实验结果表明,该算法能获得较好的图像平均值和熵值,视觉效果较优。 关键词:遥感图像;图像增强;非下采样 Contourlet 变换;模糊增强;自适应阈值

Remote Sensing Image Fuzzy Enhancement Algorithm Based on NSCT

DU Chao-ben¹, JIA Zhen-hong¹, QIN Xi-zhong¹, YANG Jie², HU Ying-jie³, LI Dian-jun¹

(1. College of Information Science and Engineering, Xinjiang University, Urumuqi 830046, China;

Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, Shanghai 200240, China;
 Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland 1020, New Zealand)

(Abstract) Traditional wavelet transformation enhancement can not adjust the brightness of an image effectively. Aiming at this problem, this paper proposes a remote sensing image fuzzy enhancement algorithm based on Nonsubsampled Contourlet Transform(NSCT). The remote sensing images are transformed into the high-pass sub-band and low-pass sub-band by NSCT, and the threshold is set in the high-pass sub-band, the high-pass subband coefficients which is greater than the threshold is enhanced by linear enhancement, the high-pass subband coefficients which less than the threshold is set zero, the low-pass subband is enhanced by the fuzzy contrast enhancement. Experimental results show the effectiveness of the method in the improvement of entropy and the average.

[Key words] remote sensing image; image enhancement; Nonsubsampled Contourlet Transform(NSCT); fuzzy enhancement; adaptive threshold **DOI:** 10.3969/j.issn.1000-3428.2012.04.061

1 概述

遥感图像在成像过程中总是不可避免地受各种因素的影 响,产生不良视觉、低分辨率和亮度等方面的缺陷,导致遥 感图像的灰度不能覆盖遥感传感器达到的整个范围。遥感图 像增强基于传统的小波变换和非线性迭代增强^[1-2],通过处 理图像变换的小波系数来调节图像的亮度,虽然增强后的图 像亮度不均匀有一定的改善,但是并没有考虑到噪声对图像 的影响以及图像内在的几何结构。二维小波变换缺乏方向 性,不能最优表示图像中线和面的奇异性,且噪声主要集中 在图像变换后的高频系数上,使得小波变换在图像去噪中具 有一定的局限性。

文献[3]提出一种多分辨的、局部的、多方向的二维图像稀疏表示方法——Contourlet 变换。该变换的最终结果使用 类似于轮廓段的基结构来逼近原图像,其基函数支撑区间的 长度比随尺度变化而变化,能以接近最优的方式描述图像边 缘,克服了小波不能捕获图像内在几何结构的不足。但 Contourlet 本身缺乏平移不变性,因此,文献[4]给出了其下 采样形式,即非下采样 Contourlet 变换(Nonsubsampled Contourlet Transform, NSCT)。本文提出一种基于 NSCT 变换 域的模糊增强算法,使用 NSCT 变换捕捉遥感图像的细节信 息,在高频采用线性增强的同时,也对高频系数采用不同阈 值函数来减少甚至消除每个子频带的噪声,在低频采用模糊

算法来增强或减弱低频系数。

非下采样 Contourlet 变换

NSCT 通过塔形方向滤波器组把图像分解成各个尺度上的带通方向子带,主要由 2 个步骤实现:子带分解和方向分解。首先,用 Laplacian 金字塔分解对图像进行多尺度分解,以捕获奇异点,然后由方向滤波器组将分布在同方向上的奇异点合成为一个系数。为了保留轮廓变换的频率分割结构同时实现平移不变性,将原轮廓变换中对图像的下采样步骤去掉,即得到非下采样轮廓变换。非下采样轮廓变换主要由 2 个具有不变性的部分组成:(1)非下采样金字塔分解,保证 了变换多尺度特性;(2)非下采样方向滤波器,使变换具有多方向性。

不同于 Contourlet 变换, NSCT 采用的是非下采样的金

收稿日期: 2011-08-04 E-mail: jzhh@xju.edu.cn

基金项目:科技部国际科技合作基金资助项目(2009DFA12870); 教育部促进与美大地区科研合作与高层次人才培养基金资助项目 (2010-1595)

作者简介:杜超本(1987-),男,硕士研究生,主研方向:图像处理;贾振红(通讯作者),教授、博士、博士生导师;覃锡忠,副教授;杨 杰,教授、博士、博士生导师;胡英杰,研究员、博士; 李殿均,硕士研究生

字塔结构和方向滤波器组。非下采样的金字塔结构主要通过 双通道非下采样二维的滤波器组实现。与传统 Contourlet 严 格抽样滤波器及其重构条件相比,这种滤波器的设计及重构 条件更加易于实现。方向滤波器是通过交换 DFB 树结构每个 双通道滤波器组的下采样和上采样,并相应地对滤波器上采 样实现的。因此,NSCT 具有平移不变性,且比 Contourlet 变换能更好地采集频率且具规律性。

3 基于 NSCT 的遥感图像模糊增强算法

3.1 低频系数处理

为了有效调整和控制低频系数,先对低频系数进行标 准化:

$$u(m,n) = G(C(m,n)) = \frac{C(m,n) - C_{\min}}{C_{\max} - C_{\min}}$$
(1)

其中, C(m, n)是 NSCT 变换的低频系数; C_{\min} 是 C(m, n)的最 小系数, C_{\max} 是 C(m, n)的最大系数。因此, $u(m, n) \in [0, 1]$ 。 准权, 介亦推示教 (n) 使得。

延择一个受换困效
$$J(x)$$
, 使待:
 $u'(m,n) = f(u(m,n))$ (2)

用
$$\pi u'(m,n)$$
进行反变换得到原始的低频系数:

$$C''(m,n) = G^{-1}(u'(m,n)) = C_{\min} + u'(m,n) \times (C_{\max} - C_{\min})$$
(3)

对一个图像而言,它的灰度平均值反映它的亮度,如果 灰度平均值适中,那么图像就有比较好的视觉效果。因此, 应选择合适的变换函数 *f*(*x*)。本文选择 2 个简单的变化函数 分别处理较暗区域和较亮区域的低频系数:

$$f_1(x) = 1 - (1.5x - 1)^2 \tag{4}$$

$$f_2(x) = x^{1/3} \tag{5}$$

其中, $x \in [0,1]$ 。当u(m,n) < 0.45时认为图像较暗,选择 f_1 对 图像进行处理;当u(m,n) > 0.5时,认为图像较亮,选择 f_2 对 图像进行处理,当 $u(m,n) \in [0.45, 0.5]$ 时,认为图像亮度合 适,不进行处理。

3.2 高频系数处理

3.2.1 阈值处理

在高频子带选择合适的阈值 T⁻对高频系数进行处理,经 典的阈值去噪算法一般假设系数间相互独立^[5],将 NSCT 系 数逐一与预先设定的阈值进行比较。本文将经典的阈值去噪 算法用于图像的增强中,如果系数的幅值大于阈值,则是图 像的细节分量进行增强;若小于阈值,认为是噪声置为 0。 关系式如下:

$$x'(m,n) = \begin{cases} 2x(m,n) & |x(m,n)| \ge T' \\ 0 & |x(m,n)| < T' \end{cases}$$
(6)

其中, x(m, n)为阈值处理前子块内的 NSCT 系数; x'(m, n)为进行阈值并增强处理后的新的 NSCT 系数; T'为所选择的阈值。

- 3.2.2 阈值选取
 - 阈值选取步骤如下:

(1)NSCT 变换的非正交性导致了不同方向子带的噪声方 差不相等,这里用鲁棒的中值估计子获得噪声标准差 σ:

$$\sigma = \frac{Median(|Y_{l,k}|)}{0.6745} \tag{7}$$

其中, $Y_{l,k}$ 表示 l 尺度 k 方向的系数矩阵。

(2)对含噪子带系数进行方差计算:

$$\sigma_Y^2 = \frac{1}{m \times n} \sum_{l=1}^m \sum_{k=1}^n Y_{l,k}^2 \tag{8}$$

其中, m和 n 表示当前子带图像的大小。

(3)通过对噪声标准差和含噪图像方差的计算,可以对不

含噪信号的标准差进行估计,即:

$$\sigma_{\rm r} = \sqrt{\max(\sigma_{\rm r}^2 - \sigma^2, 0)} \tag{9}$$

(4)对上述由各分解层高通子带估计得到的噪声标准差 和不含噪信号的标准差,可以由下式计算得到各子带所需的 阈值 *T*^[6]:

$$T = \frac{\sigma_{l,k}^2}{\sigma_{l,k,x}} \tag{10}$$

其中, $\sigma_{l,k}$ 是 NSCT 域的噪声标准差; $\sigma_{l,k,x}$ 是不含噪信号的标准差。

(5)邻域信息的自适应阈值

图像的 NSCT 系数之间存在着一定的相关性。NSCT 变换后图像边缘的系数能量集中,幅值较大,则边缘区域内系数绝对值之和较大; 而噪声能量分散,幅值较小,则区域内系数绝对值之和就较小。因此,根据系数所在邻域的特性^[7],在 NSCT 变换后的每个子带图像内,对于边缘区域以较小的阈值来保留更多的系数; 对噪声区域,通过较大的阈值去掉更多的噪声。

a(m,n)由对子带内系数通过均值滤波器获得:

$$a(m,n) = \frac{1}{N} \sum_{(m,n)\in B} \left| X(m,n) \right| \tag{11}$$

其中, *B* 为子带内 NSCT 系数 *X*(*m*, *n*)的邻域,本文取 3×3 大小的窗口; *N* 为 *B* 中 NSCT 系数的个数。

则本文中结合领域信息的阈值表示为^[8]:

$$T' = \{\lambda - e^{\frac{E(a) - M(a)}{a(m,n) - M(a)} \lg(\lambda - 1)}\}T$$
(12)

其中, *E*(*a*)为整个子带中*a*(*m*, *n*)的均值。选择*M*(*a*)为整个子带中*a*(*m*, *n*)的最大值,λ为大于1小于2的常数值,本文中取1.06。

3.3 算法实现

本文算法的实现步骤如下:

(1)对图像进行 NSCT 变换,得到图像的高频系数 x(m, n) 和低频系数 C(m, n)。

(2)对低频系数 C(m, n), 按 3.1 节中的式(1)~式(5)进行处理, 得到 C'(m, n)。

(3)对不同尺度不同方向带通子带的 NSCT 系数,根据 式(6)~式(12)对 x(m, n)进行处理得到 x³(m, n)。

(4) 对以上 3 步处理后的系数 C²(m, n)和 x²(m, n)进行 NSCT 反变换, 重建图像, 得到增强后的图像。

4 实验结果与分析

本文选择 2 幅遥感图像作为测试样本,一幅比较暗,一 幅比较亮。对图像分别采用传统小波增强、小波域的线性迭 代增强以及本文算法进行增强,分别计算比较它们的熵值和 灰度平均值。灰度平均值表示图像的平均亮度,如图像的灰 度平均值适中(最好的标准是 127),就有非常好的视觉效果。

实验中 NSCT 的分解级数均为 3 级, NSCT 由粗分辨级 到细分辨级的分解方向分别为 4, 16, 16。经过 3 种方法增强 后的图像如图 1、图 2 所示。可以看出,图 1(a)太黑了, 图 1(b)的细节信息相对图 1(a)有所增强,但整体亮度还是太 暗。图 1(c)相对于图 1(b)在亮度和细节信息方面有所提高, 但是还是有点模糊。图 1(d)不仅在亮度和细节信息方面有所 提高,图像的模糊也有改观。对于比较亮的图 2(a)通过本文 算法进行增强后得到图 2(d),视觉效果优于图 2(b)和图 2(c), 图像比较平滑。图像比较结果表明,本文算法对遥感图像增 强的视觉效果比较好。图像熵值和灰度平均值如表 1 所示。

可以看出,对于图 1(a),本文算法的熵值较高,因此, 描述图像的平均信息量有所增强,且图像的灰度平均值更接

7.61

129.44

(上接第184页)

图 2(d)

- [3] Skillicorn D B, Talia D. Models and Languages for Parallel Computation[J]. ACM Computing Surveys, 1998, 30(1): 123-169.
- [4] Panait L, Luke S, Harrison J F. Archive-based Cooperative Coevolutionary Algorithms[C]//Proc. of the 8th Annual Conference on Genetic and Evolutionary Computation. Washington D. C., USA: [s. n.], 2006: 345-352.
- [5] 陈 羲, 李 淼, 高会议, 等. 基于协同进化遗传算法的模型 拟合研究[J]. 计算机工程, 2010, 36(24): 147-149.
- [6] Yang Zhenyu, Tang Ke, Yao Xin. Differential Evolution for Highdimensional Function Optimization[C]//Proc. of IEEE Congresson Evolutionary Computation. Hefei, China: [s. n.], 2007: 3523-3530.

近 127 的最佳灰度平均值。对于图 2(a),本文算法相对于传 统小波增强方法,熵略有增加,相对于基于小波的迭代增 强,熵略有减少,但图像的灰度平均值比其他 2 种算法更接 近 127 的最佳灰度平均值。图像熵略有减少是由于设置阈值 过滤噪声,使得部分有用信息被过滤掉而造成的,牺牲部分 熵值来换取图像平均值的提高和图像视觉效果的改善是值得 的。从上文数据可以看出,本文算法可以有效地调节图像的 亮度。

5 结束语

根据遥感图像的特点,本文提出一种基于 NSCT 的遥感 图像模糊增强算法,实验结果表明,该算法能有效地调节图 像的亮度,增强遥感图像的细节。本文算法所增强图像的灰 度平均值虽然有所提高,但熵值有所降低,下一步将研究导 致熵降低的原因,并提出可行的解决方案。

参考文献

- [1] 孙延奎. 小波分析及其应用[M]. 北京: 机械工业出版社, 2005.
- [2] Li Lingling, Han Tao, Lou Liantang. Remote Sensing Image Enhancement Based on Wavelet and Nonlinear Iteration[C]//Proc. of IASP'10. [S. l.]: IEEE Press, 2010.
- [3] Do M N, Vetterli M. Contourlets: A Directional Multiresolution Image Representation[C]//Proc. of IPIC'02. New York, USA: [s. n.], 2002.
- [4] da Cunha A L, Zhou Jianping, Do M N. The Nonsubsampled Contourlet Transform: Theory, Design and Application[J]. IEEE Trans. on Image Processing, 2006, 15(10): 3089-3101.
- [5] Donoho D L, Johnstone I M. Ideal Special Adaptation by Wavelet Shrinkage[J]. Biometrika, 1994, 81(3): 425-455.
- [6] 杨晓慧, 焦李成, 牛宏娟, 等. 基于多阈值的非下采样轮廓波 图像去噪方法[J]. 计算机工程, 2010, 36(4): 200-201.
- [7] Wang Shenqian, Zhou Yuanhua, Zou Daowen. Adaptive Shrinkage Denoising Using Neighbourhood Characteristic[J]. Electronics Letters, 2002, 38(11): 502-503.
- [8] Li Kang, Gao Jinghuai, Wang Wei. Adaptive Shrinkage for Image Denoising Based on Contourlet Transform[C]//Proc. of the 2nd International Symposium on Intelligent Information Technology Application. Shanghai, China: [s. n.], 2008.

编辑 顾姣健

- [7] Herrera F, Lozano M, Molina D. Test Suite for the Special Issue of Soft Computing on Scalability of Evolutionary Algorithms and other Metaheuristics for Large Scale Continuous Optimization Problems[C]//Proc. of Special Issue in Soft Computing Journal on Large Scale Optimization. Granada, Spain: [s. n.], 2010.
- [8] Potter M A, De J K A. A Cooperative Coevolutionary Approach to Function Optimization[C]//Proc. of the 3rd Parallel Problem Solving from Nature. Berlin, Germany: Springer-Verlag, 1994: 249-257.

编辑 索书志