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Abstract. WG-7 is a stream cipher based on WG Stream Cipher and is designed by Y. Luo, Q. Chai, G.
Gong, and X. Lai in 2010. This cipher is designed to implement in low cost and lightweight application
such as RFID tags. This paper addresses cryptographic weaknesses of WG-7 Stream Cipher. We point out
that the key stream generated by WG-7 can be distinguished from a random sequence with about 213.5

keystream bits and negligible error probability. Also, we investigate the security of WG-7 against algebraic
attack. A key recovery attack on this cipher is proposed to recover internal state and so secret key with
time complexity about O(227).
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1 Introduction

WG-7 [10] is proposed as a fast, lightweight and secure stream cipher inspired by family of WG stream
ciphers [12] design principles. WG is a synchronous stream cipher submitted to ECRYPT call for
stream ciphers. WG-7 and WG are hardware-oriented stream ciphers that use a word-oriented Linear
Feedback Shift Register (LFSR) and a filter function based on Welch-Gong (WG) transformation [8].
The structure of WG-7 is similar to WG Stream Cipher, both use LFSR and filtering function but
WG works in GF (229) and WG-7, GF (27). WG-7 uses 80-bit secret key and IV 81-bit. After loading
of the LFSR with secret key and IV, it runs for 46 clock cycles with a non-linear feedback function. In
our analysis in this paper, we suppose that the initialization part of algorithm is perfect. The internal
state of WG-7 is 161 bits and the designers have provided 80-bit security for the cipher. WG-7 is
designed for RFID encryption and lightweight security applications. The claimed security analysis of
WG-7 [10] indicates that it is secure against time/memory/data trade off attack, differential attack,
algebraic attack, correlation attack and Discrete Fourier Transform (DFT) attack.

2 A quick description of WG-7

WG-7 keystream generator is illustrated in the Figure 1. WG-7 consists of a 23 stage linear feedback
shift registers (LFSR) over F27 and a non-linear transformation called WG. The finite field F27 is
defined by the primitive polynomial g(x) = x7 + x+ 1. The characteristic polynomial of the LFSR is
primitive over F27 and is given by:

f(x) = x23 + x11 + β (1)

where β is a root of g(x). The non-linear filter function , WG7(x), is defined as a WG transformation
[8] F27 → F2 as follows:

WG7(x) = f(x3) = Tr(x3 + x9 + x21 + x57 + x87), x ∈ F27 . (2)



Fig. 1. The WG-7 Stream Cipher Scheme

3 Cryptanalysis of WG-7 Stream Cipher

In this section, we describe our proposed attacks on WG-7. Firstly, we have proposed a distinguishing
attack on WG-7. The attack is based on linear approximation attack exploiting a found bias to
distinguish the WG-7 outputs from a random binary source.

Secondly, We will describe a key recovery attack based on fast algebraic attack. The attack can
recover internal state and secret key in real time.

3.1 Distinguishing Attack on WG-7

The structure of WG-7 Stream Cipher is filter generator which passes the state of a LFSR into a
non-linear filtering function to generate one bit keystream output. One idea to analyse the structure
is supposing linear approximation of filter function as a linear polynomial with a certain probability.
In other words, we are looking for the nearest affine function to WG transformation. By applying
Walsh-Hadamard transform to the filter function, the best linear approximation can be achieved. Let
Γ.(x0, ..., x6)+α is the best linear function where xi is ith bit of word x, ”.” is inner multiplication and
Γ (∈ F27) is a constant and α is a bit constant where α ∈ {0, 1}. In case of WG-7 Stream Cipher, there
are seven affine functions ,like 1 + x0 + x1 + x4, which are nearest affine functions to WG-7 boolean
function. The non-linearity of WG7 is 52. Therefore, we have:

Pr(WG(x) = (Γ.x+ α)) =
27 − 52

27
= 0.59375 (3)

Let recursive form of Equation (1) as follows:

Si+23 = Si+11 ⊕ β.Si (4)

By considering linear Equation (1), we need to find the best linear approximation of Equation (5):

WG(Si+23)⊕WG(Si+11)⊕WG(Si) = 0 (5)

Remark 1: The Piling Up Lemma cannot be used to compute the bias of Equation (5) because the
input variables (Si+23, Si+11, Si) are not independent. In particular, Si+23 is correlated with other
variables by Equation 1. In addition, β.Si in Equation 4 is linear transformation of Si. The precise
linear relations are given below
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Now, the target is to determine the exact amount of ε in the following probability:

Pr(WG(Si+23)⊕WG(Si+11)⊕WG(Si) = 0) = 0.5 + ε (7)

One method to compute the bias in Equation 7 is as follows. We consider the bias between three
output bits at time (clocks) i, i+ 11, and i+ 23. So we get

zi+23 ⊕ zi+11 ⊕ zi =

=WG(Si+23)⊕WG(Si+11)⊕WG(Si)

From Eq. 4
=⇒ =WG(Si+11 ⊕ β.Si)⊕WG(Si+11)⊕WG(Si)

(8)

Observe that Equation 8 is a boolean function with 14 input variables (instead of 21 variables ) and
s single bit output. In other words, Si+23 depends on Si and Si+11 based on Equations 4 and 6. Let
F : GF (214)→ GF (2) is a non-linear boolean function in form of

F (Si, Si+11) = WG(Si+11 ⊕ β.Si)⊕WG(Si+11)⊕WG(Si) (9)

Now, we focus on F (si0, s
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− 2−7.145 (10)

The relation given by Equation (9) defines a distinguisher that is able to tell apart the output of
the stream cipher from a truly random cipher with the probability expressed by Equation (10). The
interesting question is: are there better biases to mount a distinguishing attack? We will discuss the
possible answers in the next section.

Better biases In earlier sections we found a linear approximation leading us to a distinguishing
attack. It is interesting whether it is possible to find a better linear approximation of output bits so
that the bias is closer to the maximal value of 0.5. We explore the following way: Repeated squaring
of the characteristic polynomial of the LFSR (Eq. 1) will compute linear recurrence polynomial.
Particularly, by exponentiation with 27, we have:

x23·2
7

+ x11·2
7

+ β2
7

(11)

Since β = β2
7
, β ∈ F27 , the summation of Equations 1 and 11 gives:

x23·2
7

+ x11·2
7

+ x23 + x11 = 0 (12)

divided by x11
=⇒ x23·2

7−11 + x11·2
7−11 + x12 + 1 = 0 (13)

It means that the attacker can derive a bitwise linear equation that is valid for internal state of
LFSR. Similar to the previous subsection, function F can be build as follows:

zi+23·27−11 ⊕ zi+11·27−11 ⊕ zi+12 ⊕ zi
= WG(Si+23·27−11)⊕WG(Si+11·27−11)⊕WG(Si+12)⊕WG(Si)

= WG(Si+11·27−11 ⊕ Si+12 ⊕ Si)⊕WG(Si+11·27−11)⊕WG(Si+12)⊕WG(Si)

(14)

Equation 14 can be considered as a boolean function with 21 input variables (instead of 28 variables)
and a single bit output. Let F : GF (221)→ GF (2) is an unbalanced boolean function, where

Pr(F (Si+11·27−11, Si+12, Si) = 0) =
1

2
+ 2−6.78 (15)



The required data Now, we explain the amount of required output sequences to distinguish between
keystream generated by WG-7 Stream Cipher and a truly random binary source. The following theorem
determines the required samples to detect two distributions which occur with probability 1

2 (for a
random sequence) and 1

2 .(1 + ε) [11].

Theorem 1. When event E occurs, O( 1
ε2

) samples are needed to distinguish a binary random sequence
which occurs with probability 1

2 from the distribution of an event which occurs with probability 1
2 .(1+ε)

with a non-negligible success probability.

In this case, the amount of data required for proposed distinguishing attack is 213.56 bits. This
amount of data can be collected from consecutive (or non-consecutive) keystream and even from one
session key or different session keys in various times.

The result of the implemented distinguishing attack on WG-7 Stream Cipher are shown in Table
1. We have repeated the experiment 1000 times to compute the success rate of distinguishing attack
with different length of output sequences.

Table 1. Experimental results for appliying distinguishing attack on WG-7 Stream Cipher

Used Data (bits) The success rate

1 29 %68

2 29.8 %75

3 210.3 %85

4 211.5 %90

5 213.5 %99.99

3.2 Key Recovery Attack on WG-7

In this section, we apply an algebraic analysis to recover the initial state of the cipher. Note that this
attack is as effective as finding the secret key. The proposed attacks can recover internal states of
WG-7 and then attacker is able to clock the LFSR backward and find the secret key properly. The
designers of WG-7 Stream Cipher has claimed that there is no algebraic attack with complexity lesser
than exhaustive search and data complexity 224 consecutive keystream bits. The idea of our attack is
as follows. Let L : GF (2161)→ GF (2161) be a multivariate linear transformation that corresponds to
the linear transformation defined by a single clock. This transformation is done on the whole state of
23 registers each holding 7 bits (23 · 7 = 161).

Let zt, t = 0, 1, 2, ... be the keystream generated by the cipher after running the state initialization
algorithm of WG-7. Assume also that f is the non-linear function WG illustrated in Figure 1. We
consider f as a non-linear map defined from GF (27)→ GF (2). As the output bit is calculated on the
contents of the last register or bits from 154 to 160, we denote this by

f(T (s0, ..., s160)),

where T (s0, ..., s160) extracts the 7-bit content of the last register. So, we can establish the following
system of relations for the cipher: 

z0 = f(T (s0, ..., s160))

z1 = f(T (L(s0, ..., s160)))

...

zt = f(T (Lt(s0, ..., s160)))

(16)

where f(T (Lt(s0, ..., s160))) indicates the output keystream at the clock t, generated by the stream
cipher. Now, the cryptanalytic problem turns into solving non-linear systems investigated in [1, 3, 4,
6, 7].



Algebraic attack on WG-7 The simplest scenario to solve System (16) is known as the linearization
technique [[5], [7]]. The function f is of degree 5. The number N of monomials of degree smaller or
equal to 5 is

N =
5∑
i=1

(
161

i

)
≈
(

161

5

)
= 229.65.

Each of these monomials can be considered as a new variable and then attacker can solve the non-
linear system with ≈ 229.65 equations and time complexity ≈ 229.65×log

7
2 by the Gaussian elimination

method. Consequently, the complexity of attack is larger than the exhaustive key search. Another
scenario is

The important idea to improve the efficiency of the above attack is to reduce the degree of the
equations. To do this end, attacker tries to find an annihilator function so that f · g = 0 and deg g <
deg f . The steps to apply the attack can be described as follows:

1. Finding an annihilator g of f or f ⊕ 1 with a low degree d.

2. Given multivariate equations of a low degree d on the initial state bits, there are N =
d∑
i=1

(
n
i

)
monomials of degree no bigger than d, where n is the length of internal state. Hence by the
linearization method, time complexity to solve the non-linear system is N log72 . Memory complexity
of the attack is about N .

The Algebraic Normal Form of f is as follows:

f(x1, ..., x7) = x1 + x1x3 + x2x3 + x4 + x1x4 + x2x4 +

x1x2x4 + x3x4 + x1x3x4 + x1x2x3x4 + x1x3x5 + x4x5 + x1x2x4x5 +

x1x2x3x4x5 + x6 + x2x6 + x1x2x6 + x1x2x3x6 + x1x2x4x6 + x1x2x3x4x6 +

x1x5x6 + x3x5x6 + x1x4x5x6 + x3x4x5x6 + x7 + x2x7 + x1x2x7 + x2x3x7 +

x1x4x7 + x1x2x4x7 + x1x2x3x4x7 + x5x7 + x1x5x7 + x1x3x5x7 + x1x2x3x5x7 +

x2x4x5x7 + x2x3x4x5x7 + x6x7 + x1x2x6x7 + x1x3x6x7 + x1x2x3x6x7 +

x2x4x6x7 + x1x3x4x6x7 + x2x3x4x6x7 + x5x6x7 + x2x5x6x7 + x1x2x5x6x7 +

x2x3x5x6x7 + x1x4x5x6x7 + x3x4x5x6x7.

The best annihilator to reduce degree of f is of the form: g(x1, ..., x7) = 1 + x1 + x3 + x1x2x3 + x4 +
x1x4 +x2x4 +x1x2x4 +x3x4 +x1x3x4 +x2x3x4 +x1x3x5 +x4x5 +x1x4x5 +x3x4x5 +x6 +x1x6 +x2x6 +
x1x2x6 +x3x6 +x2x3x6 +x7 +x3x7 +x1x3x7 +x2x3x7 +x4x7 +x2x4x7 +x3x4x7 +x3x5x7 +x4x5x7 +
x6x7 + x1x6x7 + x2x6x7 + x3x6x7. It means that the attacker can reduce the degree of the relations

to 3 and solve them with time complexity ≈
(
161
3

)log72 = 254.36 and memory complexity
(
161
3

)
= 219.38.

It is obvious that the designers of WG-7 Stream Cipher have ignored this attack, which breaks the
cipher with mempry complexity lesser than 224.

Improved Attack on WG-7 Fast algebraic attacks [[7] , [3],[9]] on LFSR-stream ciphers are based
on equations of type z.Xe +Xd with e < d. This is a shorthand to describe that at least one equation
of type

z.g(s0, ..., sn−1) + h(s0, ..., sn−1) = 0 (17)

exists, where g and h are some multivariate polynomials of degree e and d (e < d) respectively, and
z = f(s0, ..., sn−1). The attack can be summarized as follows:

t+D∑
i=t

αt+i.zi.g(T (Li(s0, ..., s160))) (18)

for some linear combination (α0, ..., αD1) ∈ GF (2)D where D =
d∑
i=1

(
n
i

)
. The same equation applies

to each window of D consecutive steps and we will write it E times, for E overlapping intervals, with



E =
e∑
i=1

(
n
i

)
. This is because we need to get the final system of degree e that is solvable by linearisation

(with complexity Elog
7
2 ). In [, ,], the method to compute α has been described. Briefly, the steps to

apply the attack are summarized as follows:

1. Relation step: One searches g and h with small degrees such that f.g = h. Worst complexity:
solving a linear system with D +E equations, let O((D +E)log

7
2 ). In general one considers e < d.

2. Pre-computation step: Computation of linear relations to eliminate the terms of degrees greater
than e in the equations. Needs 2.D bits of stream with complexity O(Dlog2(D)).

3. Substitution step: One eliminates the monomials of degree greater than e. Complexity is O(E2D)
[2] but by DFT [9] can be reduced to O(E.D.log(D)).

4. Solving step: One solves the system with E linear equations in O(Elog
7
2 ).

One can consider g and h in equation 17 in the following and apply a systematic fast algebraic
attack as mentioned before.

g(x1, ..., x7) = 1 + x1 + x3 + x7
h(x1, ..., x7) = x1x2x3 + x4 + x1x4 + x2x4 + x1x2x4 + x3x4 + x1x3x4 + x2x3x4 + x1x3x5 + x4x5 +

x1x4x5 + x3x4x5 + x6 + x1x6 + x2x6 + x1x2x6 + x3x6 + x2x3x6 + x3x7 + x1x3x7 + x2x3x7 + x4x7 +
x2x4x7 + x3x4x7 + x3x5x7 + x4x5x7 + x6x7 + x1x6x7 + x2x6x7 + x3x6x7

The data complexity to apply fast algebraic attack on WG-7 is
(
161
d

)
=
(
161
3

)
and time complexity

is approximately
(
161
e

)log72 =
(
161
1

)log72 . The Table 2 is summarized the results of proposed attacks.

Table 2. Comparison between the different ideas to apply key recovery attack on WG-7 Stream Cipher

Attack type n d e Time
Complex-
ity

Date
Complex-
ity

Memory Pre-Computation

1 Trivial attack 161 5 - 283.02 229.65 - -

2 Algebraic attack 161 3 - 254.36 219.38 - -

3 Fast Algebraic attack 161 1 3 226.73 219.38 214.66 226.87

3.3 Conclusions

In this paper, the security of WG-7 Stream Cipher was investigated. It was shown that distinguishing
attack can detect output of the cipher with having about 213.5 keystream bits and high success proba-
bility. In addition, a key recovery attack on this cipher was proposed that can recover secret key with
time complexity about O(227) and data complexity 219.38. The presented results proved that WG-7
Stream Cipher has been completely broken and it is not recommended to use in RFID tags as a secure
module.
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