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Abstract

Assume that an adversary observes many ciphertexts, and may then ask for openings, i.e. the
plaintext and the randomness used for encryption, of some of them. Do the unopened ci-
phertexts remain secure? There are several ways to formalize this question, and the ensuing
security notions are not known to be implied by standard notions of encryption security. In
this work, we relate the two existing flavors of selective opening security. Our main result is
that indistinguishability-based selective opening security and simulation-based selective opening
security do not imply each other.

We show our claims by counterexamples. Concretely, we construct two public-key encryption
schemes. One scheme is secure under selective openings in a simulation-based sense, but not in
an indistinguishability-based sense. The other scheme is secure in an indistinguishability-based
sense, but not in a simulation-based sense.

Our results settle an open question of Bellare et al. (Eurocrypt 2009). Also, taken together
with known results about selective opening secure encryption, we get an almost complete picture
how the two flavors of selective opening security relate to standard security notions.
Keywords: security definitions, selective opening security, public-key encryption

1 Introduction

Security under selective openings. Assume that an adversary observes many ciphertexts,
and may then ask for openings of some of them. Do the unopened ciphertexts remain secure?
Somewhat surprisingly, security in this setting is not known to be implied by standard security
notions for encryption schemes (such as IND-CPA security). In fact, very recently, Bellare et al.
[2] showed that a whole class of IND-CPA secure public-key encryption schemes do not achieve a
simulation-based notion of selective open security.

To date, there are two flavors of definitions to capture security under selective openings:
simulation-based selective opening security (SIM-SO security, [7, 1]) and indistinguishability-based
selective opening security (IND-SO security, [1]). There are indications that SIM-SO and IND-
SO security constitute orthogonal requirements. For instance, when looking at selective opening
security for commitment schemes, Bellare et al. prove that any statistically hiding commitment
scheme is IND-SO secure; however, there are severe limitations on the construction of SIM-SO
secure commitment schemes from a number of standard assumptions [1]. Nonetheless, in case of
encryption schemes (which are the focus of this paper), no similar result is known.

We will now describe the existing security notions for selective opening security, along with
known results.

Simulation-based selective opening security (SIM-SO-CPA). An encryption scheme is
called SIM-SO-CPA secure, if anything an adversary can compute from a vector of ciphertexts
and openings of a subset of these ciphertexts, can also be computed by a simulator that only
sees the opened messages (but no ciphertexts at all). SIM-SO-CPA security dates back to Dwork
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et al. [7], who consider the same security notion for commitments. In the encryption context,
SIM-SO-CPA security has been investigated by Bellare et al. [1], who also observe that Goldasser-
Micali encryption [9] achieves SIM-SO-CPA security. Later on, several other SIM-SO-CPA secure
encryption schemes have been constructed [8, 12, 13].

However, all known SIM-SO-CPA secure encryption schemes are comparatively inefficient: they
either encrypt messages bitwise [9, 8], or they are based on assumptions related to Paillier encryp-
tion [12, 13]. There is no known efficient SIM-SO-CPA secure encryption scheme based on, say,
the DDH problem in a suitable cyclic group. One key difficulty seems to be that SIM-SO-CPA
security essentially requires that the encryption is non-committing, such that a ciphertext can be
efficiently opened to any message [3, 4, 8] (possibly using a special trapdoor). In fact, Bellare et al.
[2] use this property in a clever way to construct an encryption scheme that is IND-CPA secure,
but not SIM-SO-CPA secure.

Indistinguishability-based selective opening security (IND-SO-CPA). An encryption
scheme is called IND-SO-CPA secure, if no adversary, after given a vector of ciphertexts and open-
ings of a subset of these ciphertexts, can distinguish the unopened messages from fresh messages.
There is one subtlety here. Namely, in most applications, the initially received ciphertext vector
may contain encryptions of related messages (e.g., encryptions of shares of a secret value). Hence,
the “fresh” messages that the adversary must distinguish from the actually encrypted (but un-
opened) messages must be conditioned on the already opened messages. Note that depending on
the underlying distribution of message vectors, conditioning on an arbitrary subset of messages can
be an inefficient process. In particular, the IND-SO-CPA security experiment may be inefficient.

This subtlety has led to two different IND-SO-CPA variations. Full IND-SO-CPA security
requires exactly what we have sketched above, with a potentially inefficient security experiment.
The problem with full IND-SO-CPA security is that there are no known fully IND-SO-CPA secure
encryption schemes.1

On the other hand, weak IND-SO-CPA security requires the above, but only for distributions
of message vectors that are efficiently re-samplable. Here, efficiently re-samplable means that
the message distribution can be efficiently sampled, even when fixing any subset of messages to
a particular value.2 The advantage of weak IND-SO-CPA security is that any lossy encryption
scheme [16] is already weakly IND-SO-CPA secure [1]. In particular, there are very efficient
weakly IND-SO-CPA secure encryption schemes based on standard assumptions. This is also an
important advantage over full IND-SO-CPA security for which no realizations are known yet.

The main disadvantage of weak IND-SO-CPA security is that it is obviously only useful in
settings in which the joint distribution of all encrypted messages actually is efficiently re-samplable.
Many conceivable settings (e.g., when commitments or other non-invertible functions of other
messages are encrypted) do not conform to such a re-samplability condition.

The current situation. So far, we can summarize that SIM-SO-CPA as well as (full or weak)
IND-SO-CPA security both have advantages and disadvantages. It depends on the concrete setting
and requirements which notion is to prefer. However, so far little is known about the relations
among those notions of selective opening security. A few implications are trivial or at least follow
with little effort: full IND-SO-CPA security obviously implies weak IND-SO-CPA security, and
it is not hard to see that SIM-SO-CPA security implies weak IND-SO-CPA security. However,
otherwise the relation in particular between full IND-SO-CPA security and SIM-SO-CPA security
is not known. (We again stress that for commitments, the situation is a little different, as sketched
above; however, these results do not apply to encryption schemes.)

1We mention that for commitments, the situation is less problematic: every statistically commitment scheme is
(fully) IND-SO secure [1]. However, a moment of reflection shows that there can be no statistically hiding encryption
scheme. The closest we can get to statistically hiding encryption is lossy encryption, which is only known to imply
weak IND-SO-CPA security.

2For instance, the distribution of message tuples (x, x) is efficiently re-samplable, while the distribution (x, gx) is
not (where x ∈ Z|G| is uniform, and g ∈ G for some group G in which discrete logarithms are hard to compute).
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Figure 1: Relations of different definitions of selective opening security and IND-CPA. The bold
arrows illustrate the results of our work while BDWY11 is the main result of [2]. Crossed arrows
symbolize concrete counterexamples and dashed arrows stand for open questions. All other arrows
are implications that are pretty much straightforward or follow directly from the already settled re-
lations. Note that the question whether weak IND-SO-CPA security implies SIM-SO-CPA security
is settled negatively if a fully IND-SO-CPA secure encryption scheme exists.

Our contribution. This paper attempts to fill this gap: we relate full IND-SO-CPA security
and SIM-SO-CPA security. Our results show that full IND-SO-CPA security does not imply SIM-
SO-CPA security, and vice versa. We give concrete counterexamples, i.e., encryption schemes
that are fully IND-SO-CPA secure, but not SIM-SO-CPA secure (and the other way around). In a
sense, our results further isolate full IND-SO-CPA security from other notions of encryption scheme
security. Thus, there is even less motivation to study full IND-SO-CPA security. Figure 1 depicts
the relations of the different flavors of selective opening security to one another and to IND-CPA
security.

We now provide some more technical background on our results.

Our first counterexample. We first construct a scheme that is SIM-SO-CPA secure, but not
fully IND-SO-CPA secure. The basic idea is to take any SIM-SO-CPA secure scheme, and modify
it such that it becomes vulnerable to a full IND-SO-CPA attack (while preserving its SIM-SO-CPA
security, of course). Our modification is simple: we add a tuple

((gsut)M , (hsvt)) (1)

to each ciphertext, where M is the encrypted message, s, t are random exponents, and g, h, u, v
are group elements that are part of the public key. In the scheme, (g, h, u, v) = (g, h, gω, hω) is
a Diffie-Hellman tuple, such that (1) is a perfectly binding commitment to M . However, during
the proof that the modified scheme is still SIM-SO-CPA secure, we will switch (g, h, u, v) to a
non-Diffie-Hellman tuple. Then, (1) becomes a perfectly hiding commitment, which can actually
be equivocated arbitrarily. (Note that this added commitment really only is an instance of the
dual-mode commitment schemes from Damg̊ard and Nielsen [5].) This allows to open ciphertexts
in our modified scheme arbitrarily, and shows the modified scheme SIM-SO-CPA secure.

To prove that the modified scheme is not fully IND-SO-CPA secure, we first define a suitable
distribution dist of message tuples (x, z), such that re-sampling dist essentially requires computing
a discrete logarithm. Concretely, we define dist such that (x, z) = (x, gx), resp. (x, z) = (x, hx)
(for uniform x and g, h from the scheme’s public key) with probability 1/2 each. Now suppose an
adversary starts off with two ciphertexts, one for x and one for z = gx. He then chooses to open
the second ciphertext (for z = gx), which fixes the second component of the ciphertext vector.
(However, note that the adversary does not know x at this point.)

Assume, when invoked with the challenge message vector, he then gets a first component y,
sampled from dist conditioned on the second component z. By our definition of dist, with a
probability of 1/2, the adversary then does not get y = x, but the unique y with z = hy. Note
that then, x = y · dloggh. Using this relation, the adversary can recognize that the first unopened
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ciphertext (with commitment ((gsut)x, (hsvt))) really contained x. This check works only if re-
sampling occurred, and hence the adversary successfully distinguishes authentic from re-sampled
messages. As SIM-SO-CPA security implies IND-CPA security, this counterexample also shows
that IND-CPA security does not imply full IND-SO-CPA security.

Our second counterexample. We proceed to construct a scheme that is fully IND-SO-CPA
secure, but not SIM-SO-CPA secure. Again, we simply modify an assumed fully IND-SO-CPA
secure scheme to make a SIM-SO-CPA attack possible. Concretely, we add a statistically hiding
commitment Com(M) to each ciphertext, where M is the encrypted message. (In fact, we will
require non-interactive statistically hiding commitments without any kind of setup, which can be
built from collision-resistant hash functions. See Section 4 for details.) This makes the encryption
scheme binding (i.e., a public key and a ciphertext form a binding commitment to the message).
Hence, applying a general result due to Bellare et al. [2] shows that the scheme is not SIM-SO-CPA
secure.

To show that the modified scheme is still fully IND-SO-CPA secure, we show that any IND-
SO-CPA adversary A′ on the modified scheme can be mapped to an IND-SO-CPA adversary A
on the old scheme. The problem for A is that it must present (an internal simulation of) A′

with ciphertexts with added commitments Com(Mi), and later open some of those commitments
to the right Mi. In this, A must not know any of the Mi in advance. Our solution to this
commitment problem is to embed the Com(Mi) into A’s message distribution. (That is, if A′’s
message distribution over the Mi is dist′, then A’s message distribution is dist, which is the same
as dist′, only with added commitments to the Mi.) Hence, A can go ahead and open all Com(Mi)-
encryptions (and only those) in advance to be able to prepare authentic commitments for A′. The
remaining translation between A′’s and A’s IND-SO-CPA experiment is then straightforward.

The technical difficulty in pushing this line of proof through is that by initially opening com-
mitments Com(Mi) to all messages, A may slightly skew a later re-sampling of the Mi. If the used
commitment scheme is perfectly hiding, this is a non-issue: then, Com(Mi) reveals no information
about Mi, and conditioning on Com(Mi) does not change the distribution of Mi. However, the
most interesting candidates for non-interactive statistically hiding commitment schemes are only
statistically, but not perfectly hiding. We thus need to show that conditioning on a statistically
hiding commitment does not significantly change a message distribution. This in fact turns out
to be surprisingly nontrivial. Specifically, the statement only holds for bit messages Mi, but not
necessarily for messages, say, from {0, 1}k. See Section 4 for details.

Outline. We start by recalling some notation and definitions (including the definitions of selective
opening security) in Section 2. We present our counterexamples in Section 3 and Section 4. In
Appendix A, we prove a technical lemma that is necessary for our second counterexample.

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}. Throughout the paper, k ∈ N denotes the se-
curity parameter. For a finite set S, we denote by s ← S the process of sampling s uniformly
from S. For a distribution X, we denote by x ← X the process of sampling x from X. For
a probabilistic algorithm A, we denote with y ← A(x;R) the process of running A on input x
and with randomness R, and assigning y the result. We let RA denote the randomness space of
A; we require RA to be of the form RA = {0, 1}r. We write y ← A(x) for y ← A(x;R) with
uniformly chosen R ∈ RA. If A’s running time is polynomial in k, then A is called probabilistic
polynomial-time (PPT). Two sequences of random variables X = (Xk)k∈N and Y = (Yk)k∈N are

computationally indistinguishable (denoted X
c
≈ Y ) iff for any PPT algorithm D, the probability

Pr
[
D(1k, Xk) = 1

]
− Pr

[
D(1k, Yk)

]
is negligible in k. The statistical distance of Xk and Yk is

defined as SD (Xk ; Yk) := 1
2

∑
s |Pr [Xk = s]− Pr [Yk = s]|.

DDH assumption. The decisional Diffie-Hellman (DDH) assumption over a group G (that may
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depend on the security parameter k) stipulates that

(g, ga, gb, gab)
c
≈ (g, ga, gb, gc),

where g ← G and a, b, c← [|G|] are uniformly distributed.

PKE schemes. A public-key encryption (PKE) scheme consists of three PPT algorithms
(Gen,Enc,Dec). Key generation Gen(1k) outputs a public key pk and a secret key sk . Encryption
Enc(pk ,M) takes a public key pk and a message M , and outputs a ciphertext C. Decryption
Dec(sk , C) takes a secret key sk and a ciphertext C, and outputs a message M . For correctness,
we want Dec(sk , C) = M for all M , all (pk , sk)← Gen(1k), and all C ← Enc(pk ,M).

Definition of selective opening security. We present and discuss three definitions for security
under selective openings that capture security of an encryption scheme under adaptive attacks.
Two definitions are indistinguishability-based, following the IND-SO-COM, resp. IND-SO-ENC
definitions by Bellare et al. [1]. These definitions demand that even an adversary that gets to see
a vector of ciphertexts cannot distinguish the true contents of the ciphertexts from independently
sampled plaintexts. While one of these definitions, called weak IND-SO-CPA here, only considers
efficiently re-samplable message distributions, the other one, dubbed full IND-SO-CPA, does not
restrict the considered message distributions in this way. The third definition, dubbed SIM-SO-
CPA by us, resembles the SEM-SO-COM, resp. SEM-SO-ENC definitions from [1] (which in turn
follow Dwork et al. [7]). This definition is simulation-based and does not have to cope with different
strategies to handle re-sampling.

Definition 2.1 (Efficiently re-samplable). Let N = N(k) > 0, and let dist be a joint distribution
over ({0, 1}k)N . We say that dist is efficiently re-samplable if there is a PPT algorithm ReSampdist
such that for any I ⊆ [N ] and any partial vector M′

I := (M ′(i))i∈I ∈ ({0, 1}k)|I|, ReSampdist(M
′
I)

samples from dist |MI , i.e., from the distribution dist, conditioned on M (i) = M ′(i) for all i ∈ I.

Opening oracles. In our definitions of selective opening security we provide the adversary with
an opening oracle to allow adaptive queries. Such an oracle is a stateful functionality that takes one
argument. When queried with a set of indexes, it responds with the corresponding openings. When
queried with the string get queries, it returns the set of all indexes it has provided openings for
since its instantiation.

Definition 2.2 (Weak indistinguishability-based selective opening security). For a PKE scheme
PKE = (Gen,Enc,Dec), a polynomially bounded function N = N(k) > 0, an opening oracle O and
a stateful PPT adversary A, consider the following experiment:

Experiment Expweak-ind-so
PKE,A

b← {0, 1}
(pk , sk)← Gen(1k)
(dist,ReSampdist)← A(pk)
M0 := (M (i))i∈[n] ← dist

R := (R(i))i∈[n] ← (REnc)
N

C := (C(i))i∈[n] := (Enc(pk ,M (i);R(i)))i∈[n]

O := (M (i), R(i))i∈[n]

AO(·)(select,C)
I := O(get queries)
M1 ← dist |MI
outA ← A(output,Mb)
return 1 if outA = b, 0 otherwise
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We only allow A that always output efficiently re-samplable distributions dist over ({0, 1}k)N with
corresponding efficient re-sampling algorithms ReSampdist. We say that PKE is weakly IND-SO-
CPA secure, if

Advw-ind-soPKE,A (k) := Pr
[
Expweak-ind-soPKE,A (k) = 1

]
− 1

2

is negligible.

There are some minor technical differences between Definition 2.2 and the IND-SO-ENC def-
inition from [1]: IND-SO-ENC security universally quantifies over all (efficiently re-samplable)
message distributions dist. We let A choose dist instead, e.g., to allow a message distribution that
depends on the public key pk . (In fact, otherwise it is not even clear that the resulting definition
implies IND-CPA security.) Besides, our definition grants the adversary multiple, possibly adap-
tive openings, whereas IND-SO-ENC security only allows for a one-shot opening phase. We believe
that multiple openings are more realistic in view of a scenario with adaptive party corruptions.

Definition 2.3 (Full indistinguishability-based selective opening security). For a PKE scheme
PKE = (Gen,Enc,Dec), a polynomially bounded function N = N(k) > 0, a stateful opening oracle O
and a stateful PPT adversary A, we define the experiment Expfull-ind-soPKE,A analogously to Expweak-ind-soPKE,A

but do not require the adversary to provide an algorithm for re-sampling, i.e., A(pk) just outputs
a message distribution dist. We say that PKE is fully IND-SO-CPA secure if

Advs-ind-soPKE,A (k) := Pr
[
Expfull-ind-soPKE,A (k) = 1

]
− 1

2
.

is negligible.

Definition 2.3 resembles the IND-SO-COM definition from [1], only for encryption instead of
commitments, and with the same syntactic differences as above. (We note that [1] only consider
efficiently re-samplable message spaces in their results about encryption schemes. In their results
about selective opening secure commitments, the involved message spaces are arbitrary, as in
Definition 2.3.)

Definition 2.4 (simulation-based selective opening security). For a PKE scheme PKE = (Gen,
Enc,Dec), a polynomially bounded function N = N(k) > 0, and a stateful PPT adversary A,
consider the following experiments:

Experiment Expsim-so-real
PKE,A

(pk , sk)← Gen(1k)
dist← A(pk)
M := (M (i))i∈[n] ← dist

R := (R(i))i∈[n] ← (REnc)
N

C := (C(i))i∈[n] := (Enc(pk ,M (i);R(i)))i∈[n]

O := (M (i), R(i))i∈[n]

outA ← AO(·)(select,C)
I := O(get queries)
return (M, dist, I, outA)

Experiment Expsim-so-ideal
S

dist← S()
M := (M (i))i∈[n] ← dist

outS ← SO(·)(select)
I := O(get queries)
return (M, dist, I, outS)

We say that the scheme is SIM-SO-CPA secure iff for every aversary A there is a PPT algo-
rithm, the simulator, S such that the distributions induced by the experiments Expsim-so-real

PKE,A and

Expsim-so-ideal
S are computationally indistinguishable.

Apart from the differences mentioned above, Definition 2.4 is identical to the SEM-SO-ENC
definition from [1].
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Gen′ (1k)
(pk , sk)← Gen(1k)
g ← G, h← G
ω ← [|G|]
u := gω, v := hω

return ((pk , g, h, u, v), sk)

Enc′ (pk ′, M)
((pk , g, h, u, v) := pk ′

s← [|G|], t← [|G|]
C1 ← Enc(pk ,M)
C2 := ((gsut)M , hsvt)
return (C1, C2)

Dec′ (sk , C)
(C1, C2) := C
M := Dec(sk , C1)
return M

Figure 2: PKE′, a scheme which is SIM-SO-CPA but not fully IND-SO-CPA secure

3 SIM-SO-CPA security does not imply full IND-SO-CPA secu-
rity

We prove by counterexample that there are SIM-CO-CPA secure PKE schemes that are not fully
IND-SO-CPA secure. Let PKE = (Gen, Enc, Dec) be a PKE scheme with message space {0, 1}k
that is SIM-SO-CPA secure3. From PKE we construct a scheme PKE′ = (Gen′, Enc′, Dec′) (see
Figure 2) that is still SIM-SO-CPA secure, which is what we prove first, but not fully IND-SO-CPA
secure.

For the construction of PKE′ (see Figure 2) we use a cyclic DDH group G of prime order. We
assume that the underlying SIM-SO-CPA secure scheme PKE can encrypt elements of G and G-
exponents.4 The idea of our modification is to extend the ciphertext by a “dual-mode” commitment
(in the spirit of [5]). If the public key is generated honestly, the commitment is perfectly binding.
However, in the course of the proof of Lemma 3.1, we will swap the public key. Thereby we switch
to the alternative mode where the commitment is equivocable with the help of a trapdoor. Finally,
in the proof of Lemma 3.2, we can use the commitment to show that PKE′ is not fully IND-SO-CPA
secure.

For a ciphertext C ← Enc′(pk ,M) under PKE′ we write (M, (r, s, t)) for the corresponding
opening. (r, s, t) resembles the randomness used to generate c: r is the randomness used by Enc
and s and t are the coins for the commitment (see Figure 2).

3.1 PKE′ is SIM-SO-CPA secure

Lemma 3.1. PKE′ is SIM-SO-CPA secure.

Proof. Let A′ be an adversary for PKE′. Our goal is to construct a simulator S such that
Expsim-so-real

PKE′,A′ and Expsim-so-ideal
S are computationally indistinguishable. Towards this goal we first

construct an adversary A that uses A′ to attack PKE. Then we show the indistinguishability of
Expsim-so-real

PKE′,A′ and Expsim-so-real
PKE,A and finally use the SIM-SO-CPA security of PKE to obtain S.

The SIM-SO-CPA-real experiment calls A twice, once to obtain the message distribution dist,
and once to obtain the output of the adversary after the opening phase. Based on these calls we
define A as follows:
Message distribution. A uniformly picks g, h from G and ωu 6= ωv from [|G|]. It then computes

u := gωu , v := hωv and returns A′((pk , g, h, u, v)).

Opening queries. A uniformly picks vectors S,T← [|G|]N of values and computes C
(i)
1 := C(i),

C
(i)
2 := (uS

(i)
, vT

(i)
) and C′ := (C

(i)
1 , C

(i)
2 )i∈[|C|]. Next A constructs an opening oracle O′ that

works as follows: If called with an index i, it fetches the corresponding opening (M,R) := O(i)

3Such schemes exists under reasonable assumptions, see [1, 8] for example.
4Specifically, in the term (gsut)M used in Enc′, the message M can be a group element. We thus implicitly

assume a suitable encoding of group elements as (nonzero) G-exponents; depending on G, this may additionally
require application of a collision-resistant hash function H, so that the term becomes (gsut)H(M). We stress that
our results do not depend on the used encoding or hash function.

7



from O and computes

s := ωuωv(S
(i) − T (i)M)/(ωuM − ωvM)

and
t := T(i) − s/ωv

which yield the opening (M, (R, s, t)) for C ′(i). Note that we have (gsut)Mi = uS
(i)

and

hsvt = vT
(i)

. A returns A′O
′(·)(select,C′).

We now provide a sequence of games that shows the computational indistinguishability of
Expsim-so-real

PKE′,A′ and Expsim-so-real
PKE,A . Game 1 is simply the real SIM-SO-CPA experiment with A′ and

PKE′. In Game 2 the experiment runs with a modified public key: Let pk ′ = (pk , g, h, u, v)
denote the public key generated by Gen′. The experiment in Game 2 uniformly picks ωu 6= ωv
from [#G] and sends the tuple (pk , g, h, gωu , hωv) instead of pk ′ to A′. Every efficient algorithm
that could distinguish the distribution generated by Game 1 from that generated by Game 2 with
non-negligible probability would win the DDH-experiment with non-negligible probability. In
Game 3 we remove the information about the encrypted message from the commitment part of
the ciphertext. For each ciphertext C = (Enc(pk ,M), ((gsut)M , hsvt)) in C the experiment picks
s and t uniformly from [|G|] and replaces C2 by (us, vt). If A′ wishes to open the ciphertext, the
experiment computes an opening as described in the definition of A above using the knowledge of
ωu and ωv. The distributions of Game 2 and Game 3 are identical: The commitment part of the
ciphertext consists of ((gsut)M , hsvt) for uniform s and t. Since ωu = logg(u) 6= logh(v) = ωv, its

distribution is identical to5 (gaM , gb) for uniformly random a and b and hence obviously identical
to (us, vt) for random s, t. Similarly we can see that the random values in the openings are still
distributed uniformly as well.

The situation in Game 3 is identical to running the SIM-SO-CPA-real experiment with A and

PKE. Since A is SIM-SO-CPA secure there is a simulator S such that Expsim-so-real
PKE,A

c
≈ Expsim-so-ideal

S .

Altogether we find Expsim-so-real
PKE′,A′

c
≈ Expsim-so-real

PKE,A

c
≈ Expsim-so-ideal

S . Hence S simulates A′ which con-
cludes our proof.

3.2 PKE′ is not fully IND-SO-CPA secure

Lemma 3.2. PKE′ is not fully IND-SO-CPA secure.

Proof. We construct an adversaryA that wins the full IND-SO-CPA experiment with non-negligible
probability. Basically, A benefits from the fact that the experiment conditions the distribution of
messages dist on the choice of openings I to sample M1 even if this re-sampling could not be done
efficiently by A. In the course of this proof we will see that A can therefore utilize the experiment
to compute a discrete logarithm which helps A to learn the experiment’s choice b.

We now describe the adversary A.
Message distribution. When A receives the public key pk ′ = (pk , g, h, u, v) it responds with a

distribution of tuples (x, z) ∈ Z|G| ×G determined by the following algorithm:

Distribution dist
b← {0, 1}
x← [|G|]
if b = 0 then return (x, gx) otherwise return (x, hx)

Intuitively, this algorithm draws a random element z from G and returns either (logg z, z) or
(logh z, z).

Challenge ciphertexts. A receives C ← (Enc′(pk ′, x),Enc′(pk ′, z)) for some x and z = gx or
z = hx. Let (Enc(pk , x), ((gsut)x, hsvt)) = C(1).

5Recall that we have assumed an encoding of M that does not map to 0.
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Opening queries. A calls O(2) to open the second component of C. The return value of this
call is of no interest for A here. However, it is important that the value of z is fixed for the
re-sampling of M1.

Challenge messages. Finally, A receives a message vector Mb = (y, z) from the experiment. If

(hsvt)y = (gsut)x (2)

then A returns 1 and 0 otherwise.

Analysis. Game 1 is the full IND-SO-CPA experiment Expfull-ind-so
PKE,A . In Game 2 the experiment

calls Gen(1k) to generate the public key (pk , g, h, u, v) = pk ′ ← Gen(1k) until g 6= h and gh 6= 1
before sending pk ′ to A. The statistical distance of the two distributions of public keys is 2

|G| and
hence negligible.

We now analyze the advantage of A in Game 2. By opening the second component of the

ciphertext vector A fixes its value, i.e. z := M
(2)
0 = M

(2)
1 . However, since the value of z does

not determine whether the first component of Mb contains the logarithm to base g or to base
h, this is decided only when M1 is sampled. An adversary A benefits from this re-sampling if
M0 = (x = logg(z), z), M1 = (y = logh(z), z) and b = 1. In this case A learns y and only then6

we have that equation 2 holds.
We now show that the advantage of A is non-negligible. We define the three events
• B: The experiment samples b = 1.
• M0 : The experiment samples M0 = (x, gx) (i.e. the first message vector contains a logarithm

to base g).
• M1 : The experiment samples M1 = (y, hy = z) for a fixed z (i.e. the second message vector

contains a logarithm to base h).
Let E denote the complementary event for an event E. We observe that A outputs 1 if B∧M0∧M1
and 0 if B ∧M0 ∧M1 . Hence

Pr
[
Expfull-ind-so

PKE,A = 1
]

= Pr
[
B ∧B ∧M0 ∧M1

]
+ Pr [B ∧ (B ∧M0 ∧M1 )]

(∗)
= Pr

[
B ∨ (B ∧ (M0 ∨M1 ))

]
+ Pr [B ∧M0 ∧M1 ]

= Pr
[
B
]

+ Pr [B] Pr [M0 ] Pr [M1 ]

=
1

2
+

1

2
· 1

2
· 1

2
=

5

8
,

where (∗) uses that B, M0 and M1 are independent events. Altogether, the adversary’s advantage
in Game 2 is

Advs-ind-so
PKE,A = Pr

[
Expfull-ind-so

PKE,A = 1
]
− 1

2
=

1

8

which is non-negligible.

4 Full IND-SO-CPA does not imply SIM-SO-CPA

4.1 Outline

We will now construct a fully IND-SO-CPA secure PKE scheme that is not SIM-SO-CPA secure.
To this end, we will start from a fully IND-SO-CPA secure scheme PKE.7 We will then add a
commitment (to the encrypted message) to each PKE ciphertext, such that the resulting scheme
PKE′ becomes committing. The result of Bellare et al. [2] then implies that PKE′ is not SIM-SO-
CPA secure.

6Since g 6= h and gh 6= 1.
7To date, there is no PKE scheme that is known to be fully IND-SO-CPA secure. However, in case no IND-SO-

CPA secure scheme exists, of course no separating example can be constructed.
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The heart of our argument will thus be to show that PKE′ is still fully IND-SO-CPA secure. We
will reduce the IND-SO-CPA security of PKE′ to that of PKE. Concretely, assume an IND-SO-CPA
adversary A′ on PKE′. We need to construct an IND-SO-CPA adversary A on PKE. Of course, A
will internally run A′ and try to map PKE ciphertexts and openings to those of PKE′.

The concrete problem for A is that initially, A′ expects a vector of PKE′ ciphertexts, which
contain commitments to each message. Because these commitments do not appear in PKE cipher-
texts, A will have to make up those commitments for A′ without knowing the respective messages.
Later on, however, when A′ requests openings, A will have to also open those commitments to
messages not known in advance (to A). In other words, A will have to equivocate commitments
for A′.

This seems like an insurmountable problem: we need PKE′ to be committing, in order to
derive (using [2]) that PKE′ is not SIM-SO-CPA secure. However, if PKE′ is committing, then
how could A possibly equivocate commitments? Our solution is to abuse the (possibly inefficient)
re-sampling that occurs during the IND-SO-CPA experiment. Namely, observe that statistically
hiding commitments can always be equivocated inefficiently (at least with high probability). In
fact, equivocating a commitment com = Com(M ;R) (with message M and randomness R) can
be formulated as re-sampling from the message distribution (M,R,Com(M ;R)), conditioned on a
fixed value com for the third component. This will essentially allow our adversary A to formulate
the necessary equivocations as a re-sampling of suitable message distribution.

4.2 Non-interactive statistically hiding commitments

As a technical tool for our separation, we will require the notion of suitable commitments. To
allow for (inefficient) equivocation, we will require that the commitments are statistically hiding.
Additionally, for the use in a PKE scheme, the commitments should be non-interactive. Finally,
we stress that we do not allow any public parameters (such as a common reference string).

Definition 4.1 (NISHCOMs). A non-interactive statistically hiding commitment scheme (NISH-
COM) is a PPT algorithm Com that takes as input a message M ∈ {0, 1} and outputs a commit-
ment com ∈ {0, 1}∗. We require the following properties:
Statistical hiding. The statistical distance SD (Com(0) ; Com(1)) is negligible in k.
Binding. For every PPT A, the following probability is negligible (in k):

Pr
[
Com(0;R0) = Com(1;R1) | (R0, R1)← A(1k)

]
.

While one-way functions imply statistically hiding commitments [11], we cannot expect to
construct NISHCOMs even from trapdoor one-way permutations [10]. In fact, there can be no
NISHCOM that is binding against non-uniform adversaries. (The statistical hiding property im-
plies that for each k, there exist many tuples (R0, R1) with Com(0;R0) = Com(1;R1). We can
always hardcode one such tuple into a non-uniform A.) However, under specific assumptions, we
can construct NISHCOMs:

NISHCOMs from CRHFs. Assume a collision-resistant hash function H : {0, 1}∗ → {0, 1}k.
We stress that H is not keyed but fixed. (In particular, we can only hope for collision-resistance
against uniform adversaries.) Instantiated with such an H, Naor and Yung [14], and Damg̊ard
et al. [6] yield several constructions of NISHCOMs. For instance, implicit in [14] is the NISHCOM

Com(M ; (X,h)) := (H(X), h, h(X)⊕M)

for M ∈ {0, 1}, X ∈ {0, 1}` for suitably large `, and a suitable randomness extractor h.

NISHCOMs from fixed groups. Let (Gk, gk, hk)k∈N be a family of finite groups, one for each
value of the security parameter k, along with (fixed) generators gk, hk of Gk. If we assume that
the problem of computing dloggk(hk) is computationally infeasible, then Pedersen’s commitment

[15] (i.e., Com(M ;R) := gMk h
R
k ) is a NISHCOM that is even perfectly hiding.
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Gen′(1k)
(pk , sk)← Gen(1k)
return (pk , sk)

Enc′(pk ′,M)
C ← Enc(pk ,M)
com ← Com(M)
return C ′ := (C, com)

Dec′(sk ′, C ′)
(C, com) := C ′

M ← Dec(sk ′, C)
return M

Figure 3: PKE′ — a fully IND-SO-CPA, but not SIM-SO-CPA secure PKE scheme

4.3 The separating scheme

We are now ready to describe our scheme. We assume a fully IND-SO-CPA secure scheme PKE =
(Gen,Enc,Dec) with message space {0, 1}, as well as a NISHCOM Com. In our scheme, depicted
in Figure 3, we simply append to each ciphertext a commitment to the encrypted message. This
commitment is never checked or opened during execution of the scheme; it only serves as a means
to make the scheme committing in the sense of Bellare et al. [2].

4.4 SIM-SO-CPA insecurity of the scheme

First, we note that because of our use of Com, scheme PKE′ is a binding CE (“committing en-
cryption”) scheme in the sense of Bellare et al. [2]. Concretely, opening a ciphertext (by releasing
the encryption randomness) as an honest encryption in two different ways (i.e., for two different
messages) requires breaking the binding property of Com. Hence, we can apply [2, Theorem 4.1]8,
and we get:

Theorem 4.2. PKE′ as depicted in Figure 3 is not SIM-SO-CPA secure.

4.5 Full IND-SO-CPA security of the scheme

The main part of our work is to prove that PKE′ is fully IND-SO-CPA secure. As explained above,
our intuition will be to use the (potentially inefficient) message re-sampling in the full IND-SO-CPA
experiment to equivocate Com commitments.

Theorem 4.3. PKE′ as depicted in Figure 3 is fully IND-SO-CPA secure, provided that PKE is
fully IND-SO-CPA secure, and Com is a NISHCOM.

Proof. Given an IND-SO-CPA adversary A′ on PKE′, we construct an IND-SO-CPA adversary on
PKE with roughly the same complexity and success. Concretely, A proceeds as follows:
Message distribution. When invoked with a PKE public key pk , A sets pk ′ := pk and runs

dist′ ← A′(pk ′) to obtain an N ′-message distribution dist′. Then A creates and outputs its
own N -message distribution (for N := 3N ′) dist as follows:

Distribution dist
(M ′i)i∈[N ′] ← dist′

(RCom
i )i∈[N ′] ← (RCom)N

′

(comi)i∈[N ′] := (Com(M ′i ;R
Com
i ))i∈[N ′]

return (M ′1, R
Com
1 , com1, . . . ,M

′
N ′ , R

Com
N ′ , comN ′)

Challenge ciphertexts. When receiving an N -ciphertext vector (Ci)i∈[N ], A prepares an N ′-
ciphertext vector (C ′i)i∈[N ′] for A′ as follows. First, A asks its own IND-SO-CPA experiment
for openings of C3, C6, . . . , CN to obtain the commitments comi (for i ∈ [N ′]). It then sets
C ′i := (Ci, comi) for all i and hands (C ′i)i∈[N ′] to D. Note that this results in a challenge

8Note that there is an important difference between our SIM-SO-CPA definition and the one from [2]: In [2] the
simulator and the adversary are allowed a common auxiliary input which is of importance for Theorem 4.1. However,
it is easy to verify that all of our proofs concerning SIM-SO-CPA security are still valid in presence of an auxiliary
input, which we omitted for the sake of simplicity.
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ciphertext for D that is perfectly distributed as in D’s own IND-SO-CPA experiment. Fur-
thermore, because Com is statistically hiding, opening the encrypted commitments does not
fix any of the encrypted messages.

Opening queries. When A′ wants a ciphertext C ′i opened, A asks for an opening of C3i−2 and
C3i−1. The opening of C3i−2 yields a properly distributed opening of the PKE part Ci of
C ′i = (Ci, comi). On the other hand, the opening of C3i−1 reveals the randomness RCom

i of
the corresponding commitment comi. Together, this forms a perfectly distributed opening
of C ′i, which A then hands to A′.

Challenge messages. Finally, when A′ is finished asking for openings and requests challenge
messages, A does the same and hands the corresponding M ′i (for i ∈ [N ′]) to A′. When A′

outputs a decision bit b′, then A outputs the same bit.
To analyze this A, first note that up to the challenge message, A provides a perfect internal

simulation of A′ running in its own IND-SO-COM experiment with PKE′. In particular, both
challenge ciphertexts and openings are exactly distributed as with PKE′. For the eventual challenge
message (and A′’s decision bit), we make the following case distinction:
When A’s experiment tosses b = 0 (i.e., no re-sampling). In this case, A eventually obtains

the initially sampled plaintext vector with all M ′i , R
Com
i , comi. In particular, A′ gets the mes-

sages M ′i just as it would have in its own IND-SO-CPA experiment with PKE′. We get:

Pr
[
Expfull-ind-so

PKE,A (k) = 1 | b = 0
]

= Pr
[
Expfull-ind-so

PKE′,A′ (k) = 1 | b = 0
]
. (3)

When A’s experiment tosses b = 1 (i.e., re-sampling occurs). In this case, A eventually
obtains a plaintext vector that has been re-sampled from dist, conditioned on all opened
messages M ′i (along with the corresponding RCom

i ), and all commitments comi. In particu-
lar, A′ gets a re-sampled message vector that is additionally conditioned on all comi. This
marks a difference to what A′ would have gotten in its IND-SO-CPA experiment with PKE′:
there, A′ would have gotten M ′i that are only conditioned on the so far opened messages, but
not on all comi. However, recall that Com is statistically hiding, and thus the distribution
of the comi is statistically close to, say, commitments to all-zero strings. Thus, we will now
prove that

Pr
[
Expfull-ind-so

PKE,A (k) = 1 | b = 1
]
− Pr

[
Expfull-ind-so

PKE′,A′ (k) = 1 | b = 1
]
. (4)

is negligible in k, using a sequence of Games.
Game 1 is simply the IND-SO-CPA experiment with A and PKE as described above, but
with b fixed to 1.
In Game 2, we substitute all comi ← Com(M ′i) by comi ← Com(0). We stress that during
the resampling operation, we still condition on the comi being output as Mi-commitments.
Note that this conditioning operation may fail, e.g., when some Mi has been opened as
Mi = 1, but comi lies not in the range of Com(1). However, this can happen only with
negligible probability by the hiding property of Com. Namely, note that for each sampled
message vector (M ′i)i∈[N ′], we can view the whole experiment (including A′’s output) as

a probabilistic function of the commitments comi. If any commitment randomness RCom
i

is to be revealed, this randomness can be — inefficiently — generated from comi and the
corresponding Mi. Since Com is statistically hiding, we know that hence, A′’s output does
not significantly change compared to Game 1.
In Game 3, we no longer condition on the comi during re-sampling. (Of course, we still
condition on the so far opened M ′i .) Lemma A.1 in Appendix A shows that this has no
significant effect on the experiment’s output. Concretely, note that we can view both Game
2 and Game 3 (including A) as an unbounded algorithm that
• gets a vector (comi)i∈[n] of 0-commitments as input,
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• then deterministically9 selects a message distribution d̃ist over {0, 1}n (that internally
corresponds to dist′, conditioned on all opened messages),

• and finally gets a sample from either d̃ist, or d̃ist conditioned on all commitments comi.
With a d̃ist-sample, this results in Game 3, whereas with a sample from d̃ist | (comi)i,
this yields an execution of Game 2.

Applying Lemma A.1 yields that the output in Game 3 does not significantly differ from
that in Game 2. (Somewhat surprisingly, the same statement would not hold if the Mi were
not bits but, say, k-bitstrings. See Appendix A for details.) At first glance, it might seem
like we only need a non-adaptive version of Lemma A.1, in which the adversary chooses the
distribution ahead of time. However, such a non-adaptive Lemma would not be sufficient in
our case, because the distribution d̃ist depends on the adversary’s opening requests and thus
may depend on the commitments comi.
Finally, in Game 4, we replace all comi ← Com(0) again by comi ← Com(M ′i). Like in
Game 2, this has no significant effect on the output of the experiment.
Now note that in Game 4, re-sampled message vectors (M ′i) are no longer conditioned on
the comi, and are hence distributed exactly as in Expfull-ind-so

PKE′,A′ with b = 1. Also, commitments
and openings are distributed exactly as with PKE′. We obtain (4).

Taking (3,4) together, we get that

Advs-ind-so
PKE,A (k)− Advs-ind-so

PKE′,A′(k)

is negligible, which proves the theorem.
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A A technical lemma

In this section, we show indistinguishability of Game 2 and Game 3. For the sake of completeness,
we first briefly restate what we have to show. We are given an unbounded algorithm A that
• gets a vector (comi)i∈[n] of 0-commitments as input,

• then deterministically selects a message distribution d̃ist over {0, 1}n,
• and finally gets a sample from

– either d̃ist,
– or d̃ist conditioned on all commitments comi.

The two possible cases in the final step will result in two different distributions of A’s view, and
we have to show that the difference is negligible.

Why conditioning on string commitments leads to problems. However, before we give
our formal proof, we want to briefly point out why it is crucial that the commitments have small
message space. We illustrate this by a counterexample, i.e., we describe a statistically hiding string-
commitment scheme and an algorithm A such that the two sample distributions will significantly
differ from each other. Consider some commitment functionality, such that on input m ∈ {0, 1}k
the corresponding commitment c is uniformly random over {0, 1}k \ {m}. Obviously, such a com-

mitment scheme is statistically hiding. However, the algorithm A can choose the distribution d̃ist
such that the final sample either completely consists of all-zero messages, or it completely equals
the initially given commitment vector, each with probability 1

2 . Hence, d̃ist conditioned on the
initially given commitment vector will always solely return all-zero messages, whereas without this
condition the all-zero vector has only probability 1

2 . Thus, the two sample distributions will have
statistical distance 1

2 .

Used notation. Having seen this subtle issue, we give now our formal indistinguishability proof.
For a concise presentation, in the following lemma we represent
• the distributions of 0-commitments and 1-commitments by two probability mass functions
γ0 and γ1 respectively,
• the initially given commitment vector (comi)i∈[n] by a random variable C = (Ci)i∈[n], i.e.,

Pr [Ci = c] = γ0(c),
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• by a family of probability mass functions βc we represent how the message distribution d̃ist
is generated from the initially given commitment vector,
• and two random variables M and M′ represent the two possible sample distributions.

Moreover, in the lemma we implicitly assume that the distribution d̃ist conditioned on the initially
given commitments (comi)i∈[n] is well defined in the sense that it assigns a non-zero probability
to some message vector for which (comi)i∈[n] is a possible commitment vector. This corresponds
to the assumption that in Theorem 4.3, opening a 0-commitment as a commitment to M ′i does
not fail. In particular, this assumption may be violated with at most negligible probability by the
statistical hiding property of the commitment.

Lemma A.1. Fix the following parameters:
• message space {0, 1} and some countable commitment space C
• a tuple (γm)m∈{0,1}, consisting of two probability mass functions over C
• a dimension n ∈ N>0 and a family (βc)c∈Cn of probability mass functions over {0, 1}n

In this setting let some random variables C = (Ci)i∈[n] ∈ Cn and M = (Mi)i∈[n] ∈ {0, 1}n and
M′ = (M ′i)i∈[n] ∈ {0, 1}n be given, distributed as follows10:

Pr [C = c] =
∏

i∈[n]
γ0(ci)

Pr [M = m | C = c] = βc(m)

Pr
[
M′ = m′ | C = c

]
=

βc(m′) ·
∏
i∈[n] γm′i(ci)∑

m∈{0,1}n βc(m) ·
∏
i∈[n] γmi(ci)

Further, let µ := SD (γ0 ; γ1) in slight abuse of notation. Now, if (1 +
√
µ)n < 2, it holds:

SD
(
(C,M) ; (C,M′)

)
≤ 2n

(√
µ+ µ

)
+

1

2− (1 +
√
µ)n
− 1

In particular, if µ is negligible in some security parameter k and the dimension n grows only
polynomially in k, then the statistical distance SD ((C,M) ; (C,M′)) is also negligible in k.

Proof. Let (1 +
√
µ)n < 2. For each c ∈ C we define the notations γ̄(c) := minm∈{0,1} γm(c) and

εc :=
∣∣γ1(c) − γ0(c)

∣∣. Our proof basically consists of two parts. In the first part we bound the

probability for the event that the fraction
εCi
γ̄(Ci)

, which can be seen as some “relative distance”

between γ0(Ci) and γ1(Ci), is relatively large for any i. This is the undesired case, where we
cannot say much about the statistical distance between M and M′. In the second part we estimate
the statistical distance between (C,M) and (C,M′) conditioned to the event that the “relative
distance”

εCi
γ̄(Ci)

is very small for every i, i.e., the distributions γ0(Ci) and γ1(Ci) are almost identical.

Put together, this will yield the claimed bound for the statistical distance SD ((C,M) ; (C,M′)).
We start by noting that for all ν ∈ R≥0 it holds:

2µ =
∑

c∈C
εc ≥

∑
c∈C: εc>ν·γ0(c)

εc ≥ ν ·
∑

c∈C: εc>ν·γ0(c)
γ0(c) (5)

Further note that εc >
ν′

1+ν′ · γ0(c), if only εc > ν ′ · γ̄(c), as one can see as follows. Given that
εc > ν ′ · γ̄(c), we have:

ν ′

1 + ν ′
· γ0(c) ≤ ν ′

1 + ν ′
·

=γ̄(c)+εc︷ ︸︸ ︷
max

m∈{0,1}
γm(c) =

ν ′ · εc +

<εc︷ ︸︸ ︷
ν ′ · γ̄(c)

1 + ν ′
<

ν ′ · εc + εc
1 + ν ′

= εc

10Formally, we additionally need that
∑

m∈{0,1}n βc(m) ·
∏

i∈[n] γmi(ci) 6= 0 for every commitment vector c with

Pr [C = c] > 0; otherwise the distribution of M′ would not be well-defined. However, for better readability we just
omitted stating this as an explicit assumption.
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Hence it follows that Pr [εCi > ν ′ · γ̄(Ci)] ≤ Pr
[
εCi >

ν′

1+ν′ · γ0(Ci)
]

and we can estimate:

Pr
[
εCi > ν ′ · γ̄(Ci)

]
≤ Pr

[
εCi >

ν′

1+ν′ · γ0(Ci)
]

=
∑

c∈C: εc> ν′

1+ν′ ·γ0(c)

=γ0(c)︷ ︸︸ ︷
Pr [Ci = c]

(5)

≤ 2µ(1 + ν ′)

ν ′

We set ν ′ :=
√
µ and apply the union bound, which yields:

Pr [∃ i ∈ [n] : εCi >
√
µ · γ̄(Ci)] ≤ 2n

(√
µ+ µ

)
(6)

This concludes the first part of our proof. For the second part, we first rewrite the distribution
of the random variable M′. We just exploit that βc is a probability mass function and hence∏
i∈[n] γm′i(ci) =

∑
m∈{0,1}n βc(m) ·

∏
i∈[n] γm′i(ci) for arbitrary c and m′. So we can write:

Pr
[
M′ = m′ | C = c

]
=

βc(m′) ·
∏
i∈[n] γm′i(ci)∏

i∈[n]

γm′i(ci) +
∑

m∈{0,1}n\{m′}
βc(m) ·

( ∏
i∈[n]

γmi(ci)−
∏
i∈[n]

γm′i(ci)

)

Exploiting once again that βc is a probability mass function, we can estimate the big sum under
the fraction line as follows:∣∣∣∣∣∣

∑
m∈{0,1}n\{m′}

βc(m) ·

∏
i∈[n]

γmi(ci)−
∏
i∈[n]

γm′i(ci)

∣∣∣∣∣∣ ≤ max
m∈{0,1}n

∣∣∣∣∣∣
∏
i∈[n]

γmi(ci)−
∏
i∈[n]

γm′i(ci)

∣∣∣∣∣∣
In other words, for every c = (ci)i∈[n] and m′ = (m′i)i∈[n] there exists some dc,m′ ∈ R, such that it
holds:

Pr
[
M′ = m′ | C = c

]
=

βc(m′) ·
∏
i∈[n] γm′i(ci)

dc,m′ +
∏
i∈[n] γm′i(ci)

and
∣∣dc,m′∣∣ ≤ max

m∈{0,1}n

∣∣∣∣∣∣
∏
i∈[n]

γmi(ci)−
∏
i∈[n]

γm′i(ci)

∣∣∣∣∣∣
Now note that

∣∣∣∏i∈[n] γmi(ci)−
∏
i∈[n] γm′i(ci)

∣∣∣ ≤ ∏
i∈[n]

(
γ̄(ci) + εci

)
−
∏
i∈[n] γ̄(ci) as a direct

consequence of how we constructed γ̄(ci) and εci . Therefore, we can estimate
∣∣dc,m′∣∣ independently

of the parameter m′. In particular, for every c = (ci)i∈[n] and m′ = (m′i)i∈[n] there exists some
dc,m′ ∈ R, such that it holds:

Pr
[
M′=m′ | C=c

]
=
βc(m′) ·

∏
i∈[n] γm′i(ci)

dc,m′ +
∏
i∈[n] γm′i(ci)

and
∣∣dc,m′∣∣ ≤ ∏

i∈[n]

(
γ̄(ci) + εci

)
−
∏
i∈[n]

γ̄(ci) (7)

In the end we want to show that Pr [M′ = m′ | C = c] is close to Pr [M = m′ | C = c], if only
the fractions

εc1
γ̄(c1) , . . . ,

εcn
γ̄(cn) are sufficiently small. Now, if dc,m′ = 0, we would even have that

Pr [M′ = m′ | C = c] = βc(m′) = Pr [M = m′ | C = c]. However, in general it will not be the
case that dc,m′ = 0, but we will find a sufficiently small upper bound for

∣∣dc,m′∣∣, given that the
corresponding εc1 , . . . , εcn are relatively small. Given any m′ = (m′i)i∈[n] and c = (ci)i∈[n] such
that εci ≤

√
µ · γ̄(ci) for all i, we can estimate the bound for

∣∣dc,m′∣∣ in (7) as follows:∏
i∈[n]

(
γ̄(ci) + εci

)
−
∏
i∈[n]

γ̄(ci) ≤
(
(1 +

√
µ)n − 1

)
·
∏
i∈[n]

γ̄(ci) (8)
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For our next steps, we need to formally partition the sample space of the random variable C:

Ĉ :=
{
c = (ci)i∈[n] ∈ Cn

∣∣ ∃ i ∈ [n] : εci >
√
µ · γ̄(ci)

}
C̄ :=

{
c = (ci)i∈[n] ∈ Cn

∣∣ ∀ i ∈ [n] : εci ≤
√
µ · γ̄(ci)

}
Taking (7,8) together, we find for every c = (ci)i∈[n] ∈ C̄ and m′ = (m′i)i∈[n] ∈ {0, 1}n some
d′c,m′ ∈ R, such that it holds:

Pr
[
M′ = m′ | C = c

]
=

βc(m′)

d′c,m′ + 1
and

∣∣d′c,m′∣∣ ≤ (1 +
√
µ)n − 1

From this we can infer a lower and an upper bound for Pr [M′ = m′ | C = c] as follows:

Pr
[
M′ = m′ | C = c

]
≥ βc(m′)

1 + |d′c,m′ |
≥ βc(m′)

(1 +
√
µ)n

(9)

Pr
[
M′ = m′ | C = c

]
≤ βc(m′)

1− |d′c,m′ |
≤ βc(m′)

2− (1 +
√
µ)n

(10)

Note once again that Pr [M = m′ | C = c] = βc(m′) by definition. Thus, the distance between
Pr [M′ = m′ | C = c] and Pr [M = m′ | C = c] is bounded by the following conditions:

Pr
[
M = m′ | C = c

]
− Pr

[
M′ = m′ | C = c

] (9)

≤ βc(m′) ·
(

1− 1

(1 +
√
µ)n

)
−Pr

[
M = m′ | C = c

]
+ Pr

[
M′ = m′ | C = c

] (10)

≤ βc(m′) ·
(

1

2− (1 +
√
µ)n
− 1

)
One can show straightforwardly that 1

2−(1+
√
µ)n − 1 ≥ 1 − 1

(1+
√
µ)n , using that (1 +

√
µ)n < 2 by

assumption. Thus, for all c = (ci)i∈[n] ∈ C̄ and m′ = (m′i)i∈[n] ∈ {0, 1}n we can estimate:∣∣∣Pr
[
M = m′ | C = c

]
− Pr

[
M′ = m′ | C = c

]∣∣∣ ≤ βc(m′) ·
(

1

2− (1 +
√
µ)n
− 1

)
(11)

This concludes the second part of our proof and we can start putting things together. The following
equation directly follows by the definitions of statistical distance and conditioned probability:

SD
(
(C,M) ; (C,M′)

)
= 1

2

∑
c∈Cn

Pr [C=c] ·
∑

m∈{0,1}n

∣∣∣Pr [M=m | C=c]− Pr
[
M′=m | C=c

]∣∣∣ (12)

We will split the outer sum into two parts, corresponding to c ∈ Ĉ and c ∈ C̄ respectively. Note
that for the inner sum it holds:∑
m∈{0,1}n

∣∣∣Pr [M=m | C=c]− Pr
[
M′=m | C=c

]∣∣∣ ≤ ∑
m∈{0,1}n

Pr [M=m | C=c]︸ ︷︷ ︸
sums to 1

+ Pr
[
M′=m | C=c

]︸ ︷︷ ︸
sums to 1

Thus, for each c ∈ Ĉ we can estimate the inner sum of equation (12) by 2. Furthermore, for each
c ∈ C̄ we can estimate the inner sum’s elements of equation (12) just by their maximum and neglect
the prefactor 1

2 . Altogether, we get:

SD
(
(C,M) ; (C,M′)

)
≤ Pr

[
C ∈ Ĉ

]
+ max

c∈C̄

 ∑
m∈{0,1}n

∣∣∣Pr [M=m | C=c]− Pr
[
M′=m | C=c

]∣∣∣


Finally, we can estimate Pr
[
C ∈ Ĉ

]
by (6) and all the rest by (11). It holds:

SD
(
(C,M) ; (C,M′)

)
≤ 2n

(√
µ+ µ

)
+

(
1

2− (1 +
√
µ)n
− 1

)
·max

c∈C̄

(∑
m∈{0,1}n

βc(m)︸ ︷︷ ︸
=1

)
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