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Abstract. Many potential users hesitate to use cloud computing because of the
data confidentiality issue. Can we compute on untrusted public cloud platform
with both data confidentiality and data utility preserved? Recent study has re-
vealed that a convexity preserving encryption RASP can be used to construct
confidentiality preserving and efficient range query service, which is one of the
most frequently used query types for online data analytics. Convexity preserv-
ing encryption schemes, such as the RASP encryption, preserve the topology of
the queried range in the encrypted space. It allows the encrypted data to be in-
dexed and queried with transformed secure range queries. The initial study shows
the range query service built on the RASP encrypted data can efficiently handle
queries. However, there is no in-depth security analysis on the RASP encryp-
tion. In this paper, we focus on the security of the RASP encryption method.
Concretely, we show that RASP is resilient to distributional attack, but it is not
indistinguishable to chosen plaintext attack. We propose a relaxed security defini-
tion based on the statistical learning theory. We develop the Amount of Preserved
Confidentiality (APC) measure to evaluate the security in terms of estimation at-
tacks. We also show that the RASP encryption is resilient to estimation attacks
and its encryption parameters can be appropriately tuned to meet different levels
of confidentiality requirements.

1 Introduction

With the increasing popularity of web-based applications and the cloud infrastructures,
service-based computing has become a major computing paradigm. Service providers
take advantage of low cost cloud infrastructures, while service users enjoy convenient
services without worrying about the cost of maintaining hardware and software. On
the other hand, large datasets have been collected, stored, and analyzed in business
intelligence and scientific computing for several years, which are expensive to maintain.
An appealing solution is to outsource data-intensive services to the cloud platform or
a service provider. However, data confidentiality on the untrusted platform is a major
concern impeding the adoption of outsourced data services.

Encryption schemes for outsourced data services share a common characteristics -
they need to preserve the utility of the provided data services, and thus often involve an
intrinsic tradeoff between security and utility. Fully homomorphic encryption [11] rep-
resents an extreme case that preserves the lowest level of utility - the addition and multi-
plication operations, which, however, provides very poor performance for constructing



the upper level data-intensive services. As the author of [11] mentioned, this is still too
expensive to be practical even for a simple application like encrypted keyword search.
On the other side, many approaches developed in the database community focuses on
performance, while providing weak security. For example, Crypto-index [15, 17] and
order-preserving encryption (OPE) [1, 2] assume the attacker does not have sufficient
prior knowledge about the data; thus powerful attacks are excluded from the consider-
ation when the outsourced services are designed and deployed, which is unrealistic and
dangerous.

Recently, the RASP encryption [6] is proposed for constructing secure range query
service, one of the major database services. The RASP encryption approach introduces
an interesting idea of preserving the convexity of datasets. More generally speaking, it
tries to preserve the topology of convex sets with a secure transformation that is resilient
to attacks. An important feature is to include random noise into the secure transforma-
tion, which, however, does not damage the preserved utility. The random noise compo-
nent may force the attackers turn to estimation attacks. Experimental evaluation shows
the RASP-based secure range query service can provide satisfactory performance.

Scope of the Paper. Although the original RASP paper includes a thorough discus-
sion on possible attacks and the methods to enhance the attack resilience, it does not
include a formal treatment. In this paper, we aim to formally analyze its security based
on a precisely defined threat model. Concretely, there are three contributions.

1. The distributional attack is identified and analyzed. We show the shared theory be-
hind the distributional attacks and show that the combination of the RASP encryp-
tion and dimensional order preserving encryption can render this type of attacks
ineffective.

2. We argue that the traditional security definition of computational indistinguisha-
bility might be too strong for the situation of outsourced data services. A relaxed
definition based on learning and statistical estimation theory is proposed, target-
ing on the estimation attacks. We also propose a measure the Amount of Preserved
Confidentiality (APC) for evaluating security under the new definition.

3. Our analysis shows that the RASP encryption is not computationally indistinguish-
able under the chosen plaintext attack (CPA). Therefore, we use the relaxed defini-
tion to analyze the regression-based estimation attack that uses the chosen plaintext-
ciphertext pairs. A theoretical lower bound of APC for this attack is derived based
on the learning and estimation theory.

The rest of the paper is organized as follows. Section 2 describes the RASP encryp-
tion method and its application. Section 3 presents the threat model, the distributional
attack, and the analysis on chosen plaintext attacks. Section 4 gives some of the related
utility preserving encryption approaches.

2 Preliminaries

In this section, we give the formal definition of the RASP encryption method and briefly
describe its benefits in constructing secure range query services.



2.1 Definition of RASP Encryption

Chen et al. proposed a construction of convexity preserving encryption, called the RASP
scheme. We formally define the RASP construction as follows. Message mi is a d-
dimension vector, i.e., mi = (mi1, . . . ,mid), where mij is a floating point number of
length n bits. The basic RASP private-key encryption scheme is defined as follows.

– Gen: assume we have a pseudorandom invertible matrix generator Km. Choose a
(d+2)× (d+2) random matrix A uniformly at random, where each element is of
length n bits, and output it as the key.

– Enc: on the key A, and a message mi, choose r, r ∈ R, with a pseudorandom
positive floating number generator Kr, and output the ciphertext

ci = A ∗ (mT
i , 1, r)

T , (1)

where the operation ‘*’ is matrix multiplication and mT
i means vector transpose.

Thus, ci is a d+ 2 dimension vector.
– Dec: on input a key A and a ciphertext ci, output the plaintext message

mi = P (A−1 ∗ ci, d), (2)

where the function P (x, d) is a projection function that projects the vector x to its
first d elements, and A−1 is the inverse of A.

The introduction of the noise component r is the key to increase the attack resilience
of the encryption. In practice, the encryption construction [6] uses a combined scheme,
RASP’, which is a combination of two encryption schemes: order preserving encryp-
tion and the basic RASP scheme. Concretely, the OPE scheme is first applied to each
dimension to change the dimensional distribution to normal distribution, which trans-
forms the plain message matrix M to M̃ . Then, the basic RASP scheme is applied to
the records in M̃ . It was shown that the RASP’ scheme still preserves the utility for
range query processing.

2.2 Preserved Utility for Secure Range Query

Range query is an important query in databases. The range is often a multidimensional
range that describes a bounding box in the original space. Range query service will
return records enclosed by the bounding box. Let Xi represent the i-th dimension. A
dimensional range [si,min, si,max] is represented by the condition “Xi ≤ si,max and
Xi ≥ si,min”, which are linear half-space functions. Because the additional d + 2
random dimension is always positive, the upper bound range condition, Xi ≤ si,max,
is equivalent to (Xi − si,max)Xd+2 ≤ 0, while the lower bound range condition Xi ≥
si,min is equivalent to (−Xi + si,min)Xd+2 ≤ 0. Thus, a d-dimensional range query
that consists of a set of dimensional ranges {[si,min, si,max]} is transformed to a series
of quadratic conditions by using the positiveness of Xd+2. With the transforms defined
in RASP, a condition (Xi−si,max)Xd+2 ≤ 0 can be further transformed to a quadratic
condition in the encrypted space: yTΘiy ≤ 0. Paper [6] gives the detail of the matrix
Θi, which is resilient to query-based attacks.



A two-stage query processing strategy is used to process the encrypted query. As
Figure 1 shows, the original range is transformed to a polyhedron in the encrypted
space. In the first stage, the server will find the points in the bounding box, MBR,
of the polyhedron, which was calculated and sent by the proxy server based on the
original range query. In the second stage, the server uses the conjunction of the quadratic
conditions yTΘiy ≤ 0 to filter out the points retrieved in the first stage. Experimental
results have shown that this strategy works very efficiently [6].

Original space Transformed space

Stage1:
Bounding
box

Fig. 1. Illustration of the two-stage range query processing algorithm.

3 Security Analysis of RASP

In this section, we will define a precise threat model for the outsourced services. Then,
a unique attack - distributional attack is analyzed with a focus on the independent com-
ponent analysis (ICA) attack. Third, we move on to the chosen plaintext attack and
show that RASP is not IND-CPA. Finally, we develop a relaxed security definition to
address the estimation attacks, and the RASP encryption is analyzed with the measure
of the Amount of Preserved Confidentiality in terms of the regression-based estimation
attack.

3.1 Threat Model

We consider several aspects of a threat model. First, we consider only the confidential-
ity of the outsourced data and range queries. Data in our research refers to multidimen-
sional table-like data (columns by rows), which is most commonly used in scientific
research and business analysis. Second, data disclosure attack is our major concern in
this research - attackers might be interested in data distributions and/or the original
data. Data tampering or dishonest service providers can be addressed by integrity pre-
serving techniques [25, 23, 20], which will not be covered by the proposed research. In
this context, we can assume the service provider is honest-but-curious [13].



Third, we model the attackers according to their prior knowledge. Active attackers
will try to obtain as much knowledge as possible to help break the encryption or estimate
the original data. We categorize the knowledge to three levels.

Level 1: the attacker observes only the encrypted data (and possibly queries), with-
out any other additional knowledge, and might be interested in data distributions or the
original data. This corresponds to the ciphertext-only attack (COA) in cryptanalysis.

Level 2: apart from the ciphertext, the attacker also knows distributions of plaintext,
including the attribute domain (the maximum and minimum values), attribute distri-
butions (e.g., the probability density function (PDF) or histogram), and the covariance
between attributes. In practice, some applications may already expose distributional in-
formation through statistical database interface [8], but do not want to expose the exact
data to the public, which may breach privacy.

Level 3: the attacker obtains a small set of plaintext tuples and their cipher tuples in
the outsourced data. This corresponds to the chosen-plaintext attack (CPA). The CPA
attack might be possible in some situations. For instance, the attacker may break in
an authorized user’s account in a query-based service, submit designed queries, and
eavesdrop the communication channel to get plaintext-ciphertext pairs.

3.2 Distributional Attacks

Distributional Attack on OPE. The known distribution attack is fatal to some existing
utility preserving encryption schemes, such as order preserving encryption. Let’s take
a look how this attack damages an OPE scheme for one dimensional data. The attacker
can collect a sufficiently large number of cipher records and sort them in ascending
order. Meanwhile, the original distribution is partitioned into bins. Each bin occupies
certain percentage of the population. Let’s denote the bins with B = {b1, b2, . . . , bm}
and the percentage of first i bins to the population as pi and p0 = 0. Because the order
of the cipher records is preserved, we can find a mapping between the sorted cipher
records and the bins B, bin by bin. In the i-th bin, we take the first pi percentage of the
sorted cipher records, denoted as the set Si, S0 = ∅, and assign the difference Si−Si−1

to the bin bi. If bi is bounded by the range [ai, ai+1], we say the set Si−Si−1 has value
approximately in [ai, ai+1]. We can choose arbitrary small bins to increase the precision
of estimation. It was shown that RASP encryption does not preserve dimensional value
orders [6]. Thus, the bin-based attack does not work on RASP.

ICA Distributional Attack. Independent Component Analysis (ICA) [18] is a fun-
damental problem in signal processing that has many applications such as blind source
separation of mixed electro-encephalographic(EEG) signals, audio signals and the anal-
ysis of functional magnetic resonance imaging (fMRI) data. Let matrix X composed by
source signals, where row vectors represent source signals. Suppose we can observe the
mixed signals Y , which is generated by linear transformation Y = AX . The ICA model
is designed to separate the independent components (the row vectors) of the original
signals X from the mixed signals Y , if the following conditions are satisfied:

1. The source signals are independent, i.e., the row vectors of X are independent;
2. All source signals must be non-Gaussian with possible exception of one signal;



3. The number of observed signals, i.e. the number of row vectors of Y , must be at
least as large as the independent source signals.

4. The transformation matrix A must be of full column rank.

All ICA algorithms [18, 16] share the same idea that tries to find a matrix Ã that ÃY
contains non-Gaussian components to approximate the signals in X .

RASP’s Resilience to ICA Attack. RASP’s protection from the ICA attack is to
use the combination of OPE and RASP, i.e., the RASP’ scheme. Because each of the d
original dimensions is transformed to normal distribution via the OPE scheme and the
additional noise d + 2-th dimension has an approximate normal distribution, the con-
dition 2 of effective ICA is not satisfied. The ICA algorithms can possibly identify the
constant d+1-th dimension ‘1’, but they cannot distinguish the other d+1 dimensions.

3.3 RASP Encryption is not IND-CPA

We present a chosen plaintext attack, Plane Attack, on the RASP encryption, which
demonstrates that the RASP encryption is not indistinguishable to chosen plaintext at-
tack.

Proposition 1 RASP is not computationally indistinguishable to chosen plaintext at-
tack.

Sketch of Proof. Let c = E(m) represent a RASP encryption. The distinguisher experi-
ment is described as follows.

1. m0 and m1 are two points randomly sampled from the original data space Rd.
2. The point mb, where b ∈ {1, 0} is randomly selected, is encrypted to cb with the

function E and given to the adversary.
3. The adversary can request a polynomial number of plaintext records {mi, i >

1,mi ∈ Rd} to be encrypted, where mi ̸= m0 and mi ̸= m1. With some attacking
algorithm, the adversary finally outputs a bit b′.

If |Pr(b′ = b) − Pr(b′ ̸= b)| < 1/p(n), p(n) is some polynomial function in terms
of the key length n, we say the encryption scheme is indistinguishable under chosen
plaintext attack. We show that the following “plane attack” allows the adversary to
accurately predict b, i.e., Pr(b′ = b) = 1. Thus, RASP is not IND-CPA.

If m0 ̸= m1, there is always a plane separating these two points. Let’s use wTm+
a = 0 to represent the plane, where m is a variable in the original data space Rd, while
w and a are parameters determining the plane. Therefore, we have wTm0 + a < 0 and
wTm1 + a > 0. Let ci = E(mi) be the ciphertext. By definition of RASP encryption,
the separation plane wTm + a = 0 is transformed to another plane in the encrypted
space, uTA−1y = 0, where uT = (wT ,−a, 0). By definition, we still have uTA−1c0 <
0, and uTA−1c1 > 0. Therefore, once we can determine the plane parameter uTA−1,
we can test cb to distinguish whether b = 0 or b = 1.

We show that although it is impossible to find the exact value of vT = uTA−1, we
can possibly find vT = αtT that t is known but the scalar α is unknown. Plugging αtT

to the separation plane, the decision problem is transformed to determining the sign of
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Fig. 2. Many planes passing the original can be the candidate of the
original plane P’s image. However, all of them can correctly separate
the ciphertext c0 and c1.

αtT cb. Thus, knowing the sign of α will solve the decision problem completely. Next,
we describe the methods of (1) deriving the vector t and (2) determining the sign of α.

We sample a sufficient number of points {mi}, where i > 1 and mi ̸= m0 and mi ̸=
m1, from the original separation plane wTm+a = 0. With extended d+2-dimensional
vectors m̃i as the column vectors, we get a matrix M̃ . They are then encrypted with
the RASP encryption to {ci}. ci should be in the plane vT c = 0 according to the
definition of vT . Using the vectors {ci} as the column vectors we get a matrix C̃ so
that vT C̃ = 0. It is clear that there are an unlimited number of solutions for vT . To
find the representation of vT , we need to find the basis of the null space of C̃. Because
C̃ = AM̃ and Rank(C̃) = Rank(AM̃), it follows Rank(C̃ ≤ min {Rank (A), Rank
(M̃) }, according to the property of matrix rank [21]. Because Rank(A)=d+2 and M̃
has one row of 1, Rank(C̃) ≤ Rank(M̃) ≤ d + 1. We can easily find sample points to
make Rank(C̃) = d + 1. According to the rank-nullity theorem [21], the basis of the
null space of C̃ consists of one vector t and the solution to vT C̃ = 0 can be represented
as vT = αtT , where α can be any value. However, the sign of α can be determined
with an additional known pair of (mk, ck) that is not on the separation plane. Without
loss of generality, we assume wTmk + a < 0, which leads to αtT ck < 0. With known
tT and ck we derive the sign of α.

Now with the known vector tT and the sign of α the adversary can easily determine
the sign of αtT cb. If αtT cb < 0, b = 0 is returned, otherwise b = 1. This gives the
exact answer to the distinguisher experiment. ⊓⊔

.

Figure 2 illustrates the Plane attack. One may wonder whether the adversary can use
the plane attack to figure out the key matrix A - i.e., using different planes and samples
on the planes to construct a sufficient number of equations to infer A. We show that
it is impossible. Based on the previous discussion, the best we can get for a plane i is
uT
i A

−1 = αit
T
i . Putting d + 2 planes (with linearly independent ui) together we can

reduce the number of unknowns of A to d + 2, i.e., A−1 = U−1(α1t1, . . . , αd+2t2),
where U = (u1, . . . , ud+2)

T . However, the unknowns αi cannot be further eliminated.



3.4 Refined Security Definition

We think the indistinguishability definition might be too strong for the situation of en-
crypted data for outsourced services. Distinguishing which record is encrypted is not
very meaningful to the attacker. The attacker is more interested in estimating the origi-
nal values based on his/her prior knowledge. In the following, we investigate a relaxed
definition based on the effectiveness of estimation attacks.

Amount of Preserved Confidentiality. The existing security definition for sym-
metric encryption is based on the computationally indistinguishability model [19]. This
definition says that the adversary can only do negligibly better than random guess to
find the plaintext for a ciphertext. Because of the preserved properties, the strong in-
distinguishability definition may not be achieved - the recent study on order-preserving
encryption [2, 3] has shown this. In the context of outsourced data, the attacker’s goal
may not be finding the exact plaintext for a ciphertext (which becomes impossible when
random noise is available) or distinguishing ciphertexts. We believe more interesting is
the precise estimation of each record based on the known information.

We propose a new security definition based on estimation accuracy. According to
different applications, the tolerance of the level of adversarial estimation error could
vary. Thus, the accuracy of estimation needs to be tunable according to users’s prefer-
ences. Based on this understanding, attacks can be modeled as a learning problem - with
the known information the attacker wants to learn an approximate decryption function
that outputs approximate plaintext for the corresponding ciphertext. Correspondingly,
the theoretical lower error bound [22] of the learning problem defines the security for a
specific dataset and a specific encryption method.

Specifically, we define the amount of preserved confidentiality (APC) based on the
distribution of estimation error. Let X represent the random variable that generates
the values for certain attribute in the dataset. Let X̂ be the estimate of X . {xi} are
the plaintexts and {x̂i} are the corresponding estimated plaintexts. In general, if the
estimation error X − X̂ approximately follows some distribution with mean µ and
standard deviation σ, we can derive the normalized error (X − X̂ − µ)/σ in the range
[−δ, δ] with certain confidence 1-α (e.g., 0.95).

Pr(−δ ≤ X − X̂ − µ

σ
≤ δ) ≥ 1− α, (3)

which is justified by the interval estimation theory [5]. It follows that the error X−X̂ is
bounded by [µ− δσ, µ+ δσ]. µ and σ together determine the interval. With the known
distributional information, however, µ can be easily estimated and removed from X̂ .
Thus, only σ is meaningful to confidentiality. To precisely evaluate the confidentiality
crossing different domains, we refine the definition according to the length of domain.
The length of the domain is defined as the length of the portion of the domain that
contains the majority of elements. For example, if the domain has a normal distribution,
the majority (95.4%) of points is in the range [µ′ − 2σ′, µ′ +2σ′], where µ′ is the mean
and σ′ is the standard deviation. In this case, we can derive the length of domain is 4σ′.
Let D denote the length of domain. We define the amount of preserved confidentiality
as the relative length of the interval: APC = 2δσ

D under confidence level 1− α.



We can derive the APCs under the indistinguishability definition, which are instruc-
tional for users setting a specific APC threshold. If X is uniformly distributed in the
domain [0, D], D > 0, indistinguishability tells X̂ has the same distribution. It follows
that X − X̂ is a triangle distribution [10] in [−D,D] with µ = 0 and σ = D/

√
6.

For normalized X − X̂ distribution (triangle distribution in [−
√
6,
√
6]), we choose

δ =
√
6 to include the complete domain (thus with confidence level 1). It follows that

APC = 2δσ
D = 2 with confidence level 1. Similarly, we can derive APC = 2 with

confidence level 0.954 if we assume the encryption is indistinguishable under normal
plaintext distribution.

More interesting is the theoretical lower bound of APC for a specific dataset and
an encryption construction. Since the APC measure is determined by the variance of
the error (σ2), the key question to security analysis is whether we can determine the
minimum variance, regardless of any learner, for a specific plain dataset and a specific
encryption method. This problem is nicely linked to the existing results in statistics and
machine learning. We will analyze the lower bound of APC for the RASP method in
terms of CPA attacks.

3.5 Security Analysis on Estimation Attacks

We apply the APC measure to evaluate the effectiveness of estimation attack with the
chosen plaintext records. First, we will define the estimation attack; then we derive the
lower bound of APC for the estimation attack.

Assume the attacker knows a number of plaintext/ciphertext record pairs, which are
chosen by the attacker. Concretely, let Pd×m be the known m d-dimensional original
records (x1, . . . , xm),m > d + 2 and xi ∈ Rd, that include d + 2 linearly indepen-
dent records, and Qd+2×m be the corresponding d + 2-dimensional ciphertext records
(y1, . . . , ym), yi ∈ Rd+2.

We first transform the RASP equation for easier manipulation. Let the key matrix
A decomposed into blocks A = (A1, A2, A3), where A1, A2 and A3 have block sizes
(k+ 2)× k, (k+ 2)× 1 and (k+ 2)× 1, respectively. Let C and M are the ciphertext

and plaintext datasets, respectively. The extended data is

M
1
v

 where 1 is the row

vector with ‘1’ and v is a row vector with random positive values. According to the
RASP definition, the relationship between C and M is

C = (A1, A2, A3)

M
1
v

 = A1M +A21+A3v. (4)

A21 can be treated a translation matrix that adds the constant vector A2 to each of the
column vectors in A1X; A3v is a random noise matrix.

At the first look, Eq. 4 is a standard affine transformation with a noise component.
Assume the noise vector v consists of independent and identical random variables with
mean value µv and variance σ2

v . We have v = µv + ṽ, where ṽ has mean value zero
and the same variance σ2

v . Thus, the noise component is decomposed to A3µv + A3ṽ.



As the constant component A21 + A3µv can be canceled by subtracting any known
plaintext/ciphertext record pair (x0, y0) from the pairs (xi, yi), the problem is reduced
to estimate A1 with the presence of the noise component A3ṽ and the known plaintext
records P and the corresponding ciphertext records Q. The standard method for learn-
ing A1 is regression analysis [9]. In fact, the Gauss-Markov theorem [16] tells the least
square regression method gives the minimum variance unbiased estimator, which helps
us identify the lower bound of APC.

Because eventually we want to use the whole set of ciphertext C to predict the
plaintext M , for easier manipulation, we further transform the equation to the canonical
regression problem that have the ”responses” M on the left side of the equation

M = (AT
1 A1)

−1AT
1 C − (AT

1 A1)
−1AT

1 A3ṽ, (5)

assuming A is selected so that AT
1 A1 is invertible. Let’s consider one dimension only.

Let Mi be the i-th row of M , and β be the i-th row of (AT
1 A1)

−1AT
1 and Ui be i-th row

of −(AT
1 A1)

−1AT
1 A3ṽ. The equation is simplified to

Mi = βC + Ui. (6)

We further simplify this representation to focus on the dimensional value. Considering
the dimensional plaintext value xij of the j-th dimension for the plaintext record xi,
from Eq. 6 we have xij = βyi + uj , where yi is xi’s ciphertext and uj is some random
value drawn from the distribution of Ui. In practice, the attacker can only use x̂ij = β̂yi
to estimate xij , where β̂ is the estimation of β learned with regression analysis and the
known plaintext P and ciphertext Q. According to [16], the expected squared prediction
error of the estimator x̂ij = β̂yi is

E(xij − β̂yi)
2 = var(uj) +MSE(β̂yi)

= var(uj) + E2(xij − β̂yi) + var(β̂yi). (7)

Because var(xij− β̂yi) = E(xij− β̂yi)
2−E2(xij− β̂yi), it follows var(xij− x̂ij) =

var(uj) + var(β̂yi). Regardless of the variance of the estimator var(β̂yi), the noise
component var(uj) is irreducible [16], for which we can conclude that the var(uj)
gives a very conservative lower bound for var(xij − x̂ij).

We further analyze the closed form of var(uj) to better understand the lower bound.
Let ci be the i-th element of the vector (AT

1 A1)
−1AT

1 A3. It follows that var(uj) =
c2i var(ṽ) = c2iσ

2
v . Therefore, the variance var(u) is co-determined by the key matrix

A and the variance of the original noise v.
Based on this result, we can derive the lower bound of APC for RASP encryption.

Assume the prediction error xij − β̂y follows a normal distribution, we choose the
span δ = 2 to cover more than 95% of the error population. Let the domain length of
the dimension i be Di. We consider the lower bound of APC for RASP encryption for
dimension i

min(APC RASP (i)) = 2δ
√

var(u)/Di = 4ciσv/Di. (8)



To remove the effect of different domain lengths, we can standardize all the dimensions
before performing the encryption. With the help of OPE, we can tune the domain dis-
tributions to make all domains have normal distributions. Thus, all Di can be set to 4 to
cover more than 95% of the normalized values. With this preparation, it is easy to derive
encryption settings that satisfy a user-defined lower bound APC0 for all dimensions -
we can control the generation of A and σv so that min{ciσv, i = 1 . . . d} > APC0.

4 Related Work

The order preserving encryption (OPE) [1] preserves the dimensional value order after
encryption. Thus, it can be used in most database operations, such as indexing and
range query. Boldyreva et al. [2, 3] has formally analyzed the security of OPE. As we
demonstrated in the paper, any OPE schemes are vulnerable to distributional attacks.
Crypto-Index is based on column-wise bucketization. It assigns a random ID to each
bucket; the values in the bucket are replaced with the bucket ID to generate the auxiliary
data for indexing. However, the bucketization scheme leaks a lot of information. Thus,
a bucket-diffusion scheme [17] was proposed to introduce noise records into the results
to improve the security, which, however, has to sacrifice the precision of query results.
Secure keyword search on encrypted documents [24, 14, 12, 4, 7] is another cluster of
utility preserving encryption methods. They allow the server to scan each encrypted
document in the database and find the documents containing the keyword. There have
been rigid security analysis on this line of research [12, 7].

5 Conclusion and Future Work

In this paper we thoroughly analyzed the data security of the utility preserving RASP
encryption. The result shows that the RASP encryption does not satisfy IND-CPA.
Thus, we introduce a relaxed definition, which is based on learning and estimation the-
ory. A concrete estimation attack - the regression attack utilizing the known plaintext-
ciphertext pairs to estimate the unknown plaintexts - is analyzed under the new security
definition. The result show that the RASP encryption parameters can be possibly se-
lected to meet different level of requirements on data confidentiality. Due to the space
limitation, we have to focus on our analysis on data confidentiality. Another interest-
ing problem is the security of the RASP’s query transformation algorithm. Although
the initial analysis shows its resilience to various attacks, a formal analysis may reveal
possible weaknesses or uncover nice security properties.
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