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Abstract. Protocols for password-based authenticated key exchange (PAKE) al-
low two users who share only a short, low-entropy password to agree on a cryp-
tographically strong session key. Any unauthorized party who controls the com-
munication channel but does not possess the password cannot participate in the
method and is constrained as much as possible from guessing the password. One
must ensure that protocols are immune to off-line dictionary attacks in which
an adversary exhaustively enumerates all possible passwords in an attempt to
determine the correct one. Recently Katz, et al. [6] gave a new framework for
realizing PAKE without random oracles, in the common reference string model.
In this paper, we instantiate the framework of [6] under the lattices assumptions.
Specifically, we modified the lattice-based approximate projective hashing intro-
duced in [9] and plug it into the framework of [6], and we prove our new PAKE
is efficient and secure based on the security of GK’s PAKE framework [6] in the
standard model.
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1 Introduction

Protocols for authenticated key exchange enable two parties to generate a shared, cryp-
tographically strong key while communicating over an insecure network under the com-
plete control of an adversary. Such protocols are among the most widely used and funda-
mental cryptographic primitives; indeed, agreement on a shared key is necessary before
higher-level tasks such as encryption and message authentication become possible.

Password-based authenticated key exchange (PAKE) protocols enable two users
to generate a common, cryptographically-strong key based on an initial, low-entropy,
shared secret (i.e., a password). The difficulty in this setting is to prevent off-line dic-
tionary attacks where an adversary exhaustively enumerates potential passwords on
its own, attempting to match the correct password to observed protocol executions.
Roughly, a PAKE protocol is secure if off-line attacks are of no use and the best attack
is an on-line dictionary attack where an adversary must actively try to impersonate an
honest party using each possible password. On-line attacks of this sort are inherent in
the model of password-based authentication; more importantly, they can be detected by
the server as failed login attempts and defended against.
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1.1 Related Work

The first successful password-authenticated key agreement methods were Encrypted
Key Exchange methods [14] described by Steven M. Bellovin and Michael Merritt in
1992. Although several of the first methods were flawed, the surviving and enhanced
forms of EKE effectively amplify a shared password into a shared key, which can then
be used for encryption and/or message authentication. The first provably-secure PAKE
protocols were given in work by M. Bellare, D. Pointcheval, and P. Rogaway [2] and in
work [15] by V. Boyko, P. MacKenzie, and S. Patel both presented in Eurocrypt 2000.
These protocols were proven secure in the random oracle model.

Katz, Ostrovsky, and Yung (KOY) [19] demonstrated the first efficient PAKE pro-
tocol with a proof of security in the standard model. Their protocol was later abstracted
by Gennaro and Lindell (GL) [18], who gave a general framework that encompasses the
original KOY protocol as a special case. These protocols are secure even under concur-
rent executions by the same party, but require a common reference string (CRS). While
this may be less appealing than the plain model, reliance on a CRS does not appear to
be a serious drawback in practice for the deployment of PAKE, where common param-
eters can be hard-coded into an implementation of the protocol. The KOY/GL frame-
work requires a CCA-secure encryption scheme (such as Cramer-Shoup cryptosystem
[17]) with an associated smooth projective hash function, and its extensions require
four rounds in order to achieve mutual authentication. Almost all subsequent work on
efficient PAKE in the standard model [4], [10], and [5] can be viewed as extending and
building on the KOY/GL framework.

A different PAKE protocol in the CRS model is given by Jiang and Gong [8], later
abstracted and generalized by Groce and Katz [6]. Comparing to KOY/GL framework,
the new JG/GK framework only requires a CCA-secure encryption scheme, and a CPA-
secure encryption scheme with an associated smooth projective hash function [3]. It
also achieves mutual authentication in three rounds. In their work [6], Groce and Katz
mentioned their framework will significantly improve efficiency when basing the proto-
col on lattice assumptions. Katz and Vaikuntanathan [9] first instantiated the KOY/GL
PAKE protocol under lattice assumptions. The most technically difficult aspect of their
work is the construction of a lattice-based CCA-secure encryption scheme with an as-
sociated approximate smooth projective hash system. Instantiating the exact smooth
projective hash from lattice assumptions is stated as an open question in [12], and we
argue that an approximate SPH is not suffice for the JG/GK PAKE framework. In order
to plug into the JG/GK’s framework, we use an approximate lattice-based SPH and an
error correcting code(ECC) to do the job of an exact lattice-based SPH.

The use of lattice-based assumptions in cryptography has seen a bloom of activity in
recent years. In part, this is due to a general desire to expand the set of assumptions on
which cryptosystems can be based (i.e., beyond the standard set of assumptions related
to the hardness of factoring and solving the discrete logarithm problem). Cryptographic
primitives based on lattices are appealing because of known worst-case/average-case
connections between lattice problems, as well as because several lattice problems are
currently immune to quantum attacks. Also, the best-known algorithms for several lat-
tice problems CVP/SVP require exponential time. Even restricting to classical attacks,
the best known algorithms for solving several lattice problems require exponential time
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(in contrast to the sub-exponential algorithms known, e.g., for factoring). Finally, rely-
ing on lattices can potentially yield very efficient constructions because the basic lattice
operations manipulate relatively small numbers and are inherently parallelizable.

1.2 Organization

Building on ideas of Groce and Katz [6], we show a new construction of an efficient
PAKE based on lattices. Our work is to theirs as the work of Katz and Vaikuntanathan
[9] is to that of Katz-Ostrovsky-Yung [19], and Gennaro-Lindell [18]; namely, we
present a instantiation of lattice-based PAKE under the JG/KV framework.

In section II we first introduce some notation and review the necessary background
on lattices. Then we define the secure PAKE protocol, and give a brief description of the
JG/GK PAKE framework. Lastly we introduce the lattice-based approximate smooth
projective hash system presented in [9] and argue that it cannot directly plug into the
JG/GK PAKE framework. We present our PAKE protocol in section III, and later give
a brief proof of the security under the LWE assumption.

2 Preliminaries

Notation. Throughout the paper we say that a function ε: R∗ → R∗ is negligible if ε(n)
is smaller than all polynomial fractions for sufficiently large n. We use column notation
for vectors and use (x1, ..., xn) to denote the column vector with entries x1, ..., xn. We
use square brackets to enclose matrices and row vectors. Define the statistical distance,
denoted ∆(X;Y ), as ∆(X;Y ) = 1/2Σs∈Ω |Pr[X = s] = Pr[Y = s]|, let X and Y be
two random variables taking values in some finite set Ω. We say that X is uniform over
Ω if ∆(X;UΩ) ≤ σ where UΩ is a uniform random variable over Ω.

2.1 Lattices and the LWE assumption

A lattice is defined as the set of all integer combinations

L(b1, ..., bn) = {
n∑
i=1

xibi : xi ∈ Z, for 1 ≤ i ≤ n}

of n linearly independent vectors b1, ..., bn in Rn. The set of vectors b1, ..., bn is called
a basis for the lattice. A basis can be represented by the matrix B = [b1, ..., bn] ∈ Rn×n
having the basis vectors as columns. Using matrix notation, the lattice generated by a
matrix B ∈ Rn×n can be defined as L(B) = {Bx : x ∈ Zn}, where Bx is the usual
matrix-vector multiplication.

Lattice problems: The most well known computational problems on lattices are the
following.

– Shortest Vector Problem (SVP): Given a lattice basis B, find the shortest non-zero
vector in L(B).
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– Closest Vector Problem (CVP): Given a lattice basis B and a target vector t (not
necessarily in the lattice), find the lattice point v ∈ L(B) closest to t.

– Independent Vectors Problem (SIVP): Given a lattice basis B ∈ Zn×n, find n lin-
early independent lattice vectors S = [s1, ..., sn] (where si ∈ L(B) for all i) mini-
mizing the quantity ‖S‖ = maxi‖si‖.

The LWE hardness assumption Security of all our constructions reduces to the LWE
(learning with errors) problem, a classic hard problem on lattices defined by Regev [13].

Definition 1. Consider a prime q, a positive integer n, and a distribution χ over Zq ,
all public. An (Zq, n, χ)-LWE problem instance consists of access to an unspecified
challenge oracle O, being, either, a noisy pseudo-random sampler Os carrying some
constant random secret key s ∈ Znq , or, a truly random sampler Ou, whose behaviors
are respectively as follows:

– Os: outputs samples of the form (ui, vi) = (ui, uTi s + xi) ∈ Znq × Zq , where,
s ∈ Znq is a uniformly distributed persistent value invariant across invocations,
xi ∈ Zq is a fresh sample from χ and ui is uniform in Znq .

– Ou: outputs truly uniform random samples from Znq × Zq .

The (Zq, n, χ)-LWE problem allows repeated queries to the challenge oracleO. We say
that an algorithm A decides the (Zq, n, χ)-LWE problem if |Pr[AOs = 1]− Pr[AOu =
1]| is non-negligible for a random s ∈ Znq .

Regev [13] shows that for certain noise distributions χ denoted Ψα, the LWE prob-
lem is as hard as the worst-case SIVP and GapSVP under a quantum reduction.

2.2 Password-Based Authenticated Key Exchange

We now recall the security model for password-based authenticated key exchange of
Bellare et al. [2].

Protocol participants. Each participant in the password-based key exchange is either a
client C ∈ C or a server S ∈ S. The set of all users or participants U is the union C ∪S .

Long-lived keys. Each client C ∈ C holds a password pwC . Each server S ∈ S holds
a vector pwS = {pwS [C]}C∈C with an entry for each client, where pwS [C] is the
transformed-password, as defined in [2]. In this work(also in [6]), we only consider the
symmetric model, in which pwS [C] = pwC , we denote the sharing password as πU,U ′ .
In general, pwC and pwS are also called the long-lived keys of client C and server S,
and they may be different.

Protocol execution. The interaction between an adversary A and the protocol partic-
ipants occurs only via oracle queries, which model the adversary capabilities in a real
attack. During the execution, the adversary may create several instances of a partici-
pant. While in a concurrent model, several instances may be active at any given time,
only one active user instance is allowed for a given intended partner and password in a
non-concurrent model. Let U i denote the instance i of a participant U and let b be a bit
chosen uniformly at random. The query types available to the adversary are as follows:
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– Execute(Ci, Sj): This query models passive attacks in which the attacker eaves-
drops on honest executions between a client instance Ci and a server instance Sj .
The output of this query consists of the messages that were exchanged during the
honest execution of the protocol.

– Send(U i,m): This query models an active attack, in which the adversary may
tamper with the message being sent over the public channel. The output of this
query is the message that the participant instance U i would generate upon receipt
of message m.

– Reveal(U i): This query models the misuse of session keys by a user. If a session
key is not defined for instance U i or if a Test query was asked to either U i or to its
partner, then return ⊥. Otherwise, return the session key held by the instance U i.

– Test(U i): This query tries to capture the adversary’s ability to tell apart a real
session key from a random one. If no session key for instance U i is defined, then
return the undefined symbol⊥. Otherwise, return the session key for instance U i if
b = 1 or a random key of the same size if b = 0.

Partnering. The definition of partnering uses the notion of session identifications (sid).
In [6] Groce. et al. defined mutual authentication and denoted the security parameter by
n. Prior to any execution of the protocol there is an initialization phase during which
public parameters are established. They assume a fixed set of protocol participants U .
For every distinct U,U ′ ∈ U , we assume U and U ′ share a password πU,U ′ . They make
the simplifying assumption that each πU,U ′ is chosen independently and uniformly at
random from the set {1, ..., Dn} for some integer Dn that may depend on n. Denote
instance i of user U as Πi

U , sidiU , pidiU , and skiU denote the session id, partner id,
and session key, respectively. The session id is simply a way to keep track of different
executions; let sidiU be the (ordered)concatenation of all messages sent and received
by Πi

U . The partner id denotes the user with whom Πi
U believes it is interacting; we

require pidiU 6= U . acciU is the flag denoting acceptance. Let U,U ′ ∈ U . Instances Πi
U

and Πi
U ′ are partnered if: sidiU = sidiU ′ 6= null, and pidiU = U ′, pidiU ′ = U .

Freshness. The notion of freshness is defined to avoid cases in which adversary can
trivially break the security of the scheme. The goal is to only allow the adversary to
ask Test queries to fresh oracle instances. More specifically, we say an instance U i

is fresh if it has accepted and if both U i and its partner are unopened, which means
Reveal(U i) has not been made by the adversary.

Correctness. To be viable, a key-exchange protocol must satisfy the following notion
of correctness: if Πi

U and Πj
U ′ are partnered then acciU = accjU ′ = true and skiU = skjU ′ ,

i.e., they both accept and conclude with the same session key. Define oracle Test(U i)
as follows: A random bit b is chosen; if b = 1 the adversary is given skiU , and if b = 0
the adversary is given a session key chosen uniformly from the appropriate space.

Semantic security. Consider an execution of the key exchange protocol Π by an ad-
versary A, in which the latter is given access to the Reveal, Execute, Send, and Test
oracles and asks a single Test query to a fresh instance, a single Test query to a fresh
instance, and outputs a guess bit b′.

Informally, the adversary can succeed in two ways: (1) if it guesses the bit b used
by the Test oracle (this implies secrecy of session keys), or (2) if it causes an instance
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to accept without there being a corresponding partner (this implies mutual authentica-
tion). We denote the event that the adversary succeeds by Succ. The advantage of A in
attacking protocol Π is

AdvA,Π(k) = 2 · Pr[Succ]− 1,

Definition 2. Protocol Π is a secure PAKE protocol with explicit mutual authentication
if, for all dictionary sizes ‖Dn‖ and for all ppt adversaries A making at most Q(n)
on-line attacks, there exists a negligible function negl(·) such that

AdvA,Π(n) ≤ Q(n)/‖Dn‖+ negl(n).

2.3 Smooth Projective Hashing

Smooth projective hash functions were introduced by Cramer and Shoup [3], and later
extended by Gennaro and Lindell [18]. To define this notion they rely on the existence of
a set X (actually a distribution on sets), and an underlyingNP-language L ⊆ X (with
an associated NP-relation R). The basic hardness assumption is that it is infeasible
to distinguish between a random element in L and a random element in X\L. This is
called a hard subset membership problem.

A smooth projective hash family is a family of hash functions that operate on the
set X . Each function in the family has two keys associated with it: a hash key k, and
a projection key α(k). The first requirement (which is the standard requirement of a
hash family) is that given a hash key k and an element x in the domain X , one can
compute Hk(x). There are two additional requirements: the projectionrequirement
and the smoothnessrequirement. The former is that given a projection key α(k) and
an element in x ∈ L, the value of Hk(x) is uniquely determined. Moreover, computing
Hk(x) can be done efficiently, given the projection key α(k) and a pair (x,w) ∈ R. The
smoothnessrequirement, on the other hand, is that given a random projection key s =
α(k) and any element in x ∈ X\L, the value Hk(x) is statistically indistinguishable
from random.

We follow (and adapt) the treatment of Katz and Vaikuntanathan [9], who extend
their original definition by introducing the approximate smooth projective hashing.
Roughly speaking, the differences between [9] definition and that of [18] is that [9]
only requires approximate correctness. (For readers not familiar with the formal defini-
tion of smooth projective hashing, find [18] for more details.)

Formally, an ε(n)-approximate smooth projective hash function is defined by a sam-
pling algorithm that, given pk, outputs (K,G,H = {Hk : X → {0, 1}n}k∈K , S, α :
K × ({0, 1}∗ × C)→ S such that:

– There are efficient algorithms for (1) sampling a uniform k ∈ K, (2) computing
Hk(x) for all k ∈ K and x ∈ X , and (3) computing α(k, label, C) for all k ∈ K
and (label, C) ∈ {0, 1}∗ × C.

– Approximate correctness Let Ham(a,b) denote the Hamming distance of two
strings a, b ∈ {0, 1}n. Then there is an efficient algorithm H’ that takes as input
s = α(k, label, C) and x = (label, C,m, r) for which C = Encpk(label,m; r)
and satisfies: Pr[Ham(Hk(x), H ′(s, x)) ≥ ε · n] = negl(n).
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– Smoothness For any x = (lable, C,m) ∈ X L, the following two distributions
have statistical distance negligible in n: {k ← K; s = α(k, label, C) : (s,Hk(x))}
and {k ← K; s = α(k, label, C); v ← {0, 1}n : (s, v)}.

2.4 The JG/GK PAKE Framework

The JG/GK framework for PAKE in [6] has the following primitives: (1). A CPA-
secure public-key encryption scheme Σ′ = (Gen′,Enc′,Dec′) with an associated
smooth projective hash function. and (2). A CCA-secure public-key encryption scheme
Σ = (Gen,Enc,Dec). Jiang-Gong protocol is actually an instant of this framework by
letting Σ′ be the El Gamal encryption scheme (which is well-known to admit an SPH
function), and Σ be the Cramer-Shoup encryption scheme, we recover the JG proto-
col [8]. Using the CPA-secure encryption system let JG/GK protocols about 25% faster
than the KOY/GL protocols.

We should note that the framework requires an exact smooth projective hash func-
tion. Although lattice-based CPA-secure(or CCA-secure) public-key encryption scheme
and its variants have been existed since [13] and [7], constructing such an scheme along
with an exact smooth projective hash from lattice assumptions is still an open question
since first stated in [12]. We argue that constructing exact lattice-based CPA SPH may
not have interest on its own(at least for PAKE scheme). First of all, the definition could
probably be modified so that approximate CPA SPH along with error-correction satis-
fies the definition of exact CPA SPH. Second, it is only interesting if exact CPA SPH is
more efficient than approximation CPA SPH with error-correction.

3 An Efficient Lattice-based PAKE

In this section we present a new efficient PAKE from lattices based on [6]. Specifically,
we use the lattice-based CPA-secure encryption scheme along an approximate smooth
projective hash function introduced in [9]. In addition, we use error-correcting code to
let it fit in the framework.

3.1 Approximate CPA SPH from Lattice [9]

The encryption scheme is a variant of the scheme presented in [7], and is based on
the hardness of the LWE problem [13]. With some modifications to the algorithm, it
provides smoothness for the approximate SPH system.

Let n be the security parameter, and l = n be the message length. The param-
eters of the system are a prime q = q(n, l), a positive integer m = m(n, l), and a
Gaussian error parameter β = β(n, l) ∈ (0, 1] that defines a distribution Ψβ . Choose
a B ∈ Zm×nq along with l+ 1 vectors u0,..., ul ∈ Zmq . Let the public key contain

the matrix A = [B|U], where the columns of U ∈ Z
m×(l+1)
q are the vectors u0,...,

ul. The secret key is the trapdoor T for the entire matrix A by running (A,T) ←
TrapSamp(1m, 1n+l+1, q), where TrapSamp is as described in [1]. Let the public key
be A and the secret key is T. To encrypt the message w ∈ Zlq with respect to a public
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key as above, the sender chooses s ← Znq uniformly at random, and an error vector
x← Ψ

mn

β . The ciphertext is

y = A ·

 s
1
w

+ x (mod q) .

The decryption algorithm is immaterial to understand this paper, we omit their detailed
procedure here.

Fix a public key A ∈ Z
m×(n+l+1)
q for the system (where we write A = [B|U],

as usual), and a dictionary D = Zlq . A key for the SPH system is a k-tuple of vectors
(e1, ..., ek) where each ei ← DZm,r is drawn independently from the discrete Gaus-
sian distribution. The projection set S = (Znq )k. For a key (e1, ..., ek) ∈ (Zmq )k, the
projection is α(e1, ..., ek) = (u1, ..., uk), where ui = BT ei.

We now define the smooth projective hash functionH = {Hk}k∈K . On input a key
(e1, ..., ek) ∈ K and a ciphertext c = (label, y,m), the hash function is computed as
follows. First compute

zi = eTi

[
y − U ·

(
1
m

)]
∈ Zq.

Treat zi as a number in [−(q − 1)/2...(q − 1)/2] and output b1...bk ∈ {0, 1}k. where

bi =

{
0 if zi < 0
1 if zi > 0

On input a projected key (u1, ..., uk) ∈ S, a ciphertext c = (label, y,m) and a witness
s ∈ Znq for the ciphertext, the hash function is computed as H ′u(c, s) = b1...bk where

bi =

{
0 if uT

i s < 0

1 if uT
i s > 0

Theorem 1. [9] Let n, l,m, q, β be chosen such thatm ≥ 4(n+l)logq, β < 1/(2·m2n·
w(
√

logn), and
√
q · w(

√
logn) ≤ r ≤ ε/(8 ·mn2 · β). Then, the cryptosystem above

is a CPA-secure encryption scheme assuming the hardness of decision LWE problem
[13], andH = {Hk}k∈K is an-approximate smooth projective hash system.

Approximate correctness. Let bi be the ith bit of H(e1,...,ek)(c) and b′i be the ith bit of
H ′(e1,...,ek)(c, s). Because |zi − uT

i s| = |eT
i (Bs+ x)− uT

i s| = |eT
i x| ≤ ‖ei‖ · ‖x‖ <

ε/2 · q/4. We see that the probability that bi 6= b′i is at most ε/2. So the Hamming
distance between H(e1,...,ek)(c) and H ′(e1,...,ek)(c, s) is at most εk with overwhelming
probability.

Smoothness. Smoothness comes from the fact that the pair (eT
i B, e

T
i z) is statistically

close to the uniform distribution over Zn+1
q . We omit the proof here, refer to [9] for

further details.
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3.2 The PAKE Protocol

We use the lattice-based CPA-secure encryption system Σ′ with an approximate SPH
function introduced above and a lattice-based CCA-secure encryption system of [11]
denoted as Σ. The protocol relies on a common reference string (CRS) consisting of
public keys pk, pk′ forΣ andΣ′, respectively, and parameters (K,G,H = {Hk : X →
{0, 1}n}k∈K , S, α : K × ({0, 1}∗ × C)→ S for approximate SPH function associated
with pk′. A high-level depiction of the protocol is given in Figure 1.

CRS: pk, pk′

Πi
u Πi

u′

r ← {0, 1}∗, k′ ← K
C′ = Enc′pk′(π : r)
s′ = α(k′, C′)

k, k∗ ← K
s = α(k, C′) ∈ {0, 1}n
s∗ = α(k∗, C′) ∈ {0, 1}l
r∗j ‖τ∗j ‖sk∗j ← Hk∗(C

′, π)
label = U‖U ′‖C′‖s
C = Enclable

pk (π, r∗j )
tk = Hk(C′, π)⊕H(s′, C)
∆ = Ecc(Hk∗(C

′, π))⊕ tk

tk′ = Hk′(C, π)⊕H(s, C′)
H ′ = Ecc−1(tk ⊕ tk′ ⊕∆)

if Ham(H ′, H(s∗, C′)) ≤ 2ε/l
r∗i ‖τ∗i ‖sk∗i ← H ′

label = U‖U ′‖C′‖s
Ĉ = Enclable

pk (π, r∗i )
if Ĉ 6= C, abort

τ∗i 6= τ∗j abort
output sk∗joutput sk∗i

U‖C′‖s′

U ′‖C‖s‖s∗‖∆

τ∗i

Fig. 1. An honest execution of the protocol.
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When a client instance Πi
U wants to authenticate to the server instance Πi

U ′ , the
client first chooses a random tape r and then computes an encryption C ′ = Enc′pk′(π :
r) of the shared password π. Then it chooses a random hash key k′ ← K and computes
the projection key s′ = α(k′, C ′). The client then sends U‖C ′‖s′ to the server.

Upon receiving the massage U‖C ′‖s′, the server also chooses two random hash
keys k, k∗ ← K and computes the projection key s = α(k,C ′) ,and s∗ = α(k∗, C ′). It
then computes two hash Hk∗(C ′, π) ∈ {0, 1}l, l < n and Hk(C ′, π) ∈ {0, 1}n using
the ciphertext C ′ it received in the first message and the password π that it shares with
U . For Hk∗(C ′, π) the result is parsed as a sequence of three bit-strings r∗j , τ

∗
j , sk

∗
j ,

where r∗j will be used as the random tape for an encryption using Enc. The server
set label = U‖U ′‖C ′‖s, and generate an encryption C = Enclable

pk (π, r∗j ) of shared
password π. It then computes hash H(s′, C) using the projection key s′ it received
from the client, and generates a temporary session key tk = Hk(C ′, π) ⊕ H(s′, C).
It also computes ∆ = Ecc(Hk∗(C ′, π)) ⊕ tk where Ecc : {0, 1}l → {0, 1}n, l < n
is an error-correcting code correcting a 2ε fraction of errors. Finally, server sends the
message U ′‖C‖s‖s∗‖∆ back to the client.

Upon receivingU ′‖C‖s‖s∗‖∆, the client first computes hashHk′(C, π) andH(s, C ′)
using the projected key s,C that it received from server and the k′ it generated in the first
round. It also computes H(s∗, C ′) ∈ {0, 1}l using the s∗ it received from the server.
Then it computes tk′ = Hk′(C, π) ⊕ H(s, C ′) and H ′ = Ecc−1(tk ⊕ tk′ ⊕ ∆) ∈
{0, 1}l. Next it first check whether Ham(H ′, H(s∗, C ′)) ≤ 2ε/l, if it is not the case,
the client aborts. Otherwise, it continue to parse r∗i , τ

∗
i , sk

∗
i from H ′, and computes

Ĉ = Enclable
pk (π, r∗i ). It then checks whether Ĉ = C it received from the server in the

second round. If it is the case, the server has successfully authenticated to the client, and
the client then accepts, sends τ∗i to the server, and output the session key sk∗i , otherwise,
the client aborts.

When the server receives the client’s final message τ∗i , it checks that τ∗i 6= τ∗j and
aborts if that is not the case. Otherwise the client has successfully authenticated to the
server, and the server accepts and outputs the session key sk∗j .

3.3 Proof of Security

Correctness is easily verified. If both parties are honest and there is no adversarial
interference, then H ′ = Ecc−1(tk ⊕ tk′ ⊕∆) ∈ {0, 1}l, note that tk′ = Hk′(C, π)⊕
H(s, C ′), tk = Hk(C ′, π) ⊕H(s′, C), and ∆ = Ecc(Hk∗(C ′, π)) ⊕ tk, according to
Approximate correctness of Theorem 1. [9], H ′ can be corrected back to Hk∗(C ′, π)
using Ecc−1 and so it holds that r∗i = r∗j , τ∗i = τ∗j . It follows that both parties will
accept and output the same session key sk∗i = sk∗j .

Theorem 2. If Σ′ is a lattice-based CPA-secure public encryption scheme with asso-
ciated approximate smooth projective hash function, Σ is a CCA-secure public-key
encryption scheme, and Ecc : {0, 1}l → {0, 1}n, l < n is an error-correcting code cor-
recting a 2ε fraction of errors. Then the protocol in Figure 1. is a secure PAKE protocol
with explicit mutual authentication.

The proof of security of the protocol follows [6] closely; we sketch the main ideas.
First, as in [19], [18], we note that for a passive adversary (i.e., one that simply observes
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interactions between the server and the client), the shared session-key is pseudorandom.
This is simply because the transcript of each interaction consists of semantically-secure
encryptions of the password π and the projected keys of the approximate SPH system.

It remains to deal with active adversaries that modify the messages sent from the
client to the server and back. We can reduce the security to the GK framework’s. Briefly,
if the adversary sends the client a ciphertext that does not decrypt to the client’s pass-
word, then the session-key computed by the client is statistically close to uniform con-
ditioned on the adversary’s view.

We defer a complete proof to the proof of security in the GK framework [6].

3.4 Comparing with JG’s instantiation

We present a instantiation of lattice-based PAKE under the KV framework. Comparing
with Jiang and Gong’s instantiation in [8] which security is under the decisional discrete
logarithm problems, our lattice-based PAKE has many advantages. Using hard lattice
problems, such as the shortest vector problem, as the basis of security has advantages
over using the factoring or discrete logarithm problems. For instance, lattice operations
are more efficient than modular exponentiation and lattice problems remain hard for
quantum and subexponentialtime adversaries.

4 Conclusion

We show a new construction of an efficient PAKE based on lattices. Our work is built on
ideas of Groce and Katz [6], just like the work of Katz and Vaikuntanathan [9] instan-
tiated the Katz-Ostrovsky-Yung [19] framework, and Gennaro-Lindell [18] framework.
Namely, we present a instantiation of lattice-based PAKE under the JG/KV framework
[6].

We first reviewed the definition of a secure PAKE protocol, and then give a brief
description of the JG/GK PAKE framework. Then we introduced the lattice-based ap-
proximate smooth projective hash system presented in [9] and argue that it cannot di-
rectly plug into the JG/GK PAKE framework. We constructed a new PAKE protocol
using the modified GK PAKE framework, and gave a brief proof of the security under
the LWE assumption.
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