
Efficient Multi-Query CPIR from Ring-LWE?

Helger Lipmaa1,2

University of Tartu, Estonia

Abstract. We propose an (n,m)-computationally-private information retrieval (CPIR) protocol with rate
1 − o(1) and highly nontrivial (sublinear and data-dependent) server’s computational complexity. For this,
we note that an (n,m)-CPIR protocol is equivalent to a secure function evaluation protocol that evaluates a
secret function f on m different inputs. Thus, we first design an efficient multi-level circuit for f , and then
use the recent (ring-)LWE based fully-homomorphic encryption scheme by Brakerski, Gentry and Vaikun-
tanathan [BGV11] to evaluate the circuit in a private manner. Apart from the final result itself, several of our
techniques may be of independent interest. This includes the construction of the circuit for f and the definition
and construction of computational batch codes.
Keywords. Circuit complexity, compressed constant-weight codes, computational batch codes, CPIR, parallel
computation, ring-LWE.

1 Introduction

In many privacy-preserving data mining applications, the client needs to retrieve in parallel some (possibly many)
items out of the server’s database, without the server realizing which elements were fetched. A typical example
consists of a company executive accessing the salary information of the employees to be fired, or a medical doctor
accessing biographic information of the patients who are scheduled for certain tests the same day. In many such
cases, one needs to retrieve a large number of database elements at once. The cryptographic tool that implements
this functionality is called (multi-query) computationally-private information retrieval (CPIR, [CGKS95,KO97]).

More technically, in an m-out-of-n computationally-private information retrieval ((n,m)-CPIR) protocol, the
client obtains m different elements of his choice from the server’s n-element database of `-bit strings. The server
obtains no information about which m elements were retrieved. There are

(
n
m

)
different choices for the client to

select m different elements out of n. In a non-private version of (n,m)-CPIR, the client just sends the number
of the corresponding choice 0 ≤ y <

(
n
m

)
to the server, who replies with m `-bit database elements. The total

communication of such a protocol is dlog2
(
n
m

)
e + m` bits. As shown in [GKL10], dlog2

(
n
m

)
e + m` is also a

communication complexity lower bound even for multiround and non-private information retrieval protocols.
In the private case, one is interested in the communication rate (the amount of useful information, dlog2

(
n
m

)
e+

m`, divided by the communication complexity of the (n,m)-CPIR protocol) and the server’s computational com-
plexity. (The client’s computational complexity is much smaller than the one of the server in almost all well-
known CPIR protocols, and for this reason we will not study it.) The only prior-art multi-query CPIR with con-
stant rate was recently proposed in [GKL10], however their protocol has server’s computational complexity of
Ω(mn`/κ) public-key operations, see Tbl. 1. Clearly, this is computationally too inefficient for large values of
m. (Here and in what follows, κ is a security parameter that corresponds to the ciphertext length, and λ is a
security parameter that corresponds to the exponential security. E.g., λ = 80.) On the other hand, the only prior-
art sublinear-communication (n, 1)-CPIR that also achieved server’s sublinear-in-n computational complexity of
O(n`/ log(n`)) public-key operations was proposed in [Lip09]. (This given estimation is an upperbound, the
amount of actual computation depends on the BDD-complexity of the server’s database.) Its m-times parallel rep-
etition has communication complexity Θ(κm · log2 n +m`), which is far from optimal. See Sect. 2 for related
work.

In [IKOS04], the authors showed how to reduce the computation of (n,m)-CPIR protocols by using batch
codes. Recall that in an [n,N,m,M, T ]` batch code, a database f of n `-bit strings is divided into M bins where
each bin contains N/M `-bit strings. If a client wants to obtain m elements of the original database, he will need
to query (no more than) T elements from each of the M bins. A batch code guarantees that based on the answers
to the resulting ≤ M · T queries, the client is able to efficiently reconstruct the m elements he was originally
interested in.
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Protocol Upperbound on server’s computation bit-operations Communication in bits Assumption
Prior art

[GKL10] Ω(mn`/κ) ·Ω(λ6) ≤ 100 · (log2
(
n
m

)
+m`+ κ) DSA + PRG

[Lip09] + ex O(n` logn/ log(n` logn/m)) ·Ω(λ6) Θ(κm · log2(n logn/m) +m`) DCRA
[Lip09] + ss O(n`/ log(n`/m2)) ·Ω(λ6) Θ(κm2 · log2(n/m2) +m2`) DCRA

Old CPIR protocols with the new computational batch code

[Lip09] + cb O(n`/ log(Tn`/m)) ·Ω(λ6) Θ(κm · log2(Tn/m)/T +m`/T ) DCRA + PRG
New CPIR: versions with different rate

1/κ Θ

(
Tn`

((Tn/m)log2 log2(Tn/m) log2(Tn`/m))

)
· Õ(λ2) ((1 + o(1)) · log2

(
n
m

)
+ 2m(`+ 1))κ RLWE + PRG

1
polylog λ

Θ

(
Tn`

((Tn/m)log2 log2(Tn/m) log2(Tn`/m))
+ Tsym

(
log2

(
n
m

)))
· Õ(λ2) dlog2

(
n
m

)
e+ (1 + o(1))m` RLWE + PRG

Table 1. Efficiency comparison of different (n,m)-CPIR protocols. Here, “ex”/“ss” is the expander/subset code
from [IKOS04], “cb” is the computational batch code from the current paper. We omit the communication cost of sending
the public key. In all protocols but [GKL10], the server’s computational complexity depends on the database, and the value
given here corresponds to the worst-case computational complexity. DCRA denotes the composite residuosity assumption and
DSA denotes the decision subgroup assumption from [GKL10]. See the text for the definition of T and Tsym

Given an [n,N,m,M, T ]` batch code, the client and the server can replace an instance of a (n,m)-CPIR
protocol with M parallel instances of (N/M,T )-CPIR protocols. For example, one can run Lipmaa’s (N/M, 1)-
CPIR protocol from [Lip09] M times in parallel to obtain a batch-coded (n,m)-CPIR protocol. The resulting
protocol has server’s computational complexityΘ(M ·((N/M)`/ log(N/M ·`))) = Θ(N`/ log(N`/M)) public-
key operations and communication complexity Θ(κM · log2(N/M) +M`). The best batch code in [IKOS04]
(namely, the expander code) withM = O(m) hasN = O(n log n) and T = 1. On the other hand, the subset code
from [IKOS04] has N = O(n) but M = Ω(m2) and T = 1, see Sect. 5. Lipmaa’s CPIR protocol from [Lip09]
batched with either of those two codes is still far from optimal. See rows 2 and 3 in Table 1.
Our Contributions. We propose a new (n,m)-CPIR protocol with rate 1 − o(1) that at the same time achieves
highly nontrivial (sublinear and data-dependent) server’s computational complexity. The new CPIR has two ver-
sions. The first version has asymptotically the best server’s computational complexity among any known multi-
query CPIR protocols, and rate 1/κ where κ = Õ(λ). The second version has asymptotically optimal rate 1−o(1)
but a somewhat higher server’s computational complexity. Our constructions constitute of the next three principal
steps, each of which by itself contains some new results.

First. Following [Lip09], we interpret the server’s database f = (f1, . . . , fn) as a function f with f(i) = fi.
Thus we think of an (n,m)-CPIR protocol as a secure function evaluation protocol that computes f in parallel
on m different inputs. We design a circuit for computing the sequence (f(x1), . . . , f(xm)), where the input x =
(x1, . . . , xm), with 0 ≤ xi < xi+1 < n, is represented by an encoded integer 0 ≤ y <

(
n
m

)
. By evaluating this

circuit, the server clearly evaluates nonprivate version of information retrieval. Moreover, the resulting nonprivate
protocol has optimal communication.

Unfortunately, for most databases f it is a priori unclear how to design such an optimal circuit, or even how
large it is. As an example, by a classical result of Lupanov [Lup58], any function F : {0, 1}n → {0, 1}` can be
computed by a circuit of size (1+o(1))2n`/ log2(2

n`). Since in our case, f :
{
0, . . . ,

(
n
m

)
− 1
}
→ {0, 1}m`, one

can design a circuit with size (1 + o(1))
(
n
m

)
·m`/ log2(

(
n
m

)
·m`) that computes f . Unfortunately, this circuit has

a superpolynomial-in-n size if m = Ω(log n).
Thus, to construct an efficient protocol based on fully-homomorphic encryption, one has to first design an

efficient circuit for the problem at hand, and the later task is often non-trivial by itself. In particular, the current
paper makes some contributions to the field of circuit complexity.

More precisely, our circuit consists of two levels. In the first level, an ≈ log2
(
n
m

)
-bit input y is decoded to a

codeword (x0, . . . , xm−1), 0 ≤ xi < xi+1 < m in what we call the compressed constant-weight code by using
recent algorithms by Tian, Vaishampayan and Sloane [TVS09,SV09] that are described in Sect. 3. The second
level circuit outputs, given input (x0, . . . , xm−1), the tuple (f(x0), . . . , f(xm−1)). To do the latter efficiently, we
generalize a little-known result of Uhlig [Uhl74,Uhl92] to the case of non-Boolean functions f . That is, we prove
that ifm < n1/ log2 log2 n, then the size of the second level circuit is upper bounded by (1+o(1))n`/ log2(n`), i.e.,
it does not depend on m at all. This is a contribution of independent interest. Clearly, if m is larger, one can just
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compute dm/n1/ log2 log2 ne circuits of size (1+o(1))n`/ log2(n`) in parallel. See Sect. 4. Ifm = O(
√
n/ log n),

then the first level circuit is small. The new generalization of Uhlig’s result decreases the size of the second-level
circuit (and thus also of the whole circuit) by a factor of n1/ log2 log2 n.

Second. For the first-level circuit to be efficient, we neededm = O(
√
n/ log n). (We call a CPIR protocol that

satisfies this condition restricted.) Even then, for large values ofm the resulting circuit is too large. To this end, we
define computational [n,N,m,M, T ]` batch codes that guarantee (1− 2−λ)-completeness under a computational
assumption, while batch codes of [IKOS04] have unconditionally guaranteed perfect completeness. (This can be
compared with the work on computational error-correcting codes [MPSW05].) Due to the relaxed completeness
conditions, our new computational [n,N = n,m,M = dm/T e, 2T ]` batch code is significantly more efficient
than any of the batch codes proposed in [IKOS04].

While the new computational batch code is inspired by an implicit construction of [GKL10], we have provided
a full definitional framework, and have made it more efficient by using a significantly more precise argument
to bound the completeness error: namely, according to the analysis of [GKL10], T = Ω(λ) while in our case
T = Θ(

√
mλ/(n(n−m))) = O(

√
λ) and in practice one can assume T ≤ 10.1

Given the new computational batch code, we need to design dm/T e considerably smaller circuits for
(bTn/mc, 2T )-CPIR protocols. As mentioned above, in the batch codes of [IKOS04] either N = Ω(n log n)
or M = Ω(m2) while we achieve simultaneously N = n and M = dm/T e.

Third. On top of the previous constructs, we use the recent ring-LWE [LPR10] based fully-homomorphic
encryption scheme by Brakerski, Gentry and Vaikuntanathan [BGV11] BGV to homomorphically evaluate the
dm/T e circuits; this clearly implements the (n,m)-CPIR protocol.2 The concrete FHE scheme was chosen be-
cause of its relative efficiency. We also need its details later to decrease the rate of the CPIR protocol. In the case
of an optimal underlying circuit, the just described CPIR protocol has optimal server’s computational complexity
(times the time to evaluate the fully-homomorphic encryption scheme once, which is Õ(λ2) bit-operations in the
case of the BGV cryptosystem) and rate 1/κ. For an arbitrary database, by using the results desribed above, we
obtain the upper bound of row 5 in Tbl. 1.

To improve on this result, we use two separate tricks to compress the client’s message and the server’s mes-
sage. More precisely, we improve the rate to 1 − o(1). However, the improved rate protocol has some additional
computational cost, see row 6 of Tbl. 1 where Tsym(x) is the circuit-complexity of some CPA-secure symmetric
cryptosystem on x-bit input.

Finally, as estimated in [BGV11], one public-key operation of the BGV cryptosystem takes Õ(λ2) bit-
operations. At the same time, all previous (not based on fully-homomorphic encryption) efficient CPIR pro-
tocols [Lip05,GR05,Lip09,GKL10] use public-key operations that have bit-complexity Ω(λ6).3 Currently, this
is offset by the complexity of key-generation and the length of public keys of the existing fully-homomorphic
encryption schemes, including [BGV11]. However, we expect that due to the pace of research in the area of
fully-homomorphic encryption, more efficient FHE schemes will be constructed within few years. We hope that
non-trivial protocol papers like the current one will give additional motivation for such research. Moreover, in
practice the main bottleneck that does not allow one to implement CPIR (and oblivious transfer) protocols is their
computational complexity.
Efficient (n, 1)-CPIR Protocols. Let L(f) be the size of the optimal circuit that “computes” f . As a simple
corollary, if m = 1 then from the previously described rate-1/κ (n,m)-CPIR protocol we obtain an (n, 1)-
CPIR protocol with communication complexity Θ(κ · log n + κ`) and the server’s computational complexity of
Θ(L(f)) · Õ(λ2) bit-operations. For this, we note that in the previous construction, if m = 1 then we do not need
the part of encoding/decoding the compressed constant-weight codes. One can further improve the rate by using
techniques from Sect. 6. This result is interesting by itself since it also provides an efficient protocol for secure
function evaluation.

The only previous (n, 1)-CPIR protocol with polylogarithmic communication and sublinear computation
was proposed recently by Lipmaa [Lip09]. Lipmaa’s (n, 1)-CPIR protocol has communication complexity
Θ(κ · log2 n + `) and computation complexity of Θ(Lbp(f)) · Ω(λ6) online bit-operations, where Lbp(f) is

1 Most probably, one can use this result to make the (n,m)-CPIR protocol of [GKL10] more efficient, but investigating this
is out of scope of the current paper.

2 We can also use the LWE-based variation of the cryptosystem from [BGV11]. The resulting CPIR protocol will be somewhat
less efficient, but it will be based on a more standard underlying assumption (LWE instead of ring-LWE).

3 The (n, 1)-CPIR protocol of [BV11] is based on public-key operations that has bit-complexity Ω(λ4) according
to [BGV11]. Obviously, one can implement their CPIR protocol on top of the BGV cryptosystem and achieve Õ(λ2)
bit-operations per public-key operation.
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the size of the optimal branching program (also known as a binary decision diagram) that “computes” f . Note
that often, Lbp(f) > L(f), and thus the new (n, 1)-CPIR protocol is asymptotically both more communication-
efficient and computation-efficient than Lipmaa’s (n, 1)-CPIR protocol from [Lip09]. (Moreover, in the protocol
of [Lip09], the online public-key operations are applied on long inputs which makes the public-key operations and
thus also the whole protocol even less computationally efficient.) Note that Gentry [Gen09a] proposed another
(n, 1)-CPIR protocol, based on an FHE scheme, with communication complexity Θ(κ · log n + κ`) and signif-
icantly larger computational complexity of Θ(n · log n) (fully-homomorphic) public-key operations. A similar
(n, 1)-CPIR protocol but with the linear computational complexity is imminent from [Lip08] and was recently
constructed in [BV11].

2 Preliminaries

Notation. Vectors will be denoted in bold like in f = (f0, . . . , fn−1). We make use of the Landau notations O(·),
Ω(·), Õ(·), etc. A positive function g(n) is negligible if g(n) = n−ω(1). A positive function g(n) is overwhelming
if 1 − g(n) is negligible. If X is a random variable, then E[X] denotes its mean and Pr[X = x] denotes the
probability of the event X = x. κ and λ are security parameters, κ is usually equal to the ciphertext length, while
λ corresponds to the exponential security (every attack takes time at least 2λ); λ is also the security parameter for
the used symmetric encryption scheme. All logarithms have basis 2. Note that dlog2

(
n
m

)
e ≈ dn · H2(m/n)e =

dn log2 n −m log2m − (n −m) log2(n −m)e bits, where H2(p) := −p · log2 p − (1 − p) · log2(1 − p) is the
binary entropy function.
Ring-LWE. For security parameter λ, let f(x) = xd + 1, where d = d(λ) is a power of 2. Let q = q(λ) ≥ 2 be
an integer. Let R = Z[x]/(f(x)) and Rq = R/qR. In particular, |Rq| = qd. For a ∈ R, let [[a]]q denote a mod q
with coefficients reduced into the range (−q/2, q/2].

Let χ = χ(λ) be a distribution over R. The RLWEd,q,χ problem is to distinguish between the following two
distributions. In the first distribution, one samples (ai, bi) uniformly from R2

q . In the second distribution, one
draws s← Rq uniformly and then samples (ai, bi)← R2

q by samplying ai ← Rq uniformly, ei ← χ, and setting
bi ← ai · s+ ei. The RLWEd,q,χ assumption [LPR10] is that the RLWEd,q,χ problem is infeasible.

In [LPR10], the authors proved that for any d that is a power of 2, ring R = Z[x]/(xd + 1), prime integer
q = q(d) ≡ 1 (mod d), and B = ω(

√
d log d), there is an efficiently sampleable distribution χ that outputs

elements of R of length at most B with overwhelming probability, such that if there exists an efficient algorithm
that solves RLWEd,q,χ, then there is an efficient quantum algorithm for solving dω(1) · (q/B)-approximate worst-
case shortest vector problem for ideal lattices over R. Typically, χ is a discrete Gaussian distribution, where the
vectors have length poly(d) with overwhelming probability.
Fully-Homomorphic Encryption Schemes. Let PKC = (Gen,Enc,Dec,Eval) be a public-key cryptosystem. Fix
the length ` of the elements of the plaintext space Msg. Gen is a randomized key generation algorithm such that
(sk, pk) ← Gen(1κ); Enc is a randomized encryption algorithm such that for any M ∈ Msg, C ← Encpk(M);
Dec is a decryption algorithm such that for any C ∈ Cfr, where Cfr is ciphertext space, M ← Decsk(C). We say
that PKC is fully-homomorphic, if for any polynomial-size circuit C, given ciphertexts Ci = Encpk(Mi) of all k
inputs to circuit C, Evalpk(C, C1, . . . , Ck) outputs a ciphertext C such that Decsk(C) = C(M1, . . . ,Mk). The first
(polynomial-time) fully-homomorphic encryption scheme was defined by Gentry [Gen09b].

We now formally define the CPA (chosen plaintext attack) game. First, the challenger chooses (sk, pk) ←
Gen(1κ) and sends pk to the attacker. Second, the attacker selects some plaintexts M0 and M1 and sends them to
the challenger. Third, the challenger chooses b ← {0, 1} and sends Encpk(Mb) back to the attacker. Fourth, the
attacker outputs a bit b′ ∈ {0, 1}. The attacker wins if b′ = b. We say that a public-key cryptosystem is CPA-secure
if no nonuniform probabilistic polynomial-time attacker wins with non-negligible probability.
The BGV cryptosystem. Based on techniques from [BV11], in a recent preprint [BGV11], Brakerski, Gentry and
Vaikuntanathan proposed the up to now most efficient FHE scheme that can be instantiated either by the LWE or
by the ring-LWE assumption. Since this BGV cryptosystem is yet not well known, we will next give a very brief
overview of the more efficient ring-LWE based BGV scheme. See [BGV11] for justification of the parameters and
a full description (the following description is definitely not complete).

Basic encryption scheme. In a setup algorithm, one chooses d to be a power of 2, q ≡ 1 (mod d),N = d3 log2 qe,
R = Z[x]/(xd+1), and a χ such that the scheme achieves RLWEd,q,χ security of order 2−λ. In particular, assume
that χ outputs an element of R of length at most Bχ = ω(

√
d log d). To achieve 2λ security against known lattice

attacks, one must set d = Ω(λ · log(q/B)). Let params = (q, d,N, t, χ).
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The secret key is s← χ, a element of Rq . To generate a public key, generate uniform a← RNq and e← χN .
Let pk = (ψ1,ψ2) = (a, sa+ 2e) ∈ RN×2q . To encrypt m ∈ R2, generate r ← RN2 and set c = (c1, c2) ∈ R2

q ,
where c1 = m + 〈r,ψ2〉 = m +

∑N
i=1 riψ2i ∈ Rq and c2 = −〈r,ψ1〉 = −

∑N
i=1 riψ1i ∈ Rq . To decrypt

(c1, c2), output [[[[c1 + c2s]]q]]2.
The noise of a fresh ciphertext is upperbound by 2dNBχ, and this basic encryption scheme is correct with an

overwhelming probability if that noise is less than q/2. Note that since N = Θ(log q), Bχ = Ω(
√
d log d) with

d = Θ(λ log q) then it suffices to take q = Õ(λ1.5). The basic encryption scheme is secure under the RLWEd,q,χ
assumption under the chosen parameters.

Adding/multiplying ciphertexts. Given two ciphertexts c1, c2 ∈ R2 (that encrypt m1 and m2 by using the
same s, a and e, and some different r1 and r2, respectively), define Add(c1, c2) = c1 + c2 ∈ R2. Clearly,
Decsk(Add(c1, c2)) = Decsk(c1) +Decsk(c2). The noise of Add(c1, c2) is roughly equal to the sum of noises of
c1 and c2.

Let Mult(c1, c2) = c
′ = (c′1, c

′
2, c
′
3) = (c11c21, c12c21+c11c22, c12c22) ∈ R3. One can “decrypt” c′ by using

secret key s′ = (1, s, s2)⊥ as follows: [[[[〈c′, s′〉]]q]]2 = m1m2 if there resulting noise is less than q/2. The noise
of Mult(c1, c2) is roughly equal to the product of noises of c1 and c2.

The result of Mult is not a valid ciphertext of the basic encryption scheme (a pair) but a triple. Follow-
ing [BV11,BGV11], one can define an efficient key switching procedure that, given as an input this triple c′

(that can be decrypted to some M by using the secret key (1, s, s2)⊥), outputs a “valid” encryption of M (a pair
c′′ = (c′′1 , c

′′
2)) under a different secret/public key pair (s∗, (ψ∗1 ,ψ

∗
2)), such that Decs∗(c′′) = M . In particular,

c′′ has only additively larger noise compared to c′.
One can evaluate a (∧,⊕)-Boolean circuit homomorphically in a bottom-up manner, by assuming that the

inputs are Boolean, and then executing an Add(a,Add(b,Mult(a, b))) at every a ⊕ b gate, and a Mult(a, b) (fol-
lowed by a key switch) at every a ∧ b gate. (Other gates can implemented by combining AND and XOR.) The
main problem is that after a number of Mult steps, the noise has increased so much that the resulting ciphertext
will not decrypt correctly. To prevent this, after a number of multiplication steps, one has to do noise reduction.

In the BGV cryptosystem, one can choose between two different reduction mechanisms. The first mechanism,
modulus switching, takes a ciphertext modulo p (i.e., from R2

p) and outputs a ciphertext of the same plaintext
modulo some q � p (i.e., from R2

q) such that the noise of the second ciphertext is approximately equal to q/p
times the noise of the first plaintext. Thus, applying such modulus switching after every Mult gate, with p/q
slightly larger than the noise in fresh ciphertexts, one can keep the noise down almost indefinitely.

Modulus switching has the drawback that the modulus of the inputs to the circuit has to be very large (propor-
tional to the multiplicative complexity of the Boolean circuit), and this means that for circuits of high multiplicative
complexity, computational costs will be very large. To circumvent this problem, in addition one can use (after a
carefully chosen number of multiplications) bootstrapping, that is, given a ciphertext C = Encpk(M) and homo-
morphically encrypted bits of a different secret key sk′, one can homomorphically decrypt C and obtain the value
Encpk′(M) with drastically decreased noise. We refer the reader to [BGV11] for details.

While the resulting (leveled) FHE scheme has relatively large ciphertexts of length ddlog2 qe ≈ λ log2 q =
Θ(λ log2 λ), it has impressive computational complexity of Õ(λ2) bit-operations per gate. This can be compared
with Ω(λ6) bit-operations needed in the case of RSA, Paillier’s cryptosystem, etc.
Computationally-Private Information Retrieval. In a multi-query m-out-of-n computationally-private infor-
mation retrieval protocol, (n,m)-CPIR, for `-bit strings, the client has an index set x = (x0, . . . , xm−1) with
0 ≤ x0 < x1 < . . . < xm−1 ≤ n − 1 and the server has a database f = (f0, . . . , fn−1) with fi ∈ {0, 1}`.
Note that there are

(
n
m

)
such tuples x. The client obtains (fx0

, . . . , fxm−1
). A two-message (n,m)-CPIR protocol

PIR = (Query,Reply,Answer) is complete if Answer(`,x,Reply(`,f ,Query(`,x))) = (fx0
, . . . , fxm−1

) with
probability 1− κ−ω(1), or equivalently, with probability 1− 2−λ. Here, Query(`,x) is the client’s first message,
Reply is the server’s second message, and Answer is a local function that the client applies to the reply to obtain
back the answer.

Consider the next chosen index attack game: First, the attacker selects some index vectors x0 and x1, and
sends them to the challenger. Second, the challenger chooses b ← {0, 1}, and sends Query(`,xb) back to the
attacker. Third, the attacker outputs a bit b′ ∈ {0, 1}. The attacker wins if b′ = b. We say that an (n,m)-CPIR
protocol is private if no nonuniform probabilistic polynomial-time adversary wins the chosen index attack game
with a non-negligible probability.

The communication complexity of a CPIR protocol is equal to |Query|+|Answer|. As noted in the introduction,
the communication complexity of a trivial non-private information retrieval protocol is equal to dlog2

(
n
m

)
e+m`.
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The rate of an (n,m)-CPIR protocol is equal to (dlog2
(
n
m

)
e+m`)/(|Query|+ |Answer|). The first (n, 1)-CPIR

protocol with a sublinear communication was proposed in [KO97], and the first protocol with polylogarithmic
communication was proposed in [CMS99]. In [Lip05], Lipmaa proposed an (n, 1)-CPIR protocol with communi-
cationΘ(κ·log2 n+` log n), and then in [Lip09] constructed a variation of it with communicationΘ(κ·log2 n+`)
and (sublinear and data-dependent) server’s computational complexity of O(n`/ log2(n`)/κ) public-key opera-
tions. Both protocols achieve rate 1 when ` increases. One can construct an (n,m)-CPIR protocol by batch-coding
either of the (n, 1)-CPIR protocols, but the result has a subconstant rate.

The first constant-rate (n, 1)-CPIR protocol was proposed by Gentry and Ramzan [GR05], and generalized
to a constant-rate (n,m)-CPIR protocol by Groth, Kiayias and Lipmaa [GKL10]. More precisely, in the protocol
of [GR05], the rate is 1/4, and in the protocol of [GKL10], the rate is approximately 1/100. The server’s compu-
tational complexity of the Groth-Kiayias-Lipmaa protocol is Θ(mn`/κ) public-key operations.4 In all described
CPIR protocols, the cost of a single public-key operation is Ω(λ6).

In [BV11], Brakerski and Vaikuntanathan proposed a new LWE-based fully-homomorphic encryption scheme,
and used it to construct an efficient (n, 1)-CPIR protocol for 1-bit strings with almost optimal communication and
linear computation.

3 Encoding and Decoding of Constant-Weight Codes

Preliminaries. Fix n and m. For x = x1 . . . xn ∈ {0, 1}n, define its Hamming weight wh(x) =
∑
xi =

] {i : xi = 1}. The (n,m) constant-weight binary code C(n,m) is a set of length-n bitstrings such that any
x ∈ C(n,m) has Hamming weight wh(x) = m. Clearly, ]C(n,m) =

(
n
m

)
. Thus, the code C has rate

dlog2 |C(n,m)|e/n = dlog2
(
n
m

)
e/n.

There is a natural correspondence between the constant-weight code and the code

CC(n,m) = {(x0, . . . , xm−1) : 0 ≤ x0 < · · · < xm−1 < n ∧ xi ∈ Z}

of length-(m · dlog2 ne) bitstrings. Unless m ≥ n/ log2 n, the codewords of CC are shorter than the codewords of
C. Because of this, we say that CC is the compressed constant-weight code. Clearly, also ]CC(n,m) =

(
n
m

)
.

In the encoding problem for (uncompressed) constant-weight binary codes, one has to construct an efficiently
computable bijection between Z(nm) and C(n,m). The map from Z(nm) to C is called encoding (of constant-weight
codes), and the map from C to Z(nm) is called decoding. The fastest known encoding and decoding algorithms for
constant-weight codes (both based on arithmetic coding) were proposed in [Ram90], both requiring a circuit of
size Θ(n log n log log n log log n).

Analogously, in the case of compressed constant-weight codes, one has to construct an efficiently computable
bijection between Z(nm) and CC(n,m). The map from Z(nm) to CC is called encoding (of compressed constant-
weight codes), and the map from CC to Z(nm) is called decoding. To achieve efficient encoding and decoding, one
sometimes relaxes the previous definition, by replacing Z(nm) with some set Bm(n), elements of which can be

represented in (1 + o(1)) log2
(
n
m

)
bits.

Efficient Encoding and Decoding of Compressed Constant-Weight Codes. The fastest known encoding and
decoding algorithms for compressed constant-weight codes were recently proposed in [TVS09,SV09], with bit-
complexity O(m2 log n), which beats the Θ(n log n log log n) bit-complexity of the algorithm from [Ram90] for
m ≤

√
n. Moreover, since the algorithms from [Ram90] are for (uncompressed) constant-weight codes, they

cannot be directly used in our application. We now give a very short description of the corresponding algorithms,
for details see [TVS09,SV09].

First, we need terminology from geometry. Two polytopes P andQ in Rm are said to be congruent ifQ can be
obtained from P by a translation, a rotation, and possibly a reflection in a hyperplane. Two polytopes P and Q in
Rm are said to be equidecomposable (or equidissectable) if they can be decomposed into finite sets of polytopes
P1, . . . , Pt and Q1, . . . , Qt, respectively, for some positive integer t, such that Pi and Qi are congruent for all
i = 1, . . . , t. That is, P is the disjoint union of the (possibly reflected) polytopes Pi, and similarly for Q. Then we
say that P can be dissected to give Q, and vice versa.

4 We note that while the Groth-Kiayias-Lipmaa protocol implicitly uses an efficient (according to our terminology) computa-
tional batch code, it is used to bring down the server’s computational complexity to linear in Θ(mn).
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Fig. 1. CD(n, 2) and B2(n) are equide-
composable

The code CC(n,m) can be seen as a unit ortoscheme in m-
dimensional vector space. For example, CC(n, 2) is an upper tri-
angle, bounded by points (0, 1), (n − 1, n − 1) and (0, n − 1)
in R2 (see Fig. 1). On the other hand, let Bm(n) be the polytope
Bm(n) := [0, n)×[n−n/2, n)×· · ·×[n−n/m, n). (The upper rect-
angle, or “brick” in Fig. 1.). Note that the volume of both CC(n,m)
and Bm(n) is nm

m! . A point in Bm(n) is presented as (y0, . . . , ym−1)
with yi ∈ [(n− 1)− (i+1)/m, n− 1), and thus can be encoded by
≤ log2

(
n
m

)
+m bits. Clearly, CD(n, 2) and B2(n) are equidecom-

posable. This can be achieved by translating the polytope 1 up and
right, and then reflecting it.

For m ≤ 4, two polytopes are equidecomposable if and only if they have the same volume and the same Dehn
invariant. For m > 4, it is only known that equality of Dehn invariants is a necessary condition. However, for
CC(n,m) and Bm(n), [TVS09] was able to efficiently dissect CC(n,m) to give Bm(n) (the decoding problem)
and vice versa (the encoding problem).

Briefly, both dissections of [TVS09] are recursive, first constructing dissections between (m−1)-dimensional
subspaces, and then efficiently handling the last coordinate of the original polytope. Inside a recursion step, one
performsΘ(m) addition/subtraction/comparison operations onΘ(log n)-bit operands, and thus the total computa-
tional complexity of the Tian-Vaishampayan-Sloane algorithm [TVS09] is Θ(m2 log n) bit operations. Moreover,
the Tian-Vaishampayan-Sloane algorithm can be described by a circuit of size Θ(m2 log n). Finally, the dissec-
tion from [SV09] is easier than the one from [TVS09], which also means that the resulting algorithm is simpler;
however the bit-complexity of the algorithm from [SV09] remains the same, Θ(m2 log n).

4 Efficient Parallel Computation

Circuits and Circuit Complexity. Let L(f) be the circuit size complexity of some function f : {0, 1}ν →
{0, 1}`. Let L(ν, `) be the circuit size complexity of the hardest Boolean function f : {0, 1}ν → {0, 1}`. We
denote L(ν) := L(ν, 1). The most precise known bound for L(ν) (originating from early work of Shannon and
Lupanov [Lup58]) appears to be L(ν) ≤ 2ν

ν ·
(
1 + 3 · log νν +O

(
1
ν

))
. For an arbitrary f : {0, 1}ν → {0, 1}`,

Lupanov [Lup58] has established a less-known upperbound L(ν, `) = (1 + o(1))2ν`/ log2(2
ν`).

Parallel Computation: Uhlig’s Upper Bound. Let Lm(ν, `) be the upperbound on the circuit size complexity
of parallel evaluation of any function f : {0, 1}ν → {0, 1}` on any m (independent) inputs. As shown by Uh-
lig [Uhl92], given the mentioned upperbound on L(ν, 1), one can derive a similar upperbound on Lm(ν, 1) for
any m < 2ν/ log2 ν . In Uhlig’s construction, one fixes a suitable k, and then by letting 0 ≤ i < 2k be the binary
presentation of (xν−k+1, . . . , xν) ∈ {0, 1}k and setting fi(x1, . . . , xν−k) := f(x1, . . . , xν), defines

g0(x1, . . . , xν−k) := f0(x1, . . . , xν−k) ,

gi(x1, . . . , xν−k) := fi−1(x1, . . . , xν−k)⊕ fi(x1, . . . , xν−k) , 0 < i < 2k ,

g2k(x1, . . . , xν−k) := f2k(x1, . . . , xν−k) .

Now, let 0 ≤ j < 2k be the binary presentation of (yν−k+1, . . . , yν). If say i < j, then f(x1, . . . , xν) =
fi(x1, . . . , xν−k) = g0(x1, . . . , xν−k) ⊕ · · · ⊕ gi(x1, . . . , xν−k), while f(y1, . . . , yν) = fj(y1, . . . , yν−k) =
gj+1(y1, . . . , yν−k)⊕ · · · ⊕ g2k(y1, . . . , yν−k).

Thus, to compute both f(x1, . . . , xν) and f(y1, . . . , yν), one evaluates 2k + 1 “small” functions gt :

{0, 1}ν−k → {0, 1} for 0 ≤ t ≤ 2k, each of them having circuit size complexity (1 + o(1))2ν−k/(ν − k)
due to Lupanov’s bound on L(·). For k = dlog2 ν − 1

2 · log2 log2 νe, all 2k + 1 functions gt can be evaluated
within total circuit size complexity (1 + o(1))2ν/ν. On top of it, one also has to evaluate a number of multiplex-
ers (to decide whether gt gets (x1, . . . , xν−k) or (y1, . . . , yν−k) as an input), a number of conditional XORs (to
decide which outputs of which gt-s will be XORed together) and a small number of other gates, all together in
o(2ν/ν) gates. Evaluating f on 2t inputs, for any t > 1, can be done recursively by using the same idea as long as
t = o(ν/ log ν) or m = o(2ν/ log ν).
Generalization of Uhlig’s Upper Bound to Non-Boolean f . Let f : {0, 1}ν → {0, 1}`. We use a similar con-
struction as in the Boolean case, but assuming that all functions f , fi and gi have range {0, 1}`. Then by Lupanov’s
upper bound, each gt : {0, 1}ν−k → {0, 1}` can be evaluated by a circuit of size (1 + o(1))2ν−k`/ log2(2

ν−k`).
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Setting k = dlog2 ν− 1
2 · log2 log2 νe as before, we get that all 2k+1 functions gt can be evaluated in total circuit

size (1 + o(1))2ν`/ log2(2
ν`). Since this clearly dominates the circuit size, we have proven the next theorem.

Theorem 1. Let f : {0, 1}ν → {0, 1}`. Let m < 2ν/ log2 ν . Then f can be evaluated in parallel on m different
inputs, in a total circuit size (1 + o(1))2ν`/ log2(2

ν`).

5 Computational Batch Codes

In [IKOS04], the authors defined (information-theoretical) batch codes. However, their constructions are not suf-
ficiently efficient for our purposes. We weaken their notion by defining computational batch codes, and then show
that one can construct computational batch codes with essential optimal parameters.

Informally, in a (computational) [n,N,m,M, T ]`-batch code, the server stores a database f = (f0, . . . , fn−1)
of `-bit strings. He divides the database into M bins, all together containing N (`-bit) strings, such that when he
later needs to retrieve any m (`-bit) strings from this database, it can do it by querying up to T (`-bit) strings from
any bin and then recombining the results. For the sake of simplicity, assume that M | N , and that all bins contain
N/M elements.

Definition 1 (Computational Batch Codes). An [n,N,m,M, T ]`-computational batch code for `-bit strings is a
tuple of efficient algorithms (BCGen,BCEncode,BCRetrieve) with the following properties:

– The key generation algorithm BCGen(1λ) outputs a key s.
– For f = (f0, . . . , fn−1) with fi ∈ {0, 1}`, BCEncodes(f) = (f ′0, . . . ,f

′
M−1), such that f ′i =

(f ′i0, . . . , f
′
i,(N/M)−1) and f ′ij ∈ {0, 1}

`. Here, f ′i is the value in the ith bin.
– For x = (x0, . . . , xn−1) with 0 ≤ x0 ≤ · · · ≤ xn−1, BCRetrieves((f ′0, . . . ,f

′
M−1),x) makes no more

than T probes to each bin, and then returns a tuple a = (a0, . . . , an−1) with aj ∈ {0, 1}`. We assume that
BCRetrieve outputs ⊥ (fail) if it tries to access more than T probes from some f ′i .

Definition 2 (Completeness of Computational Batch Codes). A computational batch code is (1− ε)-complete
if for any f and x, Pr[s← BCGen(1κ),BCRetrieves(BCEncodes(f),x) = (fx0

, . . . , fxm−1
)] ≥ 1− ε.

We say that n/N is the rate of the batch code. In [IKOS04], the authors proposed several 1-complete batch codes.
In particular, they showed that batch codes cannot exist if M < m/T . They also showed that rate 1 is generally
unachievable; their best constructions achieved rate 1− ε with M = poly(m) (with M = Ω(m2); this is since in
the subset codes of [IKOS04], M = Ω(mH(α)/α), where 0 < α < 1/2), and rate 1/ log n with M = O(m).

Next, we describe a computational batch code that is loosely based by an implicit construction of Groth,
Kiayias and Lipmaa from [GKL10] who however did not use the terminology of batch codes. We show that for
certain parameters, this CB computational batch code has rate 1 with almost optimal M = (1 + ε)K/T for any
ε > 0, at the same time providing overwhelming completeness 1−κ−ω(1) (or, exponential completeness 1−2−λ),
given a mild lowerbound on the value of T .

Recall that pseudorandom generator P : {0, 1}λ → {0, 1}L, where L(λ) > λ, is a non-uniform probabilis-
tic polynomial-time algorithm, such that for an arbitrary non-uniform probabilistic polynomial-time adversary A,
Pr[x← {0, 1}λ : A(1λ, P (1λ, x)) = 1]− Pr[y ← {0, 1}L : A(1λ, y) = 1] = κ−ω(1). Alternatively, one can as-
sume that we have an exponentially secure pseudorandom generator with the last probability being upperbounded
by 2−λ. If L(λ) ≤ λ, then P will just output its input.

We are now ready to describe the CB computational [n, n,m,M = dm/T e, (1 + ε)T ]`-batch code for `-bit

strings, where P : {0, 1}λ → {0, 1}dlog2 (
n
m)e+m is a fixed pseudorandom generator. Basically, in this batch code,

the order of database elements is permuted according to the output of P on a fixed seed s, and in the retrieval
phase, the server access the elements according to the nonpermuted order.

– BCGen(1λ) outputs a new random seed s ← {0, 1}λ. From P (s), the participants compute a permutation
π : [n]→ [n] by using the compressed constant-weight code decoding algorithm from [SV09].

– For i ∈ {0, . . . ,M − 1}, BCEncodes(f) puts to the ith bin the tuple f ′i := (f ′i,0, . . . , f
′
i,(n/M)−1), where

f ′i,j := fπ(i(n/M)+j). Let f ′ = (f ′0, . . . , f
′
M−1).

– BCRetrieves(f
′,x) does the following.

1. For every xi ∈ {0, . . . , n− 1}, BCRetrieves makes a query π−1(xi mod N/M) to the bin
π−1(bxi/(N/M)c).
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2. BCRetrieves returns ⊥ if it has made more than (1 + ε)T queries to some bin i, otherwise it returns all
query results in a correct order.

Theorem 2. Assume that the indexes π(i) are randomly distributed. Fix ε > 0. The CB computational
[n, n,m,M = d2m/T e, (1 + ε)T ]`-batch code is complete with probability 1 − m

T · e
−2αn,m(εT )2 where

α = αn,m = n(n−m+ 1)/m.

Proof. Let the bin size be β = dn/Me ≤ dTn/me. To bound the failure probability, we first bound the probability
that among randomly chosen indexes π(x0), . . . , π(xn−1), there are more than (1 + ε)T that fall into the same
(fixed) β-element bin. Let X = X(m,n, β) be a hypergeometric random variable describing the process of
counting how many white balls are selected when m balls are randomly selected without replacement from a
population of n balls of which β are white. Clearly, the mean of X is mβ/n. Thus, we first have to compute the
probability Pr[X ≥ (1 + ε)T ]. But by [Ser74], Pr[X − E[X] > γ] < e−2αγ

2

. In our application, E[X] = T , so
Pr[X > (1 + ε)T ] = Pr[X − T > εT ] = Pr[X − E[X] > εT ] < e−2α(εT )2 . Thus, the probability that no bin
has more than (1 + ε)T balls is (1− e−2α(εT )2)M ≥ 1−M · e−2α(εT )2 ≥ 1− m

T · e
−2α(εT )2 . ut

In particular, we achieve completeness 1− 2−λ if

T ≥
√
mλ · ln 2/(ε

√
2n(n−m+ 1)) . (1)

To bound the error probability for fixed n, we note that the minimum value of αm,n for this n is αm,n = 2. Thus,
we get that the CB computational batch code is (1 − εp − e−4(εT )2)-complete, independently of the value of m.
Thus in this case5, we can take T ≥ λ ln 2

ε
√
2

. In the rest of the paper, we will use the value ε = 1. This considerably
sharpens the less precise Chernoff-based bound T > 3 ln 2 · λ of [GKL10] and thus may again be of independent
interest.

Finally, assume that P is a pseudorandom generator that is (say) (1− 2−λ−10)-secure against efficient adver-
saries. Then the CB computational batch code is still (1− 2−λ)-complete under the constraint Eq. (1).

6 Improving the Rate

A straightforward implementation of any FHE-based protocol has a rate 1/κ, i.e., per 1 bit of useful data, κ bits
are exchanged. This is since every input to the circuit and output of the circuit is encrypted bitwise. With the BGV
cryptosystem, κ = Θ(λ log2 λ) is relatively large.

In this section, we briefly discuss how to achieve a better rate without significantly increasing the computation.
First, we show how to compress client’s message from rate 1/κ to rate 1, and second, we show how to compress
server’s message from rate 1/κ to rate 1−o(1). The latter compression assumes the use of the BGV cryptosystem,
though it also works with some other alternatives.

6.1 Compressing Client’s Message

We use the next idea, up to our knowledge first presented by Adam Smith at the Asiacrypt 2009 rump ses-
sion [HPS10] and then used for the purposes of CPIR in [BV11]: the client homomorphically encrypts the secret
key symk (of bitlength λ) of a CPA-secure symmetric cipher E (e.g., a stream cipher or AES in the counter mode,
or a custom-designed symmetric cryptosystem that is based on the same assumption as the FHE, see [BV11]), and
sends this together with E-encrypted inputs to the server. Assuming that the client’s private input is L bit long (in
our case, L ≈ log

(
n
m

)
), this means that the client has to send L+Θ(λκ) bits. Given a homomorphically encrypted

secret key symk and a symmetrically encrypted input L, the server computes homomorphically encrypted inputs
by homomorphically evaluating a circuit for E. In our case, the client inputs are log2

(
n
m

)
bits long, and thus the

work of both the client and the server is increased by Θ(log
(
n
m

)
· λ), assuming that it takes Θ(λ) time to evaluate

E once. After that, the server runs the 1/κ-rate CPIR protocol, and thus computes m` ciphertexts.

5 This also means that the computational batch code cannot be used if m < 0.6
√
λ. However, then in Sect. 7 we can just use

the restricted CPIR protocol without batch-coding, unless simultaneously m >
√
n/ logn. But in the case

√
n/ logn <

0.6
√
λ the database size is so small that one can use parallel repetition of the restricted CPIR. Second, here we need that

m < n/2. If m ≥ n/2 then the whole database can just be transfered to the client.
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Query(`,x): The client executes the next steps.
1. He generates a new symmetric key symk, a new public/secret key (pk, sk) pair for FHE scheme, and a seed s for

the batch code.
2. According to his input x, he forms in parallel dm/T e restricted (β, 2T )-CPIR protocols to different dm/T e

bins as defined by BCEncodes. If some bin contains too many elements of f , then the client aborts. Otherwise,
let x′

i = (x′i0, . . . , x
′
i,2T−1) be his query to to the ith bin. For every i, the client decodes the constant-weight

codeword (x′i,0, . . . , x
′
i,2T−1) to a dlog2

(
β
T

)
e-bit string yi.

He sends to the server the next values: 1) the new public key pk, 2) homomorphic bitwise encryption of symk by using
the public key pk, 3) the seed s, and 4) symmetric encryption ye of (y0, . . . , yd) by using the key symk.

Reply(`,f ,Query): The server executes the next steps.
1. She homomorphically decrypts ye, by using pk and a homomorphic bitwise encryption of symk.
2. She homomorphically encodes, by using the key pk, the result as a homomorphic encryption of constant-weight

codewords (xi,0, . . . , xi,2T−1).
3. She uses BCRetrieves to compute circuits for dm/T e functions f ′i identified with their truth tables f ′

i =
(f ′i0, . . . , f

′
i,2T−1). More precisely, to construct the circuit for function f ′

i , the server divides the correspond-
ing 2T -element subdatabase into further n1/ log2 log2 n-element subdatabases. For every latter subdatabase, the
server constructs a parallel circuit, as described in Sect. 4. The circuit for f ′

i consists of β/n1/ log2 log2 n parallel
such circuits.

4. She packs resulting 2m` ciphertexts into d2m`/de ciphertexts, where d is the lattice dimension
She sends the resulting d2m`/de ciphertexts to the client.

Answer(`,x,Reply): The client decrypts server’s reply, that is, all d2m`/de ciphertexts. He unpacks them to 2m` plaintext
bits, and then outputs 2m `-bit strings.

Fig. 2. The new (n,m)-CPIR protocol

6.2 Compressing Server’s Message

Recall that the plaintext space of the BGV cryptosystem is R2, while the ciphertext space is R2
q . In particular, all

our computation is made in Z2 ⊂ R2. As mentioned in [BGV11], one can use a larger plaintext space Rp for a
prime p, where p is polynomial in the security parameter, p = poly(λ). We are not going to apply homomorphic
operations on Rp (this may run in complications due to the fact that p is splits completely to prime ideals in R,
see [BV11]). We emphasize that the next idea by itself is not novel.

Instead, we note that in a FHE-based (n,m)-CPIR protocol the server returns to the client many different
ciphertexts. We combine dblog pc ciphertexts Cij , i ∈ [p] and j ∈ [d] to one as C ←

∑d
j=1(

∑blog pc
i=1 2iCij)x

j .
While every addition increases the noise additively, we can assume that the final noise is not too big, and thus
one can successfully decrypt C. Since the BGV cryptosystem is homomorphic, C decrypts to M , where M =∑
j(
∑
i 2
iMij)x

j and Mij is the plaintext corresponding to Cij .
Now recall that the size of a ciphertext is d log q, and the size of the “plaintext” is d log p. According

to [BGV11], one can assume that log q = Θ(λ), d = Ω(λ log λ). Our own calculations show that one can choose
q = Õ(p) · Õ(λ3/2) where in both cases, the degree of log in Õ is small. Thus, log p = log q− (3/2+ o(1)) log λ.
Therefore, the rate of this “batched” BGV cryptosystem is ≈ d log p/(d log q) that can be arbitrarily close to 1.

7 Newm-out-of-n CPIR Protocol

We already gave a very high-level step-by-step derivation of the new rate 1− o(1) CPIR protocol in the introduc-
tion. In the current section, we give a concise description of the final protocol.

For simplicity, we assume that ` ≤ κ, otherwise we can just repeat the next protocol d`/κe times. We use a
symmetric cryptosystem (e.g., AES) and an FHE scheme (e.g., the BGV cryptosystem). Assume as always that
the client’s input is an m-tuple (x0, . . . , xm−1), and that the server’s input is a database f = (f0, . . . , fn−1) also
expressed as a function f : Zn → {0, 1}` with f(i) = fi. The client needs to retrieve (fx0

, . . . , fxm−1
). Let

(BCGen,BCEncode,BCRetrieve) be a computational [n, n,m,M = dm/T e, 2T ]` batch code for some fixed T .
Let β ← bTn/mc. The full protocol is depicted by Fig. 2.

Theorem 3. Assume that P is a secure pseudorandom generator and that one uses the BGV cryptosystem. If T
satisfies Eq. (1), then the new CPIR protocol is (1− 2−λ)-complete.
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Proof. First, due to Thm. 2, we get that if T is big enough, then the first chosen s is good with overwhelming
probability. Since in this case we choose a new s, we get a perfectly complete protocol by doing an expected
number 1 of choices. Second, due to the second assumption, as specified in Sect. 6, the client can correctly recover
from every server’s ciphertext c a d-bit plaintext. ut

Note that the larger is T , the higher is the completeness probability.

Theorem 4. Assume that the used symmetric cryptosystem is CPA-secure, and that the used FHE scheme is CPA-
secure and KDM-secure. Then the new (n,m)-CPIR protocol is private.

Proof. The server only sees data encrypted by either the symmetric or the FHE scheme. ut

Theorem 5. Excepting the costs that do not depend on n, m or `, the communication complexity of the new
(n,m)-CPIR protocol is dlog2

(
n
m

)
e+ (1 + o(1))m`+Θ(λκ).

Proof. Assuming T | m, the client’s relevant message is a symmetric encryption of his log2
(
Tn/m
T

)
· m/T ≈

log2
(
n
m

)
input bits together with FHE-encryption of the secret key bits of the symmetric cryptosystem. The

server’s message is a homomorphic encryption of his 2m` output bits. Due to the technique of Sect. 6, her message
has length (1 + o(1))m`. ut

Theorem 6. Assume that the symmetric primitive on plaintext of t bits can be decrypted by a circuit of size
Tsym(t). Assume that we are using the BGV cryptosystem. The server’s computational complexity is dominated by(

(2 + o(1))Tn`

(Tn/m)1/ log2 log2(Tn/m) log2(Tn`/m)
+ Tsym

(
log2

(
n

m

)))
· Õ(λ2)

bit-operations, where T ≥
√
mλ · ln 2/(

√
2n(n−m+ 1)).

Proof. The first addend in the first multiplicand follow from the estimation given in introduction. More precisely,
a restricted (n,m)-CPIR requires rcomm(n,m, `) = (1 + o(1))nm`/(n1/ log2 log2 n · log2(n`)) public-key oper-
ations. Therefore, the full rate-1/κ (n,m)-CPIR protocol requires

m

T
· rcomp(Tn/m, 2T, `) =m

T
·
(

(1 + o(1))Tn/m · 2T · `
(Tn/m)1/ log2 log2(Tn/m) log2((Tn/m)`)

)
=

(2 + o(1))Tn`

(Tn/m)1/ log2 log2(Tn/m) log2(Tn`/m)

public-key operations which is optimized if T =
√
mλ · ln 2/(

√
2n(n−m+ 1)). The second addend is straight-

forward. The second multiplicand Õ(λ2) comes from the estimation of [BGV11]. ut

Clearly, the server’s computational complexity is minimized when T obtains the smallest allowed value. E.g.,
T = 6 in practice, although T = 1 suffices for m ≤ 2n(1 + n)/(2n + λ ln 2). As an example, if n = 106 and
λ = 80 then T = 1 suffices form ≤ 106−27.) Finally, note that the computation is dominated by Tsym(log2

(
n
m

)
),

and thus in practice it is probably advantageous not to use the optimization of [HPS10].
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