
1

Abstract— Both broadcast encryption (BE) protocols and multicast key distribution (MKD) protocols try to solve the same problem

of private group communication. For the first time, we discuss fundamental differences between BE protocols and MKD protocols

from multiple perspectives, and reveal subtle connections between them. Both efficient BE protocols and MKD protocols are usually

based on some types of access control structures. Compared with the static access control structures employed by BE protocols, those

employed by MKD protocols need be updated upon every single change in group membership, and thus are highly dynamic. It has

been shown that instantiation of a dynamic access control structure that’s based on one-way function (OWF) by using homomorphic

one-way function (HOWF) helps improve the efficiency of these update operations. In this paper, we introduce two new HOWF-based

access control structures — Bi-Directional Homomorphic One-way Function Chain (BD-HOFC) and Top-down Homomorphic One-way

Function Tree (TD-HOFT), and two structure-preserving operations — chain product and tree product. Employing BD-HOFC and

chain products, we propose a time-based MKD protocol and a user-based MKD protocol. Both protocols overcome the drawbacks with

their corresponding “non-homomorphic” counterpart. We also introduce an operation called tree blinding for a particular type of

TD-HOFT called exclusive key tree (EKT). Utilizing tree product and tree blinding operations, we design an MKD protocol called

EKT+ that improves the original EKT protocol. We give rigorous security proofs for our protocols in a symbolic security model.

Index Terms—broadcast encryption, multicast key distribution, access control, homomorphic one-way function

I. INTRODUCTION

With rapid evolution of Internet, more and more group-oriented applications have been emerging, for instance, IPTV, DVB

(Digital Video Broadcast), videoconferences, interactive group games, collaborative applications, stock quote streaming, and etc.

These applications all require a one-to-many or many-to-many group communication mechanism. To achieve private (or secure)

group communication, two parallel lines of research, commonly referred to as broadcast encryption (BE) and group key

Manuscript received 2011. This work was supported in part by by the National Natural Science Foundation of China under Grant 61103232.
J. Liu is with the School of Information Science, and Technology and Guangdong Key Lab of Information Security and Technology, Sun Yat-Sen University,

Guangzhou, 510006, China (e-mail: liujing3@mail.sysu.edu.cn).
Q. Huang is with the college of Informatics, South China Agricultural University, Guangzhou 510642, China (e-mail: csqhuang@alumni.cityu.edu.hk).
B. Yang is with College of Informatics, and College of Software, South China Agricultural University, Guangzhou, 510642, China (e-mail:

byang@scau.edu.cn).

Efficient Multicast Key Distribution Using

HOWF-based Access Control Structures

Jing Liu, Qiong Huang, Bo Yang

2

establishment, have been established.

BE originates in [1] and is formally defined in [2]. The setting of BE is that a group controller distributes a fixed set of

personal keys to each member (who is not allowed to maintain state, i.e., stateless) before sending a broadcast; Later, a sender

can encrypt the broadcast for an arbitrary subgroup of these members; Any member in this subgroup can use its personal key to

decrypt the broadcast whereas members outside the subgroup cannot obtain any information about the content even by collusion.

BE can be broadly subdivided into information-theoretically (unconditionally) secure BE protocols [3],[4],[5],[6],[7], symmetric

BE protocols [2],[8],[9] which are usually based on symmetric cryptographic primitives (e.g., block cipher) and only allow the

group controller to send messages to privileged receivers, and public BE [10],[11],[12] which are usually based on asymmetric

cryptographic primitives (e.g., attribute-based encryption) and allow any entity to play the role of the sender.

Providing security services for group communication such as traffic integrity, authentication, and confidentiality usually

requires securely establishing a group key among privileged group members. This problem is called group key establishment in

the literature. Compared to its two-party counterpart, secure group key establishment in a dynamic group is more challenging.

Group key establishment may be broadly subdivided into group key exchange/agreement and group key distribution (also called

multicast key distribution). In group key exchange protocols [13],[14], each group member contributes an equal share to the

common group key (which is then computed as a function of all members’ contributions). In (centralized) multicast key

distribution (MKD) protocols, a trusted third party called group key manager (or group controller) is responsible for creating a

new group key when some change in group membership happens, and securely transferring it to all privileged group members

over a broadcast channel. Compared to BE protocols, MKD protocols allow every member to maintain state and use previously

learned keys for decrypting current transmissions. MKD protocols usually aim to solve a more specific problem called immediate

group rekeying. For security-sensitive commercial applications (e.g. pay-per-view, video-on-demand, and highly classified

conferences), the key must be changed for every membership change. To prevent a new member from decoding messages

exchanged before it joined a group, a new key must be distributed for the group when a new member joins. Therefore, the joining

member is not able to decipher previous messages even if it has recorded earlier messages encrypted with the old key. This

security requirement is called group backward secrecy. On the other hand, to prevent a departing member from continuing

access to the group’s communication (if it keeps receiving the messages), the key should be changed as soon as a member leaves.

Therefore, the departing member will not be able to decipher future group messages encrypted with the new key. This security

requirement is called group forward secrecy. To provide both group backward secrecy and group forward secrecy, the group key

must be updated upon every single membership change and distributed to all the authorized members. This process is referred to

as immediate group rekeying in literature. MKD has been well studied since late 1990s (see [15] for an excellent survey, and

more recent surveys are available in [16] and [17]). To the best of our knowledge, tree-based MKD protocols are the most

3

efficient ones to date. Immediate group rekeying following these protocols has O(logn) communication complexity, and O(logn)

computational and storage complexity for users, where n is group size. The first tree-based MKD protocol is Logical Key

Hierarchies (LKH), which was independently suggested by Wong et al. [18], Wallner et al. [19], and Caronni et al.[20]. Since

then, variant MKD protocols based on logic key tree [21],[22],[23],[24] have been proposed.

Both BE protocols and MKD protocols usually rely on some kind of access control structures to control group members’

access to group communication or group keys (see Section II for details). Access control structures employed by broadcast

encryption (BE) protocols are predetermined and static. Whereas access control structures employed by multicast key

distribution (MKD) protocols are usually dynamic, and need be updated upon every single change in group membership. One of

the major research topics regarding MKD is to minimize computational and communication overhead of these updating

operations. It has been shown that updating a HOWF-based dynamic access control structure is much easier than updating its

“non-homomorphic” counterpart [25]. In this paper, we instantiate two existing types of access control structures —

bi-directional one-way function chain (BD-OFC) and top-down one-way function tree (TD-OFT) by using homomorphic

one-way functions to obtain their corresponding homomorphic version, named bi-directional homomorphic one-way function

chain (BD-HOFC) and top-down homomorphic one-way function tree (TD-HOFT) respectively. We introduce a binary operation

on HOFCs called chain product and another operation on TD-HOFTs called tree product. Both operations are proved to be

structure-preserving. Thus, updating a BD-HOFC (resp. a TD-HOFT) can be efficiently achieved by performing a chain product

(resp. a tree product) of the original structure and its corresponding incremental structure. Utilizing BD-HOFC and chain product

operations, we design a time-based MKD protocol and a user-based MKD protocol. Both overcome some drawbacks with their

corresponding “BD-OFC”-based counterpart. We also introduce a structure-preserving operation — tree blinding for a special

type of TD-HOFT called exclusive key tree (EKT). Utilizing tree product and tree blinding operations, we design a MKD

protocol called EKT+ that improves the original EKT protocol. In addition, for the first time, we discuss the fundamental

differences between BE protocols and MKD protocols from multiple perspectives, and reveal subtle connections between them;

we also introduce a technique called evictee separation, by which an arbitrary BE protocol can be converted into an efficient

immediate rekeying MKD protocol.

The rest of this paper is organized as follows. Section II discusses the fundamental differences and subtle connections between

BE protocols and MKD protocols. In Section III, we make a brief introduction to two useful types of access control structures —

BD-HOFC and TD-HOFT, and also review some BE and MKD protocols based on them. Section IV introduces two new types

of HOWF-based structures — HOFC and TD-HOFT, and also introduces two structure-preserving operations respectively

called chain product and tree product for them. In Section V, we present a time-based MKD protocol and a user-based MKD

protocol, both based on BD-HOFCs. We also present a user-based MKD protocol called EKT+ based on TD-HOFTs, which

4

improves the original EKT protocol. Section VI gives rigorous security proofs for our protocols in a symbolic security model.

Section VII concludes this paper and gives some topics for future research.

II. DIFFERENCES AND CONNECTIONS BETWEEN BE PROTOCOLS AND MKD PROTOCOLS

In this section, we discuss fundamental differences between BE protocols and MKD protocols from multiple perspectives, and

also reveal subtle connections between BE protocols and MKD protocols by showing that a BE protocol can be converted into a

MKD protocol, and vice versa.

A. Fundamental Differences between BE Protocols and MKD Protocols

There are some confusions with respect to the relationship between BE and MKD in the literature. Many researchers think that

BE encompasses MKD. In fact, although both BE and MKD have the same goal of achieving private group communications,

differences between them are remarkable. We discuss these differences from the following perspectives:

1) Stateless vs. stateful setting

One of the most distinctive settings for BE protocols is the so-called stateless receivers, i.e., they are not allowed to maintain

any internal state during the group’s lifetime. Personal keys are given to registered receivers or reserved for prospective receivers

in a setup phase. These personal keys remain unchanged thereafter. On the contrary, receivers in MKD protocols are usually

assumed to be stateful, in the sense that they must remain online and update their internal states while they are attached to the

group. A successful decipher of current group key depends on successfully receiving all (or part) of past rekey messages. If a

receiver happens to be off-line when a group rekeying operation occurs, or current rekey message was lost due to a network

failure, the receiver will not be able to successfully decipher any future rekey messages. Like other researchers [26],[27], we use

this very characteristic to distinguish BE protocols from MKD protocols.

2) Static vs. dynamic access control structures

For most BE protocols, assignment of personal keys to prospective users during the setup phase is usually based on some kind

of pre-specified access control structures. Typical access control structures employed by BE protocols are tree-based subset

cover [8], [9], flat table [28],[12],[29], polynomial interpolation [1],[30],[31],[32], top-down one-way function tree [2], Chinese

remainder theorem [33],[34], and bi-directional hash chains [35]. In the setting of statelessness, these pre-specified access

control structures must remain unchanged irrespective of group dynamics. Therefore, we say they are static. Shares or nodes (i.e.,

personal keys) associated with these access control structures cannot be reassigned to other users even if their holder has left the

group; otherwise group backward secrecy would be violated. Actually, these static access control structures define the set of

prospective privileged users, and therefore the group size, both of which cannot be changed. Only those in the defined set are

eligible to be a privileged user. No other users are allowed to join the group later.

5

For MKD protocols, assignment of personal keys to a joining user is on-the-fly, and based on some kind of dynamically-

changing access control structures. Typical access control structures employed by MKD protocols are logic key hierarchy

[18],[19],[20],[24],[23],[21], bottom-up one-way function tree [22],[25], flat table [24],[36], bi-directional hash chains (see the

second protocol in Section V-A), and top-down one-way function tree [37]. When a user joins the group, the group controller

must first create a new node for it or assign it an existing node on the access control structure, then update relevant keys before

assigning them to the joining member to ensure group backward secrecy,. The access control structure and thus the group size

(actually corresponding to the current number of leaf nodes on the access control structure) is expanded due to accomodating a

new member. When a user leaves the group, the group controller must delete its associated node or break its association to a

node on the access control structure, then update those keys held by the evictee to ensure group forward secrecy. The access

control structure and thus the group size shrinks due to evicting a member. In a word, the access control structure and the group

size keep changing as member leaves or joins. Therefore, we say they are dynamic.

3) Advantage in multiple revocations vs. single revocation

In BE protocols, due to the static access control structure, when a user leaves, its secret information will not get updated and

will be used again. To ensure group forward secrecy, the group controller must encrypt the broadcast to ensure all revoked

members unable to decrypt the broadcast cipher. On the contrary, in MKD protocols, due to the dynamic access control structure,

when a user gets revoked, its secret information will not be used again and whoever holds the same piece of the information will

get updated. Thus, the group controller only needs to revoke the currently-leaving users using the leave rekeying algorithm.

Hence, MKD protocols are more efficient in handling single revocation than BE protocols. For instance, for a group of size n,

immediate group rekeying following tree-based group rekeying protocols like [18],[19] requires encryption and transmission of

2logn keys at most. Whereas, when a member leaves after n/2-1 members have already been revoked before, immediate group

rekeying following BE protocols like subset difference (SD) protocol [8], LSD protocol [9], and flat table-based protocols [28],

[12], [29] requires encryption and transmission of n/2 keys in the worst case.

On the other hand, because the access control structure needs not be updated when a member leaves the group, BE protocols

are more efficient in collectively revoking a large number of users than most MKD protocols [38]. For instance, for a group of

size n, collective revocation of R members following SD protocol or LSD protocol requires transmission of 2R-1 encrypted keys

at most. Whereas, collective revocation of R members following one of the most communication-efficient MKD protocols —

the One-way Function Tree (OFT) scheme [22] requires transmission of 3R+Rlog (n/R) encrypted keys at most.

B. Connections between BE Protocols and MKD Protocols

Let us first introduce two concepts given by Fiat and Naor [2] that will be used throughout the rest of this paper. Denote by U

6

the set of all receivers. A broadcast scheme is called resilient to a set SU, if for every subset TU\S, no eavesdropper that has

all secrets associated with members of S, can obtain “knowledge” of the secret common to T. A scheme is called k-resilient if it

is resilient to any set SU of size k.

As discussed above, immediate group rekeying using BE protocols would be inefficient. In the following, we demonstrate that

an arbitrary BE protocol can be used in conjunction with a symmetric-key encryption algorithm to construct an efficient

immediate group rekeying protocol by using a simple but useful technique called evictee separation. Vice versa, a MKD protocol

can be converted into a BE protocol in a straightforward way.

Claim 1 — Suppose that there is a secure unicast channel between every user and the group controller, then an arbitrary BE

protocol can be used in conjunction with a symmetric-key encryption algorithm to construct a 1-resilient MKD protocol.

Proof: Given a BE protocol P1. We use P1 in conjunction with a symmetric-key encryption algorithm denoted by SEK(m) to

construct an immediate group rekeying MKD protocol P2. The encryption algorithm of P1 is denoted by BES(m) to indicate that

only user uiS can decrypt the cipher. Join rekeying algorithm of P2 is constructed simply as follows. When ui joins the group,

the group controller sends ui a new group key GK’ and an unassigned personal key over a secure unicast channel. For the

remaining members, the group controller just broadcasts the new group key GK’ encrypted under the current group key GK using

the symmetric key encryption algorithm, i.e., SEGK(GK’). Now we construct the leave rekeying algorithm of P2. We denote the

set containing all initially-joining members by S, and the first group key GK0. Consider a series of revocation events

corresponding to a revocation list {u1,…, um}. Without loss of generality, we suppose there is no other change in membership

happened between ui-1’s leave and ui’s leave (i =2,…, m). When ui leaves, the group controller broadcasts a rekey message

1 { } (2, ,)

i iGK S u iSE BE GK i m
 . Note that although the former evictee ui-1 can decrypt the inner encryption

iS iuBE GK , it cannot decrypt the outer encryption because GKi-1 is unknown to ui-1. In a word, when ui leaves the group,

since the group key GKi-1 is unknown to all former evictees u1, … , ui-1 except evictee ui, we can use current group key GKi-1 as

an outer encryption key for protecting the new group key GKi so as to separate current evictee ui from all the former evictees

u1,…, ui-1 in the sense that no evictees except ui can destroy the outer protection. Furthermore, using broadcast encryption

algorithm
iS iuBE GK instead of

1{ , , }iS u u iBE GK as the inner encryption can just prevent ui from accessing GKi. That is

why we call this technique evictee separation. The communication complexity of every rekey message in P2 depends on that of

the broadcast encryption algorithm of P1 in case of revoking a single user. Because current group key is used to encrypt the next

rekey message in both join rekeying and leave rekeying, every receiver needs to record the current group key for decrypting the

next rekey message. Therefore, P2 is stateful, and thus belongs to the category of MKD protocols.

7

Remark 1: If we choose a BE protocol, for example [8], [9], as the leave group rekeying algorithm to handle immediate

revocations straightforwardly, the communication complexity of the m-th rekey message would be O(m) encrypted keys instead

of O(1).

Remark 2: Although P2 is secure against single-user attacks, a coalition of a pair of evictees would compromise its security.

For example, colluding with ui-1, evictee ui can first decrypt the outer encryption of the rekey message
1 { }i iGK S u iSE BE GK

to get { }iS u iBE GK , then transfer it to ui-1 who can decrypt it to get GKi. That is why we say P2 is 1-resilient.

Remark 3: See some applications of the evictee separation technique in the following section.

Claim 2 — An arbitrary MKD protocol can be converted to a BE protocol.

Proof: For an arbitrary MKD protocol P1, simply include with each current rekey message the entire past rekey messages.

Thus, each receiver can extract the current group key from one single aggregated rekey message with no need for keeping any

internal states. Hence, the converted P1 is a BE protocol.

Remark 4: Above conversion is of theoretical value only, because it will cause huge communication overhead for the resulting

BE protocol.

III. 1-RESILIENT ACCESS CONTROL STRUCTURES

Access to group keys can be controlled through two methods — the user-based one [18],[19],[22],[23],[20],[24] and the

time-based one [39],[40]. The former is more intuitive and traditional. A current group key should be only accessible to current

legitimate members (or users), which is achieved by performing group rekeying upon every membership change. On the other

hand, if every user’s departure time can be predetermined at the time of join, the group controller can divide the group’s lifetime

into time slots and for every time slot, generate a unique group key that is used to encrypt application data transmitted during that

period. When a new member joins the group, it will be provided with those group keys corresponding to the predetermined

duration over which it will stay attached to the group. As contrasted to traditional user-based MKD protocols, group rekeying

following this way is automatic (i.e., irrespective of membership dynamics), stateless, and requires transmitting no rekey

message. These merits are collectively referred to as zero side-effect by Briscoe [39]. However, there are two inherent drawbacks

with time-based MKD protocols: (1) it is hard to prevent collusion attacks; (2) it is hard to handle premature evictions without

utilizing user-based MKD protocols.

Below, we introduce two useful types of access control structures, respectively called Bi-directional One-way Function Chain

(BD-OFC) and Top-down One-way Function Tree (TD-OFT). Both have been used to construct BE protocols, time-based MKD

protocols, and user-based MKD protocols.

8

A. BD-OFC

Briscoe [39] proposed a new type of access control

structure named bi-directional hash chain (BHC) that is

derived by using one-way hash functions. Generally, we

call the same structure derived by using one-way

functions Bi-directional One-way Function Chain

(BD-OFC). Referring to Figure 1, BD-OFC (or BHC) is composed of two one-way function chains: forward chain and backward

chain. Both chains are derived respectively from two different initial seeds v0,0 and v0,1 by repeatedly applying a one-way

function h. That is, the (i+1)-th intermediate seed vi+1,B is computed as vi+1,B=h(vi,B) (i=0,…,n; B=0, 1). Basing on BHC, Briscoe

constructed a time-based MKD protocol (see Figure 1) which allows different portions of a key sequence to be reconstructed

from combinations of two intermediate seeds. Suppose that we want to restrict a new member to a contiguous key sequence

ranged from Ki to Kj it has paid for, the key server only needs to supply it with two intermediate seeds vi,0 and vn-j,1 when it joins

the group. With these seeds, the joining member can derive the key sequence from Ki to Kj by itself. However, any member

cannot be granted access to multiple disjoint key sequences within the same key sequence. Otherwise, this protocol is not secure

even in the presence of a single user. For example, if we want to grant a member access to two disjointed key sequences, one

from Ki to Kj and the other from Kk to Kh, it will be supplied with intermediate seeds vi,0 and vn-j,1 as well as vk,0 and vn-h,1

according to the protocol. Thus with these seeds, the longest possible key sequence that this member is able to derive is the one

from Ki straight to Kh which includes an unauthorized sub-sequence from Kj+1 to

Kk-1. Due to a similar reason, a previously evicted member is disallowed to rejoin

a group. Also for a similar reason, collusion between an arbitrary pair of users

would also compromise the security of this MKD protocol.

 Fan et al. [41] proposed a 1-resilient user-based MKD protocol called linear

ordering of receivers (LORE). We first introduce its key assignment algorithm

based on BHC. Let N denote the total number of prospective receivers. Suppose

that the entire receivers are already linearly ordered by their IDs, i.e., ui < ui+1 (i =1,…, N-1). Each receiver ui holds a set of

forward keys, denoted by FSet(ui), and a set of backward keys, denoted by BSet(ui). Both kinds of keys are collectively called

control keys. As illustrated in Figure 2, for receiver ui with rank i, we have FSet(ui) = {fk | i k N} and BSet(ui) = {bk | 1 k i}.

The effect of such control key assignment is that for any forward key fi, it is known only to receivers with rank no more than i, i.e,

{uk | 1 k i}, and for any backward key bi, it is known only to receivers with rank no less than i, i.e., {uk | i k N }. Now we

introduce the group rekeying algorithms of LORE. When ui joins the group, the group controller sends ui a new group key GK’

Fig. 1 Time-Based MKD Using BHC

Fig. 2 Assignment of Control Keys in LORE

9

and two control keys (fi and bi) over a secure unicast channel. For the remaining members, the group controller simply broadcasts

the new group key GK’ encrypted under the current group key GK. When receiver ui leaves the group, the group controller sends

remaining members by multicast the following double-encrypted rekey message:

{ }{ } { }{ }
1 1

 (), (1)
i if bGK GK

GK if i N GK if i
- +

¢ ¢< > .

According to the assignment of control keys, all current members except ui can extract the new group key GK’ after double

decryption. Similar to Briscoe’s time-based MKD protocol, a coalition of an arbitrary pair of receivers ui and uj (i<j) could

compromise group forward secrecy of LORE. Colluding with uj, receiver ui can exchange its forward key fi for uj’s backward key

bj. Thus, when receiver ui (resp. uj) leaves the group, it can use bj (resp. fi) to derive bi+1 (resp. fj-1), and then obtain the new group

key by double decrypting the second (resp. first) part of the rekey message. For the same reason, a rejoining member is not

allowed to be assigned a new user ID (rank). In addition, unlike traditional MKD protocols, the access control structure — BHC

employed by LORE is static instead of dynamic. Thus it inherits the same drawbacks with BE protocols as discussed in Section

II. For example, when a member leaves, although its associated rank becomes free, it still cannot be reassigned to other users.

This leads to a much longer BHC.

Basing on BHC and the same control key assignment algorithm as LORE, Micciancio and Panjwani [35] proposed a

1-resilient broadcast encryption protocol. LORE can be regarded as being converted from this BE protocol through the evictee

separation technique given in Section II-B.

B. TD-OFT

Fiat and Naor [2] proposed an access control structure as illustrated in Figure 3 to

help design a 1-resilient BE protocol. For convenience, we call it top-down one-way

function tree (TD-OFT) to discriminate it from the bottom-up one-way function tree

suggested by Sherman et al. [22]. Denote by fL and fR two different one-way functions

respectively. Let intermediate seeds Si+1,2j and Si+1,2j+1 respectively represent the left

child and the right child of seed Si,j. A TD-OFT is a balance binary tree which is derived

from a single root seed S0,0 in a top-down manner such that Si+1,2j= fL(Si,j), Si+1,2j+1= fR(Si,j) (i=0,1,…). Each leaf node can be

associated with a user ui (in a BE protocol or a user-based MKD protocol) or be used directly as a group key Ki (in a time-based

MKD protocol). The algorithm of assigning seeds to users is simply as follows. Every user ui gets all the seeds (known as

exclusive keys in [37]) except those on its path to the root. To meet this goal ui is supplied with all seeds associated with the

siblings of the nodes on its path to the root by the group controller during the setup phase. For example, user u2 associated with

S3,2 is supplied with S3,3, S2,0, and S1,1. Given these seeds, u2 can compute all the seeds except those on its path to the root, i.e., S3,2,

Fig. 3 TD-OFT

10

S2,1, S1,0, and S0,0. Now suppose the group controller wants to send a new group key K to a privileged set of users excluding {u2,

u4, u5}. It simply broadcasts K encrypted under S3,2S3,4 S3,5 or S3,2S2,2 , where ‘’ represents the exclusive-or operation.

Kim et al. [37] proposed a 1-resilient MKD protocol whose personal key assignment is similar to above, except that instead of

using traditional one-way functions to construct a TD-OFT, they chose to use homomorphic one-way functions (refer to Section

V for details) to facilitate updating the whole TD-OFT when a member leaves or joins the group. For convenience, we call their

protocol the exclusive key tree (EKT) protocol. Contrary to the static TD-OFT used by the above 1-resilient BE protocol,

TD-OFT used by the EKT protocol is dynamic. The leave rekeying algorithm of the EKT+ protocol (Refer to Section V) is much

similar to that of the EKT protocol, therefore we omit it here. Its join rekeying algorithm is similar to that of LORE except that

the whole TD-OFT must be updated and a root incremental seed used to update TD-OFT is also encrypted in a rekey message

besides the new group key.

Both Fiat and Naor’s BE protocol and the EKT protocol are 1-resilient because a coalition of an arbitrary pair of users would

compromise their security. The collusion attack is similar to that on the EKT+ protocol (refer to Section V-C for details).

We can convert Fiat and Naor’s 1-resilient BE protocol into a 1-resilient MKD protocol by using the evictee separation

technique given in Section II. Unlike the EKT protocol, the converted MKD protocol will have a static access control structure,

and thus inherit the same drawbacks with BE protocols as discussed in Section II. On the other hand, since one-way hash

functions (e.g., MD5 [42] and SHA-1 [43]) can be used, the converted MKD protocol will be more computationally efficient

than the EKT protocol that uses computationally-intensive homomorphic one-way functions.

In [39], Briscoe proposed another time-based MKD protocol based on TD-OFT (known as Binary Hash Tree (BHT) in [39]).

This protocol overcomes the first two problems with Briscoe’s former BHC-based MKD protocol discussed in last section.

Therefore, it is 1-resilient unlike the BHC-based one. As illustrated in Figure 3, to restrict a joining user to a key sequence from

K2 to K6, the group controller only needs to supply it with three seeds, S2,1, S2,2, and S3,6.

Remark 5: In fact, all above protocols based on either BD-OFC or TD-OFT are 1-resilient because the problem of collusion

between an arbitrary pair of users is inherent with these access control structures. From this perspective, it is reasonable to regard

both BD-OFC and TD-OFT as 1-resilient access control structures.

IV. HOMOMORPHIC INSTANTIATIONS OF OFC AND TD-OFT

In this section, we instantiate one-way function chain (OFC) and TD-OFT by using homomorphic one-way functions to obtain

two new types of access control structures, respectively named homomorphic one-way function chain (HOFC) and top-down

homomorphic one-way function tree (TD-HOFT). Before we give their formal definitions, let’s review some basic mathematical

concepts about homomorphism. We use (G,) to denote a group G in conjunction with its algebraic operation “”. Given two

11

groups (G,) and (H, ·), a group homomorphism from (G,) to (H, ·) is a function f : G → H such that for all u and v in G, it

holds that f(uv) = f(u)·f(v). A self-homomorphism is a group homomorphism that maps a group G to itself. For example, both

Rabin function [44] and RSA function [45] are self-homomorphic one-way functions (homomorphic one-way permutation for

short). If every node of a structure is an element of a group G, we say this structure is defined over G.

A. HOFC

Definition 1 HOFC — An HOFC of length N defined over a group (G,) and a homomorphic one-way permutation f is a

one-way chain that is computed by repeatedly applying f in a forward manner as follows. For an arbitrary node xi in an HOFC X,

its succeeding node xi+1 = f(xi) (i = 0,…, N-2).

Definition 2 Chain product — Given two arbitrary HOFCs X and Y, both defined over a group (G,) and a homomorphic

one-way permutation f, and both having the same length, a chain product of X and Y, denoted by X Y, is computed by

multiplying their corresponding nodes.

Theorem 1: Given two arbitrary HOFCs X and Y, both defined over a group (G,) and a homomorphic one-way permutation

f, and both having the same length N, the result of a chain product X Y is also an HOFC.

Proof: Let Z be the result of a chain product of X and Y, i.e., Z = X Y. We prove for an arbitrary i (0iN-1), zi+1 = f(zi). Then the

theorem would follow immediately according to Definition 1. In fact, we have zi+1= xi+1yi+1=f(xi) f(yi)=f(xiyi)=f(zi).

B. TD-HOFT

In this section, we instantiate TD-OFT by using homomorphic one-way permutations to get an access control structure called

top-down homomorphic one-way function tree (TD-HOFT).

Definition 3 TD-HOFT — A TD-HOFT over a group (G,) and two homomorphic one-way permutations fL and fR is a

balanced binary tree that is derived using fL and fR in a top-down manner as follows. For an arbitrary node xi in an HOFT X,

suppose that its left child and right child are denoted by x2i and x2i+1 respectively, and we have x2i = fL(xi) and x2i+1 = fR(xi).

To be used as an access control structure, TD-HOFT must at least satisfy the following two conditions: (1) its leaf nodes must

be collision-free; (2) its leaf nodes must be independent (from an arbitrary set of leaf nodes, it is computationally infeasible to

compute any leaf node outside this set).

Definition 4 Tree product — Given two arbitrary TD-HOFTs X and Y, both defined over a (G,) and two homomorphic

one-way permutations fL and fR, if both X and Y as binary trees have the same depth, a tree product of X and Y, denoted by X Y,

is computed by multiplying their corresponding nodes.

12

Theorem 2: Given two arbitrary TD-HOFTs X and Y with the same depth, both defined over a group (G,) and two

homomorphic one-way permutations fL and fR, the result of a tree product X Y is also a TD-HOFT.

Proof: Let Z = X Y. For an arbitrary node secret zi Z, we have z2i=x2iy2i=fL(xi)fL(yi)= fL(xiyi)= fL(zi). For the same reason,

we have z2i+1 = fR(zi). Thus, Z is a TD-HOFT according to Definition 3.

Definition 5 Tree blinding — Given an arbitrary TD-HOFT X, a tree blinding of X maps X to another key tree Y, denoted by

Y=B(X) such that (1) Y is still a TD-HOFT; (2) from any set of nodes of Y, it is computational infeasible to compute any node of

X.

Unlike HOFTs [25], a tree blinding operation may not exist for every types of TD-HOFT. But Theorem 3 (refer to Section V-C)

shows that it does exist for a particular type of TD-HOFT.

Theorem 1 and Theorem 2 show that both chain product and tree product are structure-preserving operations. In Section V, we

will demonstrate that chain product (resp. tree product) allows us to efficiently update an HOFC (resp. a TD-HOFT) by

performing a chain product (resp. a tree product) of the original structure and its corresponding incremental structure without

compromising its structure. A tree blinding operation on a TD-HOFT helps conceal information about its every node without

using any additional incremental structure and without compromising its structure.

V. MKD PROTOCOLS BASED ON BI-DIRECTIONAL HOFCS AND TD-HOFTS

As discussed in Section II, access control structures employed by MKD protocols are usually dynamic. When a member joins

or leaves the group, the group controller needs to update the employed access control structure (e.g., a logic key tree), and

transmit updated personal keys to affected group members. Homomorphic instantiation of a OWF-based access control structure

allows the group controller to achieve these ends simply by performing a tree (chain) product of the original structure and an

incremental structure, and broadcasting only a few incremental values.

We can replace the two constituent OFCs of a BD-OFC with two HOFCs to obtain a so-called structure, Bi-directional HOFC

(BD-HOFC). In the following, we utilize BD-HOFCs to design a time-based MKD protocol and a user-based MKD protocol.

Each overcomes the drawbacks with its corresponding BHC-based counterpart discussed in Section III. We also utilize

TD-HOFTs to design a group rekeying protocol called EKT+ that improves the original EKT protocol.

Below, we choose to use homomorphic trapdoor one-way permutations (e.g., Rabin functions or RSA functions) to implement

BD-HOFCs and TD-HOFTs, thus another accompanying merit with our protocols is that the key sequence (or binary key tree)

can be extended (or expanded) in the reverse direction. Of course, the group controller must store the private trap-door

information securely.

13

A. A 1-Resilient Time-Based MKD Protocol: Protocol I

As discussed in Section III-A, Briscoe’s BHC-based

MKD protocol is not secure against single-user attacks (i.e.,

1-resilient) when member’s rejoining is allowed. In the

following, we utilize BD-HOFCs to design a 1-resilient

time-based MKD protocol. The ideal is that whenever

detecting that a former evictee ui is rejoining the group, the

group controller updates both the forward HOFC and the

backward HOFC by multiplying them by a corresponding

incremental HOFC before supplying ui with its intermediate seeds. Hence, the group controller must record a long history list of

all evictees during the group’s lifetime.

As illustrated in Figure 4, suppose that the last time ui joins the group is at slot t1, and it leaves after slot t2. The group

controller supplies ui with two intermediate seeds v1,0 and v5,1 so that ui is able to derive group keys k1 and k2 as illustrated in

Figure 1. Then at a later slot t5, ui rejoins the group and plans to leaves at slot t6. For simplicity, suppose that there is no other

member who rejoins the group between slot t2 and slot t5 except ui. The group controller detects that ui is a rejoining member. It

derives two incremental HOFCs R0 and R1 respectively from two randomly generated root incremental seeds r0,0 and r0,1. Then as

illustrated in Figure 4, it performs a chain product of V0 and R0, and a chain product of V1 and R1 respectively to obtain two

updated chains V0’ and V1’. According to Theorem 1, both V0’ and V1’ are HOFCs. After these update operations, the group

controller supplies ui with intermediate seeds v5,0’ and v1,1’. With these seeds, ui is able to derive group keys k5’ and k6’. For the

remaining members, the group controller simply broadcasts both root incremental seeds r0,0 and r0,1 encrypted with the current

group key k4 (note that ui rejoins at t5), i.e., the rekey message is {r0,0, r0,1}k4. Every member except ui can decrypt the root

incremental seeds r0,0 and r0,1, derive relevant intermediate incremental seeds from them, and then update its intermediate seeds

by multiplying them by the corresponding incremental seeds.

Remark 6: To save the group controller from storing a long history eviction list, one way around is to let the group controller

update BD-HOFC whenever a member (no matter whether it is a fresh new one or a former evictee) joins the group.

B. A 1-Resilient User-Based MKD Protocol: Protocol II

As discussed in Section III-B, LORE possesses many similar drawbacks as BE protocols due to employing a static BHC. In

the following, we utilize a dynamic BD-HOFC to design a scalable user-based MKD protocol that overcomes these drawbacks.

The main idea is that whenever a change (join or leave) in group membership happens, the group controller updates BHC as in

Protocol I. Thus, every free rank can be reassigned to other users without compromising the group forward and backward

Fig. 4 A Time-Based MKD

14

secrecy.

(1) Algorithms for deleting, adding and assigning ranks in a dynamic BD-HOFC

 As illustrated in Figure 5, assignment of control keys to ranks in BD-HOFC is just like

assignment of control keys to users in LORE (refer to Section III-A for details). For rank k,

its corresponding control keys are fk and bk. In a dynamic BD-HOFC, ranks can be deleted,

added, and reassigned. In order to not affect existing users, deleting and adding ranks ought

to take place at the tail of BD-HOFCs. Suppose the current length of a BD-HOFC defined over a homomorphic trapdoor

one-way permutation h is N. When the member associated with the highest rank N leaves, the group controller deletes all free

ranks backward from N until an occupied rank is met. When a new member ui joins the group, the group controller assigns ui the

lowest free rank. If there is no free rank available, the group controller adds a new rank, namely N+1 at the tail of the BD-HOFC,

computes its corresponding control keys as bN+1=h-1(bN) (with trapdoor information, it can compute the inverse function of h) and

fN+1=h(fN), and then assign ui rank N+1. All above operations on ranks induced by group dynamics lead to a compact linear

structure that helps minimize the computational overhead for both the group controller and members.

(2) Group rekeying based on dynamic BD-HOFCs

 When a new member ui joins the group, the group controller assigns it a free rank, namely k, using above algorithm. Suppose

the current length of the BD-HOFC is N. Then it generates a new group key GK’ and two random incremental root keys r0,0 and

rN,1. Then it updates the forward chain F and backward chain B in the same way as the update operation illustrated in Figure 4 to

obtain two updated chains F’ and B’. After those update operations, the group controller sends ui the new group key GK’ and

control keys fk’ and bk’ over a secure unicast channel. For members except ui, the group controller simply broadcasts GK’, r0,0,

rN,1 encrypted by the current group key GK, i.e., the rekey message is {GK’, r0,0, rN,1}GK. Every members except ui can decrypt

this message and update their personal control keys using r0,0 and rN,1. When a member ui leaves the group, the group controller

first performs the corresponding algorithm given in above section. Suppose the current length of the BD-HOFC is N. It generates

a new group key GK’ and two random incremental root keys r0,0 and rN,1. Then it performs the chain update operations as it does

in join rekeying. Suppose ui’s associated rank is k. The group controller simply broadcasts the following rekey message:

{ } { }
1 1

0,0 ,1 0,0 ,1, , (), , , (1)
k k

N Nf b
GK r r if k N GK r r if k

- +

¢ ¢< >

Every member except ui can extract GK’, r0,0 and rN,1 from this message and update their control keys using r0,0 and rN,1. Note

that this leave rekey message is different from that of LORE (refer to Section III-A for a comparison). The latter uses double

encryption. Referring to Figure 5, any former evictees cannot decrypt the above message because all the control keys held by

them are changed after they leave.

Protocol II can be easily extended to support batch group rekeying. Referring to Figure 5, if we want to revoke u2 and u4 at the

Fig. 5 Leave Rekeying Based on

15

same time, the group controller needs to broadcast a rekey message { } { } { }
1 3 3 5

0,0 ,1 0,0 ,1 0,0 ,1, , , , , , , ,N N Nf f b b
GK r r GK r r GK r r

Å
¢ ¢ ¢ .

Generally, current chain of ranks will be divided into disjoint intervals that contain only occupied ranks by the free ranks left

behind by concurrently-leaving members. We denote these rank intervals by I1, I2,…, Ir. The group controller needs to create a

cipher text
11

0,0 ,1, ,
j

n j jm
NI b f

C GK r r

 for each rank interval Ij = (j1,…, jm), then sends the following rekey message by

multicast:
1 21 2, , , , , , ,

rr I I II I I C C C (where each interval Ij is uniquely identified by a pair of number j1 and jm).

C. The EKT+ protocol

 Given two Blum numbers with the same bit lengths mL and mR, and mLR = mLmR, the two homomorphic one-way functions

fL(x) and fR(x) employed by the EKT protocol are defined as fL(x) = (x2 mod mLR) mod mL and fR(x) = (x2 mod mLR) mod mR. The

group controller chooses a root seed 1 LRmEK Z and derives the whole key tree in a top-down manner using fL(x) and fR(x) as

discussed in Section III-B. Kim et al. [37] introduced a concept called exclusive key. Referring to Figure 6, an exclusive key xi

associated with a node ni is the key shared among all users except those users associated with the leaf nodes of a sub-tree rooted

at ni. For convenience, we call a TD-HOFT derived in above manner an exclusive key tree (EKT). It is readily seen that EKT's

leaf nodes satisfy the two conditions for a TD-HOFT to be used as an access control structure: collision-freeness and

independence. The following theorem proves the existence of tree blinding operations for EKTs.

Theorem 3: For an arbitrary EKT X, a tree product of X and itself (i.e., self-tree product) is a tree blinding operation.

Proof: For an arbitrary EKT X, let Y = XX. According to Theorem 2, Y is also an EKT. According to Definition 4, Y is computed

as y1 = x1
2 mod mLR, yi = xi

2 mod mL for even number i, and yi = xi
2 mod mR for odd number i and i>1. Because all three functions

— y = x2 mod mLR, y=x2 mod mL and y=x2 mod mR are one-way functions, it is computational infeasible to compute any node of

X from any set of nodes of Y. Therefore, according to Definition 5, self-tree product is a tree blinding operation.

 We improve the EKT protocol from the following two aspects: (1) introducing simple operations for adding/deleting nodes

to/from a EKT; (2) utilizing a tree blinding operation to design a join rekeying algorithm in which the group controller needs to

broadcast no rekey message except a simple rekey notification message. We call the improved protocol EKT+.

First recall that every user ui gets all the exclusive keys associated with siblings

of those nodes on its path to the root. Denote by EKi the exclusive key associated

with node ni. For example, u3 got two exclusive keys EK2 and EK7. As illustrated

in Figure 6, when a new member u5 joins the group, the group controller first finds

a shallowest leaf node, for example n7. It adds two new nodes n14 and n15

respectively as the left child and right child of n7, and derives their associated exclusive keys EK14 and EK15, respectively by

 Fig. 6 EKT before and after a join (leave)

16

computing EK14=fL(EK7) and EK15=fR(EK7). Now u4 and u5 are respectively associated with n14 and n15. The group controller

derives the new group key GK’ from the current group key GK by computing GK’=h(GK) (h is a public hash function). After it

performs a tree blinding operation on the expanded key tree, the group controller sends the new member u5 GK’ and its exclusive

keys EK14’, EK6’, and EK2’ over a secure unicast channel. For remaining members, the group controller broadcasts a rekey

notification message over an authenticated channel. After receiving this notification, all members updates the group key by

computing GK’=h(GK) and their own exclusive keys by computing EKi’= EKi
2 mod mL (if i is even) or EKi’= EKi

2 mod mR (if i

is odd). In addition, the group controller needs to send u4 its additional exclusive key EK15’ over a secure unicast channel.

As illustrated in Figure 6, when a member u5 leaves the group, the group controller deletes its associated node n15 and the

sibling node n14 of n15, and associates u4 with the parent (n7) of its originally associated node n14. The group controller generates

a random new group key GK’ and a random incremental root seed R1. From R1, it derives the whole incremental EKT T in a

top-down manner using fL(x) and fR(x). The group controller updates the original EKT denoted by X by performing a tree product

of X and T. According to Theorem 2, the updated EKT X’=XT is also an EKT. It then broadcast a rekey message {GK’, R1}EK15.

Every member except u15 can extract GK’ and R1 from this message, and update its own exclusive keys by multiplying them by

their corresponding incremental seeds (derived from R1), for example, EKi’= EKiRi mod mL (if i is even).

A coalition of an arbitrary pair of users can compromise the security of the EKT+ protocol. Therefore, it is only 1-resilient.

Referring to Figure 6, member u2 and member u4 can collude to break the security as follows. According to the EKT+ protocol,

u4 knows {EK6, EK2} and u2 knows {EK4, EK3}. Member u2 can exchange EK3 for EK2 with member u4. Now u2 can compute

EK5 from EK2, and u4 can compute EK7 from EK3. According to the leave rekeying algorithm of the EKT+ protocol, neither of

the colluding members can be revoked. The EKT protocol also suffers from the same kind of collusion attack since the EKT

protocol and the EKT+ protocol have the same leave rekeying algorithm.

Both the EKT protocol and the EKT+ protocol can be easily extended to support batch group rekeying. For example, referring

to Figure 6, if we want to revoke multiple users u2, u4 and u5, based on the above leave rekeying algorithm, the group controller

needs to broadcast a rekey message {GK’, R1}EK5EK14EK15 (or {GK’, R1}EK5EK7). That is to say, we use a key computed by

XORing all the exclusive keys respectively associated with each evictee to encrypt the rekey message.

Remark 7: Recent research by Micciancio and Panjwani [26] showed that O(logn) is the lower bound on the communication

complexity for collusion-resistant generic MKD protocols. According to this lower bound, the LORE protocol, the EKT protocol,

Protocol II, and the EKT+ protocol which have O(1) communication complexity should be vulnerable to collusion attacks. This

is exactly consistent with the fact that all four protocols are just 1-resilient.

17

VI. SECURITY PROOFS

Panjwani [27] developed a symbolic security model for analysing generic user-based MKD protocols and symmetric BE

protocols. In this model, all keys and messages generated by a user-based MKD protocol are treated as abstract data types and

cryptographic primitives as abstract functions over such data types. Security can be specified by recoverability, i.e., some group

key is safe if it cannot be recovered by an adversary from its personal key and all rekey messages. Panjwani proves security of

the LKH protocol [19],[18],[20] and subset cover protocols [8] using a straightforward inductive argument in this model. Below,

we prove security of Protocol II and the EKT+ protocol given in Section V under this model. We extend Panjwani’s model to

support time-based MKD protocols and prove security of Protocol I under the extended model.

Consider a multicast group with lifetime of t time slots, labelled by 1, 2,…, t. For convenience, we call a time-based MKD

protocol for such a multicast group t-time-slot MKD protocol. For an t-time-slot MKD protocol , we introduce the following

notations. The group key corresponding to time slot i is denoted by K(i). If there exists a user who rejoins the group during the

i-th time slot, then the rekey message generated by protocol is denoted by iM .

Let

t
M denote the set of all the rekey

messages generated by protocol up to the t-th time slot.

Consider a multicast group of n users, labelled by 1, 2,…, n. For convenience, we call a user-based MKD protocol for such a

group n-user MKD protocol. For an n-user MKD protocols , we introduce the following notations given by [27]. At any time t,

the privileged set of users who are authorized to receive information sent over a multicast channel is denoted by S(t)
 {1,2,…,

n }. The rekey message generated by protocol for S(t) is denoted by ()tS
M . The group key used to encrypt all the information

sent to S(t) is denoted by K(t). Let [n] denote the set {1,…,n} and let 2[n] denote the power set of [n]. An arbitrary group dynamics

up to time t can be uniquely represented by a sequence of privileged user sets () (0) (1) () [](, , ,) (2)t t n tS S S S

 . A sequence

() [](2)t n tS

is called simple, if for all t1, S(t-1) changes into S(t) through a single change in membership. Let ()t
S

M
 denote the set

of all the rekey messages generated by protocol up to time t. That is, () (')
1 '

t S tS
t t

M M

 .

For both time-based MKD protocols and user-based MKD protocols, we give the following notations. Each user i obtains a

personal key set PKSi from the key server when it joins the group. For any information set M, we use Rec(M) to denote the set of

all information that are recoverable from M by using all sorts of cryptographic transformations employed by the MKD protocol

(irrespective of the number of steps required to do so).

Definition 6: An l-time-slot MKD protocol is called secure against single-user attacks (i.e., 1-resilient), if for any user i

whose authorized time slots are from k to h, ,t k h , () Re ()t
i l

K c PKS M .

18

Definition 7: An n-user immediate rekeying MKD protocol is called 1-resilient, if for all t0, and for all simple sequence

, iS(t), ()
() Re ()t
t

i S
K c PKS M .

It is easy to derive that 1-resilience implies both group forward secrecy (against single-user attacks) and group backward

secrecy (against single-user attacks).

Definition 8: An l-time-slot MKD protocol is called correct, if for any user i whose authorized time slots are from α to β, i

always knows the corresponding group keys from K(α) to K(β).

Definition 9: An n-user EKT-based MKD protocol is called correct, if for all t≥0, and for all simple sequence ,

iS(t), i always knows K(t) and the exclusive keys associated with the siblings of those nodes on its path to the root in Tr(t), and

no other exclusive keys in Tr(t).

The correctness of Protocol I is obvious. We only prove its security in below.

Theorem 4: Protocol I is correct and 1-resilient.

Proof: Without loss of generality, we only need to consider two cases: (1) a user joins the group once in total; (2) a user joins the

group twice in total.

Case 1: Consider an arbitrary user i whose authorized time slots are from k to h. According to Protocol I, PKSi ={vk,0, vl-h,1} as

illustrated by Figure 4. Consider an arbitrary Mt
I with t<k. According to Protocol 1, Mt

I is encrypted under a group key K(t). The

whole BD-HOFC (including all intermediate seeds) is updated after the t-th time slots. Therefore, Mt
I is indecipherable for user i

because K(t) and {vk,0 ,vl-h,1} are not associated with the same BD-HOFC, and thus K(t) is not recoverable from {vk,0 ,vl-h,1}. Now

we consider an arbitrary Mt
I with t>h. Suppose that Mt

I is the first rekey message after the h-th time slot. Although the encryption

key K(t) for Mt
I and {vk,0 ,vl-h,1} are associated with the same BD-HOFC, K(t) is unknown to user i since it is out of the group key

range between K(k) and K(h) entitled to user i. Therefore, Mt
I is indecipherable for user i. For an arbitrary Mt

I that is not the first

rekey message after the h-th time slot, Mt
I is indecipherable for user i for the same reason as above case (t<k). For an arbitrary Mt

I

with t[k,h], user i can decrypt it to obtain the corresponding incremental seeds. To sum up, all the incremental seeds that are

recoverable from
l

M are those corresponding to time slots between k to h. And from these incremental seeds, user i can at most

compute every group key K(t) with t[k,h] according to Protocol I. That is, ,t k h , () Re ()t
i l

K c PKS M .

Case 2: Consider an arbitrary user i whose first authorized sequence of time slots are from α to β and second authorized sequence

of time slots are from γ to δ. Therefore, PKSi ={vα,0, vl-β,1, vγ,0’, vl-δ,1’}. Note that {vα,0, vl-β,1} and { vγ,0’, vl-δ,1’} are associated with

different BD-HOFCs. Applying the same argument as Case 1 to time interval [0, γ-1], we have ,t ,

()
1

Re ()t
iK c PKS M

 . Applying the same argument as Case 1 to time interval [γ, l], we have ,t ,

() [](2)t n tS

() [](2)t n tS

19

() Re ()t
i l

K c PKS M . In conclusion, we have , ,t , () Re ()t
i l

K c PKS M .

For TD-HOFT based MKD protocol (including the EKT protocol and the EKT+ protocol), we introduce the following

notations. The TD-HOFT corresponding to S(t) is denote by Tr(t). Referring to Figure 6, for any node ni on a TD-HOFT, the

exclusive key associated with it is denoted by EKi. For an TD-HOFT Tr(t), we shall interchangeably refer to it and the set of all its

exclusive keys for simplicity.

Theorem 5: The EKT+ protocol is correct and 1-resilient.

Proof: In fact, we can prove an even stronger claim that for all t0, and for all simple sequence , iS(t),

()
() () Re ()t
t t EKT

i S
K Tr c PKS M . We prove it using induction over t. For t=0, since (0)S , the claim is trivially true. Now

we argue that if the claim is true for some t-1≥0, then it is true for t as well. For any simple sequence

() (0) (1) (1) ()(, , , ,)t t tS S S S S

 , we only need to consider the following cases:

Case 1 (iS(t-1)∧iS(t), and S(t-1) changes into S(t) due to other member’s departure): According to the leave rekeying algorithm of

the EKT+ protocol, i can recover all incremental seeds (from the root incremental seed R1
(t)) and group key K(t) from rekey

message ()t
EKT
S

M . From inductive hypothesis, i only holds K(t) and those exclusive keys in Tr(t-1) as required by Definition 9.

From all incremental seeds and these exclusive keys in Tr(t-1), it can recover and only recover those exclusive keys in Tr(t) as

required by Definition 9 (by multiplying exclusive key EKi
(t-1) in Tr(t-1) by their corresponding incremental seeds Ri

(t)).

Case 2 (iS(t-1)∧iS(t), and S(t-1) changes into S(t) due to other member’s join): According to the join rekeying algorithm of the

EKT+ protocol, i can recover no key material from the rekey notification message ()t
EKT
S

M . From inductive hypothesis, i only

holds K(t-1) and those exclusive keys in Tr(t-1) as required by Definition 9. It can compute K(t) by K(t)=h(K(t-1)), and those exclusive

keys as required by Definition 9 by EKi
(t)= (EKi

(t-1))2 mod mL (if i is even) or EKi
(t)= (EKi

(t-1))2 mod mR (if i is odd).

Case 3 (iS(t-1)∧iS(t)): That is to say, i joins the group at time t. According to the join rekeying algorithm of the EKT+ protocol,

every newly joining member i can recover just the same key materials as required by Definition 9 from the rekey message

()t
EKT
S

M (note that ()t
EKT
S

M

includes both unicast message and broadcast message sent by the group controller).

Case 4 (iS(t-1)∧iS(t)): That is to say, i is evicted at time t. From the inductive hypothesis, all secrets that i knows are K(t-1) and

those exclusive keys as required by Definition 9. According to the leave rekeying algorithm of the EKT+ protocol, i can recover

neither K(t) nor the root incremental seed R1
(t) from ()t

EKT
S

M . Without R1
(t), i can never compute any exclusive key EKi

(t) in Tr(t).

() [](2)t n tS

20

Case 5 (iS(t-1)∧iS(t)): That is to say, i is evicted before time t-1. From the inductive hypothesis, i can never recover (compute)

K(t-1) and any exclusive key EKi
(t-1) in Tr(t-1). However, ()t

EKT
S

M is encrypted by some exclusive key EKi
(t-1) in Tr(t-1), therefore i

can recover neither K(t) nor the root incremental seed R1
(t) from ()t

EKT
S

M . Thus i can never compute any exclusive key in Tr(t).

Theorem 6: Protocol II is correct and 1-resilient.

Theorem 6 can be proved using a similar argument as above.

VII. CONCLUSION AND FUTURE RESEARCH

Efficient BE protocols and MKD protocols usually rely on some sort of access control structures to assign personal keys to group

members. MKD protocols demand dynamic access control structures that should be updated upon every single change in group

membership. Therefore, finding efficient algorithms for updating these dynamic access control structures is crucial for the design

of MKD protocols. For OWF-based access control structures that have functional dependency among their nodes, we showed

that updating their homomorphic instantiations is much easier than updating their “non-homomorphic” counterpart. So far, we

have introduced three types of HOWF-based access control structures: HOFT [25], BD-HOFC and TD-HOFT, all of which have

meaningful applications in the design of MKD protocols. It would be interesting to find other meaningful applications of HOFT

and its variants.

 REFERENCES

[1] S. Berkovits, "How to broadcast a secret," Advances in Cryptology — EUROCRYPT ’91, Lecture Notes in Computer Science, pp.

535-541: Springer Berlin / Heidelberg, 1991.

[2] A. Fiat, and M. Naor, "Broadcast encryption," Advances in Cryptology - Crypto’93, Lecture Notes in Computer Science D. R.

Stinson, ed., USA-Santa Barbara, California: Springer-Verlag, August 1993.

[3] D. R. Stinson, “On Some Methods for Unconditionally Secure Key Distribution and Broadcast Encryption,” Designs, Codes and

Cryptography, vol. 12, no. 3, pp. 215-243-243, 1997.

[4] C. Blundo, and A. Cresti, "Space requirements for broadcast encryption," Advances in Cryptology—EUROCRYPT ’94, Lecture Notes

in Computer Science, pp. 287–298, New York: Springer-Verlag, 1994.

[5] C. Blundo, L. A. Frota Mattos, and D. R. Stinson, "Trade-offs between communication and storage in unconditionally secure schemes

for broadcast encryption and interactive key distribution," Advances in Cryptology—CRYPTO ’96, Lecture Notes in Computer

Science, pp. 387-400, New York, 1996.

[6] M. Luby, and J. Staddon, "Combinatorial bounds for broadcast encryption," Advances in Cryptology - Eurocrypt '98, Lecture Notes

in Computer Science K. Nyberg, ed., pp. 512-526, 1998.

[7] J. A. Garay, J. Staddon, and A. Wool, "Long-lived broadcast encryption," Advances in Cryptology-Crypto 2000, Lecture Notes in

21

Computer Science M. Bellare, ed., pp. 333-352, 2000.

[8] D. Naor, M. Naor, and J. B. Lotspiech, "Revocation and tracing schemes for stateless receivers," Advances in

Cryptology—CRYPTO ’2001, Lecture Notes in Computer Science, pp. 41–62, New York, 2001.

[9] D. Halevy, and A. Shamir, "The LSD broadcast encryption scheme," Advances in Cryptology - Crypto 2002, Lecture Notes in

Computer Science M. Yung, ed., pp. 47-60, 2002.

[10] Y. Dodis, and N. Fazio, "Public Key Trace and Revoke Scheme Secure against Adaptive Chosen Ciphertext Attack," Public Key

Cryptography — PKC 2003, Lecture Notes in Computer Science Y. Desmedt, ed., pp. 100-115-115: Springer Berlin / Heidelberg,

2002.

[11] D. Boneh, C. Gentry, and B. Waters, "Collusion resistant broadcast encryption with short ciphertexts and private keys," Advances in

Cryptology - Crypto 2005, Lecture Notes in Computer Science, pp. 258-275, 2005.

[12] L. Cheung, J. A. Cooley, R. Khazan, and C. Newport, “Collusion-Resistant Group Key Management Using Attribute-Based

Encryption,” in First International Workshop on Group-Oriented Cryptographic Protocols (GOCP), 2007.

[13] M. Steiner, G. Tsudik, and M. Waidner, “Key agreement in dynamic peer groups,” IEEE Transactions on Parallel and Distributed

Systems, vol. 11, no. 8, pp. 769-780, Aug, 2000.

[14] Y. Kim, A. Perrig, and G. Tsudik, “Tree-based group key agreement,” ACM Transactions on Information and System Security, vol. 7,

no. 1, pp. 60-96, Feb, 2004.

[15] S. Rafaeli, and D. Hutchison, “A survey of key management for secure group communication,” ACM Computing Surveys, vol. 35, no.

3, pp. 309-329, Sep, 2003.

[16] Y. Challal, and H. Seba, “Group Key Management Protocols: A Novel Taxonomy,” International Journal of Information Technology,

vol. 2, no. 2, pp. 105-118, 2005.

[17] S. Zhu, and S. Jajodia, "Scalable Group Key Management for Secure Multicast: A Taxonomy and New Directions," Network Security,

S. C. H. C. H. Huang, D. MacCallum and D.-Z. Du, eds., pp. 57-75: Springer US, 2010.

[18] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications using key graphs,” IEEE-ACM Transactions on Networking,

vol. 8, no. 1, pp. 16-30, Feb, 2000.

[19] D. M. Wallner, E. J. Harder, and R. C. Agee, "Key Management for Multicast: Issues and rchitectures," Internet Draft, Internet Eng.

Task Force, 1998.

[20] G. Caronni, K. Waldvogel, D. Sun, and B. Plattner, “Efficient security for large and dynamic multicast groups,” in Proceedings of

Seventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, 1998. (WET ICE '98)

1998, pp. 376-383.

[21] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas, “Multicast security: a taxonomy and some efficient

constructions,” in Proceedings Eighteenth Annual Joint Conference of the IEEE Computer and Communications

Societies,INFOCOM '99, 1999, pp. 708-716 vol.2.

[22] A. T. Sherman, and D. A. McGrew, “Key establishment in large dynamic groups using one-way function trees,” IEEE Transactions

22

on Software Engineering, vol. 29, no. 5, pp. 444-458, May, 2003.

[23] A. Perrig, D. Song, and D. Tygar, “ELK, a new protocol for efficient large-group key distribution,” in Proceedings of IEEE

Symposium on Security and Privacy, 2001, pp. 247-262.

[24] M. Waldvogel, G. Caronni, S. Dan, N. Weiler, and B. Plattner, “The VersaKey framework: versatile group key management,” IEEE

Journal on Selected Areas in Communications, vol. 17, no. 9, pp. 1614-1631, 1999.

[25] J. Liu, and B. Yang, “Collusion-Resistant Multicast Key Distribution Based on Homomorphic One-Way Function Trees,” IEEE

Transactions on Information Forensics and Security, vol. 6, no. 3, pp. 980-991, 2011.

[26] D. Micciancio, and S. Panjwani, “Optimal communication complexity of generic multicast key distribution,” IEEE-ACM

Transactions on Networking, vol. 16, no. 4, pp. 803-813, Aug, 2008.

[27] S. Panjwani, “Private Group Communication: Two Perspectives and a Unifying Solution,” Computer Science and Engineering

Department, University of California, San Diego, San Diego, 2007.

[28] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha, “Key management for secure lnternet multicast using Boolean function

minimization techniques,” in Proceedings of Eighteenth Annual Joint Conference of the IEEE Computer and Communications

Societies,INFOCOM '99, 1999, pp. 689-698 vol.2.

[29] Z. Zhou, and D. Huang, “On efficient ciphertext-policy attribute based encryption and broadcast encryption,” in Proceedings of the

17th ACM conference on Computer and communications security, Chicago, Illinois, USA, 2010, pp. 753-755.

[30] M. Naor, and B. Pinkas, "Efficient trace and revoke schemes," Financial Cryptography, Lecture Notes in Computer Science Y.

Frankel, ed., pp. 1-20, 2001.

[31] J. Staddon, S. Miner, M. Franklin, D. Balfanz, M. Malkin, and D. Dean, “Self-healing key distribution with revocation,” in

Proceedings of IEEE Symposium on Security and Privacy, 2002, pp. 241-257.

[32] L. Harn, and L. Changlu, “Authenticated Group Key Transfer Protocol Based on Secret Sharing,” IEEE Transactions on Computers,

vol. 59, no. 6, pp. 842-846, 2010.

[33] G. H. Chiou, and W. T. Chen, “Secure broadcasting using the secure lock,” IEEE Transactions on Software Engineering, vol. 15, no.

8, pp. 929-934, 1989.

[34] X. Zheng, C.-T. Huang, and M. Matthews, “Chinese remainder theorem based group key management,” in Proceedings of the 45th

annual southeast regional conference, Winston-Salem, North Carolina, 2007, pp. 266-271.

[35] D. Micciancio, and S. Panjwani, "Corrupting one vs. corrupting many: The case of broadcast and multicast encryption," International

Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science, pp. 70-82, Venice, Italy: Springer,

2006.

[36] Z. Zhou, and D. Huang, “An Optimal Key Distribution Scheme for Secure Multicast Group Communication,” in Proceedings of

IEEE INFOCOM, 2010, pp. 1-5.

[37] H. Kim, S. M. Hong, H. Yoon, and J. W. Cho, “Secure group communication with multiplicative one-way functions,” in ITCC 2005:

International Conference on Information Technology: Coding and Computing, Vol 1, 2005, pp. 685-690.

23

[38] W. Chen, and L. R. Dondeti, “Performance Comparison of Stateful and Stateless Group Rekeying Algorithms,” in Proceedings of

ACM Fourth International Workshop on Networked Group Communication (NGC 2002), Boston, MA, 2002.

[39] B. Briscoe, “MARKS: Zero side effect multicast key management using arbitrarily revealed key sequences,” in Proceedings of

Networked Group Communication, 1999, pp. 301-320.

[40] B. Briscoe, and I. Fairman, “Nark: receiver-based multicast non-repudiation and key management,” in Proceedings of the 1st ACM

conference on Electronic commerce, Denver, Colorado, United States, 1999, pp. 22-30.

[41] J. Fan, P. Judge, and M. H. Ammar, “HySOR: group key management with collusion-scalability tradeoffs using a hybrid structuring

of receivers,” in Proceedings of Eleventh International Conference on Computer Communications and Networks, 2002, pp. 196 -

201.

[42] R. L. Rivest, “The MD5 Message-Digest Algorithm,” Request for Comments (RFC) 1321, 1992.

[43] NIST, "Secure Hash Standard," FIPS Publication 180-1, Apr. 1995.

[44] M. O. Rabin, Digitalized signatures and public-key functions as intractable as factorization, Cambridge: Massachusetts Institute of

Technology, Laboratory for Computer Science, 1979.

[45] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Commun. ACM,

vol. 21, no. 2, pp. 120-126, 1978.

Jing Liu received the Ph.D. degree in computer application technology from University of Electronic Science and Technology of China in 2003. From

September 2003 to July 2005, he was with No.30 Institute of China Electronics Technology Group Corporation as a postdoctoral fellow. Since 2005, he has been

a lecturer at School of Information Science and Technology, Sun Yat-Sen University. He has also been affiliated with Guangdong Key Laboratory of Information

Security and Technology since 2005. His current research interests include applied cryptography and network security.

Qiong Huang received his B.S. degree and M.S. degree from Fudan University in 2003 and 2006, respectively, and obtained Ph.D. degree from City University

of Hong Kong in 2010. After graduation, he worked as a Research Fellow at Department of Computer Science, City University of Hong Kong. Now he is with

South China Agricultural University. His research interests include cryptography and information security.

Bo Yang received the B. S. degree from Peking University in 1986, and the M. S. and Ph. D. degrees from Xidian University in 1993 and 1999, respectively.

From July1986 to July 2005，he had been at Xidian University, from 2002, he had been a professor of National Key Lab. of ISN in Xidian University, supervisor

of Ph.D. In May 2005, he has served as a Program Chair for the fourth China Conference on Information and Communications Security (CCICS’2005). He is

currently dean, professor and supervisor of Ph.D. at College of Informatics and College of Software, South China Agricultural University. He is a senior member

of Chinese Institute of Electronics (CIE), a member of specialist group on information security in Ministry of Information Industry of P.R.China and a member of

specialist group on computer network and information security in Shanxi Province. His research interests include information theory and cryptography.

