
Algebraic Complexity Reduction and
Cryptanalysis of GOST

Nicolas T. Courtois

University College London, Gower Street, London, UK,
n.courtois@cs.ucl.ac.uk

Abstract. GOST 28147-89 is a well-known block cipher and the offi-
cial encryption standard of the Russian Federation. Its large key size of
256 bits at a particularly low implementation cost [34] make GOST a
plausible alternative for AES-256 and 3-key triple DES. The latter for
the same block size of 64 bits offers keys of only 168 bits. All these al-
gorithms are widely used, in particular in the financial industry. GOST
is implemented in OpenSSL and other crypto libraries [28, 45], and is
increasingly popular also outside its country of origin [27, 34]. In 2010
GOST was submitted to ISO, to become an international standard.
In theory 256-bit keys could remain secure for 200 years. GOST was
analysed by Schneier, Biham, Biryukov, Dunkelman, Wagner, various
Australian, Japanese, and Russian scientists, and all researchers seemed
to agree that it looks quite secure. Though the internal structure of
GOST seems quite weak compared to DES, and in particular the dif-
fusion is not quite as good, it is always stipulated that this should be
compensated by a large number of 32 rounds cf. [24, 43, 42, 3] and by the
additional non-linearity and diffusion provided by modular additions [24,
35]. At Crypto 2008 the hash function based on this cipher was broken.
Yet as far as traditional encryption applications with single random keys
are concerned, and until 2011, no cryptographically significant attack on
this algorithm was found. One reflection attack with very large memory
requirements was presented at FSE 2011.
In this paper we present several attacks on full 32-rounds GOST two of
which are substantially faster and all of which require much less memory.
Our attacks belong to the family of conditional algebraic attacks on block
ciphers [12, 11]: which can be defined as attacks in which the problem of
key recovery is written as a problem of solving a large system of algebraic
equations, and where the attacker makes some “clever” assumptions on
the cipher which lead to an important simplification in the algebraic
description of the problem, which makes it solvable in practice if the
assumptions hold. Our methods work by black box reduction and allow
to literally break the cipher apart into smaller pieces and reduce breaking
GOST to a low data complexity software algebraic attack on only 8
rounds (sometimes less). Overall we obtain more than 10 different attacks
faster than brute force on the full 32-round GOST (the best six results
are given in Table 2) and ten more attacks on several different classes of
weaker or special keys. This is shown in Table 3 and in Table 5 where we
present five very nearly practical attacks breaking two principal 128-bit
variants of GOST known from the literature.
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1 Publication Info and Development History

This paper describes a general methodology for block cipher cryptanalysis through
a reduction to a low-data complexity key recovery attack and more than 20 dif-
ferent attacks on GOST obtained with this methodology.

Most of the attacks were developed in the period September 2010-February
2011 when an original 28-pages version of this paper with five distinct attacks
which break GOST faster than brute force was submitted to Crypto 2011. Just
a few days earlier Isobe published his “first single-key” attack on GOST to be
made public [31] with time complexity of 2225. Each single attack in our paper
was already faster than this attack, and our fastest attack had time complexity
of 2216 though requiring much more data. It also contained essentially all current
weak-key variants and a method to break one 128-bit key variant.

In May 2011 a much shorter version of it was submitted to Asiacrypt 2011 and
it contained two distinct attacks with time complexity of 2216, which version can
be found at the author’s web page http://www.nicolascourtois.com/papers/
gostac11.pdf and which is also entirely contained in the present paper. The
fact that both fastest attacks have complexity of 2216 is accidental, and the final
step is a software “algebraic” key recovery attack which can almost certainly
be further improved. With our complexity reduction methodology we reduce
the complexity of GOST to a number of well-defined cryptanalysis questions
with less rounds and less data, which can be studied separately, and researchers
can compare results obtained by many different methods. One such improved
alternative final step for our attack was presented by Shamir et al in October
2011. For our second best attack in 2216, with a lot of more work and by a
different method, the final step can be improved to give an overall attack on
GOST in about 2192, see [18]. There is little doubt that other of our attacks can
also be improved.

In the mean time we have developed a lot more attacks and several distinct
methods to break both “natural” 128-bit key variants. We also have realized
that two of our earlier weak key attacks can be transformed into an attack able
to recover some of arbitrary GOST keys generated at random in overall total
time of 2185 GOST computations which is less than 2192 of Shamir et al [18].
Though it is no longer exactly a single key attack it certainly is a more realistic
attack on GOST than the attack in 2192 from [18] and arguably the best or one
of the best attacks on GOST encryption found at the moment of writing.

Due to the substantial volume of this work, this paper has been split in five
distinct papers which will be published separately. This is the master paper
which is here for reference, to establish priority, and to show the big picture
how all these attacks are related to each other. It also demonstrates that there
is no single reason why GOST is an insecure cipher but rather that the self-
similarity properties of GOST can be exploited in a variety of distinct more or
less non-trivial ways to break the GOST cipher faster than by brute force in a
modular way, where the first step is a reduction step, the last step is a low-data
complexity key recovery step, and where each step can be studied separately.
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2 Impact and Significance of This Research

This paper has some serious significance both scientific and historical.
It is very rare to see a cipher submitted to ISO being broken during its stan-

dardization process, while nobody in the scientific community have expressed a
slightest suspicion about its security. Over two decades less than 10 block ciphers
were judged “good enough” to become a serious candidate for ISO standardisa-
tion, as GOST has become in 2010, cf. [34]. The fact that GOST was believed to
be secure until 2011, and now can be broken in so many different ways is quite
remarkable.

Similarly it is safe to say that nobody in the cryptographic community have
ever thought that there will ever be an attack following the broad idea of software
algebraic attacks [4, 10] which can break a real-life government/military/Internet
standard block cipher faster than by brute force. Likewise until recently nobody
would consider that low-data complexity attacks on reduced rounds of block
ciphers such as in [10, 7, 19] are very important. However our new paradigme
of “Complexity Reduction” provides us with a very large number of ways to
reduce the complexity of breaking a cipher precisely to a low-data complex-
ity attack. Some of these exploit already known fixed point, sliding, reflection
and involution properties, other are totally new and non-trivial self-similarity
attacks. We called it “Algebraic Complexity Reduction” because very few low-
data complexity attacks are known, and a software “algebraic attack” was the
initial motivation to find all these attacks, and remains one of the very few plau-
sible last steps (can also be a meet in the middle attack, see Section 9.1 and
[18]). To summarize our work brings powerful and disruptive new techniques in
cryptanalysis leading to great many new attacks and this on two accounts: new
methods to achieve reduction to low-data complexity attacks, and methods to
deal with these low-data complexity attacks.

It is also very rare to be able to break a real government standard cipher, used
to protect classified and secret information, apparently without any limitations,
cf. [26], unlike United States DES which could only be used to protect unclassified
information. Though the complexity of most of our attacks is still too high to
actually be able to decrypt the communications today and in practice, it is
however wrong to believe that this is only academic research. It is widely believed
that actual versions of GOST used in practice have additional properties which
could make them much weaker than most versions studied in this paper. They
could also be some of the weak versions we have already been able to break: for
example for Family B of 128-bit GOST keys, given 235 chosen plaintexts, we can
recover keys in time 281, see Fact 40 on page 59.

The most likely impact of this research (and also other recent works on
GOST from 2011 [31, 18, 13, 16, 14, 15]) is that Russia will have no other choice
than to change sooner or later its national encryption standard which can po-
tentially cost billions of dollars in research, development, secure hardware and
secure implementation development, telecommunications equipment overhauls,
and maybe also some major upgrades in financial systems and critical data stor-
age infrastructure.
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3 Background

GOST is a block cipher with a simple Feistel structure, 64-bit block size, 256-bit
keys and 32 rounds. Each round contains a key addition modulo 232, a set of 8
bijective S-boxes on 4 bits, and a simple rotation by 11 positions. A particularity
of GOST is that its S-boxes can be secret. One set of S-boxes has been published
in 1994 as a part of the Russian standard hash function specification GOST R
34.11-94 and according to Schneier [43] this set is used by the Central Bank of
the Russian Federation. This precise version of GOST 28147-89 block cipher is
the most popular one, and it is commonly called just “the GOST cipher” in
the cryptographic literature. There exists a Russian reference implementation
of GOST which is a part of OpenSSL library and contains eight sets of S-boxes
[28] which can be used for encryption or for the GOST Hash function. Overall,
it is because of the small size of the GOST S-boxes (see [8, 10, 12, 4, 5]) that the
cipher is vulnerable to “algebraic attacks” [4, 8, 12, 39, 40, 11] such as described
in this paper, and therefore our attacks are expected to work with a similar
complexity for any choice of S-boxes. In all our attacks we assume however that
the S-boxes are known. Otherwise they could be recovered, see [41, 22].

It is widely known that the structure of GOST is in itself quite weak, an in
particular the diffusion is quite poor, however, this is expected to be compensated
by a large number of rounds [43]. Thus, so far there was no significant attack
on this algorithm from the point of view of communications confidentiality: an
attack which would allow decryption or key recovery in a realistic scenario where
GOST is used for encryption with various random keys. In contrast, there are
already many many papers on weak keys in GOST [32, 3], attacks for some well-
chosen number of rounds [32, 1, 42], attacks with modular additions removed [3],
related-key attacks [33, 21, 38], reverse engineering attacks on S-boxes [41, 22],
and attacks on the hash function based on this cipher [30]. In all these attacks
the attacker has much more freedom than we will allow ourselves.

In this paper we limit ourselves to the questions which pertain to the security
of GOST used in encryption, with one single key chosen at random. So far no key
recovery attack on full-round GOST was ever proposed. According to Biryukov
and Wagner, the structure of GOST, and in particular the reversed order of keys
in the last 8 rounds, makes it secure against sliding attacks [23, 2, 3]. However
the cipher still has a lot of self-similarity and this exact inversion of keys allows
other attacks in which fixed points are combined with a so called “Reflection”
property [30, 32]. The latter attack breaks GOST only for certain keys, which
are weak keys. For these keys it is possible to break GOST with a complexity of
2192 and with 232 chosen plaintexts.

A basic assessment of the security of GOST against linear and differential
cryptanalysis has been conducted in 2000 by Gabidulin et al, see [24]. The results
are quite impressive: at the prescribed security of level of 2256, 5 rounds are
sufficient to protect GOST against linear cryptanalysis. Moreover, even if the
S-boxes are replaced by identity, and the only non-linear operation in the cipher
is the addition modulo 232, the cipher is still secure against linear cryptanalysis
after 6 rounds out of 32. Differential cryptanalysis of GOST seems comparatively
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easier and have attracted more attention. In [24] the authors also estimate that,
7 rounds should be sufficient to protect GOST against differential cryptanalysis.
Moreover, two Japanese researchers [42], show that the straightforward classical
differential attack with one single differential characteristic is unlikely to work
at all for a large number of rounds. This is due to the fact that when we study
reasonably “good” iterative differential characteristics for a limited number of
rounds (which already propagate with probabilities not better than 2−11.4 per
round, cf. [42]), we realize that they only work for a fraction of keys smaller than
half. For full 32-round GOST such an attack with a single characteristic would
work only for a negligible fraction of keys of about 2−62 (and even for this tiny
fraction it would propagate with a probability not better than 2−360). The best
advanced multiple differential attack proposed in [42] allows to break about 13
rounds of GOST. In 2011 better attacks of this type have been found, allowing
finally to break full 32 round GOST faster than by brute force, see [15].

4 Preliminary Remarks on GOST

In this paper we call a P/C pair a pair of known Plaintext and Ciphertext for
full GOST, or for a reduced-round version of GOST.

GOST has 64-bit block size and the key size of 256-bit keys. Accordingly:

Fact 1. 4 P/C pairs are necessary to determine the GOST key. With 4 P/C
pairs we expect to get on average about one key. We get the correct key together
with a list of, sometimes a few, but on average less than 1 wrong keys.

With 5 P/C pairs we are able to discard all these wrong keys in practice: the
probability that just one more key works for this extra P/C pair is 2−64. This
is unlikely to ever happen in a single key recovery attack.

Fact 2. A brute force attack on GOST takes 2255 GOST encryptions on average.
Justification: We proceed as follows: we use one P/C pair and check all the
possible keys. On average half way through the right key will be found. Only for
an expected number of 2191 keys which are confirmed with the first pair, we do
further comparisons. Most of these 2191 are false positives. This notion plays
an important role in this paper. Here, and elsewhere, the key remark is that the
total number of these false positives is small and the complexity of rejecting all
the incorrect keys with additional P/C pairs is actually negligible. Indeed we
have at most 2192 cases to be checked with another P/C pair. Then at most 2128

keys remain to be checked against the third P/C pair etc. Overall we need to do
about 2255 + 2191 + 2127 + 263 + 1 GOST encryptions on average. This number
is very close to 2255 GOST encryptions.

5 Algebraic Cryptanalysis and Low Data Complexity
Attacks on Reduced-Round Block Ciphers

Algebraic attacks, on block and stream ciphers, can be defined as attacks in
which the problem of key recovery is written as a problem of solving a large
system of Boolean algebraic equations which follows the geometry and structure



6 Nicolas T. Courtois, January-November 2011

of a particular cryptographic circuit [4, 5, 8, 10]. The main idea was explicitly
proposed by Shannon in 1949, see [44]. For DES the idea was articulated as a
method of Formal Coding [29]. The best currently known attack on DES can
be found in [10]: it allows to break only 6 rounds of DES given only 1 known
plaintext. The most efficient attacks nowadays are based on writing ciphers as
systems of multivariate polynomial equations and manipulating these equations
using either algebraic tools (elimination algorithms such as XL, Gröbner Bases
[20] and ElimLin cf. [12]) or constraint satisfaction software such as SAT solvers
which solve algebraic problems after conversion [9]. Many other methods have
been proposed recently [39, 40] and for one problem instance many different
attack techniques do usually work to some extent, see [10] and though SAT
solvers do frequently solve many practical problems where Gröbner bases run
out of memory, see [9], it was also shown in [9] that in a few cases where both
methods worked, Gröbner bases methods were actually faster. We summarize
all these methods which use “solver software” to determine unknown variables
inside a complex circuit of Boolean equations under the general term of Algebraic
Cryptanalysis (AC).

5.1 Application to GOST
GOST is a Feistel cipher with 32 rounds. In each round we have a round function
fki(X) with a 32-bit sub-key ki. Each round function contains a key addition
modulo 232, a set of 8 bijective S-boxes on 4 bits, and a simple rotation by 11
positions. We need to to find a way to represent the cipher as an algebraic system
of equations in such a way that it can efficiently be solved. It can be seen as
encoding the problem of key recovery as an instance of an NP-hard problem.
Both methods for encoding ciphers as such problems, and advanced heuristic
algorithms for solving such problems are in constant evolution and are constantly
improved. We have developed several efficient methods for formal encoding of
GOST block cipher in the spirit of [10] and a lot of complex encoding, conversion
and solver software for algebraic cryptanalysis. Our current best method for
GOST is pretty much the same as the best known encoding method for DES
described in [10].

Fact 3 (Key Recovery for 4 Rounds and 2 KP). Given 2 P/C pairs for
4 rounds of GOST the 128-bit key can be recovered in time equivalent to 224

GOST encryptions on the same software platform (it takes a few seconds). The
memory requirements are very small. The attack works with a similar complexity
for any choice of GOST S-boxes.
Justification: A detailed description of how to do it would be very tedious, and
contain no new contributions compared to methods already described in [10].
We encode the S-boxes as an algebraic system of I/O relations (equations which
relate Inputs and Outputs of these S-boxes), in a very similar way as for DES,
see [10] for more details. Furthermore, in our fastest attacks, and also in the
fastest attacks described in [10], we use about 20 additional variables per S-box,
which allow equations be more more sparse. In order to encode the addition
modulo 232 we follow the first method described in [12]. The concatenation of
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all these equations describing the whole cipher or a large chunk of it is solved
by various solver software. Given the fact that GOST has “weak diffusion” and
that overall GOST is “not too complex” compared to any other block cipher (see
[34]) we expect that to some extent our systems are solvable in practice. This is
confirmed by our computer simulations. As an immediate corollary we get:

Fact 4 (Key Recovery for 8 Rounds and 2 KP). Given 2 P/C pairs for
8 rounds of GOST we can enumerate 2128 candidates for the full 256-bit key in
time of about 224 GOST encryptions each, and in total time equivalent to 2152

GOST encryptions on the same software platform. The memory requirements
are again negligible.

Justification: We check 2128 keys (k0, k1, k2, k3), in which case we encrypt for
4 rounds twice, (time to do this can be neglected) and obtain two pairs for 4
rounds with key (k4, k5, k6, k7) in time of in 224 GOST computations, cf. Fact 3.

By the same methods we also established that:

Fact 5 (Key Recovery for 8 Rounds and 3 KP). Given 3 P/C pairs for
8 rounds of GOST we can produce 264 candidates for the 256-bit key in time
equivalent to 2120 GOST encryptions. The storage requirements are negligible
and all the 264 candidates can be produced in an uniform way, each of them is
produced in time of 256 GOST encryptions on average.

Remark: this result is particularly significant because it is close to 2128

which one could obtain in a Meet-In-the-Middle (MIM) attack, cf. Fact 7, and
requires negligible storage.

Important Remark: The three results above are experimental facts. The
main object of this paper is NOT how to achieve and further improve this
type of software attacks, cf. [8, 10], but how can the complexity of GOST be
reduced in the “black box” way, so that we can ever hope to be able to
apply results such as Fact 5.

6 On Conditional Algebraic Attacks on Ciphers

Algebraic attacks allow to cryptanalyse quite a few stream ciphers see [8, 5, 6]
but for block ciphers they only work for a limited number of rounds, see [8, 4,
10, 11]. Additional tricks are needed to reduce the complexity of an algebraic
attack.

Conditional algebraic attacks, which could also be called Guess-Then-Algebraic
attacks, make some, more or less clever assumptions on the internal variables of
the cipher of key bits, and determine all the other variables. The goal is to sim-
plify the system of equations in such a way that it becomes solvable in practice.
There are many methods to achieve that, some work locally, some with larger
pieces of the cipher computation circuit.

In many cases, for example for DES [10], it turns out that the best way is
to just fix say the first 20 key variables, and determine the other. This is due to
the fact that in DES key variables repeat quite uniformly at random inside the
algorithm. They repeat many times, and guessing a number of these variables
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leads to very important simplifications. In contrast other variables do not repeat.
in the algebraic description, and in absence of additional properties which could
be exploited, there is no particularly clever method to choose variables which
would work even comparably as well as guessing these key variables.

In other ciphers, there are other highly non-trivial ways of making assump-
tions. In [12] the authors study the concept of (Probabilistic) Conditional De-
scribing Degree of addition modulo 2n. The main idea is that certain linear
equations can be added as assumptions about the internal state of the cryp-
tosystem, and they may produce a larger number of additional linear equations
simultaneously true with high probability.

A different and powerful method to achieve this type of simplification, at
a higher level, is to use self-similarity of the cipher and individual components
of it. Many ciphers have important high-level self-similarity properties. This is
exploited in slide attacks and in an increasing number of more sophisticated
self-similarity attacks [1, 3, 22, 11] some of which exploit fixed points and have
nothing to do with slide attacks. In many of these attacks the last step can be an
Algebraic Cryptanalysis (AC) step. For example in one Slide-Algebraic Attack 1
on the KeeLoq block cipher [11], the attacker guesses 16 bits of the key and one
pair of the plaintexts to be a so called “slid pair”, where the two encryptions
coincide with a shift by 64 rounds. This leads to an algebraic problem of a much
smaller size and allows to break the cipher.

The attacks we present in this paper inherit the ideas of all the attacks we
mention above: they take a quite non-trivial method for algebraic description of
S-boxes [10], a particular method for algebraic description of addition modulo
2n [12], and some clever tricks at the high-level description of the cipher as
in [23, 2, 3, 1, 22, 11]. Our attacks on GOST bear some resemblance to certain
known attacks on KeeLoq: both GOST and KeeLoq are ciphers relatively small
block size compared to key size, imperfect periodicity (cf. [2, 3, 1, 11]) and weak
internal structure which is expected to be compensated by a larger number of
rounds. But it isn’t and we are able to break GOST 239 times faster than brute
force.

7 High-level Description of GOST and Key Observations

GOST is a Feistel cipher with 32 rounds. In each round we have a round function
fk(X) with a 32-bit key which uses a 32-bit segment of the original 256-bit key
which is divided into eight 32-bit sub-keys k = (k0, k1, k2, k3, k4, k5, k6, k7).

One 32-bit sub-key is used in each round, and their exact order is as follows:

rounds 1 8 9 16 17 24 25 32

keys k0k1k2k3k4k5k6k7 k0k1k2k3k4k5k6k7 k0k1k2k3k4k5k6k7 k7k6k5k4k3k2k1k0

Table 1. Key schedule in GOST

We write GOST as the following functional decomposition (to be read from
right to left) which is the same as used at Indocrypt 2008 [32]:

Enck = D ◦ S ◦ E ◦ E ◦ E (1)
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Where E is exactly the first 8 rounds which exploits the whole 256-bit key,
S is a swap function which exchanges the left and right hand sides and does
not depend on the key, and D is the corresponding decryption function with
E ◦ D = D ◦ E = Id.

Notation. We call X the value S(X) where both 32-bit halves are swapped.

7.1 The Internal Reflection Property of GOST
We start with the following observation which is also used in weak attacks on
GOST from [32] and to cryptanalyse the GOST hash function Crypto 2008 [30].
Both attacks also exploit fixed points, and can only work for some special (weak)
keys. This property is exploited in most (but not all) of our attacks, and in a
much more fundamental way: without any fixed points and for arbitrary keys.

Fact 6 (Internal Reflection Property). Consider the last 16 rounds of GOST
D◦S ◦E for one fixed GOST key. This function has an exceptionally large num-
ber of fixed points: applied to X gives the same value X with probability 2−32

over the choice of X, instead of 2−64 for a random permutation.
Justification: This comes from the fact that the state of the cipher after the first
8 rounds E is symmetric with probability 2−32, and D ◦ E = Id.

Remark: with 232 fixed points, one can expect that one of them will be
symmetric, this is exploited in our fastest attack on GOST, see Fact 12.

8 Our Reductions: Methodology and Key Steps

All the attacks described in this paper follow the following quite precise frame-
work for conditional algebraic attacks, which deals with the fundamental ques-
tion of how we can reduce the complexity of a cipher in cryptanalysis to essen-
tially the problem of breaking the same cipher, with less rounds and less data, at
the cost of some “clever” assumptions. We obtain real “black box” reductions.

First a certain number of assumptions on internal variables of the cipher, for
one or several encryptions, are made. The probability that these assumptions
hold for a random GOST key, needs to be evaluated. Then the probabilities
that, when our assumptions hold, certain well chosen variables in the encryption
circuit(s) can be guessed by the attacker, will be estimated. Finally the com-
bination of the assumptions and the guessed values will allow the attacker to
obtain a small number of 2,3 or 4 P/C pairs for 8 rounds of the cipher.

In this reduction phase we typically have only one or two P/C pairs for the
full 32-bit GOST. Then whatever is the number of P/C pairs obtained for 8
rounds the initial 1 or 2 pairs are insufficient to uniquely determine the key.
Thus in all our attacks we have a number of false positives: a certain number of
full 256-bit keys which will be considered and checked by the attacker, using a
number of additional P/C pairs encrypted with the same key, but for the full 32
rounds. In all our algebraic attacks the total number of false positives (the line
before the last in Table 2) can be neglected compared to the overall complexity.
This number provides a strong and information-theoretic limitation to our
attacks. It shows that even if we improved our algebraic key recovery software,
an attack on 256-bit GOST faster than 2128 is very unlikely.



10 Nicolas T. Courtois, January-November 2011

8.1 Synthetic Summary of All Our Reductions
The following Table 2 on p. 11 gives a synthetic summary of all key steps in the
main attacks described in this paper. Weak key attacks appear in Table 3.

Notations: We call Xi, Yi a certain number of P/C pairs for full 32-round
GOST, encrypted with 1 single key (in most of our attacks this could be relaxed
and they would also work if pairs come in small clusters encrypted with a single
key). We call Z,A, B, C, D etc. certain state values on 64 bits.

9 Attacks On GOST Using 232 Known Plaintexts

Let Xi, Yi be the set of known plaintexts with i = 1, 2, 3, . . . , M , where M ≈ 232.
Most attacks in this paper require that the Internal Reflection Property (Fact 6)
holds for (at least) one i. This requires at least 232 known plaintexts on average,
which means that for some keys we may need a bit less, and for some keys a bit
more with M > 232, but rarely much more.

9.1 Reflection-Meet-In-The-Middle Attacks on GOST
Our first requires needs a lot of memory. First we establish that:
Reduction 1. [From 232 KP for 32 Rounds to 2KP for 8 Rounds]
Given 232 random known plaintexts for GOST on average, it is possible to guess
two P/C pairs for 8 rounds of GOST (having full 256-bit key) and our guess will
be correct with probability 2−96.
Justification: This is done as follows:

1. Let Xi, Yi be the set of known plaintexts with 1 ≤ i ≤ M and M ≈ 232.
2. On average there exists one index i ≤ 232 such that E3(Xi) is symmetric.
3. We call A be this 64-bit value Xi. So far we don’t know i but it can be

guessed and A will be immediately determined as A = Xi. Thus i, A can be
guessed and the guess will be correct with probability about 2−32.

4. Let C be the encryption of A, C = Enck(A). Since E3(A)Then, as E3(A) is
symmetric:

C = Enck(A) = D(S(E3(A))) = D(E3(A)) = E2(A). (2)

Thus we obtain one P/C pair of known texts for 16 rounds of GOST.
5. Furthermore we guess also B = E(A) on 64 bits.
6. Overall with probability 2−96 our guess i, B is correct and allows to deter-

mine the four correct values i, A, B, C. This gives two P/C pairs for 8 rounds
with 256-bit key each, which was our goal: B = E(A) and C = E(B).

From here we present two different methods to recover the key.

9.2 A Reflection-Meet-In-The-Middle Attack with Memory
Fact 7. Given 2 P/C pairs for 8 rounds of GOST, and a few more additional
P/C pairs for full 32-rounds of GOST for verification, the correct full GOST key
on 256 bits can be determined in time of 1.25 ·2128 GOST encryptions, and with
2132 bytes of memory.
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Reduction Summary

Reduction cf. Red. 1 §9.1 Red. 2 §10 Red. 3 §11 Red. 4 §11.1 Red 5 §12
Type 1x Internal Reflection 2x Reflection Fixed Point

From (data 32 R) 232 KP 264 KP
Obtained (for 8R) 2 KP 3 KP 3 KP 4 KP 2 KP

Valid w. prob. 2−96 2−128 2−96 2−128 2−64

Reduction Steps

0. Assumptions E2(Xi) symmetric E(Xi) = Xi

on i E3(Xi) is symmetric E3(Xi) symmetric
Notation Let A = Xi

for this i C = E2(A) E = Enck(A)
Observations C = Enck(Xi) because E3(Xi) is symmetric E(E) = S(A)

Expected ] of i one such i one i on average one i
expected for 232 KP expected for 264 KP ∈ 264 KP

1. Guess value i C symmetric i
Determine A, C i, A A, E
Correct 2−32 2−32 2−64

2. Guess value B = E(A)
Observations C symmetric cf. Fig. 1
Determine Z = Deck(B)
Correct 2−64

3. Guess value D = E3(A) D = E3(A)
Correct 2−32 2−32

Final Key Recovery

] Pairs 8R 2 3 3 4 2
Pairs obtained Z 7→ A Z 7→ A

A 7→ B A 7→ B A 7→ B A 7→ B A 7→ A
B 7→ C B 7→ C B 7→ C B 7→ C

C 7→ D C 7→ D E 7→ S(A)
Valid w. prob 2−96 2−128 2−96 2−128 2−64

Last step MIM Guess + Algebraic

Cases ∈ Inside 2128 2128 264 2128

Then Fact cf. Fact 8 Fact 4 Fact 5 Fact 4
Time to break 8R 2128 2152 2120 2152

Storage bytes 2132 - - 267 -
] false positives 2224 2192 2128 2192

Attack time 32 R 2224 2248 2248 2216 2248 2216

Table 2. Summary of our attacks with a black box reduction of the cryptanalysis of
full 32-round GOST to a key recovery attack on 8 rounds of GOST with less data.



12 Nicolas T. Courtois, January-November 2011

Justification: This is obtained trough a variant of a Meet-in-the-Middle attack
with confirmation with additional pairs. First for the first 4 rounds and 128-bit
key, in time of 4/32 ·2128 GOST computations we compute 4 rounds forward for
both plaintexts (which are A,B in our attack) and store 2128 values on 2 ·64 bits
in a hash table. Then for each second half of the key on 128 bits and in total time
of another 4/32 · 2128 GOST computations we compute 4 rounds backwards and
for each of these keys, we expect to get on average 1 corresponding first half of
the key from the hash table. Thus we get 2128 full 256-bit keys which are checked
in the real time with a few extra P/C pairs for the full 32 rounds. Most of the
time only one of these is needed to reject them and it takes time of 1 GOST
encryption to check. All keys are checked in total time of about (1 + 8/32) · 2128

GOST computations and with about 2132 bytes of memory.
Now we combine this MIM attack with our Reduction 1 and we get immedi-

ately an attack faster than brute force:

Fact 8. Given an average number of 232 random known plaintexts for the full
256-bit GOST cipher, it is possible to determine the secret key in time 1.25 ·
296+128 GOST encryptions, which is 230.7 times faster than brute force and with
about 2132 bytes of memory.

Justification: This is straightforward. We summarize the whole attack.

1. Let Xi, Yi be the set of 232 known plaintexts.
2. As in Reduction 1, on average there is one index i such that E3(Xi) is

symmetric. Then a 4-tuple i, A, B, C with A = Xi, B = E(A) and C = E(B)
can be guessed and the guess will be correct with probability 2−96.

3. In each of 296 cases we apply our MIM attack from Fact 7. Thus we check
296+128 cases and need to perform an equivalent of 1 + 8/32 full encryptions
per case, where the cost of each pre-computation of 2128 cases is amortized
over each interval containing 2128 cases. In each of 296 cases i, B we we
obtain exactly one key, which is checked with on average one and at most a
few additional P/C pairs Xi, Yi. Overall only one correct key is obtained in
this attack.

Summary and Discussion. This attack requires 232 known plaintexts,
and the running time is 1.25 · 296+128 GOST encryptions, which is 230.7 times
faster than brute force. The storage requirements are however very important:
about 2132 bytes of fast memory, which need basically to work at the speed of
encryption with only 4 rounds of the cipher.

Important: If we consider that today the memory of 230 has a cost com-
parable to 260 computations, it is possible to believe that the cost of 2128 of
memory at some moment in the future may be as high as to be equivalent to
2256 in computing power. In this case, it is possible to believe that we do not
yet have a valid attack on GOST. Happily, we are going now to present a more
convincing attack, and later also attacks which are strictly faster attacks and
yet with very low storage requirements.

Related work: Takanori Isobe from Japan have discovered another MITM
attack on GOST in 2011 [31]. However both attacks are not the same but
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different. Our attack is much simpler and slightly faster. In their attack they
guess values after 4 and 12 rounds and do a MITM attack on 4+4 rounds, and
use an equivalent key technique. In our attack is much simpler we guess one
value after 8 rounds and do a MITM attack on 8+8 double rounds in parallel.

9.3 A Reflection-MIM-Algebraic Attack
The attack is very similar and only the last step changes.
Fact 9. Given an average number of 232 random known plaintexts for the full
256-bit GOST cipher, it is possible to determine the secret key in time 296+152

GOST encryptions, which is 27 times faster than brute force. The memory re-
quired is negligible.
Justification: This is again straightforward:
1. Again given 232 KP Xi, Yi, we use the Reduction 1, and on average there is

one index i such that E3(Xi) is symmetric. Then a 4-tuple i, A,B,C with
A = Xi, B = E(A) and C = E(B) can be guessed and the guess will be
correct with probability 2−96.

2. In each of 296 cases we apply Fact 4 which allows to enumerate 2128 keys in
time of 224 GOST computations each. The total time spent in this step is
296+128+24 GOST computations.

3. Overall in this attack we will check 296+128 full keys on 256-bits, most of
them being false positives. Each is checked with on average one and at most
a few additional P/C pairs Xi, Yi. The total time spent in this step can be
neglected.

Summary. This attack requires 232 known plaintexts, and the running time
is 296+128+24 GOST encryptions, which is 27 times faster than brute force. The
storage requirements are negligible.

This attack, though slower, is arguably much better than the previous one
and one in [31], which required an inacceptable amount of storage. In what
follows we are going to describe better attacks, with lower complexity, and still
with negligible storage.

10 A Different Reflection-Algebraic Attack With 232 KP

In this attack the security of GOST will be reduced to the problem of breaking
8 rounds of GOST with 3 known plaintexts (instead of 2 in earlier attacks, see
Table 2). It does no longer use the meet-in-the-middle approach.
Reduction 2. [From 232 KP for 32 Rounds to 3KP for 8 Rounds]
Given 232 random known plaintexts for GOST on average, it is possible to ob-
tain three P/C pairs for 8 rounds of GOST and our guess will be correct with
probability 2−128.

Justification: Again let Xi, Yi be our set of approx. 232 known plaintexts. Then:
1. As in Reduction 1, on average there is one index i such that E3(Xi) is

symmetric. Then a 4-tuple i, A, B, C with A = Xi, B = E(A) and C = E(B)
can be guessed and the guess will be correct with probability 2−96.
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2. We call D = E3(A) the value which is symmetric by definition of A. Unlike
in our previous attack we also guess D. Overall we get i, A, B, C,D and our
guess will be correct with probability 2−128. We have:

B = E(A) (3)
C = E2(A) (4)
D = E3(A) (5)

D = S(E3(A)) (6)
C = D(D) = Enck(A) (7)

Now we will describe a full attack with complete key recovery.

Fact 10. Given an average number of 232 random knowns plaintexts for the full
256-bit GOST cipher, it is possible to determine the secret key in time 2128+120

GOST encryptions, which is 27 times faster than brute force. The memory re-
quired is negligible.

1. We use the Reduction 2 and given 232 KP we obtain a 5-tuple i, A,B,C, D
and correct with probability 2−128 and 3 P/C pairs for 8 rounds of GOST:
B = E(A) from (3), C = E(B) from (4), and D = E(C) from (5). These
8 rounds of GOST depend however on the full 256-bit key. And these 3
P/C pairs do not uniquely determine the key. Moreover, only 64 bits of
information about the key are available from one single value i and the
information contained in the 3 P/C pairs for 8 rounds of GOST above is
largely based on attacker’s guesses, and will only be confirmed after a large
number of candidates for the full 256-bit GOST key will be generated, and
checked against some 4 additional P/C pairs Xj , Yj for j 6= i, see Fact 1.

2. Following Fact 5 (cf. page 7) in each of 2128 cases tried and on average, and
in total time equivalent to 2120 GOST encryptions we obtain 264 candidates
for the GOST key k.

3. For each of the 2128 cases i, A,B, C, D we get from the program of Fact 5
a uniform enumeration of 264 keys. We get an enumeration of 2192 6-tuples
i, A, B, C,D, k. Where k is a candidate for the full 256-bit key. These 6-tuples
contain about 2192 different candidates for the GOST key k. Each 6-tuple is
generated in time of 256 GOST encryptions on average (cf. Fact 5).
These 6-tuples are checked with 4 extra additional P/C pairs, for example
the previous ones Xi−1, Yi−1 etc. With 5 P/C pairs total, only the right key
will be accepted, and the probability that a wrong key is accepted in our
attack is 2−64, see Fact 1.

4. Thus we reject all the 2192 6-tuples i, A, B, C,D, k except the correct one
which contains the full 256-bit key of the cipher.

Summary. Overall our attack requires 232 known plaintexts, time is 27 times
faster than brute force which requires 2255 GOST encryptions on average. It
requires negligible storage, except for the 232 known P/C pairs.
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11 Attacks On GOST Using 264 Known Plaintexts

Now we are going now to describe a better attack where we are still going to
reduce the security of GOST to the problem of breaking 8 rounds of GOST
with 3 known P/C pairs where our guess will be valid with a higher probability.
This however will be obtained at a price of 264 known plaintexts (instead of 232

KP). This larger quantity of data is required if order to find cases where the
internal reflection (cf. Fact 6) occurs twice, in order to be able to analyse several
encryptions at the same time, which will reduce the number of false positives.

First we consider special plaintexts which are likely to occur in practice:
Assumption 1. Let A be such that both E2(A) and E3(A) are symmetric.

Fact 11 (Key Property). There is on average one value A which satisfies
Assumption 1 above. For 63% of all GOST keys at least one such A exists.
Justification: We have 264 possibilities, each time the probability is 2−64. Such
a value A exists for 1− (1− 1/N)N ≈ 63% of all GOST keys where N = 264.
Remark: For 37 % of keys this attack fails but our earlier attacks requiring only
232 KP still work.

Reduction 3. [From 264 KP for 32 Rounds to 3KP for 8 Rounds]
Given 264 known plaintexts for GOST, it is possible to obtain three P/C pairs
for 8 rounds of GOST and our guess will be correct with probability 2−96.

Justification: will be provided below.

1. Let Xi, Yi be the set of all the 264 known plaintexts.
2. On average there exists one index such that both C = E2(Xi) D = E3(Xi)

are symmetric values on 64 bits. Then since D = E3(A) is symmetric we
have

Enck(A) = C = E2(A) (8)

So far we don’t know neither i nor A,C, D. However since from our Key
Assumption on i the value of C = E2(Xi) must be a symmetric value on
64-bits, we can limit ourselves to select C among all symmetric ciphertexts,
guess C = Yi and our guess is true with probability 2−32. Let A = Xi be
the corresponding plaintext. We have a triple i, A,C which is correct with
probability 2−32.

3. Then we guess B and get a 4-tuple i, A,B, C with A = Xi, B = E(A) and
C = E(B) and our guess will be correct with probability 2−96.
As in our first two attacks we don’t try to guess D.

4. This gives exactly 2 P/C pairs for 8 rounds B = E(A) and C = E(B).
5. One extra pair will be obtained by decrypting B as follows. We define Z as

Z = Deck(B) = E−3(S(E(B))). We have

Z = Deck(B) = E−3(S(C)) = E−3(C) = E−2(B) = E−1(A) = D(A).

Where we used our assumption that C = E2(A) is symmetric, and we get
that Z = Deck(B) = D(A). Thus we get our 3-rd pair A = E(Z). This
decryption is done in constant time if we assume that all the pairs Xi, Yi are
stored using a hash table.
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rounds values key size

Z
8 E ↓ 256

A A
8 ↓ E ↓ 256

B B
8 ↓ E ↓ 256

C C ./ C
8 ↓ E D ↑ 256

D ./ D B
8 ↑ D 256

C

bits 64 64

Fig. 1. Our best attack on GOST

6. Thus we determine i, Z,A, B, C and we get 3 known P/C pairs for 8 rounds
of GOST, and our guess is valid with probability 2−96.

Thus we obtain the following result:
Fact 12. Given 264 known plaintexts, it is possible to determine the full 256-bit
key of GOST cipher in time of 2216 GOST encryptions. The storage required is
264 times 8 bytes.
Justification: As above we get 3 known P/C pairs for 8 rounds of GOST, and
our guess is valid with probability 2−96. For each of the 296 cases i, A, B, C we
get from the program of Fact 5 a uniform enumeration of 264 keys. Thus we get
an enumeration of 2160 5-tuples i, A, B,C, k. Where k is a candidate for the full
256-bit key. These 5-tuples contain about 2160 different candidates for the GOST
key k. Each 5-tuple i, A, B, C, k is generated in time of 256 GOST encryptions
on average (cf. Fact 5). These 4-tuples are checked with 4 extra additional P/C
pairs. We reject all the 2160 4-tuples i, D, B, k except the correct one. Total cost
is about 2160+56 GOST encryptions.

11.1 Alternative Attacks with Reduction to 4 Pairs
If we look at Reduction 3 it is possible to see that by guessing D we are able to
obtain 4 pairs with a degraded probability as follows:
Reduction 4. [From 264 KP for 32 Rounds to 4 KP for 8 Rounds]
Given 264 known plaintexts for GOST, it is possible to obtain four P/C pairs
for 8 rounds of GOST and our guess will be correct with probability 2−128.

In Appendix we present three other and different methods to obtain 4 pairs
given 264 KP with the same and even slightly better success probability.

Unhappily, it appears that these alternative reductions currently do not lead
to attacks which are better than those described in this paper. This is due to
the fact, that currently we are not able to improve the timing of Fact 5, if we
dispose of 4 P/C pairs for 8 rounds. Currently, we have no result better than
Fact 5 and the necessity to guess D makes the attack simply 232 times slower.
This attack is summarized in the next to next to last column in Table 2.
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12 A Simple Fixed Point Attack With 264 KP

So far all single-key attacks on GOST ever found exploited the internal reflec-
tions [31] and in our best attack on GOST we use this reflection property twice.
However there is another very simple attack on GOST with the same complexity
of 2216 and which does not use any reflection and where no symmetric 64-bit val-
ues appear. This shows that GOST is broken independently of reflection attacks
[31, 32]
Reduction 5. [From 264 KP for 32 Rounds to 2KP for 8 Rounds]
Given 264 known plaintexts for GOST, it is possible to obtain two P/C pairs for
8 rounds of GOST and our guess will be correct with probability 2−64.
Justification: This attack is very simple and appears in the last column of Table
2. Let A be a fixed point of E . One on average such value exists. Then let
E = Enck(A), and since A is a fixed point for 8 rounds, and Enck = D ◦ S ◦ E3

after 24 rounds we still have A, and we obtain an additional pair for 8 rounds
E(E) = S(A) = A. Both these pairs are jointly valid with probability 2−64, when
A is correct.

This can be used to break GOST directly with the same complexity as in
Fact 10:
Fact 13. Given 264 known plaintexts, it is possible to determine the full 256-bit
key of GOST cipher in time of 2216 GOST encryptions. The storage required is
264 times 8 bytes.

Justification: We combine Reduction 5 and Fact 4. The number of false positive
keys will be 2192 and can be neglected.

Important Remark This attack will work for about 63 % of all GOST
keys for which E has a fixed point. For the remaining 37 % of Family B keys this
attack fails, but the attack described in Section 11 will still work with roughly
the same complexity, this for 63 % of these 37 % of keys.

Future Work: The fact that both complexities are equal is an accident. Be-
cause these attacks depend a lot on timings obtained with sophisticated software
solvers, we expect that both results will be improved in the very near future,
and the complexities will not exactly equal, but rather different.

This paper provides strong motivation for doing more research on this type
solver technology, which is known to be able to break more or less any cipher
with a limited number of rounds, see [10], and the main contribution here is to
be able to reduce the security of a cipher with 32 rounds to the security of the
cipher with 8 rounds.

12.1 An Alternative Simple Fixed Point Attack With 264 KP

A clever alternative final step for the same reduction and attack was very recently
proposed in [18]: the overall running time is then reduced from 2216 to 2192.

The authors have wrongly described this reduction as ”a new fixed point
property” while it was already found earlier. It appeared in a paper submitted
to Asiacrypt 2011 in May 2011 and was already published on the Internet in
September 2011 at the author’s web page http://www.nicolascourtois.com/
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papers/gostac11.pdf and the link was cited in several papers and reports ever
since that moment. What is new in the very recent paper [18] from October 2011
is the final step: how to recover the key given 2 KP for 8 rounds of GOST, where
the time complexity is improved from 2216 to 2192, while memory requirements
are quite small in both cases.

13 Discussion

13.1 Interesting Points About Our Attacks
We obtained several attacks which break the full 32-round GOST faster than by
brute force and require small storage. Crucial ingredients in these attacks are:

A) A self-similarity property of the full 32-rounds GOST which allows to reduce
the problem of breaking a 32 rounds cipher to a problem of breaking a
cipher reduced to 4 or 8 rounds. Most our attacks use the Internal Reflection
Property (cf. Fact 6) and an overall small number of iterations of the 8-round
block E . We heavily rely on the fact that the same large encryption block with
the same key is repeated, we call it “strong self-similarity”. The attack
described in Section 10 is a very innovative new type of attack on block
ciphers based on strong self-similarity and reflection, yet it is not a slide
attack [23, 2, 3, 1] neither it exploits fixed points like in [11, 32]. In addition
in Appendix A and Appendix D we show two attacks on GOST which are
faster than brute force, and don’t use any reflection.

B) The second necessary ingredient is the existence of efficient and low data
complexity [10, 19] key recovery attacks on reduced-rounds of GOST. For
example 8 rounds of GOST with 256-bit key can be broken in time of 2120

GOST encryptions and only 3 KP, cf. Fact 5. This is possible due to several
factors. First, the diffusion in the cipher is poor, which is known to play an
important role in this type of algebraic attack. Secondly, both the GOST
S-boxes (mainly due to their size, see [8, 10, 12, 4, 5], much less due to any
particular choice of S-boxes), and the addition modulo 232 contribute to a
circuit of GOST which is overall not too complex compared to any other
comparable cipher, see [34], and this also makes it vulnerable to Algebraic
Cryptanalysis [4, 8, 12, 39, 40, 11].
It is worth noticing that we do not exploit any other property or weakness

of GOST other than A) and B) above, and we are able from these properties to
construct a dozen of very diverse and rather non-trivial attacks on GOST.

13.2 Algebraic Complexity Reduction vs. Black Box Reductions
All algebraic complexity reductions in this paper are black box reductions. How-
ever the concept of an algebraic complexity reduction is more general and re-
ductions do not have to be black box. An example of attack with algebraic
complexity reduction which is not a black box reduction is the Slide-Algebraic
Attack 2 in [11], here the attacker ends up with two instances of a slightly dif-
ferent cipher, it is no longer a black-box reduction, and the final key recovery
stage has to consider how these two encryptions are (internally) related to each
other with a shift in key bits.
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13.3 Beyond GOST
This paper demonstrates the power of algebraic cryptanalysis (AC) which is
a disruptive technique in cryptanalysis leading to great many new attacks. In
theory algebraic attacks allow to break more or less any cipher, provided it is
“not too complex”, however it turns out that it can break only a few rounds, up
to about 6, 7 or 8, of modern ciphers such as DES [10] or GOST (this paper).
Then, if the cipher has special properties at the high level, like in KeeLoq [11]
or in GOST (this paper), one can do indeed much more.

In particular self-similarity properties are very powerful because they allow
a dramatic reduction in the overall complexity of the algebraic description of
the problem. In what we call strong self-similarity whole very large blocks of the
cipher are eliminated in one step by assuming that all the bits inside are identical
to the whole internal state of another large block. We can also note that if we
had approximate self-similarity, this type of attack would work extremely well.
with an additional factor in time complexity.

Many block ciphers have various self-similarity properties and a relatively
simple key schedule. In the past these have been overlooked or used only in
very special attacks such as attacks which exhibit weak keys or attacks which
use several related keys. If keys are generated at random, these attacks have a
negligible impact on the real life applications of ciphers as far as confidentiality
is concerned. In this paper however, in a similar way as for example in various
attacks on KeeLoq [11] and elsewhere [23, 2, 3, 1], we show that these quite strong
properties are dangerous and really allow to break ciphers. This is by a black
box reduction to a software algebraic attack on a reduced-round sub-component
of a bigger cipher. This will work but only if the key schedule is indeed “not
too complex”, and allows large blocks of the circuit to be identical with high
probability, and if the algebraic attacks are powerful enough to work below a
certain threshold.

We contend that this combination of self-similarity attacks and algebraic
attacks is quite unique. In the most basic form of slide attacks [23, 2, 3] (which
is maybe the simplest form of self-similarity attacks) the attacker reduces the
security of a cipher for a large number of rounds to a security of essentially
the same cipher with much less rounds, and he is able to generate a large (or
unlimited) quantity of known P/C pairs for a simpler component. Thus many
different attacks are applied in the literature as the last step of a slide attack, and
not surprisingly there are so many different attacks on KeeLoq, see [11]. However
in advanced self-similarity attacks like in this paper and in [11], one can generate
only a very limited number quantity of P/C pairs for the smaller component.
For example we can have 3, and with a lot more effort we can have 4, cf. Section
11.1, but probably by no means we could have 5, which would already require a
number of assumptions which cannot be afforded by the attacker (or weak keys
cf. Fact 24). Very few cryptographic attacks are able to deal with such small
quantities of encrypted data: brute force attacks, guess then determine attacks,
meet-in-the middle attacks and notably algebraic attacks (cf. also [19]). Then
if the components of the cipher have low resistance to algebraic attacks, below
a certain threshold, an algebraic attack with self-similarity could potentially
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become the best attack known on the given cipher. This is what we currently
obtain for GOST. As algebraic attacks develop, this could happen for some other
block ciphers with over-simplistic key schedule and strong-self similarity.

13.4 Should GOST Become An International Encryption Standard?

In 2010 GOST was submitted to ISO to become a worldwide encryption stan-
dard. From the cryptography research point of view we have broken GOST, and
many algorithms have been rejected by various standardization bodies for much
less than an actual key recovery attack faster than brute force. Does it mean
that GOST should not be used?

In practice, in a pragmatic perspective, GOST with full 256-bit keys gen-
erated at random remains still impossible to decrypt in practice. It remains a
particularly economical cipher in terms of gate count complexity in hardware im-
plementation, cf. [34], and thus suitable for resource-constrained environments
such as smart cards and RFID.

From the standardization point of view however, given the fact that academic
standards for block ciphers tend to be very high, and a provision should be made
for further improvements in cryptanalysis, GOST should not be used in applica-
tions which require high security. In particular, it should never be used by banks
(at least two sets of GOST S-boxes have been explicitly identified as being used
by Russian banks cf. [43, 28]). Very few encryption algorithms have ever been
standardized by ISO. The international standard ISO/IEC 18033-3:2010 speci-
fies the following algorithms. Four 64-bit block ciphers: TDEA, MISTY1, CAST-
128, HIGHT and three 128-bit block ciphers: AES, Camellia, SEED. GOST is
intended to be added to the same standard ISO/IEC 18033-3. To summarize, it
is clear that ISO should not standardize GOST, as this algorithm is structurally
flawed, and does not provide the security level required by ISO.
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14 Conclusion

The Russian encryption standard GOST is implemented in OpenSSL and other
crypto libraries [28, 45], used by Russian banks, and increasingly also on the
Internet. It appears that GOST has a lower gate count than any comparable
cipher, cf. [34]. In 2010 GOST was submitted to ISO to become an international
standard. Given the 256-bit key size of GOST, and the large number of 32
rounds, GOST is expected to remain secure for many decades to come. Until
2011, no shortcut attack allowing to recover individual GOST keys faster than
brute force was found.

The general idea of Algebraic Cryptanalysis (also known as the method of
“Formal Coding”) has been around for more than 60 years [44, 29]. Yet only
in the last 10 years several efficient software tools for solving various NP-hard
problems involved have been developed, while numerous specific vulnerabilities
leading to efficient attacks of this type have been found. A number of stream
ciphers are indeed broken [8, 5, 6]. However only one block cipher KeeLoq could
so far be shown to be weak enough, to be broken using an algebraic attack [11].
In this paper we break another important real-life block cipher.

There is a certain common paradigm in all our attacks on GOST, and some
other recent attacks on block and stream ciphers. We call it algebraic complex-
ity reduction. It applies to ciphers, which have a lot of strong self-similarity due
to a very simple key schedule, and moreover whole large blocks of the cipher
can be identical functions. In order to achieve our complexity reduction we need
to solve a certain combinatorial puzzle. With well-chosen equalities on internal
values, we are able to literally break the cipher apart into smaller pieces. This
greatly reduces the complexity of the cipher as a circuit and makes algebraic
cryptanalysis suddenly feasible. We proposed five non-trivial black-box reduc-
tions of this type on GOST, and main results are summarized in Table 2 on page
11. We considerably enlarge the spectrum of self-similarity attacks on block ci-
phers: our single and double reflection attacks are able to exploit similarities of
individual sub-blocks and their inverses, and are now quite far away from any
known variant of slide attack (cf. [23, 2, 3, 1, 22]), or a known fixed point attack
(cf. [11, 32]). We also exhibit four different valid attacks on GOST which don’t
use any reflections [31, 32] whatsoever.
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14.1 Our Exact Results

In this paper we present more than 10 different new attacks on GOST which are
faster than brute force plus more than 10 additional attacks on special weaker
key classes.

For single key attacks our fastest attack requiring only 232 known plaintexts
has the complexity of 2224, similar but very slightly faster than the result of
FSE 2011 [31]. Our two fastest attacks on GOST require as much as 264 known
plaintexts and are 239 times faster than brute force. The best six of these attacks
are shown in Table 2 on page 11 and many other are found in the Appendix.

The last step in most of our attacks is a software “algebraic” key recovery
step. This final step can almost certainly be improved for all our attacks, also by
using other very different methods, which has been recently shown to be possible
by Shamir et al for our second best attack [18]. It remains to be seen how other
of our attacks can be improved.

In addition we have done an extensive study of new weak key classes in GOST
which are made possible but our methodology. The results are summarized in
Table 3 on page 45. Many of these new weak key classes occur with probability
which is high enough, or/and lead to significantly faster attacks than with regular
keys. In fact one of these attacks beats best regular attack on running
time also when the keys are not weak, but in a realistic scenario of encryption
with a population of devices with diverse keys generated at random, weak keys
occurring naturally at random. Then we can break GOST in overall total time of
about 2185, which includes identifying some weaker keys in a diverse population
of keys, and breaking them, see Appendix L. This is arguably a better and more
realistic attack than any attack which appears in the main part of this paper
and also better than the most recent improved attack in 2192 by Shamir et al
[18]. In the scenario where many devices with different keys are available, some
of them being weaker, and more precisely if we have a diverse population of at
least 264 different keys, with 264 KP per key, one can recover one of these keys
in total time of not more than 2185 GOST encryptions, see Appendix L.

In this paper, in addition we also present four very nearly practically feasible
attacks with O(232) CP per key. Both “natural” methods of using GOST with
128-bit keys which were previously suggested in the literature [3] are shown to
be broken. With the “direct” method we can identify and break only certain
(weak) keys in overall time of 266 GOST encryptions, cf. Fact 30 in Appendix
M. With the “inversed” method we can recover arbitrary 128-bit keys within 281

GOST encryptions cf. Fact 40 in Appendix N. All these results are summarized
in Table 5 on page 60.

Unlike some recent advanced differential attacks on GOST [16, 14, 15] all our
attacks are expected to work for any choice of GOST S-boxes. Since most of
our attacks do require very large quantities of data encrypted with a single key,
and the time complexities remain astronomical, they do not threaten practical
applications of GOST with random 256-bit keys. However our methods and
results may have a very significant impact on decription of messages encrypted
with some weaker variants of GOST.
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A An Alternative Reduction With 264 KP and Without
Internal Reflections

In this paper we presented 3 attacks with Internal Reflection and two more
attacks where such reflection occurs twice. Reflection occurs frequently because
the last 16 rounds of GOST have a large number of 232 fixed points, which is
instrumental in most of our attacks. Here we provide yet another, very surprising
method to obtain 4 pairs given 264 KP, and with the same success probability of
2−128 as in Reduction 4. The method however is very different and this will be
the only attack in this paper which does NOT use any internal reflection
and where no symmetric 64-bit values appear. This attack is rather a new and
peculiar form of a slide attack, and it is somewhat reminiscent of certain fixed
point attacks [11], except it uses points of type E(D) = D where by definition D
is the value on 64-bits with both 32-bit halves exchanged. Similarly as for other
attacks in this paper the black box reduction stage is non-trivial: it is not clear
if such attacks should exist at all for any given block cipher. This attack is also
described in [13].

Here we consider plaintexts with another very peculiar property:
Assumption 2 (Assumption W). Let A be such that E(D) = D where D is
defined as D = E3(A).

Again, it is possible to see that:

Fact 14 (Property W). Given 264 KP there is on average one value A which
satisfies the Assumption W. For 63% of all GOST keys at least one such A exists.

This property has some very important consequences:

Fact 15 (Consequences of Property W). If A satisfies the Assumption W
above and defining B = E(A) and C = E(B) we have:
1. Enck(A) = D. This is illustrated on the right hand side of Fig. 2.
2. Enck(B) = C This can be seen on the left hand side of Fig. 2.

rounds values key size

A
8 E ↓ 256

B B
8 ↓ E ↓ 256

C C
8 ↓ E ↓ 256

D D ./ D
8 ↓ E D ↑ 256

D ./ D D
8 ↑ D 256

C

bits 64 64

Fig. 2. An alternative attack with reduction to 4 pairs and no internal reflection

This leads directly to our new reduction:
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Reduction 6. [From 264 KP for 32 Rounds to 4 KP for 8 Rounds]
Given 264 known plaintexts for GOST, it is possible to obtain four P/C pairs
for 8 rounds of GOST and our guess will be correct with probability 2−128.
Justification: Given 264 known plaintexts, there is on average one value A = Xi

with Property W. We guess A and B and our choice is correct with probability
2−128. This gives us immediately C and D as shown on Fig. 2. For each (A, B)
this computation of (C,D) is done in constant time if we assume that all the
pairs Xi, Yi are stored using a hash table.

Thus we obtained 4 pairs for 8 rounds of GOST:
A 7→ B,B 7→ C, C 7→ D, D 7→ D.

A.1 How to Use This Reduction 6 to Break GOST
Both our previous Reduction 4 and this new Reduction 6 described here achieve
exactly the same result by a different method.

Thus that attack which uses this reduction will also be exactly the same
as the attack given in Section 11 with additional guess of D, as described in
Section 11.1 which is also summarized in the next to last column in Table 2 and
the complexity is exactly the same.

Summary. Overall our attack requires 264 known plaintexts, time is 27 times
faster than brute force. The storage required is for the 264 known P/C pairs.

A.2 Can One Do Better?
In Section 11 of this paper we presented one attack which obtains 3 KP for 8
rounds which will be correct with probability 2−96 and 4 KP could be obtained in
Section 11.1 with probability 2−128, and by a second alternative method in this
Appendix A. An interesting question is whether these results can be improved.
For typical GOST keys the answer is probably no. However these probabili-
ties can be further quite substantially improved for particular (still quite large)
classes of weak keys. For example if we have a diverse population of GOST keys
where 2−32 will be weak, for such weak keys one can then obtain 4 KP for 8
rounds which will be correct with probability 2−64 instead of 2−128, see Fact 24.
Moreover this probability can be reduced to almost certainty, about 2−1 if we
allow a further reduction in the number of weak keys considered, and 2−64 of all
keys will be weak, see Fact 26.

A.3 Generalizations of Reduction 6
This attack does not use the peculiar (weak) nature of S which is not only an
involution (it is equal to its own inverse function) but has as many as 232 fixed
points, which we do not require. It only exploits the (weaker) property that the
last 16 rounds of GOST are an involution. Then it still uses some sort of fixed
points, for the function S ◦E , which does not have a particularly large number of
such fixed points, just 1 on average. It is possible to see that this attack would
also work for any cipher defined as Enck = D◦F◦E◦E◦E where F is an arbitrary
involution which could also depend on some cryptographic key, potentially even
a key independent on the key used in E , thus increasing the key space. In this
sense it clearly is a stronger and more general attack.
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B One More Reduction To 4 KP Without Internal
Reflections

There is also another method to get the same result as in Reduction 6,
We combine Reduction 5 to get 2 pairs for 8 rounds, then we use the ampli-

fication property of Fact 17 to get one more pair for 16 rounds, and we guess
64-bits in the middle of it. Thus we get 4 pairs for 8 rounds which are with very
high probability distinct.

As before, this is yet another attack on GOST faster than brute force. How-
ever as we will see below, it is better and more productive to just apply Reduction
5 twice, which will lead to a slightly faster attack.
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C Another Cheaper Reduction With 264 KP and
Without Internal Reflections

In this paper we presented three black-box reductions allowing to produce 4
P/C pairs for 8 rounds of GOST, given 264 KP, and at the price of making an
assumption which holds with probability 2−128: these are Reduction 4, Reduction
B and Reduction 6.

In this section and in the next section we present two more such reductions.
which both have a slightly better success probability: 2−127 instead of 2−128. All
these reductions lead to attacks which will be about 27 or 28 faster than brute
force, (like in Section 11.1 and the next to last column in Table 2). However
these are not the fastest of our attacks, see Section A.2. Therefore their interest
is (for now) purely academic. It is also another two attacks which do NOT use
any internal reflection. All these reductions are very different and work for a
majority but not all GOST keys, for example for 63 % of keys, or less, and
different reductions work for different keys, and therefore they complement each
other.

This reduction is very simple and we essentially need to apply Reduction 5
twice:
Reduction 7. [From 264 KP for 32 Rounds to 4KP for 8 Rounds]
We assume that E has two fixed points, which occurs with probability about
26%.
Given 264 known plaintexts for GOST, it is possible to obtain four P/C pairs
for 8 rounds of GOST and our guess will be correct with probability 2−127.
Justification: Let E be such that it has two or more fixed points, which occurs
with probability 1− (1− 1/N)N − (

N
1

)
(1− 1/N)N−1 (1/N)1 ≈ 1− 2/e ≈ 26%,

where N = 264, see [11, 36]. We can apply Reduction 5 twice and guess two fixed
points A and A′ for E . However the probability to guess 2 fixed points for E2 is
only about 2−127 instead of 2−128, this is because if A, A′ is a correct guess on
128 bits, A′, A is also correct.

Again this can be used to break GOST directly in the same way as before,
we apply Fact 5 and get an enumeration of keys checked instantly with the 4-th
pair, in total time equivalent to 2120 GOST encryptions.
Fact 16. Given 264 known plaintexts, it is possible to determine the full 256-bit
key of GOST cipher in time of 2247 GOST encryptions. The storage required is
264 times 8 bytes.

Summary. Thus we obtained another attack with 264 KP, but time is now
28 times faster than brute force.
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D Yet Another Cheaper Reduction To 4 KP

Here is another black-box reduction allowing to produce 4 P/C pairs for 8 rounds
of GOST making an assumption which also holds with probability 2−127. All
these attacks work for a different (quite large) fraction of all GOST keys, but
not all GOST keys, and complement each other. It can be seen as a slight variant
of Reduction C which gives in some cases identical, and in some cases different
cases (there is a non-trivial intersection of both attacks).
Reduction 8. [From 264 KP for 32 Rounds to 4 KP for 8 Rounds]
Given 264 known plaintexts for GOST, it is possible to obtain four P/C pairs
for 8 rounds of GOST and our guess will be correct with probability 2−127.
Justification: We consider the initial 16 rounds E2. On average it has 2 fixed
points and it is easy to see that points of order two for E come in pairs. Similarly
as before, the probability to guess 2 fixed points for E2 is about 2−127 instead of
2−128, this is because if X,Y is a correct guess on 128 bits, Y, X is also correct.

Then we proceed as follows: This gives us immediately Z and T as shown on
Fig. 3. For each (X, Y ) this computation of (Z, T ) is done in constant time if we
assume that all the pairs Xi, Yi are stored using a hash table.

Thus we obtained 4 pairs for 8 rounds of GOST:
X 7→ Y, Y 7→ X,Z 7→ Y , T 7→ X.

rounds values key size

X
8 E ↓ 256

Y Y
8 ↓ E ↓ 256

X X
8 ↓ E ↓ 256

Y Y ./ Y
8 ↓ E D ↑ 256

X ./ X Z
8 ↑ D 256

T

bits 64 64

Fig. 3. A slightly cheaper alternative attack with no internal reflection

Resulting Attack. Again, if we combine this with Fact 5 we get an attack
which breaks GOST given 264 known plaintexts, time is also 28 times faster than
brute force (as in Fact 16). The storage required is for the 264 known P/C pairs.
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E Involution Property For 16 Rounds of GOST and
Amplification Property for Full GOST

We discovered a peculiar amplification-like property of GOST. which is closely
related to most of the attacks described in this paper and reminiscent of slide
attacks [23, 2] and yet it is different than any slide attack known to us. It is
based on the fact that the last 16 rounds of GOST are an involution, i.e. a
special sort of permutation where all cycles are of length 1 or 2.

Basic slide attacks [23, 2, 3] where the encryption process is assumed to be
perfectly periodic, and to be a straightforward periodic iteration of one single
key-dependent function fk, operate as follows. The attacker assumes that he
knows one P/C pair for this function fk, and then uses the sliding property to
obtain an additional P/C pair for fk. This process can be iterated and generate
many P/C pairs for fk. In contrast, in more advanced self-similarity attacks like
in this paper and in [11], some of which are considered to be “advanced” slide
attacks, and some of which use some special points such as fixed points, the
process cannot be continued and one can generate only a very limited number
quantity of P/C pairs for the smaller component.

In GOST cipher the periodicity which is very helpful in slide attacks [23, 2,
3] is deeply broken by the inversion of keys which occurs in the last 8 rounds.
However an analogous property for GOST still exists.

Fact 17 (Amplification Property for Full 32-rounds GOST). For any
X, Y we have:

Y = E2(X)

m
Enck(X) = E2(Deck(Y )).

Given access to both encryption and decryption oracles for the full GOST
Enck(·) For each P/C pair for 16 rounds of GOST Y = E2(X) such that E3(X)
is not symmetric, the attacker can obtain another different P/C pair Z = E2(T )
for 16 rounds of GOST with Z = Enck(X) and T = Deck(Y ).

Justification: This property is due to the fact that the last 16 rounds of GOST
are an involution. From our initial pair Y = E2(X) such that X we obtain a pair
Y,Enck(X) for the last 16 rounds of GOST which is D ◦ S ◦ E . Indeed:

Enck(X) =
(D ◦ S ◦ E3

)
(X) = (D ◦ S ◦ E) (Y )

However this function D ◦ S ◦ E representing the last 16 rounds of GOST is
an involution, therefore also Enck(X), Y is a valid pair:

Y = (D ◦ S ◦ E) (Enck(X))

Now we decrypt both sides to obtain:

Deck(Y ) =
(D3 ◦ S ◦ E ◦ D ◦ S ◦ E)

(Enck(X)) = D2(Enck(X))

Therefore we have:
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Enck(X) = E2(Deck(Y ))

Now we need to see under which condition the pair Z, T is distinct from the
initial pair Y = E2(X). This happens if and only if Enck(X) 6= Y . Equivalently
when

(D ◦ S ◦ E) (Y ) 6= Y

which in turn is equivalent to S(E(Y )) 6= E(Y ) which occurs if and only if
E(Y ) = E3(X) is not symmetric.

E.1 Additional Remarks on Amplification in GOST
In Fact 17, each time E3(X) is not symmetric, and given one pair for 16 rounds
Y = E2(X) we obtain another distinct pair for 16 rounds Z = E2(T ) where by
definition Z = Enck(X) and T = Deck(Y ).

Unhappily this process cannot be iterated. By reasoning from one assumption
on 16 bits we can infer at maximum one another distinct pair, and then we
immediately enter a cycle of length 2:

Y = E2(X)

`
Enck(X) = E2(Deck(Y ))

`
Enck(Deck(Y )) = E2(Deck(Enck(X)))

The third pair is identical to the first. Moreover it was already shown that
if E3(X) is symmetric, and only in this case, all these pairs for 16 rounds are
identical (we have a fixed point in our inference process of Fact 17).

Remark: In many attacks studied in this paper we have E3(X) which is
symmetric, a reflection occurs in the involution function D ◦ S ◦ E . In these
attacks this method of Fact 17 does exceptionally not work and gives the same
pair X, Y . In most other cases, and with overwhelming probability of 1− 2−32,
E3(X) is not symmetric, and our method of Fact 17 is guaranteed to work.

E.2 The Amplification Paradox
Our amplification property is not very dangerous, no attack really exploits it.

Now imagine that we have a second property like this. Then we could combine
both these properties to generate an unlimited number of P/C pairs for 16
rounds, probably the whole code-book, starting from one single assumption on
16 rounds, which is quite affordable to make for the attacker (64 bits need to be
guessed). And maybe even generate 232 pairs, make some of the inputs repeat
by the birthday paradox, realize that the predicted outputs are different, which
would prove that there was a contradiction, proving that the initial assumption
on 64 bits was incorrect (this cannot be guaranteed). We call this “amplification
paradox”: one such property is not very dangerous, two would be a source of
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very powerful attacks, which transform the security of GOST with 32 rounds and
broken/imperfect periodicity, to 16 rounds of GOST with perfect periodicity,
which will be therefore much easier to break by various slide fixed point, cycling
and other attacks.
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F Black-box Reductions from 32 to 16 Rounds

Most black-box reductions in this paper are reductions from 32 to 8 rounds.
In this section we study very briefly the question of black-box reduction to 16
rounds. We don’t propose any new attack, but such reductions give important
insights about the structure of GOST cipher, and structure the space of other
reductions studied in this paper. In fact our basic reduction presented below,
underpins most (but not all) of our reductions from 32 to 8 rounds and can be
seen as a first step in these more complex reductions and the resulting attacks.

The key question to be asked for the cipher such as GOST is: what is the cost,
in terms of success probability in our guess, and data complexity, of obtaining 1
P/C pair for 16 rounds? Similarly what will be the cost of obtaining more pairs?

F.1 Black-box Reductions from 32 to 16 Rounds

One such reduction is already present in Step 1. in Table 2 and underlies all
the attacks which are summarized in this table. For completeness, we recall this
reduction in its basic form:

Reduction 9. [From 232 KP for 32 Rounds to 1KP for 16 Rounds]
Given an average expected number of 232 known plaintexts for GOST, it is
possible to obtain one P/C pair for 16 rounds of GOST and our guess will be
correct with probability 2−32.

Justification: The full justification is already given in Reduction 1 in Section 9.1,
and also used in Reduction 2 in Section 10. We guess i. The reflection occurs
with probability 2−32 in which case E3(A) is symmetric where A = Xi. Then we
obtain our pair for 16 rounds as follows. Let C = Enck(A) then C = Enck(A) =
D(S(E3(A))) = D(E3(A)) = E2(A).

Remark: One we get a pair for 16 rounds, one can be tempted to apply our
Amplification method given by the Fact 17. However here, quite exceptionally,
we are in the case in which it does not work, which is also because an internal
reflection occurs. Therefore it is not trivial to obtain 2 pairs for 16 rounds.

F.2 More Black-box Reductions from 32 to 16 Rounds

By Applying Reduction 9 twice we immediately obtain that:

Reduction 10. [From 233 KP for 32 Rounds to 2KP for 16 Rounds]
Given an average expected number of 233 known plaintexts for GOST, it is
possible to obtain two P/C pairs for 16 rounds of GOST and our guess will be
correct with probability 2−64.

F.3 Slight Improvement Based On Amplification

There is another simple method to obtain two pairs for 16 rounds, where our
guess will be correct with probability 2−64. We simply guess 1 pair, X, Y , and
apply the Amplification property of Fact 17.
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Y = E2(X)

`
Enck(X) = E2(Deck(Y ))

However this method as described here seems less interesting that Reduction
10 above. It seems to require 264 KP to be able to either encrypt X or decrypt
Y . Happily we are able to propose a non-trivial variant of this method which
requires only 232 KP, which will be a strict improvement compared to 233 KP
required by Reduction 10.
Reduction 11. [From 232 KP for 32 Rounds to 2KP for 16 Rounds]
Given an average expected number of 232 known plaintexts for GOST, it is
possible to obtain two P/C pairs for 16 rounds of GOST and our guess will be
correct with probability 2−64.
Justification: Given a set of 232 KP, Xi 7→ Yi for 32 rounds, the probability
that there exists i, j such that Xj = E2(Yi) is close to 1. We guess i, j and we
obtain two pairs without any further access to encryption/decryption oracles by
the Amplification method. Following Fact 17 we have the following (not totally
obvious) result:

Xj = E2(Yi)

`
Yj = E2(Xi).

F.4 Potential Applications
Under certain conditions, our Reduction 10 as well as Reduction 11 could allow
attacks faster than brute force on the full 32-round GOST:

Fact 18 (Hypothetic Attack with Reduction to 16 rounds). If there
exists an attack on 16 rounds of GOST which allows to recover the key given
only 2 P/C pairs for 16 rounds (with 2128 false positives generated during this
process checked later against additional P/C pairs ) which is faster than 2192 full
GOST encryptions, then it can be transformed into an attack on the full-round
GOST faster than brute force.

Justification: This is obvious given Reduction 10 or Reduction 11 which would
multiply the complexity of our key recovery attack by a factor of 264.

In the next section we revisit the question of reductions which result in
P/C pairs for 16 rounds and we are going to develop much more interesting
applications for these reductions.
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G Algebraic Complexity Reduction and Chosen Plaintext
or Chosen Ciphertext Attacks

Now we are going to do something quite unique, compared to other reductions
described in this paper. All the other reductions are reductions to 2,3,4 or 5
known P/C pairs for 4 or 8 rounds. However the outcome of a Black-Box Al-
gebraic Complexity Reduction can also be for example 4 chosen plaintexts (or
chosen ciphertexts) for 8 rounds, this if we are able to do the reduction in such
a way that the attacker can chose the plaintexts or the ciphertexts, which is
in general much harder to achieve than a reduction which produces just some
known pairs. Of course we are not going to obtain a choice of specific plaintexts
or ciphertexts by the attacker with certainty, but, as in all our reductions, an
attack in which some pairs are freely chosen by the attacker, but the result is
only correct with some probability. With this probability, for example 2−32, we
should obtain all the relations and characteristics it is claimed to have to hold
simultaneously. In other cases, for example with probability 1 − 2−32 we still
have chosen plaintexts, but the result is incorrect, which, as usual, needs to be
taken into consideration of false positives in the attack. And again, if the total
number of these false positives is small enough, we don’t need to worry about
them, even if each of them needs to be checked against additional pair for 32
rounds.

A care also needs to be taken in such attacks that the attacker can have a
sufficient supply of cases to choose from, because only with some small proba-
bility the choices of the attacker are actually used in the “effective” part of the
attack execution, which is the one which finds the correct key.

G.1 Chosen Plaintext Reductions From 32 to 16 Rounds

Now we can look at the reductions from 32 to 16 rounds in the previous sec-
tions in the new light. Reductions in which the attacker is able to choose both
plaintexts, will be much more interesting than other reductions.

We are going to revisit Reduction 9 and Reduction 10.

Reduction 12. [From 232 KP for 32 Rounds to 1CP for 16 Rounds]
Given an average expected number of 232 CP for GOST, it is possible to obtain
one P/C pair for 16 rounds of GOST where the plaintext is freely chosen by
the attacker, sampled from a probability distribution, or from another source
such as an oracle, and our guess (and the corresponding ciphertext value after
16 rounds we obtained for the chosen plaintext) will be correct with probability
2−32.

Justification: We guess i, for which the reflection occurs at round 24 of encryption
of Xi. This happens with probability 2−32 in which case E3(A) is symmetric
where A = Xi and we obtain our pair for 16 rounds as usual, it is A,C =
Enck(A).

Again by Applying Reduction 12 twice and exactly in the same way as before,
twice we immediately obtain that:
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Reduction 13. [From 233 KP for 32 Rounds to 2CP for 16 Rounds]
Given an average expected number of 233 known plaintexts for GOST, it is
possible to obtain two P/C pairs for 16 rounds of GOST and our guess will be
correct with probability 2−64.

Remark. We could have also produced a reduction to 1 or 2 chosen cipher-
texts in the same way, and some other. We leave it for further research.
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H Conjugation Property of GOST

We discovered another peculiar property of GOST. It is not clear if this property
leads to any attacks on GOST. We recall our decomposition of GOST encryption
function:

Enck = D ◦ S ◦ E ◦ E ◦ E (9)

Fact 19 (Conjugation Property). The cycle structure of Enck is exactly the
same as of S ◦ E2. In particular Enck has i points of order j if and only if S ◦ E2

has i points of order j.
In particular, given 264 KP, the cycle structure of S ◦ E2 can be computed

by the attacker.

H.1 One Potential Application
This property implies that if we had a large proportion of the code-book of the
first 16 rounds of GOST, we could immediately see if this code-book is authentic
or not, which is related to Amplification Paradox of Section E.2 above: if we are
able to derive from one single pair for 16 rounds, a large number of pairs for 16
rounds, then some of them could lead to a contradiction with the cycle structure
of S ◦ E2 which is always known to the attacker.

H.2 An Actual Application
Another application will be to detect that the GOST key is weak. Then the
statistics on the cycle structure and other properties of S ◦ E2 may provide
circumstantial evidence, or disprove an assumption, that a given GOST device
has keys with a particular structure (which may make GOST weaker and easier
to cryptanalyse). For example for keys of Family B studied in Section N, it is
possible to see that (cf. Fact 32) the function S ◦ E2 is an involution, which is
very easy to detect with 2 CP. If this is not the case, we can be certain that
a given key is not in Family B. Similarly, we can use this property to easily
disprove that a given key belongs to other weak key families. In the following
sections we will precisely study some such families of weak keys in GOST.
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I Approximate Reflection in GOST

It is possible to show the following property:

Fact 20 (Approximate Internal Reflection Property). Consider the (bi-
jective) function D ◦ S ◦ E for one fixed GOST key. Consider the difference be-
tween X and the value obtained when this function is applied:

X ⊕D(S(E(X))).

and look at the 50 bits out of 64 which are at 0 in 0x8070070080700700.
The probability that these 50 bits are at 0 is at most about 2−49 instead of 2−50

expected for a random permutation.
Justification: The basic justification is as follows. Let Y = E(X). We consider
the difference between Y and Y ′ = S(Y ). This value Y ⊕ Y ′ = Y ⊕ S(Y ) is a
symmetric value with both halves equal. The probability that such a value has
the 50 bits at 0 at all the 50 positions which are at 0 in 0x8070070080700700 is
high and equal to the probability that the left hand side has 25 bits at 0, which
is 2−25.

Let
Z = D(S(E(X))).

We have
E(Z) = S(E(X)).

and for this couple of applications of E we have here an output difference of type
0x8070070080700700 with probability at least 2−25, and thus we also have an
input difference of type 0x8070070080700700 with probability at least 2−25−25 =
2−50. But this can also occur by accident with probability 2−50. Overall we expect
it occurs with probability of about 2−50 + 2−50 = 2−49.

Remark: This is a very weak property, knowing that exact reflection occurs
with probability 2−32.
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J Some Interesting Weak Key Attacks on GOST

Weak keys offer a considerable degree of extra freedom to the attacker. One
basic attack of this type has been published [32]. This attack breaks GOST for
weak keys which occur with probability 2−32. For these keys the attack allows
to break GOST with a time complexity of 2192 and given 232 chosen plaintexts.

Let d denote the density of keys for which a given attack works, defined as
the probability that the attack will work for a key chosen uniformly at random.
Up till now we didn’t deal with weak keys, and had very large values of d ≥ 0.63.
We should note however that the probability of d = 2−32 is still quite large and
should be considered as quite realistic. Given that the population of our planet
is about 233, and one person can use during their life many cryptographic keys,
an attack with d = 2−32 should be considered as semi-realistic: it is plausible to
assume that at some moment in the future 232 different GOST keys will be used
worldwide, making one of these keys vulnerable to the attack from [32]. This
type of weak-keys which are frequent enough to occur in the real life are worth
studying.

Given the fact that even without weak keys, we have been able to find 6
different attacks on GOST faster than brute force, the reader can imagine that
there exists a plethora of interesting weak keys attacks on GOST. We are just
going to exhibit some examples which we found interesting, either because they
have a large d, or low complexity. We start by recalling the method of [32].

J.1 Weak Key Family 0

Fact 21 (Weak Keys Family 0, d = 2−32, Reduction to 1 KP for 8R).
We define the Weak Keys Family 0 by keys such that E has a fixed point A
which is symmetric, i.e. A = A. This occurs with density d = 2−32.

For every key in Weak Keys Family 0, given 232 chosen plaintexts for GOST,
we can compute A and obtain 1 P/C pair for 8 rounds of GOST correct with
very high probability of about 2−1.

Justification: If A is a symmetric value such that E(A) = A then Enck(A) = A.
However there are also, on average, about one values for which Enck(A) = A, as
every permutation of 64 bits has about one fixed point which occurs by accident,
not due to the internal structure. Thus we obtain 1 P/C pair for 8 rounds of
GOST E(A) = A, which is correct only with high probability of about 1/2.

J.2 Key Recovery With Family 0

Now in [32], this method of Fact 21 is used to recover keys with time complexity
of 2192 and negligible memory. This is very hard to improve because the attack
uses only 1 KP for 32 rounds, and there are 2192 keys for which this pair is
correct, and all these keys must be checked against additional P/C pairs for
the full 32-rounds. (for 128-bit keys, see Section M). In the next section we will
introduce another family of weak keys, with the same density d where we will
be able at last to improve the time complexity of the attack.
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J.3 Weak Key Family 1

Now we are going to exhibit another family of weak keys, with the same density
but with a possibility to obtain more P/C pairs and improve the time complexity
of the attack. We will also require 264 KP instead of 232 CP.

Fact 22 (Weak Keys Family 1, d = 2−32, Reduction to 3 KP for 8R).
We define the Weak Keys Family 1 by keys such that if A is a fixed point of
Enck for the full 32 rounds, A is not symmetric (cf. Family 0) and C = E2(A)
is symmetric. This occurs with density of about d = 2−32.

For every key in Weak Keys Family 1, given 264 KP for GOST, we can com-
pute A,B and obtain 1 P/C pairs for 8 rounds of GOST correct with probability
of about 2−2. Furthermore we can compute A, B,C and get 3 P/C pairs for 8
rounds correct with probability of about 2−34.

Justification: On average we have one fixed point for the whole cipher, and the
probability that is C = E2(A) is symmetric is then d = 2−32 taken over all
possible GOST keys. For these keys we proceed as follows:

1. First we observe that since A is a fixed point and very few other fixed points
exist for the permutation Enck, we can obtain A in time 264 and our guess
will be correct with very high probability of about 2−1.

2. Then we observe that if B is defined as B = E(A) then we have:

B = E(A) = E(Enck(A)) = E(D(S(E3(A)))) = S(E3(A)) = S(E2(B))

therefore we have
E2(B) = B.

Then, as many times before, if C = E2(A) is symmetric then in addition we
have an internal reflection and we get that

Enck(B) = E2(B) = B.

Thus not only we were able to guess obtained A to be correct with very high
probability of about 2−1, we can guess also B by searching the 264 KP for
points such that Enck(B) = B which points will be equal to our B = E(A)
with very high probability of about 2−1, as about one other fixed point on
average will exist for the permutation X 7→ Enck(X).

3. We get 1 pair for 8 rounds: B = E(A) correct with probability about 2−2.
4. Now we also guess the symmetric value C, the guess will be correct with

probability of about 2−32.
5. Overall we guess A,B, C with probability of about 2−34.
6. We get 3 pairs for 8 rounds: B = E(A), E(B) = C and E(C) = B.

Now we need to examine the consequences of this reduction with 2 P/C pairs.

Fact 23 (Key Recovery for Weak Keys Family 1, d = 2−32).
One can recover the keys for the Weak Keys Family 1 with 264 KP, running

time of 2152 GOST encryptions and with negligible memory.
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Justification: Or we use Fact 5 with the 3 P/C pairs obtained, and in total time
equivalent to 2120 GOST encryptions we obtain 264 candidates for the GOST
key k. This needs to be multiplied by 234 attempts to guess A,B, C.

In both cases the number of false positives is 2128 because we mount this
attack with two pairs obtained from Enck(): one such that Enck(A) = A and
another such that Enck(B) = B. The time to reject all the false positive keys
with additional P/C pairs for the full 32-round GOST can be neglected in com-
parison to our 2154 GOST encryptions, which is the overall total time for this
attack.

J.4 Weak Key Family 2

In this section we exhibit another family of weak keys, with the same density but
with a possibility to obtain really much more P/C pairs and yet reduce in half
of the cases we will present, the data complexity back to 232 chosen ciphertexts.
This attack can be seen as an extension of our two attacks of Section 11, and
Section 11.1, both based on Reduction 3, where by requiring that B is also
symmetric, (which happens only for weak keys but the probability of these keys
is quite large of 2−32) we will be able to simultaneously improve the probability
of our guess being true, from 2−128 to 2−64 to obtain 4 P/C pairs for 8 rounds,
and reduce the data complexity back to 232 chosen ciphertexts, and we will also
be able to obtain, for the first time ever, 5 pairs for 8 rounds.

Fact 24 (Weak Keys Family 2, d = 2−32, Getting 3,4 and 5 KP for 8R).
We define the Weak Keys Family 2 by keys such there exists A such that all the
three values E(A), E2(A) and E3(A) are symmetric. This occurs with density
d = 2−32. For every key in Family 2, we have the following reductions:
-with 232 CC we obtain 3 P/C pairs for 8 rounds of GOST correct with P = 2−64,
-with 264 KP we obtain 4 P/C pairs for 8 rounds of GOST correct with P = 2−64,
-with 232 CC we obtain 4 P/C pairs for 8 rounds of GOST correct with P = 2−96,
-with 264 KP we obtain 5 P/C pairs for 8 rounds of GOST correct with P = 2−96.

Justification: See Fig. 4. This can be seen as an extension of Fig. 1 except that
since B is also symmetric and accordingly, we could add another column to the
right where Y is encrypted to obtain in turn Y,Z, A, B, B,A = Enck(Y ).

We have three encryptions with internal reflection C = Enck(A), also B =
Enck(Z), and A = Enck(Y ) where due to the internal reflection we have C =
E2(A), B = E2(Z), and A = E2(Y ).

There are two interesting attack scenarios. In all cases we start by guessing
C and B which are symmetric and therefore, to decrypt these and obtain re-
spectively A and Z we need only 232 CC. However if we also want to decrypt A
to obtain Y , we need 264 KP.

We proceed as follows:

1. We guess B,C and our guess is correct with probability 2−64.
2. We determine A,Z by decrypting B and C which are both symmetric.
3. We get 3 pairs E(Z) = A, E(A) = B, E(B) = C and our guess is correct

with probability 2−64.
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rounds values key size

Y
8 E ↓ 256

Z Z
8 E ↓ E ↓ 256

A A A
8 ↓ E ↓ E ↓ 256

B B B ./ B
8 ↓ E ↓ E D ↑ 256

C C ./ C A
8 ↓ E D ↑ 256

D ./ D B
8 ↑ D 256

C

bits 64 64 64

Fig. 4. A weak-key black-box reduction which gives up to 5 pairs for 8 rounds

4. Furthermore, if we also decrypt A we get also one additional pair E(Y ) = Z,
at the price of 264 KP because A is not symmetric.

5. Going one step backwards, we don’t decrypt A but also guess D which is
symmetric, We get 4 pairs E(Z) = A, E(A) = B, E(B) = C, E(C) = D and
our guess is correct with probability 2−96.

6. Now if we combine guessing D and decrypting A, we get 5 pairs given 264

KP and our guess is correct with probability 2−96.

Fact 25 (Key Recovery for Weak Keys Family 2, d = 2−32).
One can recover the keys for the Weak Keys Family 2 with 232 CC, running

time of 2184 GOST encryptions and with negligible memory.

Justification: This is obtained by combination of the first reduction of Fact 24
and of Fact 5 which allows to enumerate a set of solutions and the time is 264+120

GOST encryptions. The total number of full 256-bits keys which are false posi-
tives which need to be checked against additional P/C pairs for the full 32 rounds
of the cipher is comparatively smaller, about 2128, which is unlikely to influence
the overall complexity of the attack which will be 2184 GOST encryptions.
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J.5 Weak Key Family 3

In this section we explore if better attacks exist, and in particular attacks with
complexity less than 2128, at the price of further decreasing the density of weak
keys to 2−64.

Fact 26 (Weak Keys Family 3, d = 2−64, Getting 4 KP for 8R). We
define the Weak Keys Family 3 by keys such there exists A such that E(A) = A,
E2(A) = A. This occurs with density d = 2−64. For every key in Family 3, we
have the following: with 264 KP we obtain 4 P/C pairs for 8 rounds of GOST,
correct with probability of roughly about P = 2−1.
Justification: We proceed as follows:

1. First we observe that A is a fixed point for Enck(·). Indeed

Enck(A) = D(S(E3(A))) = D(S(E2(A))) = D(S(A)) = D(A) = A.

Therefore given 264 KP we can identify A. Due to other possible fixed points,
our guess will be correct with probability roughly about P = 2−1.

2. Moreover if we define B = E(A) we have A = E(B) and

Enck(A) = D(S(E3(A))) = D(S(E(A))) = D(S(A)) = D(A) = B.

Therefore we can determine B from A.
3. Moreover, if we encrypt B we obtain another interesting value C defined as:

Enck(B) = D(S(E3(B))) = D(S(E2(A))) = D(S(E(A))) = D(S(B)) = D(B) = C.

with the property that E(C) = B.
4. Overall our triple A,B,C will be correct with probability about P = 2−1.

We get 4 P/C pairs for 8 round which are E(A) = A, E(A) = B, E(B) = A
E(C) = B and these are correct with probability 2−1.

Fact 27 (Key Recovery for Weak Keys Family 3, d = 2−64).
One can recover the keys for the Weak Keys Family 3 with 264 KP, running

time of 2121 GOST encryptions and with negligible memory.

Justification: This is obtained by combination of the current reduction of Fact
26. This reduction manages to exploit the information obtained from as many
as three different encryptions for Enck() for A, A and B. It is therefore possible
to see that in this attack, the total number of false positives which need to be
checked against additional P/C pairs for the full 32 rounds is only 264.
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K Summary of Our Weak Key Attacks

In Table 3 we can compare our attacks with weak keys compared to selected
other attacks with regular keys

It is important to note that with regular keys, we had no attack below 2192,
cf. Table 2. One of the barriers to achieve really good attacks are false positives.
With attacks such all our black box reduction attacks, only if we manage to
simultaneously exploit similarities inside two encryptions for 32 rounds and con-
vert them to a number of simpler P/C pairs for 8 rounds we will have less than
2192 false positives. And this condition is necessary, but not sufficient. Finally
for d = 2−32 we have been able to obtain two attacks which are below 2192,
the lowest being 2154 with Family 1, however the Family 2 is also interesting
because it has much lower data requirements. Our estimations of false positives
given here are conservative in the case of weak keys.

Finally and furthermore, an interesting question now is whether attacks be-
low 2128 can exist for some 256-bit GOST keys. We see that this can be achieved
with Family 3 and for smaller number of only 2192 GOST keys, still quite large.
In the last column we give one example of weak keys which occur in a particular
128-bit version of GOST And we can go further, as seen in the last column, and
we will consider another very interesting family of keys in the next section.

Reduction cf. Red.1 §9.1 Family 0 Family 1 Red. 3 §11 Family 2 Family 3 Fam. 0’§M
Key Size 256 128

Keys Density d 0.63 2−32 0.63 2−32 2−64 2−160

From (data 32 R) 232 KP 232 CP 264 KP 232 CC 264 KP 232 CP

Obtained (for 8R) 2 KP 1 KP 3 KP 3 KP 3 KP 4 KP 1(4R)

Valid w. prob. 2−96 2−1 2−34 2−96 2−64 2−1 2−1

Storage bytes 2132 - - 267 - 267 -

] False Positives 2192 2128 264 264

Attack Time 32 R 2224 2248 2192 2154 2216 2184 2121 265

Time / d 2225 2249 2223 2186 2217 2216 2185 2225

Table 3. Our attacks with weak keys compared to the best regular attacks
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L How to Transform A Weak-Key Attack Into A Regular
Attack on Random 256-bit Keys With Total Time 2185

If we are dealing with the problem of key recovery of a single fixed 256-bit GOST
key, then our best attack in Table 2 on page 11. requires 264 known plaintexts
has the time complexity of 2216, which can be further reduced to 2192 as shown
by Shamir et al in [18].

However, in this paper we have also two arguably better attacks. We look
at the last line in Table 3 above, for two of the attacks we have that the ratio
Time / d is less than 2192. This actually does mean that GOST key can be
recovered in overall total time of 2185 which is substantially less than our best
attack 2216 of Table 2 and also better than the most recent improvement of one
of these attacks with 2192 obtained in [18]. Here is how.

Fact 28 (Key Recovery for A Diverse Population of Keys).
If we have a diverse population of at least 264 different keys, with access to 264

KP per key, one can recover one of these 256-bit keys in total overall time of
about 2185 GOST encryptions.

Justification: We apply the Fact 27 to 264 random devices, for one of them on
average it will work and output a valid key which can be checked with additional
pairs for that device.

Remark: We postulate that attack time divided by density could be seen as
a fair method of comparing various attacks on ciphers which are used by many
different devices, with random diversified cryptographic keys.
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M Attacks on GOST With Repeated 128-bit Keys

In this section we study the security of GOST with 128-bit keys. Unhappily,
though we found many different attacks which allow to break 256-bit keys, the
sheer cost ot the final key recovery step and the existence of false positives makes
that our previous attacks are very far from being able to break 128-bit keys. In
this section we show that there are weak keys which allow very efficient attacks
and these keys exist with probability high enough to be a practical concern in a
population of diverse keys, leading to a compromise of certain keys in practice.

We assume that the GOST key is such that the same 128-bit key is repeated
twice. We ignore if such a variant of GOST is used in practice but this method
is one of the interesting special variants of GOST explicitly considered on page
594 of [3]. Our attack uses a modified variant of the attack from [32] which we
named Family 0, see Fact 21. In the new version called Family 0’ we will consider
fixed points for 4 rounds instead of 8 rounds. Let F be the first 4 rounds with
128-bit key. If the key is repeated we have E = F ◦ F .

Then we define the Family 0’ of weak keys as follows:

Definition M.0.1 (Weak Keys Family 0’). We define the Weak Keys Family
0’ as 128-bit keys with repetition AND such that F has a fixed point A which
is symmetric, i.e. A = A.
This occurs with probability of d = 2−32 over all GOST keys.

Then we have the following:

Reduction 14 (Family 0’, d = 2−32, Reduction to 1 KP for 4R). For
every key in Weak Keys Family 0’, given 232 chosen plaintexts for GOST, we
can compute A and obtain 1 P/C pair for 4 rounds of GOST correct with very
high probability of about 2−1.

Justification: It is the same as for Fact 21: If A is symmetric and F(A) = A then
Enck(A) = A. However there are also, on average some other values for which
Enck(A) = A, as every permutation of 64 bits has about one fixed point which
occurs by accident, not due to the internal structure. Thus we obtain 1 P/C pair
for 4 rounds of GOST F(A) = A, which is correct only with high probability of
about 1/2.

Fact 29 (Key Recovery for Family 0’ With 128-bit Keys). We assume
that the GOST key is 128-bit with repetition and belongs to family 0’. Then
given 232 CP one can recover the 128-bit key from Family 0’ in average time of
265 GOST encryptions and with negligible memory.

Justification: We obtain A with 232 CP, as a symmetric fixed point of F(·).
This is done once at the beginning. The time to do this is less than 232 GOST
encryptions and can be neglected. We have

F(A) = A

where F is the first 4 rounds with 128-bit key.
Our A is correct with high probability of about 2−1.



48 Nicolas T. Courtois, January-November 2011

Now we can obtain a uniform enumeration of exactly 264 keys on 128-bits
which satisfy this equation as follows: we fix the 64-bit key for the first 64 rounds,
and because the GOST S-boxes are bijective, this gives us the knowledge of
inputs and outputs of both rounds 3 and 4, and allows us to uniquely determine
the second 64-bit of the key in time of encrypting with GOST for 2 rounds, which
is 2/32 GOST encryptions. Overall, we get a uniform enumeration of exactly 264

keys on 128-bits in time of 260 GOST encryptions. Each of these keys needs to
be checked with another P/C pair for the full 32-round GOST. The total time
is 21(260 + 264) ≈ 265 GOST encryptions. and half this time on average.

M.1 Attack on A Diverse Population of Keys
Now we need to translate this to a more realistic scenario where there is a
population of different GOST keys, but we don’t know which ones are weak.
Fact 30 (Key Recovery for a Population of Diverse 128-bit Keys).
We assume that there is a population of 232 devices with 128-bit GOST keys
repeated twice to form a 256-bit key (and in principle not being weak keys in
most cases). Then one of these keys on average is a weak key from Family 0’.
Given 232 CP per device, the device having the weak key can be identified and
the key recovered in total time of 266 GOST encryptions on average and with
negligible memory.
Justification: Let j be a key number. For each of 232 keys j, given the possibility
to obtain 232 CP per key, for all possible symmetric plaintexts, we check if there
are any symmetric fixed points A for Enckj (·). This first step takes about 264

steps, but in practice this is really substantially less than 264 GOST encryptions,
and can be neglected.

Only for the weak keys, and in about on average one another case, any of the
fixed points is symmetric. Most devices are rejected immediately except a few.
We obtain a list of about 21 pairs j, A. In each of these 21 cases we apply Fact
29. Thus total time is about 266 GOST encryptions and the memory remains
negligible.

Is this attack practical? Given that the population of our planet is about
233, and one person can use during their life many cryptographic keys, this attack
should be considered as semi-realistic. In a hypothetic future, for example if
GOST becomes an ISO standard, given the fact that it has larger keys than triple
DES, and is cheaper to implement than triple DES and any other comparable
cipher [34], it is possible that GOST becomes quite widely used, also in a 128-
bit version, which would be judged secure enough for practical purposes. Then
assume that these keys are embedded in some secure hardware (common practice
in the industry) which can be freely accessed by the attacker and he can dispose
of 232 CP per key. Then our attack will allow to recover some of these 128-bit
keys in practice.

M.2 Attacks With 1 CP Per Key
Now we are going to develop an even more realistic scenario where there is a
population of different GOST keys, and we are given only 1 CP per key. We can
break GOST also in this scenario.
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Fact 31 (Key Recovery for a Population of Diverse 128-bit Keys). We
assume that there is a population of 264 devices with, possibly different, but can
also be repeated, 128-bit GOST keys in repeated twice to form a 256-bit key
(and in principle not being weak keys in most cases).

And that the attacker is given just the encryption of some symmetric plain-
text, such as A = 0 (for full 32 round GOST) for each of these keys, plus any
additional data for confirmation of the right keys, such as a ciphertext-only at-
tack, in the form of some longer message encrypted with the same key in a given
cipher mode such as CBC.

Then for 232 cases, the key will be a weak key from Family 0’, and if one case
on average A, being symmetric, will be a fixed point of F , and also of Enck()
and will be also equal to A.

Then the case out of 264 with the weak key, and with A being a fixed point
can be identified and the key recovered in total time of 266 GOST encryptions
on average and with negligible memory.

Justification: Let j be a key number. For each of 264 keys j, we filter out the keys
for which A is a fixed point. We expect to obtain one right case, in which the
key will be a weak key from Family 0’, and A being a fixed point of F , and one
another case where the fixed point A occurs by accident. This first step takes
about 264 steps, but in practice this is really substantially less than 264 GOST
encryptions, and can be neglected.

Most devices are rejected immediately except a few. We obtain a list of about
21 pairs j, A. In each of these 21 cases we apply Fact 29. Each of the 264 keys
found in this process needs to be checked with another few P/C pairs for the
full 32-round GOST or with the data provided for the ciphertext-only attack
The total time is again about 266 GOST encryptions and the memory remains
negligible.

Is this attack practical? Given that the population of our planet is about
233, and one person can use a standardised cipher such as GOST 10 times per
day over one year to encrypt a message of 5 Megabytes containing only zeros,
then one of the keys used over that period can be identified and recovered in
total time of about 266 GOST encryptions.
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N One Particularly “Bad” Family B of 128-bit Keys

There is another natural method to use GOST with 128-bit keys. We assume
that the second part of the key is not the repetition but an inverted repe-
tition of the first part. By definition we call GOST keys of this form k =
(k0, k1, k2, k3, k3, k2, k1, k0) the Family B of keys (B stands for “Bad”). We don’t
know if this method is ever used in practice to encrypt data, but this method
is is also one of those weak variants explicitly discussed on page 603 of [3]. This
makes the key schedule perfectly periodic in spite of the inversion of keys in the
last 8 rounds of GOST which is a protection against known slide and fixed point
attacks. Thus one should not be surprised that this will make a “pathologically”
bad block cipher with many interesting attacks. We would like to stress the fact
that this key schedule is fully compliant with the GOST encryption standard,
yet very weak. We have:
Fact 32 (GOST with Family B Keys). We assume that the GOST key is
in Family B, in other words, let k = (k0, k1, k2, k3, k3, k2, k1, k0). Again let F be
the first 4 rounds with 128-bit key. Then we have the following immediate and
easy to prove consequences of the structure of the cipher:
1. The sequence of round keys becomes perfectly periodic and symmetric:

rounds 1 8 9 16 17 24 25 32

keys k0k1k2k3k3k2k1k0 k0k1k2k3k3k2k1k0 k0k1k2k3k3k2k1k0 k0k1k2k3k3k2k1k0

Table 4. The effect of key scheduling on Family B keys

2. The second 4 encryption rounds can be written as follows:

S ◦ F−1 ◦ S
3. The first 8 encryption rounds E can be written as follows:

E = S ◦ F−1 ◦ S ◦ F (10)
E−1 = F−1 ◦ S ◦ F ◦ S (11)

4. The function S ◦ E is an involution and it is equal to its own inverse.

S ◦ E = F−1 ◦ S ◦ F
E−1 ◦ S = F−1 ◦ S ◦ F

5. It follows that for every X, Y :

Y = E(X)
m

X = E(Y ).

6. The function S ◦ E for the first 8 encryption rounds without the final twist,
is a conjugated version F−1 ◦S ◦F of a function which has exactly 232 fixed
points. It follows that it has exactly 232 fixed points which are exactly those
and only those for which the state is symmetric after the first 4 rounds.



Algebraic Complexity Reduction and Cryptanalysis of GOST 51

7. X is a fixed point of E if and only if X is a fixed point for the same E .
8. For every k ≥ 1 we have

S ◦ Ek = G ◦ (S ◦ G)k−1 = (S ◦ G)k−1 ◦ G
E−k ◦ S = G ◦ (S ◦ G)k−1 = (S ◦ G)k−1 ◦ G

where we define G def
= F−1 ◦ S ◦ F which is an involution.

For every k ≥ 0 the function S ◦ Ek is an involution and it can be written as
G ◦ S ◦ G ◦ S ◦ · · · ◦ G,

where G appears k − 1 times and swap S appears k times.
9. For every k ≥ 0 this function S ◦ Ek can be written in the form H−1 ◦ S ◦H

as follows: {
S ◦ Ek = E−l ◦ S ◦ E l when k = 2l

S ◦ Ek = E−l ◦ F−1 ◦ S ◦ F ◦ E l when k = 2l + 1
Consequently for every k it has exactly 232 fixed points which are exactly
those for which the state is symmetric after the first 4k rounds of GOST.

10. The whole encryption process is perfectly periodic provided that we “undo”
the final “irregular swap” and we have:

Enck = S ◦ E4 (12)

11. In particular, the encryption function Enck is an involution.
12. If the attacker has access to the encryption oracle, he can use it to decrypt

any message.
Y = Enck(X)

m
X = Enck(Y ).

13. Consequently the encryption function Enck can be distinguished from a
random permutation in constant time.

14. X is a fixed point of S ◦ Enck if and only if X is also a fixed point for
S ◦ Enck.

15. The whole encryption function Enck has exactly 232 fixed points which are
exactly those for which the state is symmetric after the first 16 rounds.

The next question is what is the best key recovery attack on this version of
GOST. As we will see below, the most obvious (classical) slide and fixed point
attacks, provide an immediate reduction in the number of rounds. However key
recovery for 8 rounds is still far from being easy, even with the symmetry in the
key schedule and the particular “involution with a twist” structure S◦E = F−1◦
S◦F implied by the Family B keys, and key recovery remains difficult. Especially
in cases where the number of P/C pairs which can be obtained remains very
small. Better attacks will be obtained, because we will be able to obtain pairs for
4 rounds, and when we will study cyclic properties of E , and important involution
and reflection properties of E and discover many 128-bit keys are ‘weak’ w.r.t.
some previously studied weak key classes. All these properties provide multiple
very useful degrees of freedom for the attacker which we will exploit.
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N.1 Basic Fixed Point Attacks on Family B Keys
First we present one simple attack on E which requires 264 KP. Later we will dis-
cover that E has some “very special” fixed points which allows attacks requiring
much less data.
Reduction 15 (Fixed Point Reduction for Family B). Given 264 known
plaintexts for GOST with keys being in Family B, it is possible to obtain two P/C
pairs for 4 rounds of GOST correct with probability of about 2−66 on average.
Justification: Let A be a fixed point for 8 rounds. By definition we have:

E = S ◦ F−1 ◦ S ◦ F .

This function is expected to have only a few fixed points, and we recall that X
is a fixed point of E if and only if X is also a fixed point for E , cf. Fact 32. In
contrast S ◦ E has exactly 232 fixed points. We expect that for 63 % of keys in
Family B there exists a fixed point A with A = E(A) and very few other fixed
points. Then we can observe also that it is a fixed point for S ◦ Enck, which is
also expected to have only a very few fixed points, (as opposed to Enck which
has exactly 232 fixed points).

Thus a A can be easily guessed by the attacker given 264 KP. Unhappily we
also have fixed points of S ◦ Enck = E4 which are not fixed points of E , but
occur naturally. We consider that our fixed point for S ◦ Enck will correctly be
also a fixed point for E with probability of roughly about 2−1.5.

Then there exists B = F(A) such that we get two pairs for 4 rounds:
B = F(A) and B = F(A). These two pairs are distinct if neither B not A
are symmetric, which happens with high probability. Additionally, it is easy to
see that the overall event that there exist A,B where none of the two values is
symmetric, AND B = F(A) AND B = F(A) is likely to occur with probability at
least about 63 % over Family B keys (for other keys this attack fails). This can be
justified as follows There are still (264− 232)2 ≈ 2128 couples A,B where neither
A nor B are symmetric, and the equations B = F(A) AND B = F(A) will be
satisfied with probability about 2−128 in each case. And 1− (1− 1/N)N ≈ 63%,
where N = 2128.

Finally we need also to guess B = F(A) and our guess will be correct with
probability 2−64. Overall we get two pairs for 4 rounds: B = F(A) and B = F(A)
which are correct and distinct with probability of about 2−66.

This Fact 15, will be used to recover keys for Family B.

Fact 33 (Fixed Point Attack for Family B). Given 264 known plaintexts for
GOST with keys being in Family B, the key can be computed in time equivalent
to 290 GOST encryptions. Memory is required only to store the 264 KP.
Justification: We use our Reduction 15 above and apply Fact 3: in each case the
128-bit key can be found in time of 224 GOST computations and with negligible
memory. Overall the key can be computed in time equivalent to 290 GOST
encryptions which is obtained as 224+66.

In what follows we are going to show an attack which is slightly slower but
requires much less data. This type of improved attacks are possible, because E
has another particularly interesting property.
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N.2 On The Existence of Very Special Fixed Points for Family B
We have the following non-trivial fact:

Fact 34 (Special Symmetric Fixed Points for Family B). Given a GOST
key in Family B chosen at random with probability of about 2−0.7 the first
8 rounds F have a symmetric fixed point (instead of, it would happen with
probability about 2−32 for a random permutation).

Justification: We have
E = S ◦ F−1 ◦ S ◦ F .

We consider all the 264 possible pairs A,B such that both A and B are symmet-
ric. The probability that for a fixed pair A,B we have F(A) = B is 2−64. The
probability that there exists a pair A,B such that F(A) = B is 1−(1− 1/N)N ≈
63%, where N = 264. Then, we exploit the fact A and B are both symmetric
and obtain:

E(A) = S(F−1(S(F(A)))) = S(F−1(B)) = S(A) = A.

Remark: Symmetric fixed points occur with high probability for any func-
tion which has about 232 or more fixed points, for example if it is of the form
G ◦ S ◦ G−1 or S ◦ G ◦ S ◦ G−1 or G ◦ S ◦ G−1 ◦ S etc. Consequently they also
occur for the function E ◦ S ◦ D for normal 256-bit keys, i.e. the last 16 rounds
of GOST. These points are precisely those which allowed to obtain and exploit
a double reflection in our best attack on 256-bit GOST in Section 11.

N.3 Fixed Point and Multiple Reflection Attacks
The main reason why keys in Family B are particularly weak is that, following
Fact 34, E has symmetric fixed points, which leads to fixed points for bigger
components such as E4, thus becoming detectable for the attacker. It is also a
multiple reflection attack: we are to create a double reflection in E which leads
to fixed points and further reflections inside E4.

Fact 35 (Family B vs. Family 0). A GOST key in Family B chosen at random
belongs to Weak Keys Family 0 with probability of about 2−0.7, instead of about
2−32 for a normal 256-bit GOST key chosen at random.

Justification: We recall that, by definition, the Weak Keys Family 0 are keys
such that E has a fixed point A which is symmetric, i.e. E(A) = A and A = A.
and we have already established, cf. Fact 34, that such symmetric fixed points
exist for E with very high probability ≈ 63% over all keys in Family B.

Fact 35 is a very interesting observation. In full 256-bit GOST, and in the
first “direct” method suggested by Biryukov and Wagner of using GOST with
128-bit keys, one could identify and break some weak keys which occurred with
probability 2−32. Here weak keys of Family 0, (also known from [32]) occur with
a very high probability, while the overall secret key is also shorter, of 128-bit
only. This will lead to a very good attack on GOST Family B of “inversed” keys,
which will work for 63 % of all such keys. For the remaining 37 % of Family B
keys this attack fails (but other attacks on Family B should still work).
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How do we proceed to recover GOST keys? Here we could use the Fact 21:
for all Family 0 keys, given 232 CP, one can compute one P/C pair for 8 rounds
of GOST nearly for free, i.e. one which will be correct with very high probability
of about 2−1. Moreover, it is also possible to see that several such pairs could
be obtained with a non-negligible probability, this is because several pairs A,B
such that F(A) = B and A,B are symmetrical can exist (for a lower proportion
of Family B keys though). This leads to an attack just very slightly faster than
2128 GOST encryptions by direct application of Fact 5. We don’t study these
attacks because they are not very fast and slower than our previous fixed point
attack above (cf. Fact 33).

Instead, we are going to directly look at the question of getting P/C pairs for
4 rounds of GOST, which requires one to guess the (symmetric) value B. The
following result follows immediately:
Reduction 16 (Family B Reduction to 1 KP for 4R). Given a GOST key
in Family B chosen at random with probability of about 2−0.7 over the key, and
given 232 CP, one can obtain a P/C pair A,B for 4 rounds, where both A and
B are symmetric, and our guess will be correct with probability of 2−32

Justification: For every key in Family B, with probability of 0.63 ≈ 2−0.7 the
function E has at least one symmetric fixed point A, and it can be found given
on average only 231 CP and in the worst case twice that number. The value A
can be found by the attacker because it is also a fixed point for S ◦ Enck, and
the probability that S ◦ Enck has other fixed points which are symmetric, is
negligible.

Once the right A is identified with almost-certainty, we need also to guess
B = F(A) and our guess will be correct with probability 2−32. Overall we get
one pair for 4 rounds: B = F(A) where both A,B are symmetric, and our guess
is correct with probability 2−32.

Furthermore, with a non-negligible probability such an event can happen
twice:
Reduction 17 (Family B Reduction to 2 KP 4R). For a random key in
Family B, and given 232 CP, one can compute two distinct random couples A,B
and A′, B′ of four symmetric texts which satisfy F(A) = B and F(A′) = B′ for
4 rounds of GOST with overall probability of at least 2−66 over the choice of the
key and the choice of B and B′.
Justification: Only for some keys this can happen. We need to compute the prob-
ability that at least two distinct random couples A,B of symmetric texts satisfy
F(A) = B for 4 rounds of GOST. This is 1, minus the probability that none
of the N = 264 possible couples A,B satisfies F(A) = B, minus the probability
that exactly one out of N couples satisfies F(A) = B. This is equal to:

1− (1− 1/N)N −
(

N

1

)
(1− 1/N)N−1 (1/N)1 ≈ 1− 2/e ≈ 26% ≈ 2−2,

then we guess B and B′ and obtain an overall probability of
(1− 2/e)2−32−32 ≈ 2−66.

For these 26% of keys in Family B where this can happen, the success prob-
ability is 2−64 and the key recovery is particularly easy. Here is how we proceed.
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Fact 36 (Attack on Family B Keys). For a fraction of at least 0.26 ≈ 2−2

keys in Family B, given 232 CP, the attacker can break GOST in total time of
about 291 GOST computations. The memory required is to store the 232 texts.

Justification: First we need to find all the points for 32 rounds such that Enck(A) =
A. The time to do it is only about 232 steps, which in practice is much less than
232 GOST encryptions.

We expect that on average about 5 such points will be found, 2 arising
due to our attack, and three more totally unrelated fixed points are expected an
average for any 4-fold iterated permutation such as E4. We refer to see [11, 36] for
detailed work and explanations on fixed point statistics in iterated permutations:
one fixed point on average is expected for any permutation, and two more on
average will be inherited, as being fixed points for E and for E2.

In order to filter out the fixed points which are useful for the attack we need
to check typically about

(
5
2

) ≈ 23 cases. This allows us to identify the right
subset of points {A, A′}. For each case (A,A′) out of about 23 cases which we
need to check,we guess B and B′. Then we apply Fact 3 to these two pairs for
4 rounds F(A) = B and F(A′) = B′ and recover the key in time of 224 GOST
encryptions. Each key candidate is then checked against additional P/C pairs
for 32 rounds, and the number of false positives which need to rejected is about
266, and the time needed to reject them is negligible compared to 224. Thus the
total complexity of our attack is about 232+32+3+24 ≈ 291 GOST computations.

N.4 Cycling Attacks vs. Slide Attacks on Family B Keys

The simplest (classical) form of slide attacks applies for ciphers with perfect
periodicity, where the whole encryption process is a k-th iteration of a smaller
component E . They work by guessing certain P/C pairs for a reduced-round
cipher, and getting additional pairs through sliding, see [23, 2, 3].

However when the block size is smaller that the key size, the sliding attack
are not very good, because it is possible to obtain P/C pairs for the smaller
component E without guessing any initial relations on E . This can be done
directly by exploiting the cycles for the permutation E which can be easily com-
puted and analysed. We are going to describe and apply this method here, and
we will discover that in the case of this particular E , it is much easier than for
other permutations with similar structure and key size. This is because particu-
lar permutation has an anomalous cycle structure, where all cycles have lengths
much shorter that expected. This in turn being due to the internal structure of
E . We have the following result:

Fact 37 (Cycle Structure of E for Family B). Let E = S◦F−1◦S◦F where
F is an arbitrary keyed permutation. The typical cycle for E , by which we define
the cycle on which we are likely to be if start from a random point X has about
232 points, instead of about 263 for a random permutation. The chances that X
is on a cycle with much higher size are very small sizes of at least 232+t occur
with probability which decreases very quickly with t at a double exponential
speed.
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Justification: This fact is due to the fact that if we iterate E , and if a reflection
occurs inside one of S functions, by which we mean that we encounter a symmet-
ric value, and this S has no effect, then further iteration is going to effectively
undo, step by step, all the previous steps. More precisely, we recall from Fact
32.9. that for every k ≥ 0 there exists H such that we have

S ◦ Ek = H−1 ◦ S ◦ H
and moreover we have the following precise decomposition:{

S ◦ Ek = E−l ◦ S ◦ E l when k = 2l

S ◦ Ek = E−l ◦ F−1 ◦ S ◦ F ◦ E l when k = 2l + 1
Depending on which S the reflection occurs, we will be in the first and or the

other case, and it is obvious that E will start going backwards revisit all points
previously visited or their symmetric images, and return to the initial point or its
symmetric image, after a reflection and the same number of steps. In other words,
given any starting point X, and for a random k, we have S◦Ek = H−1◦S◦H, and
if we consider all possible k = 1, 2, 3, . . . 231 with a large probability p a reflection
will occur for some k and we will obtain that Ek(X) = X for one k ≥ 231. We
can note that since E has two applications of S each, this probability p is already
about 60 % for 231 applications of E . Then this process continues until another
reflection occurs, and further applications of E will join the initial path and
form a complete cycle. Thus we get cycles with two reflection points, and with
overall expected cycle size being about 232. Moreover cycles much longer than
232 are unlikely to happen: the chances that X is indeed on a cycle with size of
at least 232+t = 2t+1 · 231 will decrease double exponentially fast with t, because
a segment of size 231+1+t without any reflection occurs with probability p2t+1

.
Remark 1: Reflections can occur on boundaries of E , or inside some E with

E(Z) = Z for this particular application of E . Generally we expect to have two
reflections inside each cycle, this cannot however be guaranteed, there may be
shorter cycles which contain one or zero reflections, which are natural cycles
which occur by chance.

Remark 2: The cycle structure of E is rich and fascinating. From our proof
it follows that we expect that very frequently but not always, the points X and
X will lie on the same cycle. It also happens in Fact 34 which is a special case
with a very short cycle, with one symmetric point. For example, this will happen
each time a reflection occurs inside one of the applications of E with E(Z) = Z
at this point. Indeed if E(Z) = Z for at least one point Z lying on a given cycle,
then it is possible to see that for every point T lying on this cycle, T is also
on the same cycle and moreover the points are visited in exactly the opposite
direction when walking on the cycle. This comes from the fact that S ◦ Ek is an
involution and S ◦ Ek = E−k ◦ S, cf. Fact 32.8. Thus we have if E(Z) = Z then
for any k ∈ IN we have S(Ek+1(Z)) = E−k(S(E(Z))) = E−k(Z).
More generally, if just for one point on the cycle Z the point Z lies on the
same cycle, for all points on this cycle, their symmetric image lies on the same
cycle. The proof is the same as above: if Ek(Z) = Z then S(Em+k(Z)) =
E−m(S(Ek(Z))) = E−m(Z). In particular if k is even k = 2l this gives us a
situation where S ◦ Ek = E−l ◦ S ◦ E l and the reflection occurred at the border
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of E l(Z), while previously we have seen one example where a reflection occurred
inside E . Both cases are possible therefore.

Remark 3: There are also rare cases where the points X and X will lie
on two distinct cycles. For example this happens in Reduction 15 where X and
X are two distinct fixed points for E . Moreover in the case when the points X
and X lie on two distinct none of these cycles contains any symmetric point,
and none of these cycles contains any couple of points Z, Z which would already
force the two cycles to merge, as shown above. Then it is easy to see, that both
these cycles are of the same size and contain exactly the symmetric images of all
the points from the other cycles, visited in exactly the order but in the opposite
direction. We call this situation ‘twin cycles’. Moreover none of these cycles
contains any reflection, because this will lead for the two ‘twin cycles’ to merge
totally, as shown above. This means that this situation of disjoint ‘twin cycles’
is quite rare and occurs only for small cycles without any reflection whatsoever,
which are a small minority of cycles.

Remark 4: Thus for a great majority of cycles, if the size of the cycle is
odd, and if it contains all the symmetric images of all the points, it means that
the cycle must contain an odd number of symmetric points, otherwise the size
would be even. However because we expect that there are two reflection points
we expect that one reflection occurs on a boundary of E and a second reflection
occurs inside some E , and there is no more reflections and no more symmetric
points.

N.5 A Simple Cycling Attack on Family B Keys
In the real life the attacker does not have access to E but to E4. This however
allows in many interesting cases to easily reconstruct whole cycles for E and thus
get many P/C pairs for 8 rounds without any effort. More precisely:
Reduction 18 (Cycling Reduction for Family B). Given 232 chosen plain-
texts for GOST with keys being in Family B, it is possible in time of roughly
232 operations, to obtain about 232 P/C pairs for E which are simultaneously
correct with overall probability of about 2−1.

More precisely, for any point X chosen by the attacker, with probability at
least 1/2 over X, we can compute a cycle which contains X, and be able to
compute Ek(X) for any k ∈ ZZ.
Justification: Let S ≈ 232 be the size of the cycle on which lies the point X
for the permutation E . Moreover, with probability 1/2 over X this integer S is
odd and GCD(S, 4) = 1. We have verified experimentally with random GOST
keys from Family B and with many random starting points X that S ≈ 232 is
a reasonable assumption and that the probability that S is odd, is indeed large
enough and close to 1/2 so that our attack will work.

We recall that E4 = S ◦ Enck therefore the attacker has access to E4. The
attacker starts with X0 = X and computes:

Xi+1 = S(Enck(Xi)) = E4(Xi)
The attacker obtain thus a cycle the size of which divides S and if S is odd,

we have GCD(S, 4) = 1 and the cycle size for E4 is equal to S. Moreover we are
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in a cyclic group of a known size and can easily compute E for any point lying
on our cycle:

E(A) = (E4)d(A)
where we define d = 4−1 mod S in the same way as in the RSA cryptosystem.

Thus in total time of essentially 232 steps, the attacker can compute a table of
232 P/C pairs for 8 rounds of GOST E .

Remark 1: The attacker is not able to see if S is odd, but if S is odd,
which happens with probability of about 2−1 then his resulting table of about
232 values for E is going to be correct.

Remark 2: There will be cases when S = 2T and T odd, and the attacker
will see a sub-cycle of length T , and can be mistaken to believe that S = T ,

Remark 3: It is possible to see that if at the start we choose X symmetric,
it increases the probability that the cycle size S will be odd and thus results in
a higher probability that our attack will work.

This Reduction 18 will be used to recover keys for GOST Family B given
only 232 chosen plaintexts. This is done as follows.

Fact 38 (Cycling Attack for Family B). For any GOST key in Family B and
given about 233 CP we can recover the key in time of 289 GOST computations.

Justification: We apply Reduction 18, start from a symmetric value X, and
obtain about 232 P/C pairs for E which are simultaneously correct with overall
probability of about 2−1. This in time of roughly 232 operations.

Then we need to guess the internal value for just one application of E such
that E(Z) 6= Z which guarantees that if we guess the internal value, we will
obtain two distinct P/C pairs for 4 rounds. The we apply Fact 3: the 128-bit key
can be found in time of 224 GOST computations and with negligible memory.

On average we need to repeat the attack for 21 distinct cycles hoping that S
is odd for one of them. Overall the key can be computed in time equivalent to
about 21+64+24 ≈ 289 GOST encryptions.

N.6 Fine Improvements On The Solver Side

Until now, in our attacks on Family B keys, we only used the very simple Fact 3
in the final stage of the attack. However, in many specific cases, finer and faster
algebraic attacks with SAT solver software can be found, leading to an overall
faster key recovery attack on this version of GOST with 128-bit keys. We have
the following result:

Fact 39 (Key Recovery for 4 Rounds and 3 KP with symmetric ci-
phertexts). Given 3 plaintexts for 4 rounds of GOST for which we know that
the corresponding ciphertext is symmetric, one can produce a list of 232 can-
didates for the the full 128-bit key, one of which is the correct key, in time
equivalent to 278 GOST encryptions on the same software platform. The mem-
ory requirements are very small. The attack works with a similar complexity for
any choice of GOST S-boxes.
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Justification: This is an experimental result. In this attack we do not know the
ciphertext for any of the 3 plaintexts, but we assume it is symmetric, which gives
32 bits of information about this ciphertext. Furthermore we guess 57 bits of
information as follows: we guess 32 bits of information about the first symmetric
ciphertext, 25 bits of information about the second symmetric ciphertext, and
0 bits of information about the third symmetric ciphertext. This method of
guessing bits un-evenly is the one which experimentally works the best. Then
the key can be recovered in 2 seconds, which is about 221 GOST encryptions on
the same PC. Overall the complexity including the guessing phase is 221+57 = 278

GOST encryptions on the same PC. Given that the symmetry of the 3 ciphertexts
provides 96 bits of information about the 128-bit key, the attack will produce
roughly about 232 − 1 false positives.

This will lead to an important improvement in the running time of our best
attack so far (cf. Fact 38).

Fact 40 (Improved Cycling Attack for Family B). For any GOST key in
Family B and given about 235 CP we can recover the key in time of 281 GOST
computations.

Justification: As in the previous attack, each time we apply Reduction 18, we
start from a symmetric value X, and obtain about 232 P/C pairs for E which
are simultaneously correct with overall probability of about 2−1 (only if S was
odd). This in time of roughly 232 operations, each time.

Here on the contrary to the last attack given in Fact 38, we will be interested
in pairs with E(Z) = Z, while in addition Z being not symmetric. Each time
we do the above steps, we expect to find one such value on average, for each set
of 232 CP used in cycling. In these cases, due to the structure of E we get one
plaintext for 4 rounds for which the ciphertext after 4 rounds is symmetric (but
unknown).

We need to repeat this 3 times, moreover we need that S is odd simultane-
ously in all the 3 cases. Therefore we need to about 6 sets of 232 CP, out of which
we need to select three for which all S are odd, which requires on average 23

trials, and for each trial we apply Fact 39 to get a list of 232 possible keys in time
equivalent to 278 GOST encryptions. Overall we get a list of 232+3 possible keys
in time equivalent to 278+3 GOST encryptions. In a further step of the attack
we check all these keys against some pairs for 32 rounds, which (as usual) takes
negligible time compared to 278+3 GOST encryptions.

Overall our attack finds the right 128-bit key given less than 235 CP and in
time of 281 GOST encryptions.
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N.7 Summary of Results on Family B and Other 128-bit Keys

In the following table we compare various attacks with focus on both families of
128-bit keys studied and comparison to some other families of keys.

Key Size/Type 256 Direct128 Inversed128

Key Family Normal Family 3 Family 0’ Family B, Appendix N

Reduction cf. Red. 3 Fact 26 Red. 14 Red. 15 Red. 17 Reduction 18

Attack Sect. 11 Fact 27 Fact 29 Fact 33 Fact 36 Fact 38 Fact 40

The Density d 0.63 2−64 2−160 2−128 2−130 2−128

From (data 32 R) 264 KP 264 KP 232 CP 264 KP 232 CP 233 CP 235 CP

Obtained 8R 3 KP 4 KP 1 ≥ 2 ≥ 2 232 233

Selected 8R 3 KP 4 KP - 1 2 1 3

Valid w. prob. 2−96 2−1 - 2−2 2−2 2−1 2−3

Obtained 4R - 1 2 2 2 3/2

Valid w. prob. - 2−1 2−66 2−66 2−65 2−3

Storage bytes 267 267 - 267 235 236 238

] False Positives 2128 264 264 264 small 264 232

Attack Time 32 R 2216 2120 265 290 291 289 281

Table 5. Comparison of our attacks on 128-bit keys compared to some other attacks

Comparison of Different Attacks on Family B Keys: In this paper
we presented 4 different attacks on GOST keys of Family B with similar time
complexity. Our first attack (cf. Fact 33) required 264 KP which is not very
realistic. Our second, third and fourth attack require only about 232 CP. Our
third and fourth result (cf. Fact 38 and Fact 40) are better than the second
result because they work for arbitrary Family B keys, not 26% of them as in the
second result (cf. Fact 36). Then the time complexity gets smaller in each case
with a moderate increase in data complexity. This last improved attack of Fact
40 is arguably now the best known attack on GOST Family B, and currently
will also be the best known attack with key density d = 2−128, cf. Table 3.

We omit possible improvements to the second result (cf. Fact 36) by using
also Fact 39, which will not be very interesting because it would work even for
a smaller fraction of keys than 26% while our best attack works for all keys.


