Achieving Short Ciphertexts or Short Secret-Keys for Adaptively Secure General Inner-Product Encryption*

Tatsuaki Okamoto
NTT
okamoto.tatsuaki@lab.ntt.co.jp
Katsuyuki Takashima
Mitsubishi Electric
Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

January 27, 2012

Abstract

In this paper, we present two non-zero inner-product encryption (NIPE) schemes that are adaptively secure under a standard assumption, the decisional linear (DLIN) assumption, in the standard model. One of the proposed NIPE schemes features constant-size ciphertexts and the other features constant-size secret-keys. Our NIPE schemes imply an identity-based revocation (IBR) system with constant-size ciphertexts or constant-size secret-keys that is adaptively secure under the DLIN assumption. Any previous IBR scheme with constantsize ciphertexts or constant-size secret-keys was not adaptively secure in the standard model. This paper also presents two zero inner-product encryption (ZIPE) schemes each of which has constant-size ciphertexts or constant-size secret-keys and is adaptively secure under the DLIN assumption in the standard model. They imply an identity-based broadcast encryption (IBBE) system with constant-size ciphertexts or constant-size secret-keys that is adaptively secure under the DLIN assumption. We also extend the proposed ZIPE schemes into two directions, one is a fully-attribute-hiding ZIPE scheme with constant-size secret-keys, and the other a hierarchical ZIPE scheme with constant-size ciphertexts.

[^0]
Contents

1 Introduction 3
1.1 Background 3
1.2 Our Result 4
1.3 Related Works 4
1.4 Key Techniques 4
1.5 Notations 5
2 Dual Pairing Vector Spaces by Direct Product of Symmetric Pairing Groups 5
3 Definitions of Zero and Non-zero Inner-Product Encryption (ZIPE / NIPE) 6
4 Decisional Linear (DLIN) Assumption 8
5 Special Matrix Subgroups 8
6 NIPE Scheme with Constant-Size Ciphertexts 9
6.1 Key Ideas in Constructing the Proposed NIPE Scheme 9
6.2 Dual Orthonormal Basis Generator 10
6.3 Construction 11
6.4 Security 12
7 NIPE Scheme with Constant-Size Secret-Keys 17
7.1 Dual Orthonormal Basis Generator 17
7.2 Construction and Security 17
8 ZIPE Scheme with Constant-Size Ciphertexts 18
8.1 Dual Orthonormal Basis Generator 18
8.2 Construction and Security 18
9 ZIPE Scheme with Constant-Size Secret-Keys 20
9.1 Dual Orthonormal Basis Generator 20
9.2 Construction and Security 21
10 Fully-Attribute-Hiding ZIPE Scheme with Constant-Size Secret-Keys 22
10.1 Construction and Security 22
11 Comparison 25
12 Hierarchical ZIPE Scheme with Constant-Size Ciphertexts 26
12.1 Dual Orthonormal Basis Generator 26
12.2 Construction and Security 27
13 Concluding Remarks 28
A Proofs of Lemmas 31
A. 1 Proofs of Lemmas 2 and 3 in Section 5 31
A. 2 Proofs of Lemmas 4-12 in Section 6 33
A. 3 Proof of Lemma 13 in Section 8 43
A. 4 Proof of Lemma 14 in Section 9 44

1 Introduction

1.1 Background

Functional encryption (FE) is an advanced concept of encryption or a generalization of publickey encryption (PKE) and identity-based encryption (IBE). In FE systems, a receiver can decrypt a ciphertext using a secret-key corresponding to a parameter v if v is suitably related to another parameter x specified for the ciphertext, or $R(v, x)=1$ for some relation R (i.e., relation R holds for $(v, x))$.

The first flavor of functional encryption traces back to the work of Sahai and Waters [20], which was subsequently extended in $[4,10,13,18]$. In their concept called attribute-based encryption (ABE), for example, parameter v for a secret-key is an access control policy, and parameter x for a ciphertext is a set of attributes. Decryption requires attribute set x to satisfy policy v, i.e., relation $R^{\mathrm{ABE}}(v, x)=1$ iff x satisfies v. Identity-based broadcast encryption (IBBE) $[1,5,6,9,21]$ and revocation (IBR) [14] schemes can also be thought of as functional encryption systems where a ciphertext is encrypted for a set of identities $S=\left\{I D_{1}, \ldots, I D_{n}\right\}$ in IBBE (resp. IBR) systems, and to decrypt it by a secret-key associated with $I D$ requires that $I D \in S$ (resp. $I D \notin S$), i.e., relation $R^{\mathrm{IBBE}}(I D, S)=1$ (resp. $R^{\mathrm{IBR}}(I D, S)=1$) iff $I D \in S$ (resp. $I D \notin S$).

Katz, Sahai and Waters [12] introduced a functional encryption scheme for zero inner products, zero inner product encryption (ZIPE) where a ciphertext encrypted with vector \vec{x} can be decrypted by any key associated with vector \vec{v} such that $\vec{v} \cdot \vec{x}=0$, i.e., relation $R^{\mathrm{ZIPE}}(\vec{v}, \vec{x})=1$ iff $\vec{v} \cdot \vec{x}=0$. Their scheme is selectively secure in the standard model and the ciphertext size is linear in the dimension of vectors, n, although it achieves an additional security property, attribute-hiding, in which \vec{x} is hidden from the ciphertext. As shown in [12], ZIPE provides functional encryption for a wide class of relations corresponding to equalities, polynomials and CNF/DNF formulae.

Attrapadung and Libert [2] proposed a ZIPE scheme as well as a non-zero IPE (NIPE) scheme, where NIPE relation $R^{\text {NIPE }}(\vec{v}, \vec{x})=1$ iff $\vec{v} \cdot \vec{x} \neq 0$. NIPE supports a wide class of relations corresponding to the complement of those for ZIPE. In their ZIPE and NIPE schemes, without retaining the attribute-hiding property, the ciphertext size reduces to a constant in n (the dimension of vectors, \vec{v} and \vec{x}), as long as the description of the vector is not considered a part of the ciphertext, which is a common assumption in the broadcast encryption/revocation applications. Hereafter in this paper, "constant" will be used in this sense. In addition, the number of pairing operations for decryption in [2] is constant. Their ZIPE system is adaptively secure in the standard model, but the NIPE scheme is not adaptively secure (co-selectively secure) in the standard model.

The ZIPE system [2] implies an adaptively secure identity-based broadcast encryption (IBBE) scheme with constant-size ciphertexts in the standard model, while previous IBBE schemes with constant-size ciphertexts were either only selective-ID secure $[1,5,6]$ or secure in a non-standard model [9, 21]. Among IBBE systems with short ciphertexts (including selective-ID secure ones), the IBBE scheme [2] is the only one relying on standard assumptions, DBDH and DLIN assumptions. The NIPE scheme [2] implies a co-selectively secure (not adaptively secure) identity-based revocation (IBR) system [14] with constant-size ciphertexts in the standard model. Lewko, Sahai and Waters [14] presented IBR systems with constant-size public and secret keys that are not adaptively secure. Hence, the following problems are still remained.

1. No NIPE scheme with constant-size ciphertexts is adaptively secure in the standard model, and no IBR scheme with constant-size ciphertexts or constant-size secret-keys is adaptively secure in the standard model. No NIPE scheme with constant-size secret-keys has been
presented.
2. No ZIPE (or no IBBE) scheme with constant-size ciphertexts is adaptively (or selectively) secure under a single standard assumption in the standard model. No ZIPE scheme with constant-size secret-keys has been presented.

1.2 Our Result

1. This paper presents the first NIPE scheme that has constant-size ciphertexts or constantsize secret-keys and that is adaptively secure in the standard model (Sections 6 and 7). The security assumption is a standard one, the decisional linear (DLIN) assumption. This implies the first IBR scheme with constant-size ciphertexts or constant-size secret-keys that is adaptively secure in the standard model.
2. This paper also presents the first ZIPE scheme that has constant-size ciphertexts or constant-size secret-keys and is adaptively secure solely under a single standard assumption, the DLIN assumption, in the standard model (Sections 8 and 9). This implies the first IBBE scheme with constant-size ciphertexts that is adaptively secure solely under a single standard assumption in the standard model.
3. We present two extensions of the proposed ZIPE schemes. One is a fully-attribute-hiding ZIPE scheme with constant-size secret-keys (Section 10). It is obtained by applying the technique of the fully-attribute-hiding ZIPE scheme in [19] to the proposed ZIPE scheme with constant-size secret-keys in Section 9, while the ZIPE scheme in Section 9 is weakly-attribute-hiding. The other extension is a hierarchical ZIPE scheme with constant-size ciphertexts (Section 12). These schemes are adaptively secure under the DLIN assumption in the standard model.

The number of pairing operations for decryption is constant in all the proposed schemes. We summarize a comparison of our results with those of [2] in Table 1 in Section 11 (see the items of 'Security', 'Assump.', 'CT Size' and 'SK Size' in Table 1, for the features discussed in Sections 1.1 and 1.2).

1.3 Related Works

Several ABE schemes $[3,7,11]$ with constant-size ciphertexts have been proposed. Among them, $[7,11]$ only support limited classes of predicates that do not cover the classes supported by ZIPE or NIPE, while [3] supports a wider class of relations, non-monotone predicates, than those by ZIPE or NIPE. All of these ABE schemes, however, are only selectively secure in the standard model. Adaptively secure and attribute-hiding ZIPE scheme under the DLIN assumption has been presented [18], but the ciphertext-size is linear in n (not constant), while our ZIPE scheme has constant-size ciphertexts and is adaptively secure but not attribute-hiding.

1.4 Key Techniques

All of the proposed schemes in this paper are constructed on dual system encryption [22, 15] and dual pairing vector spaces (DPVS) $[17,13,18]$. See Section 1.5 for some notations in this section. In DPVS, a pair of dual (or orthonormal) bases, \mathbb{B} and \mathbb{B}^{*}, are randomly generated using a fully random linear transformation $X \stackrel{U}{\leftarrow} G L\left(N, \mathbb{F}_{q}\right)\left(N\right.$: dimension of span $\langle\mathbb{B}\rangle$ and span $\left.\left\langle\mathbb{B}^{*}\right\rangle\right)$ such that \mathbb{B} and \mathbb{B}^{*} are transformed from canonical basis \mathbb{A} by X and $\left(X^{-1}\right)^{\mathrm{T}}$, respectively (see Section 2 and $[17,13,18]$). In a typical application of DPVS to cryptography, a part of \mathbb{B} (say
$\hat{\mathbb{B}})$ is used as a public key and the corresponding part of $\mathbb{B}^{*}\left(\right.$ say $\left.\hat{\mathbb{B}}^{*}\right)$ is used as a secret key or trapdoor.

In this paper, we develop a novel technique on DPVS, where we employ a special form of random linear transformation $X \in G L\left(N, \mathbb{F}_{q}\right)$, or $X \in \mathcal{L}\left(4, n, \mathbb{F}_{q}\right)$ of Eq. (3) in Section 6.2, in place of fully random linear transformation $X \stackrel{U}{\leftarrow} G L\left(N, \mathbb{F}_{q}\right)$. This form of X provides us a framework to achieve short ciphertexts or short secret-keys as well as a small number of pairing operations in decryption. It, however, is a challenging task to find such a special form of X like Eq. (3) that meet the several requirements for the dual system encryption method to prove the adaptive security of ZIPE and NIPE schemes under the DLIN assumption. Such requirements are given hereafter. To reduce the security of our schemes, especially Problems 1 and 2 in this paper, to the DLIN assumption, the form of X should be consistent with the distribution of the DLIN problem. The form of X should be sparse enough to achieve short ciphertexts or secret-keys. We should also have a special pairwise independence lemma, Lemma 6 in Section 6.4 , that is due to the special form of X, where linear random transformations U and Z are more restricted (or specific) than those of previous results, e.g., [18], with fully random X. See Section 6.1 for more details.

1.5 Notations

When A is a random variable or distribution, $y \stackrel{R}{\leftarrow} A$ denotes that y is randomly selected from A according to its distribution. When A is a set, $y \longleftarrow A$ denotes that y is uniformly selected from A. A vector symbol denotes a vector representation over \mathbb{F}_{q}, e.g., \vec{x} denotes $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$. For two vectors $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\vec{v}=\left(v_{1}, \ldots, v_{n}\right), \vec{x} \cdot \vec{v}$ denotes the inner-product $\sum_{i=1}^{n} x_{i} v_{i}$. The vector $\overrightarrow{0}$ is abused as the zero vector in \mathbb{F}_{q}^{n} for any n. X^{T} denotes the transpose of matrix X. I_{ℓ} denotes the $\ell \times \ell$ identity matrix. A bold face letter denotes an element of vector space \mathbb{V}, e.g., $\boldsymbol{x} \in \mathbb{V}$. When $\boldsymbol{b}_{i} \in \mathbb{V}(i=1, \ldots, \ell)$, $\operatorname{span}\left\langle\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{\ell}\right\rangle \subseteq \mathbb{V}\left(\right.$ resp. $\left.\operatorname{span}\left\langle\vec{x}_{1}, \ldots, \vec{x}_{\ell}\right\rangle\right)$ denotes the subspace generated by $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{\ell}\left(\right.$ resp. $\left.\vec{x}_{1}, \ldots, \vec{x}_{\ell}\right)$. For bases $\mathbb{B}:=\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{N}\right)$ and $\mathbb{B}^{*}:=\left(\boldsymbol{b}_{1}^{*}, \ldots, \boldsymbol{b}_{N}^{*}\right),\left(x_{1}, \ldots, x_{N}\right)_{\mathbb{B}}:=\sum_{i=1}^{N} x_{i} \boldsymbol{b}_{i}$ and $\left(y_{1}, \ldots, y_{N}\right)_{\mathbb{B}^{*}}:=\sum_{i=1}^{N} y_{i} \boldsymbol{b}_{i}^{*}$. For dimension n of vectors, \vec{e}_{j} denotes the canonical basis vector $(\overbrace{0 \cdots 0}^{j-1}, 1, \overbrace{0 \cdots 0}^{n-j}) \in \mathbb{F}_{q}^{n}$ for $j=1, \ldots, n$. $G L\left(n, \mathbb{F}_{q}\right)$ denotes the general linear group of degree n over \mathbb{F}_{q}. For a linear subspace $V \subset \mathbb{F}_{q}^{n}$, V^{\perp} denotes the orthogonal complement, i.e., $V^{\perp}:=\left\{\vec{w} \in \mathbb{F}_{q}^{n} \mid \vec{w} \cdot \vec{v}=0\right.$ for all $\left.\vec{v} \in V\right\}$.

2 Dual Pairing Vector Spaces by Direct Product of Symmetric Pairing Groups

Definition 1 "Symmetric bilinear pairing groups" $\left(q, \mathbb{G}, \mathbb{G}_{T}, G, e\right)$ are a tuple of a prime q, cyclic additive group \mathbb{G} and multiplicative group \mathbb{G}_{T} of order $q, G \neq 0 \in \mathbb{G}$, and a polynomialtime computable nondegenerate bilinear pairing $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{T}$ i.e., $e(s G, t G)=e(G, G)^{s t}$ and $e(G, G) \neq 1$.

Let $\mathcal{G}_{\text {bpg }}$ be an algorithm that takes input 1^{λ} and outputs a description of bilinear pairing groups $\left(q, \mathbb{G}, \mathbb{G}_{T}, G, e\right)$ with security parameter λ.

Definition 2 "Dual pairing vector spaces (DPVS)" $\left(q, \mathbb{V}, \mathbb{G}_{T}, \mathbb{A}, e\right)$ by a direct product of symmetric pairing groups $\left(q, \mathbb{G}, \mathbb{G}_{T}, G, e\right)$ are a tuple of prime q, N-dimensional vector space $\mathbb{V}:=$ $\overbrace{\mathbb{G} \times \cdots \times \mathbb{G}}^{N}$
over \mathbb{F}_{q}, cyclic group \mathbb{G}_{T} of order q, canonical basis $\mathbb{A}:=\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{N}\right)$ of \mathbb{V}, where $\boldsymbol{a}_{i}:=(\overbrace{0, \ldots, 0}^{i-1}, G, \overbrace{0, \ldots, 0}^{N-i})$, and pairing $e: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{G}_{T}$. The pairing is defined by
$e(\boldsymbol{x}, \boldsymbol{y}):=\prod_{i=1}^{N} e\left(G_{i}, H_{i}\right) \in \mathbb{G}_{T}$ where $\boldsymbol{x}:=\left(G_{1}, \ldots, G_{N}\right) \in \mathbb{V}$ and $\boldsymbol{y}:=\left(H_{1}, \ldots, H_{N}\right) \in \mathbb{V}$. This is nondegenerate bilinear i.e., $e(s \boldsymbol{x}, t \boldsymbol{y})=e(\boldsymbol{x}, \boldsymbol{y})^{\text {st }}$ and if $e(\boldsymbol{x}, \boldsymbol{y})=1$ for all $\boldsymbol{y} \in \mathbb{V}$, then $\boldsymbol{x}=\mathbf{0}$. For all i and $j, e\left(\boldsymbol{a}_{i}, \boldsymbol{a}_{j}\right)=e(G, G)^{\delta_{i, j}}$ where $\delta_{i, j}=1$ if $i=j$, and 0 otherwise, and $e(G, G) \neq 1 \in \mathbb{G}_{T}$.

DPVS also has linear transformations $\phi_{i, j}$ on \mathbb{V} s.t. $\phi_{i, j}\left(\boldsymbol{a}_{j}\right)=\boldsymbol{a}_{i}$ and $\phi_{i, j}\left(\boldsymbol{a}_{k}\right)=\mathbf{0}$ if $k \neq j$, which can be easily achieved by $\phi_{i, j}(\boldsymbol{x}):=(\overbrace{0, \ldots, 0}^{i-1}, G_{j}, \overbrace{0, \ldots, 0}^{N-i})$ where $\boldsymbol{x}:=\left(G_{1}, \ldots, G_{N}\right)$. We call $\phi_{i, j}$ "canonical maps".

DPVS generation algorithm $\mathcal{G}_{\mathrm{dpvs}}$ takes input $1^{\lambda}(\lambda \in \mathbb{N})$ and $N \in \mathbb{N}$, and outputs a description of $\operatorname{param}_{\mathbb{V}}:=\left(q, \mathbb{V}, \mathbb{G}_{T}, \mathbb{A}, e\right)$ with security parameter λ and N-dimensional \mathbb{V}. It can be constructed by using $\mathcal{G}_{\mathrm{bpg}}$.

For the asymmetric version of $\operatorname{DPVS},\left(q, \mathbb{V}, \mathbb{V}^{*}, \mathbb{G}_{T}, \mathbb{A}, \mathbb{A}^{*}, e\right)$, see Appendix A. 2 in [18].

3 Definitions of Zero and Non-zero Inner-Product Encryption (ZIPE / NIPE)

This section defines zero and non-zero inner-product encryption (ZIPE / NIPE) and their security. The relations $R^{\text {ZIPE }}$ of ZIPE and $R^{\text {NIPE }}$ of NIPE are defined over vectors $\vec{x} \in \mathbb{F}_{q}^{n} \backslash\{\overrightarrow{0}\}$ and $\vec{v} \in \mathbb{F}_{q}^{n} \backslash\{\overrightarrow{0}\}$, where $R^{\mathrm{ZIPE}}(\vec{v}, \vec{x}):=1$ iff $\vec{x} \cdot \vec{v}=0$, and $R^{\mathrm{NIPE}}(\vec{v}, \vec{x}):=1$ iff $\vec{x} \cdot \vec{v} \neq 0$, respectively

Definition 3 (Zero and Non-zero Inner-Product Encryption: ZIPE / NIPE) Let a relation R be R^{ZIPE} or $R^{\text {NIPE }}$. A zero (resp. non-zero) inner-product encryption scheme consists of four algorithms with $R:=R^{\mathrm{ZIPE}}$ (resp. $R:=R^{\mathrm{NIPE}}$).

Setup This is a randomized algorithm that takes as input security parameter. It outputs public parameters pk and master secret key sk.

KeyGen This is a randomized algorithm that takes as input vector \vec{v}, pk and sk. It outputs a decryption key $\mathrm{sk}_{\vec{v}}$.

Enc This is a randomized algorithm that takes as input message m, a vector, \vec{x}, and public parameters pk . It outputs a ciphertext $\mathrm{ct}_{\vec{x}}$.

Dec This takes as input ciphertext $\mathrm{ct}_{\vec{x}}$ that was encrypted under a vector \vec{x}, decryption key $\mathrm{sk}_{\vec{v}}$ for vector \vec{v}, and public parameters pk . It outputs either plaintext m or the distinguished symbol \perp.

A ZIPE (or NIPE) scheme should have the following correctness property: for all (pk, sk) $\stackrel{\mathrm{R}}{\leftarrow}$ Setup $\left(1^{\lambda}\right)$, all vectors \vec{v}, all decryption keys $\mathrm{sk}_{\vec{v}} \stackrel{\mathrm{R}}{\leftarrow} \operatorname{KeyGen}(\mathrm{pk}, \mathrm{sk}, \vec{v})$, all messages m, all vectors \vec{x}, all ciphertexts $\mathrm{ct}_{\vec{x}} \stackrel{\mathrm{R}}{\leftarrow} \operatorname{Enc}(\mathrm{pk}, m, \vec{x})$, it holds that $m=\operatorname{Dec}\left(\mathrm{pk}, \mathrm{sk}_{\vec{v}}, \mathrm{ct}_{\vec{x}}\right)$ with overwhelming probability, if $R(\vec{v}, \vec{x})=1$.

Definition 4 (Adaptively Payload-Hiding Security) The model for proving the adaptively payload-hiding security of ZIPE (or NIPE) under chosen plaintext attacks is given hereafter.

Setup The challenger runs the setup algorithm, ($\mathrm{pk}, \mathrm{sk}) \stackrel{\mathrm{R}}{\leftarrow} \operatorname{Setup}\left(1^{\lambda}\right)$, and gives public parameters pk to the adversary.

Phase 1 The adversary is allowed to adaptively issue a polynomial number of queries, \vec{v}, to the challenger or oracle KeyGen($\mathrm{pk}, \mathrm{sk}, \cdot)$ for private keys, $\mathrm{sk}_{\vec{v}}$, associated with \vec{v}.

Challenge The adversary submits two messages, $m^{(0)}$ and $m^{(1)}$, and a vector, \vec{x}, provided that no \vec{v} queried to the challenger in Phase 1 satisfies $R(\vec{v}, \vec{x})=1$. The challenger flips a coin $b \stackrel{U}{\leftarrow}\{0,1\}$, and computes $\mathrm{ct}_{\vec{x}}^{(b)} \stackrel{\mathrm{R}}{\leftarrow} \operatorname{Enc}\left(\mathrm{pk}, m^{(b)}, \vec{x}\right)$. It gives $\mathrm{ct}_{\vec{x}}^{(b)}$ to the adversary.
Phase 2 The adversary is allowed to adaptively issue a polynomial number of queries, \vec{v}, to the challenger or oracle $\mathrm{KeyGen}(\mathrm{pk}, \mathrm{sk}, \cdot)$ for private keys, $\mathrm{sk}_{\vec{v}}$, associated with \vec{v}, provided that $R(\vec{v}, \vec{x}) \neq 1$.

Guess The adversary outputs a guess b^{\prime} of b.
The advantage of adversary \mathcal{A} in the above game, $\operatorname{Adv}_{\mathcal{A}}^{\mathrm{ZIPE}, \mathrm{PH}}(\lambda)\left(o r \operatorname{Adv}_{\mathcal{A}}^{\mathrm{NIPE}, \mathrm{PH}}(\lambda)\right.$), is defined by $\operatorname{Pr}\left[b^{\prime}=b\right]-1 / 2$ for any security parameter λ. A ZIPE (or NIPE) scheme is adaptively payload-hiding secure if all polynomial time adversaries have at most a negligible advantage in the game.

Definition 5 (Adaptively Weakly-Attribute-Hiding Security) The model for proving the adaptively weakly-attribute-hiding security of ZIPE under chosen plaintext attacks is obtained from the above game by replacing Challenge and Phase 2 steps by the following:

Challenge The adversary submits two messages, $\left(m^{(0)}, m^{(1)}\right)$, and two vectors, $\left(\vec{x}^{(0)}, \vec{x}^{(1)}\right)$, provided that no \vec{v} queried to the challenger in Phase 1 satisfies $R\left(\vec{v}, \vec{x}^{(0)}\right)=1$ or $R\left(\vec{v}, \vec{x}^{(1)}\right)=$ 1. The challenger fips a coin $b \longleftarrow\{0,1\}$, and computes $\mathrm{ct}_{\vec{x}^{(b)}} \stackrel{\mathrm{R}}{\leftarrow} \mathrm{Enc}\left(\mathrm{pk}, m^{(b)}, \vec{x}^{(b)}\right)$. It gives $\mathrm{ct}_{\vec{x}^{(b)}}$ to the adversary.

Phase 2 The adversary is allowed to adaptively issue a polynomial number of queries, \vec{v}, to the challenger or oracle $\operatorname{KeyGen}(\mathrm{pk}, \mathrm{sk}, \cdot)$ for private keys, $\mathrm{sk}_{\vec{v}}$, associated with \vec{v}, provided that $R\left(\vec{v}, \vec{x}^{(0)}\right) \neq 1$ and $R\left(\vec{v}, \vec{x}^{(1)}\right) \neq 1$.

The advantage of adversary \mathcal{A} in the above game, $\operatorname{Adv}_{\mathcal{A}}^{\text {ZIPE,wAH }}(\lambda)$, is defined by $\operatorname{Pr}\left[b^{\prime}=\right.$ b] $-1 / 2$ for any security parameter λ. A ZIPE scheme is adaptively weakly-attribute-hiding secure if all polynomial time adversaries have at most a negligible advantage in the game.

Informally, in adaptively fully-attribute-hiding security game, adversary is allowed to issue both types of key queries, $R\left(\vec{v}, \vec{x}^{(b)}\right)=0$ and $R\left(\vec{v}, \vec{x}^{(b)}\right)=1$, in a single security game. It gives a strong security than Definition 5 and is given in the following Definition 6.

Definition 6 (Adaptively Fully-Attribute-Hiding Security) The model for proving the adaptively fully-attribute-hiding security of ZIPE under chosen plaintext attacks is obtained from the above game by replacing Challenge and Phase 2 steps by the following:

Challenge The adversary submits challenge attribute vector $\left(\vec{x}^{(0)}, \vec{x}^{(1)}\right)$ and challenge plaintexts $\left(m^{(0)}, m^{(1)}\right)$, subject to the following restrictions:

- $\vec{v} \cdot \vec{x}^{(0)} \neq 0$ and $\vec{v} \cdot \vec{x}^{(1)} \neq 0$ for all the key queried predicate vectors, \vec{v}.
- Two challenge plaintexts are equal, i.e., $m^{(0)}=m^{(1)}$, and any key query \vec{v} satisfies $R\left(\vec{v}, \vec{x}^{(0)}\right)=R\left(\vec{v}, \vec{x}^{(1)}\right)$, i.e., one of the following conditions.
$-\vec{v} \cdot \vec{x}^{(0)}=0$ and $\vec{v} \cdot \vec{x}^{(1)}=0$,
$-\vec{v} \cdot \vec{x}^{(0)} \neq 0$ and $\vec{v} \cdot \vec{x}^{(1)} \neq 0$,

The challenger flips a coin $b \stackrel{U}{\leftarrow}\{0,1\}$, and computes $\mathrm{ct}_{\vec{x}^{(b)}} \stackrel{\mathrm{R}}{\leftarrow} \operatorname{Enc}\left(\mathrm{pk}, m^{(b)}, \vec{x}^{(b)}\right)$. It gives $\mathrm{ct}_{\vec{x}^{(b)}}$ to the adversary.

Phase 2 The adversary is allowed to adaptively issue a polynomial number of queries, \vec{v}, to the challenger or oracle KeyGen(pk, sk, •) for private keys, $\mathrm{sk}_{\vec{v}}$, associated with \vec{v}, subject to the restriction given in the challenge step.
The advantage of adversary \mathcal{A} in the above game is defined as $\operatorname{Adv}_{\mathcal{A}}^{\mathrm{ZIPE}, \mathrm{AH}}(\lambda):=\operatorname{Pr}[\mathcal{A}$ wins $]-1 / 2$ for any security parameter λ. An IPE scheme is adaptively fully-attribute-hiding (AH) (against chosen plaintext attacks) if all probabilistic polynomial-time adversaries \mathcal{A} have at most negligible advantage in the above game.

For each run of the game, the variable s is defined as $s:=0$ if $m^{(0)} \neq m^{(1)}$ for challenge plaintexts $m^{(0)}$ and $m^{(1)}$, and $s:=1$ otherwise.

4 Decisional Linear (DLIN) Assumption

Definition 7 The DLIN problem is to guess $\beta \in\{0,1\}$, given ($\operatorname{param}_{\mathbb{G}}, G, \xi G, \kappa G, \delta \xi G, \sigma \kappa G, Y_{\beta}$) $\stackrel{\mathrm{R}}{\leftarrow} \mathcal{G}_{\beta}^{\mathrm{DLIN}}\left(1^{\lambda}\right)$, where $\mathcal{G}_{\beta}^{\mathrm{DLIN}}\left(1^{\lambda}\right): \operatorname{param}_{\mathbb{G}}:=\left(q, \mathbb{G}, \mathbb{G}_{T}, G, e\right) \stackrel{\mathrm{R}}{\leftarrow} \mathcal{G}_{\mathrm{bpg}}\left(1^{\lambda}\right), \kappa, \delta, \xi, \sigma \stackrel{U}{\leftarrow} \mathbb{F}_{q}, Y_{0}:=$ $(\delta+\sigma) G, Y_{1} \stackrel{U}{\leftarrow} \mathbb{G}$, return $\left(\operatorname{param}_{\mathbb{G}}, G, \xi G, \kappa G, \delta \xi G, \sigma \kappa G, Y_{\beta}\right)$, for $\beta \stackrel{\cup}{\leftarrow}\{0,1\}$. For a probabilistic machine \mathcal{E}, we define the advantage of \mathcal{E} for the DLIN problem as: $\operatorname{Adv}_{\mathcal{E}}^{\operatorname{DLI}}(\lambda):=$ $\left|\operatorname{Pr}\left[\mathcal{E}\left(1^{\lambda}, \varrho\right) \rightarrow 1 \mid \varrho \stackrel{\mathrm{R}}{\leftarrow} \mathcal{G}_{0}^{\mathrm{DLIN}}\left(1^{\lambda}\right)\right]-\operatorname{Pr}\left[\mathcal{E}\left(1^{\lambda}, \varrho\right) \rightarrow 1 \mid \varrho \stackrel{\mathrm{R}}{\leftarrow} \mathcal{G}_{1}^{\mathrm{DLIN}}\left(1^{\lambda}\right)\right]\right|$. The DLIN assumption is: For any probabilistic polynomial-time adversary \mathcal{E}, the advantage $\operatorname{Adv}_{\mathcal{E}}^{\operatorname{DLIN}}(\lambda)$ is negligible in λ.

5 Special Matrix Subgroups

Lemmas 1-3 are key lemmas for the security proof for our (H)IPE schemes. For positive integers w and n, let

$$
\begin{align*}
& \mathcal{H}\left(n, \mathbb{F}_{q}\right):=\left\{\left.\left(\begin{array}{cccc}
u & & & u_{1}^{\prime} \\
& \ddots & & \vdots \\
& & u & u_{n-1}^{\prime} \\
& & & u_{n}^{\prime}
\end{array}\right) \right\rvert\, \begin{array}{l}
u, u_{l}^{\prime} \in \mathbb{F}_{q} \text { for } l=1, \ldots, n \\
\text { a blank element in the matrix } \\
\text { denotes } 0 \in \mathbb{F}_{q}
\end{array}\right\}, \tag{1}\\
& \widetilde{\mathcal{H}}\left(n, \mathbb{F}_{q}\right):=\left\{\left.\left(\begin{array}{cccc}
u_{1}^{\prime} & & & \\
u_{2}^{\prime} & u & & \\
\vdots & & \ddots & \\
u_{n}^{\prime} & & & u
\end{array}\right) \right\rvert\, \begin{array}{l}
u, u_{l}^{\prime} \in \mathbb{F}_{q} \text { for } l=1, \ldots, n \\
\text { a blank element in the matrix } \\
\text { denotes } 0 \in \mathbb{F}_{q}
\end{array}\right\}, \tag{2}
\end{align*}
$$

Lemma $1 \mathcal{H}\left(n, \mathbb{F}_{q}\right) \cap G L\left(n, \mathbb{F}_{q}\right)$ and $\widetilde{\mathcal{H}}\left(n, \mathbb{F}_{q}\right) \cap G L\left(n, \mathbb{F}_{q}\right)$ are subgroups of $G L\left(n, \mathbb{F}_{q}\right)$.
Lemma 1 is directly verified from the definition of groups.

$$
\begin{align*}
& \mathcal{L}\left(w, n, \mathbb{F}_{q}\right):= \\
& \left\{\begin{array}{c}
\\
\left\{: \left.=\left(\begin{array}{ccc}
X_{1,1} & \cdots & X_{1, w} \\
\vdots & & \vdots \\
X_{w, 1} & \cdots & X_{w, w}
\end{array}\right) \right\rvert\, X_{i, j}:=\left(\begin{array}{cccc}
\mu_{i, j} & & & \mu_{i, j, 1}^{\prime} \\
& \ddots & & \vdots \\
& & \mu_{i, j} & \mu_{i, j, n-1}^{\prime} \\
& & & \mu_{i, j, n}^{\prime}
\end{array}\right) \begin{array}{c}
\mathcal{H}\left(n, \mathbb{F}_{q}\right) \\
\text { for } i, j= \\
1, \ldots, w
\end{array}\right\} \\
\bigcap G L\left(w n, \mathbb{F}_{q}\right) .
\end{array}\right.
\end{align*}
$$

$$
\begin{align*}
& \widetilde{\mathcal{L}}\left(w, n, \mathbb{F}_{q}\right):= \\
& \left\{: \left.=\left(\begin{array}{ccc}
X_{1,1} & \cdots & X_{1, w} \\
\vdots & & \vdots \\
X_{w, 1} & \cdots & X_{w, w}
\end{array}\right) \right\rvert\, X_{i, j}:=\left(\begin{array}{ccc}
\mu_{i, j, 1}^{\prime} & & \\
\mu_{i, j, 2}^{\prime} & \mu_{i, j} & \\
\vdots & & \ddots \\
\mu_{i, j, n}^{\prime} & & \mu_{i, j}
\end{array}\right) \quad \begin{array}{c}
\\
1, \ldots, w \\
\text { for } i, j= \\
\left.1, \mathbb{F}_{q}\right) \\
\vdots
\end{array}\right\} \\
& \bigcap G L\left(w n, \mathbb{F}_{q}\right) . \tag{4}
\end{align*}
$$

Lemma $2 \mathcal{L}\left(w, n, \mathbb{F}_{q}\right)$ and $\widetilde{\mathcal{L}}\left(w, n, \mathbb{F}_{q}\right)$ are subgroups of $G L\left(w n, \mathbb{F}_{q}\right)$.

$$
\begin{align*}
\mathcal{L}^{+}\left(w, n, \mathbb{F}_{q}\right):= & \left\{\begin{array}{l}
\left.X: \left.=\left(\begin{array}{cccc}
\chi_{0,0} & \chi_{0,1} \vec{e}_{n} & \cdots & \chi_{0, w} \vec{e}_{n} \\
\vec{\chi}_{1,0}^{\mathrm{T}} & X_{1,1} & \cdots & X_{1, w} \\
\vdots & \vdots & & \vdots \\
\vec{\chi}_{w, 0}^{\mathrm{T}} & X_{w, 1} & \cdots & X_{w, w}
\end{array}\right) \right\rvert\, \begin{array}{l}
X_{i, j} \in \mathcal{H}\left(n, \mathbb{F}_{q}\right), \\
\vec{\chi}_{i, 0}:=\left(\chi_{i, 0, l}\right)_{l=1, \ldots, n} \in \mathbb{F}_{q}^{n}, \\
\chi_{0,0}, \chi_{0, j} \in \mathbb{F}_{q} \\
\text { for } i, j=1, \ldots, w
\end{array}\right\} \\
\end{array}\right\} \begin{array}{l}
G L\left(w n+1, \mathbb{F}_{q}\right) .
\end{array}
\end{align*}
$$

Lemma $3 \mathcal{L}^{+}\left(w, n, \mathbb{F}_{q}\right)$ is a subgroup of $G L\left(w n+1, \mathbb{F}_{q}\right)$.
Proofs of Lemmas 2 and 3 are given in Appendix A.1.

6 NIPE Scheme with Constant-Size Ciphertexts

6.1 Key Ideas in Constructing the Proposed NIPE Scheme

In this section, we will explain key ideas of constructing and proving the security of the proposed NIPE scheme.

First, we will show how short ciphertexts and efficient decryption can be achieved in our scheme. Here, we will use a simplified (or toy) version of the proposed NIPE scheme, for which the security is no more ensured in the standard model under the DLIN assumption.

A ciphertext in the simplified NIPE scheme consists of two vector elements, $\left(\boldsymbol{c}_{0}, \boldsymbol{c}_{1}\right) \in \mathbb{G}^{5} \times$ \mathbb{G}^{n}, and $c_{3} \in \mathbb{G}_{T}$. A secret-key consists of two vector elements, $\left(\boldsymbol{k}_{0}^{*}, \boldsymbol{k}_{1}^{*}\right) \in \mathbb{G}^{5} \times \mathbb{G}^{n}$. Therefore, to achieve constant-size ciphertexts, we have to compress $\boldsymbol{c}_{1} \in \mathbb{G}^{n}$ to a constant size in n. We now employ a special form of basis generation matrix, $X:=\left(\begin{array}{cccc}\mu & & & \mu_{1}^{\prime} \\ & \ddots & & \vdots \\ & & \mu & \mu_{n-1}^{\prime} \\ & & & \mu_{n}^{\prime}\end{array}\right) \in \mathcal{H}\left(n, \mathbb{F}_{q}\right)$ of Eq. (1) in Section 6.2 , where $\mu, \mu_{1}^{\prime}, \ldots, \mu_{n}^{\prime} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}$ and a blank in the matrix denotes $0 \in \mathbb{F}_{q}$. The system parameter or DPVS public basis is $\mathbb{B}:=\left(\begin{array}{c}\boldsymbol{b}_{1} \\ \vdots \\ \\ \boldsymbol{b}_{n}\end{array}\right):=\left(\begin{array}{ccc}\mu G & & \\ & \ddots & \\ & & \mu_{1}^{\prime} G \\ & & \mu G \\ & & \mu_{n-1}^{\prime} G \\ & & \\ & \mu_{n}^{\prime} G\end{array}\right)$.
Let a ciphertext associated with $\vec{x}:=\left(x_{1}, \ldots, x_{n}\right)$ be $\boldsymbol{c}_{1}:=(\omega \vec{x})_{\mathbb{B}}=\omega\left(x_{1} \boldsymbol{b}_{1}+\cdots+x_{n} \boldsymbol{b}_{n}\right)=$ $\left(x_{1} \omega \mu G, \ldots, x_{n-1} \omega \mu G, \omega\left(\sum_{i=1}^{n} x_{i} \mu_{i}^{\prime}\right) G\right)$, where $\omega \stackrel{U}{\leftarrow} \mathbb{F}_{q}$. Then, \boldsymbol{c}_{1} can be compressed to only two group elements $\left(C_{1}:=\omega \mu G, C_{2}:=\omega\left(\sum_{i=1}^{n} x_{i} \mu_{i}^{\prime}\right) G\right)$ as well as \vec{x}, since \boldsymbol{c}_{1} can be obtained by $\left(x_{1} C_{1}, \ldots, x_{n-1} C_{1}, C_{2}\right)$ (note that $x_{i} C_{1}=x_{i} \omega \mu G$ for $i=1, \ldots, n-1$). That is, a ciphertext (excluding \vec{x}) can be just two group elements, or the size is constant in n.

Let $\mathbb{B}^{*}:=\left(\boldsymbol{b}_{i}^{*}\right)$ be the dual orthonormal basis of $\mathbb{B}:=\left(\boldsymbol{b}_{i}\right)$, and \mathbb{B}^{*} be the master secret key in the simplified NIPE scheme. We specify $\left(\boldsymbol{c}_{0}, \boldsymbol{k}_{0}^{*}, c_{3}\right)$ such that $e\left(\boldsymbol{c}_{0}, \boldsymbol{k}_{0}^{*}\right)=g_{T}^{\zeta} \cdot g_{T}^{\omega \delta}$ and $c_{3}:=g_{T}^{\zeta} m \in \mathbb{G}_{T}$. We also set a secret-key for \vec{v} as $\boldsymbol{k}_{1}^{*}:=(\delta \vec{v})_{\mathbb{B}^{*}}=\delta\left(v_{1} \boldsymbol{b}_{1}^{*}+\cdots+v_{n} \boldsymbol{b}_{n}^{*}\right)$. From the dual orthonormality of \mathbb{B} and \mathbb{B}^{*}, it then holds that $e\left(\boldsymbol{c}_{1}, \boldsymbol{k}_{1}^{*}\right)=g_{T}^{\omega \delta(\vec{x} \cdot \vec{v})}$. Hence, a decryptor can compute $g_{T}^{\omega \delta}$ if and only if $\vec{x} \cdot \vec{v} \neq 0$, i.e., can obtain plaintext m by c_{3}. $e\left(\boldsymbol{c}_{0}, \boldsymbol{k}_{0}^{*}\right)^{-1} \cdot e\left(\boldsymbol{c}_{1}, \boldsymbol{k}_{1}^{*}\right)^{(\vec{x} \cdot \vec{v})^{-1}}$. Since \boldsymbol{c}_{1} is expressed as $\left(x_{1} C_{1}, \ldots, x_{n-1} C_{1}, C_{2}\right) \in \mathbb{G}^{n}$ and \boldsymbol{k}_{1}^{*} is parsed as a n-tuple $\left(K_{1}, \ldots, K_{n}\right) \in \mathbb{G}^{n}$, the value of $e\left(\boldsymbol{c}_{1}, \boldsymbol{k}_{1}^{*}\right)$ is $\prod_{i=1}^{n-1} e\left(x_{i} C_{1}, K_{i}\right) \cdot e\left(C_{2}, K_{n}\right)=$ $\prod_{i=1}^{n-1} e\left(C_{1}, x_{i} K_{i}\right) \cdot e\left(C_{2}, K_{n}\right)=e\left(C_{1}, \sum_{i=1}^{n-1} x_{i} K_{i}\right) \cdot e\left(C_{2}, K_{n}\right)$. That is, $n-1$ scalar multiplications in \mathbb{G} and two pairing operations are enough for computing $e\left(\boldsymbol{c}_{1}, \boldsymbol{k}_{1}^{*}\right)$. Therefore, only a small (constant) number of pairing operations are required for decryption.

We then explain how our full NIPE scheme is constructed on the above-mentioned simplified NIPE scheme. The target of designing the full NIPE scheme is to achieve the adaptive security under the DLIN assumption. Here, we adopt a strategy similar to that of [18], in which the dual system encryption methodology is employed in a modular or hierarchical manner. That is, two top level assumptions, the security of Problems 1 and 2, are directly used in the dual system encryption methodology and these assumptions are reduced to a primitive assumption, the DLIN assumption.

To meet the requirements for applying to the dual system encryption methodology and reducing to the DLIN assumption, the underlying vector space as well as the basis generator matrix X is four times greater than that of the above-mentioned simplified scheme. For example, $\boldsymbol{k}_{1}^{*}:=\left(\delta \vec{v}, 0^{n}, \vec{\varphi}_{1}, 0^{n}\right)_{\mathbb{B}^{*}}, \boldsymbol{c}_{1}=\left(\omega \vec{x}, 0^{n}, 0^{n}, \eta_{1} \vec{x}\right)_{\mathbb{B}}$, and $X:=\left(\begin{array}{ccc}X_{1,1} & \cdots & X_{1,4} \\ \vdots & & \vdots \\ X_{4,1} & \cdots & X_{4,4}\end{array}\right) \in \mathcal{L}\left(4, n, \mathbb{F}_{q}\right)$ of Eq. (3) in Section 6.2, where each $X_{i, j}$ is of the form of $X \in \mathcal{H}\left(n, \mathbb{F}_{q}\right)$ in the simplified scheme. The vector space consists of four orthogonal subspaces, i.e., real encoding part, hidden part, secret-key randomness part, and ciphertext randomness part. The simplified NIPE scheme corresponds to the first real encoding part.

A key fact in the security reduction is that $\mathcal{L}\left(4, n, \mathbb{F}_{q}\right)$ is a subgroup of $G L\left(4 n, \mathbb{F}_{q}\right)$ (Lemma 2$)$, which enables a random-self-reducibility argument for reducing the DLIN problem to Problems 1 and 2 in this paper. The property that $\mathcal{H}\left(n, \mathbb{F}_{q}\right) \cap G L\left(n, \mathbb{F}_{q}\right)$ is a subgroup of $G L\left(n, \mathbb{F}_{q}\right)$ is also crucial for a special form of pairwise independence lemma in this paper (Lemma 6), where $\mathcal{H}\left(n, \mathbb{F}_{q}\right)$ is specified in $\mathcal{L}\left(4, n, \mathbb{F}_{q}\right)$ or X. Our Problem 2 , which is based on this lemma, employs special form matrices $U \underset{\cup}{\cup} \mathcal{H}\left(n, \mathbb{F}_{q}\right) \cap G L\left(n, \mathbb{F}_{q}\right)$ and $Z:=\left(U^{-1}\right)^{\mathrm{T}}$. Informally, our pairwise independence lemma implies that, for all (\vec{x}, \vec{v}), a pair, $(\vec{x} U, \vec{v} Z)$, are uniformly distributed over $\left(\operatorname{span}\left\langle\vec{x}, \vec{e}_{n}\right\rangle \backslash \operatorname{span}\left\langle\vec{e}_{n}\right\rangle\right) \times\left(\mathbb{F}_{q}^{n} \backslash \operatorname{span}\left\langle\vec{e}_{n}\right\rangle^{\perp}\right)$ with preserving the inner-product value, $\vec{x} \cdot \vec{v}$, i.e., $(\vec{x} U, \vec{v} Z)$ reveal no information but \vec{x} and $\vec{x} \cdot \vec{v}$.

A difference of matrix X with the ZIPE scheme will be noted in Remark 9 .

6.2 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator $\mathcal{G}_{\mathrm{ob}}^{\text {NIPE,CT }}$ below, which is used as a subroutine in the proposed NIPE scheme.

$$
\begin{aligned}
& \mathcal{G}_{\mathrm{ob}}^{\mathrm{NIPE}, \mathrm{CT}}\left(1^{\lambda}, 4, n\right): \quad \operatorname{param}_{\mathbb{G}}:=\left(q, \mathbb{G}, \mathbb{G}_{T}, G, e\right) \stackrel{\mathrm{R}}{\leftarrow} \mathcal{G}_{\mathrm{bpg}}\left(1^{\lambda}\right), \quad N_{0}:=5, N_{1}:=4 n, \\
& \quad \operatorname{param}_{\mathbb{V}_{t}}:=\left(q, \mathbb{V}_{t}, \mathbb{G}_{T}, \mathbb{A}_{t}, e\right):=\mathcal{G}_{\mathrm{dpvs}}\left(1^{\lambda}, N_{t}, \operatorname{param}_{\mathbb{G}}\right) \text { for } t=0,1, \\
& \quad \psi \leftarrow \mathbb{F}_{q}^{\times}, g_{T}:=e(G, G)^{\psi}, \operatorname{param}_{n}:=\left(\left\{\operatorname{param}_{\mathbb{V}_{t}}\right\}_{t=0,1}, g_{T}\right), \\
& \quad X_{0}:=\left(\chi_{0, i, j}\right)_{i, j=1, \ldots, 5} \leftarrow G L\left(N_{0}, \mathbb{F}_{q}\right), X_{1} \stackrel{\cup}{\leftarrow} \mathcal{L}\left(4, n, \mathbb{F}_{q}\right), \text { hereafter, }
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\mu_{i, j}, \mu_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots 4 ; l=1, \ldots, n} \text { denotes non-zero entries of } X_{1} \text { as in Eq. (3), } \\
& \boldsymbol{b}_{0, i}:=\left(\chi_{0, i, 1}, . ., \chi_{0, i, 5}\right)_{\mathbb{A}}=\sum_{j=1}^{5} \chi_{0, i, j} \boldsymbol{a}_{j} \text { for } i=1, . ., 5, \mathbb{B}_{0}:=\left(\boldsymbol{b}_{0,1}, . ., \boldsymbol{b}_{0,5}\right) \text {, } \\
& B_{i, j}:=\mu_{i, j} G, B_{i, j, l}^{\prime}:=\mu_{i, j, l}^{\prime} G \text { for } i, j=1, \ldots, 4 ; l=1, \ldots, n \text {, } \\
& \text { for } t=0,1,\left(\vartheta_{t, i, j}\right)_{i, j=1, \ldots, N_{t}}:=\psi \cdot\left(X_{t}^{\mathrm{T}}\right)^{-1} \text {, } \\
& \boldsymbol{b}_{t, i}^{*}:=\left(\vartheta_{t, i, 1}, \ldots, \vartheta_{t, i, N_{t}}\right)_{\mathbb{A}}=\sum_{j=1}^{N_{t}} \vartheta_{t, i, j} \boldsymbol{a}_{j} \text { for } i=1, \ldots, N_{t}, \mathbb{B}_{t}^{*}:=\left(\boldsymbol{b}_{t, 1}^{*}, . . \boldsymbol{b}_{t, N_{t}}^{*}\right) \text {, } \\
& \text { return }\left(\operatorname{param}_{n}, \mathbb{B}_{0}, \mathbb{B}_{0}^{*},\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots, 4 ; l=1, \ldots, n}, \mathbb{B}_{1}^{*}\right) \text {. }
\end{aligned}
$$

Remark 1 Let

$$
\begin{aligned}
& \left(\begin{array}{c}
\boldsymbol{b}_{1,(i-1) n+1} \\
\vdots \\
\boldsymbol{b}_{1, i n}
\end{array}\right):=\left(\begin{array}{ccccccc}
B_{i, 1} & & & B_{i, 1,1}^{\prime} & & B_{i, 4} & \\
& & B_{i, 4,1}^{\prime} \\
& \ddots & & \vdots & & & \ddots \\
\\
& & B_{i, 1} & B_{i, 1, n-1}^{\prime} & & & \\
\\
& & & B_{i, 1, n}^{\prime} & & & \\
B_{i, 4} & B_{i, 4, n-1}^{\prime} \\
\quad \text { for } i=1, \ldots, 4,
\end{array}\right\}(6) \\
& \mathbb{B}_{1}:=\left(\boldsymbol{b}_{1,1}, \ldots, \boldsymbol{b}_{1,4 n}\right),
\end{aligned}
$$

where a blank element in the matrix denotes $0 \in \mathbb{G} . \mathbb{B}_{1}$ is the dual orthonormal basis of \mathbb{B}_{1}^{*}, i.e., $e\left(\boldsymbol{b}_{1, i}, \boldsymbol{b}_{1, i}^{*}\right)=g_{T}$ and $e\left(\boldsymbol{b}_{1, i}, \boldsymbol{b}_{1, j}^{*}\right)=1$ for $1 \leq i \neq j \leq 4 n$.

6.3 Construction

In the description of the scheme, we assume that input vector, $\vec{x}:=\left(x_{1}, \ldots, x_{n}\right)$, has an index $l(1 \leq l \leq n-1)$ with $x_{l} \neq 0$, and that input vector, $\vec{v}:=\left(v_{1}, \ldots, v_{n}\right)$, satisfies $v_{n} \neq 0$.

$$
\begin{aligned}
& \operatorname{Setup}\left(1^{\lambda}, n\right):\left(\operatorname{param}_{n}, \mathbb{B}_{0}, \mathbb{B}_{0}^{*},\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots, 4 ; l=1, \ldots, n}, \mathbb{B}_{1}^{*}\right) \stackrel{R}{\mathcal{G}_{\mathrm{ob}}^{\mathrm{NIPE}, \mathrm{CT}}\left(1^{\lambda}, 4, n\right),} \\
& \widehat{\mathbb{B}}_{0}:=\left(\boldsymbol{b}_{0,1}, \boldsymbol{b}_{0,3}, \boldsymbol{b}_{0,5}\right), \widehat{\mathbb{B}}_{0}^{*}:=\left(\boldsymbol{b}_{0,1}^{*}, \boldsymbol{b}_{0,3}^{*}, \boldsymbol{b}_{0,4}^{*}\right), \widehat{\mathbb{B}}_{1}^{*}:=\left(\boldsymbol{b}_{1,1}^{*}, \ldots, \boldsymbol{b}_{1, n}^{*}, \boldsymbol{b}_{1,2 n+1}^{*}, . ., \boldsymbol{b}_{1,3 n}^{*}\right) \text {, } \\
& \text { return pk:=(1^, param } \left.\left., \widehat{\mathbb{B}}_{0},\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i=1,4 ; j=1, \ldots, 4 ; l=1, \ldots, n}\right) \text {, sk :=\{ } \widehat{\mathbb{B}}_{t}^{*}\right\}_{t=0,1} \text {. } \\
& \operatorname{KeyGen}(\mathrm{pk}, \mathrm{sk}, \vec{v}): \quad \delta, \varphi_{0} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}, \vec{\varphi}_{1} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}^{n}, \quad \boldsymbol{k}_{0}^{*}:=\left(\delta, 0,1, \varphi_{0}, 0\right)_{\mathbb{B}_{0}^{*}}, \\
& \boldsymbol{k}_{1}^{*}:=(\overbrace{\delta \vec{v}}^{n}, \overbrace{0^{n}}^{n}, \overbrace{\vec{\varphi}_{1}}^{n}, \overbrace{0^{n}}^{n})_{\mathbb{B}_{1}^{*}}, \text { return } \mathrm{sk}_{\vec{v}}:=\left(\vec{v}, \boldsymbol{k}_{0}^{*}, \boldsymbol{k}_{1}^{*}\right) \text {. } \\
& \operatorname{Enc}(\mathrm{pk}, m, \vec{x}): \quad \omega, \eta_{0}, \eta_{1}, \zeta \longleftarrow \mathbb{F}_{q}, \quad \boldsymbol{c}_{0}:=\left(-\omega, 0, \zeta, 0, \eta_{0}\right)_{\mathbb{B}_{0}}, \quad c_{3}:=g_{T}^{\zeta} m, \\
& C_{1, j}:=\omega B_{1, j}+\eta_{1} B_{4, j}, \quad C_{2, j}:=\sum_{l=1}^{n} x_{l}\left(\omega B_{1, j, l}^{\prime}+\eta_{1} B_{4, j, l}^{\prime}\right) \text { for } j=1, \ldots, 4, \\
& \text { return } \mathrm{ct}_{\vec{x}}:=\left(\vec{x}, \boldsymbol{c}_{0},\left\{C_{1, j}, C_{2, j}\right\}_{j=1, \ldots, 4}, c_{3}\right) \text {. } \\
& \operatorname{Dec}\left(\mathrm{pk}, \mathrm{sk}_{\vec{v}}:=\left(\vec{v}, \boldsymbol{k}_{0}^{*}, \boldsymbol{k}_{1}^{*}\right), \mathrm{ct}_{\vec{x}}:=\left(\vec{x}, \boldsymbol{c}_{0},\left\{C_{1, j}, C_{2, j}\right\}_{j=1, \ldots, 4}, c_{3}\right)\right): \\
& \text { Parse } \boldsymbol{k}_{1}^{*} \text { as a } 4 n \text {-tuple }\left(K_{1}^{*}, \ldots, K_{4 n}^{*}\right) \in \mathbb{G}^{4 n} \text {, } \\
& D_{j}^{*}:=\sum_{l=1}^{n-1}\left((\vec{x} \cdot \vec{v})^{-1} x_{l}\right) K_{(j-1) n+l}^{*} \text { for } j=1, \ldots, 4 \text {, } \\
& F:=e\left(\boldsymbol{c}_{0}, \boldsymbol{k}_{0}^{*}\right) \cdot \prod_{j=1}^{4}\left(e\left(C_{1, j}, D_{j}^{*}\right) \cdot e\left(C_{2, j}, K_{j n}^{*}\right)\right), \quad \text { return } m^{\prime}:=c_{3} / F .
\end{aligned}
$$

Remark 2 A part of output of $\operatorname{Setup}\left(1^{\lambda}, n\right),\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i=1,4 ; j=1, \ldots, 4 ; l=1, \ldots, n}$, can be identified with $\widehat{\mathbb{B}}_{1}:=\left(\boldsymbol{b}_{1,1}, \ldots, \boldsymbol{b}_{1, n}, \boldsymbol{b}_{1,3 n+1}, \ldots, \boldsymbol{b}_{1,4 n}\right)$ through the form of Eq. (6), while $\mathbb{B}_{1}:=\left(\boldsymbol{b}_{1,1}, \ldots\right.$, $\boldsymbol{b}_{1,4 n}$) is identified with $\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i, j=1, . ., 4 ; l=1, ., n}$ by Eq. (6). Decryption Dec can be alterna-
tively described as:

$$
\left.\begin{array}{rl}
\operatorname{Dec}^{\prime}\left(\mathrm{pk}, \mathrm{sk}_{\vec{v}}\right. & =(\overbrace{\left.\left(\vec{v}, \boldsymbol{k}_{0}^{*}, \boldsymbol{k}_{1}^{*}\right), \mathrm{ct}_{\vec{x}}:=\left(\vec{x}, \boldsymbol{c}_{0},\left\{C_{1, j}, C_{2, j}\right\}_{j=1, \ldots, 4}, c_{3}\right)\right)}^{n} \overbrace{x_{1} C_{1,1}, . ., x_{n-1} C_{1,1}, C_{2,1},}^{n}, \overbrace{x_{1} C_{1,4}, . ., x_{n-1} C_{1,4}, C_{2,4}}^{n}
\end{array}\right),
$$

[Correctness] Using the alternate decryption Dec', $F=e\left(\boldsymbol{c}_{0}, \boldsymbol{k}_{0}^{*}\right) \cdot e\left(\boldsymbol{c}_{1},(\vec{x} \cdot \vec{v})^{-1} \boldsymbol{k}_{1}^{*}\right)=$ $g_{T}^{-\omega \delta+\zeta} g_{T}^{\omega \delta(\vec{x} \cdot \vec{v}) /(\vec{x} \cdot \vec{v})}=g_{T}^{\zeta} \quad$ if $\vec{x} \cdot \vec{v} \neq 0$.

6.4 Security

The proofs of Lemmas 4-12 are given in Appendix A.2.
Theorem 1 The proposed NIPE scheme is adaptively payload-hiding against chosen plaintext attacks under the DLIN assumption.

For any adversary \mathcal{A}, there exist probabilistic machines $\mathcal{E}_{1}, \mathcal{E}_{2-1}$ and \mathcal{E}_{2-2} whose running times are essentially the same as that of \mathcal{A}, such that for any security parameter $\lambda, \operatorname{Adv} \mathrm{N}_{\mathcal{A}}^{\mathrm{NPE}, \mathrm{PH}}(\lambda) \leq$ $\operatorname{Adv}_{\mathcal{E}_{1}}^{\operatorname{DLI}}(\lambda)+\sum_{h=1}^{\nu}\left(\operatorname{Adv}_{\mathcal{E}_{2-h-1}}^{\mathrm{DLIN}}(\lambda)+\operatorname{Adv}_{\mathcal{E}_{2-h-2}}^{\mathrm{DLIN}}(\lambda)\right)+\epsilon$, where $\mathcal{E}_{2-h-1}(\cdot):=\mathcal{E}_{2-1}(h, \cdot), \mathcal{E}_{2-h-2}(\cdot):=$ $\mathcal{E}_{2-2}(h, \cdot), \nu$ is the maximum number of \mathcal{A} 's key queries and $\epsilon:=(11 \nu+6) / q$.

6.4.1 Lemmas for the Proof of Theorem 1

We will show Lemmas 4-6 for the proof of Theorem 1.
Definition 8 (Problem 1) Problem 1 is to guess β, given $\left(\operatorname{param}_{n}, \mathbb{B}_{0}, \widehat{\mathbb{B}}_{0}^{*}, \boldsymbol{e}_{\beta, 0},\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots, 4 ; l=1, ., n}, \widehat{\mathbb{B}}_{1}^{*},\left\{E_{\beta, j}, E_{\beta, j, l}^{\prime}\right\}_{j=1, ., 4 ; l=1, ., n}\right) \stackrel{R}{\leftarrow} \mathcal{G}_{\beta}^{\mathrm{P} 1}\left(1^{\lambda}, n\right)$, where

$$
\begin{aligned}
& \mathcal{G}_{\beta}^{\text {P1 }}\left(1^{\lambda}, n\right): \quad\left(\operatorname{param}_{n}, \mathbb{B}_{0}, \mathbb{B}_{0}^{*},\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots, 4 ; l=1, \ldots, n}, \widehat{\mathbb{B}}_{1}^{*}\right) \stackrel{\mathrm{R}}{\leftarrow} \mathcal{G}_{\mathrm{ob}}^{\mathrm{NIPE}, \mathrm{CT}}\left(1^{\lambda}, 4, n\right), \\
& \widehat{\mathbb{B}}_{0}^{*}:=\left(\boldsymbol{b}_{0,1}^{*}, \boldsymbol{b}_{0,3}^{*}, . ., \boldsymbol{b}_{0,5}^{*}\right), \widehat{\mathbb{B}}_{1}^{*}:=\left(\boldsymbol{b}_{1,1}^{*}, \ldots, \boldsymbol{b}_{1, n}^{*}, \boldsymbol{b}_{t, 2 n+1}^{*}, \ldots, \boldsymbol{b}_{t, 4 n}^{*}\right), \\
& \omega, \tau, \eta_{0}, \eta_{1} \longleftarrow \mathbb{F}_{q}, U \stackrel{U}{\leftarrow} \mathcal{H}\left(n, \mathbb{F}_{q}\right) \cap G L\left(n, \mathbb{F}_{q}\right), \text { hereafter, } u, u_{n}^{\prime} \in \mathbb{F}_{q}^{\times}, \\
& u_{1}^{\prime}, \ldots, u_{n-1}^{\prime} \in \mathbb{F}_{q} \text { denote non-zero entries of } U \text {, as in Eq. (1), } \\
& \boldsymbol{e}_{0,0}:=\left(\omega, 0,0,0, \eta_{0}\right)_{\mathbb{B}_{0}}, \quad \boldsymbol{e}_{1,0}:=\left(\omega, \tau, 0,0, \eta_{0}\right)_{\mathbb{B}_{0}}, \\
& \text { for } j=1, \ldots, 4 ; \\
& E_{0, j}:=\omega B_{1, j}+\eta_{1} B_{4, j}, E_{0, j, l}^{\prime}:=\omega B_{1, j, l}^{\prime}+\eta_{1} B_{4, j, l}^{\prime}, \text { for } l=1, \ldots, n, \\
& E_{1, j}:=\omega B_{1, j}+\tau u B_{2, j}+\eta_{1} B_{4, j}, \\
& E_{1, j, l}^{\prime}:=\omega B_{1, j, l}^{\prime}+\tau u B_{2, j, l}^{\prime}+\tau u_{l}^{\prime} B_{2, j, n}^{\prime}+\eta_{1} B_{4, j, l}^{\prime} \\
& \quad \text { for } l=1, \ldots, n-1, \text { and } E_{1, j, n}^{\prime}:=\omega B_{1, j, n}^{\prime}+\tau u_{n}^{\prime} B_{2, j, n}^{\prime}+\eta_{1} B_{4, j, n}^{\prime}, \\
& \text { return } \quad\left(\operatorname{param}_{n}, \mathbb{B}_{0}, \widehat{\mathbb{B}}_{0}^{*}, \boldsymbol{e}_{\beta, 0},\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots, 4 ; l=1, \ldots, n}, \widehat{\mathbb{B}}_{1}^{*},\right. \\
& \left.\quad\left\{E_{\beta, j, j}, E_{\beta, j, l}^{\prime}\right\}_{j=1, \ldots,, 4 ; l=1, \ldots, n}\right)
\end{aligned}
$$

for $\beta \stackrel{\cup}{\leftarrow}\{0,1\}$. For a probabilistic machine \mathcal{B}, we define the advantage of \mathcal{B} as the quantity $\operatorname{Adv}_{\mathcal{B}}^{\mathrm{P} 1}(\lambda):=\mid \operatorname{Pr}\left[\mathcal{B}\left(1^{\lambda}, \varrho\right) \rightarrow 1 \mid \varrho \stackrel{\mathrm{R}}{\leftarrow} \mathcal{G}_{0}^{\mathrm{P} 1}\left(1^{\lambda}, n\right)\right]-\operatorname{Pr}\left[\mathcal{B}\left(1^{\lambda}, \varrho\right) \rightarrow 1 \mid \varrho \stackrel{\mathrm{R}}{ }_{\leftarrow}^{\left.\mathcal{G}_{1}^{\mathrm{P} 1}\left(1^{\lambda}, n\right)\right] \mid .}\right.$

Remark 3 A part of output of $\mathcal{G}_{\beta}^{\mathrm{P} 1}\left(1^{\lambda}, n\right),\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots, 4 ; l=1, \ldots, n}$, is identified with $\mathbb{B}_{1}:=$ $\left(\boldsymbol{b}_{1,1}, \ldots, \boldsymbol{b}_{1,4 n}\right)$ (Eq. (6)). If we make $\boldsymbol{e}_{\beta, 1, l} \in \mathbb{V}_{1}$ for $\beta=0,1 ; l=1, \ldots, n$ as:

$$
\left.\begin{array}{l}
\boldsymbol{e}_{\beta, 1, l}:=\left(\begin{array}{ccc}
\overbrace{0^{l-1}, E_{\beta, 1}, 0^{n-l-1}, E_{\beta, 1, l}^{\prime}} & \ldots, & \overbrace{0^{l-1}, E_{\beta, 4}, 0^{n-l-1}, E_{\beta, 4, l}^{\prime}}^{n}
\end{array}\right) \\
\text { for } l=1, \ldots, n-1,_{n}^{n},
\end{array}\right),
$$

they are expressed over \mathbb{B}_{1} as:

Using these vector expressions, the output of $\mathcal{G}_{\beta}^{\mathrm{P} 1}\left(1^{\lambda}, n\right)$ is expressed as (param ${ }_{n}, \mathbb{B}_{0}, \widehat{\mathbb{B}}_{0}^{*}, \boldsymbol{e}_{\beta, 0}, \mathbb{B}_{1}$, $\left.\widehat{\mathbb{B}}_{1}^{*},\left\{\boldsymbol{e}_{\beta, 1, l}\right\}_{l=1, \ldots, n}\right)$.

Lemma 4 For any adversary \mathcal{B}, there exists a probabilistic machine \mathcal{E}, whose running times are essentially the same as that of \mathcal{B}, such that for any security parameter $\lambda, \operatorname{Adv}_{\mathcal{B}}^{\mathrm{P} 1}(\lambda) \leq$ $\operatorname{Adv}_{\mathcal{E}}^{\mathrm{DLIN}}(\lambda)+5 / q$.

Definition 9 (Problem 2) Problem 2 is to guess β, given
$\left(\operatorname{param}_{n}, \widehat{\mathbb{B}}_{0}, \mathbb{B}_{0}^{*}, \boldsymbol{h}_{\beta, 0}^{*}, \boldsymbol{e}_{0},\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i=1,3,4 ; j=1, . .4 ; l=1, . ., n}, \mathbb{B}_{1}^{*},\left\{\boldsymbol{h}_{\beta, 1, l}^{*}, E_{j}, E_{j, l}^{\prime}\right\}_{j=1, . .4 ; l=1, ., n}\right) \stackrel{R}{\leftarrow}$ $\mathcal{G}_{\beta}^{\mathrm{P} 2}\left(1^{\lambda}, n\right)$, where

$$
\begin{aligned}
& \mathcal{G}_{\beta}^{\mathrm{P} 2}\left(1^{\lambda}, n\right): \quad\left(\operatorname{param}_{n}, \mathbb{B}_{0}, \widehat{\mathbb{B}}_{0}^{*},\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots, 4 ; l=1, \ldots, n}, \widehat{\mathbb{B}}_{1}^{*}\right) \stackrel{R}{\mathrm{R}}_{\mathcal{G}_{\mathrm{ob}}^{\mathrm{NIPE}, \mathrm{CT}}\left(1^{\lambda}, 4, n\right),} \\
& \widehat{\mathbb{B}}_{0}:=\left(\boldsymbol{b}_{0,1}, \boldsymbol{b}_{0,3}, . ., \boldsymbol{b}_{0,5}\right), \quad \delta, \rho, \varphi_{0}, \omega, \tau \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}, \vec{\varphi}_{l} \longleftarrow \mathbb{F}_{q}^{n} \text { for } l=1, \ldots, n, \\
& U \longleftarrow \mathcal{H}\left(n, \mathbb{F}_{q}\right) \cap G L\left(n, \mathbb{F}_{q}\right), \quad Z:=\left(U^{-1}\right)^{\mathrm{T}}, \\
& \text { hereafter, } u, u_{n}^{\prime} \in \mathbb{F}_{q}^{\times}, u_{1}^{\prime}, \ldots, u_{n-1}^{\prime} \in \mathbb{F}_{q} \text { and } z, z_{n}^{\prime} \in \mathbb{F}_{q}^{\times}, z_{1}^{\prime}, \ldots, z_{n-1}^{\prime} \in \mathbb{F}_{q} \\
& \text { denote non-zero entries of } U \text { and } Z^{\mathrm{T}} \text {, as in Eq. (1), respectively, } \\
& \boldsymbol{h}_{0,0}^{*}:=\left(\delta, 0,0, \varphi_{0}, 0\right)_{\mathbb{B}_{0}^{*}}, \boldsymbol{h}_{1,0}^{*}:=\left(\delta, \rho, 0, \varphi_{0}, 0\right)_{\mathbb{B}_{0}^{*}}, \boldsymbol{e}_{0}:=(\omega, \tau, 0,0,0)_{\mathbb{B}_{0}}, \\
& \vec{e}_{l}:=\left(0^{l-1}, 1,0^{n-l}\right) \in \mathbb{F}_{q}^{n} \text { for } l=1, \ldots, n \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } j=1, \ldots, 4 ; \quad E_{j}:=\omega B_{1, j}+\tau u B_{2, j} \text {, } \\
& E_{j, l}^{\prime}:=\omega B_{1, j, l}^{\prime}+\tau u B_{2, j, l}^{\prime}+\tau u_{l}^{\prime} B_{2, j, n}^{\prime} \quad \text { for } l=1, \ldots, n-1, \\
& E_{j, n}^{\prime}:=\omega B_{1, j, n}^{\prime}+\tau u_{n}^{\prime} B_{2, j, n}^{\prime}, \\
& \text { return }\left(\operatorname{param}_{n}, \widehat{\mathbb{B}}_{0}, \mathbb{B}_{0}^{*}, \boldsymbol{h}_{\beta, 0}^{*}, \boldsymbol{e}_{0},\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i=1,3,4 ; j=1, \ldots, 4 ; l=1, \ldots, n}, \mathbb{B}_{1}^{*}\right. \text {, } \\
& \left.\left\{\boldsymbol{h}_{\beta, 1, l}^{*}, E_{j}, E_{j, l}^{\prime}\right\}_{j=1, \ldots, 4 ; l=1, \ldots, n}\right),
\end{aligned}
$$

for $\beta \longleftarrow\{0,1\}$. For a probabilistic adversary \mathcal{B}, the advantage of \mathcal{B} for Problem 2, $\operatorname{Adv}_{\mathcal{B}}^{\mathrm{P}_{2}}(\lambda)$, is similarly defined as in Definition 8.

Remark 4 A part of output of $\mathcal{G}_{\beta}^{\mathrm{P} 2}\left(1^{\lambda}, n\right),\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i=1,3,4 ; j=1, \ldots, 4 ; l=1, \ldots, n}$, can be identified with $\widehat{\mathbb{B}}_{1}:=\left(\boldsymbol{b}_{1,1}, \ldots, \boldsymbol{b}_{1, n}, \boldsymbol{b}_{1,2 n+1}, \ldots, \boldsymbol{b}_{1,4 n}\right)$ in the form of Eq. (6), while $\mathbb{B}_{1}:=\left(\boldsymbol{b}_{1,1}, \ldots, \boldsymbol{b}_{1,4 n}\right)$ is identified with $\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots, 4 ; l=1, \ldots, n}$ by Eq. (6). If we make $\boldsymbol{e}_{1, l} \in \mathbb{V}_{1}$ for $l=1, \ldots, n$ as:

$$
\begin{array}{l}
\boldsymbol{e}_{1, l}:=(\overbrace{0^{l-1}, E_{1}, 0^{n-l-1}, E_{1, l}^{\prime},}^{n}
\end{array} \overbrace{0_{\begin{array}{c}
0^{l-1}, E_{4}, 0^{n-l-1}, E_{4, l}^{\prime} \\
\text { for } l=1, \ldots, n-1,
\end{array}}^{n}}^{0^{n-1}, E_{1, n}^{\prime},} \quad \ldots, \quad \begin{array}{c}
0^{n-1}, E_{4, n}^{\prime}
\end{array}),
$$

they are expressed over \mathbb{B}_{1} as:

$$
e_{1, l}:=(\overbrace{\omega \vec{e}_{l},}^{n} \overbrace{\tau \vec{e}_{l} U,}^{n} \overbrace{0^{n},}^{n} \overbrace{0^{n}}^{n})_{\mathbb{B}_{1}} \quad \text { for } l=1, \ldots, n .
$$

Using these vector expressions, the output of $\mathcal{G}_{\beta}^{\mathrm{P} 2}\left(1^{\lambda}, n\right)$ is expressed as (param${ }_{n}, \widehat{\mathbb{B}}_{0}, \mathbb{B}_{0}^{*}, \boldsymbol{h}_{\beta, 0}^{*}, \boldsymbol{e}_{0}$, $\left.\widehat{\mathbb{B}}_{1}, \mathbb{B}_{1}^{*},\left\{\boldsymbol{h}_{\beta, 1, l}^{*}, \boldsymbol{e}_{1, l}\right\}_{l=1, \ldots, n}\right)$.

Lemma 5 For any adversary \mathcal{B}, there exists a probabilistic machine \mathcal{E}, whose running time is essentially the same as that of \mathcal{B}, such that for any security parameter $\lambda, \operatorname{Adv}_{\mathcal{B}}^{\mathrm{P}^{2}}(\lambda) \leq$ $\operatorname{Adv}{ }_{\mathcal{E}}^{\operatorname{DLIN}}(\lambda)+5 / q$.

Lemma 6 Let $\vec{e}_{n}:=(0, \ldots, 0,1) \in \mathbb{F}_{q}^{n}$. For all $\vec{x} \in \mathbb{F}_{q}^{n} \backslash \operatorname{span}\left\langle\vec{e}_{n}\right\rangle$ and $\pi \in \mathbb{F}_{q}$, let $W_{\vec{x}, \pi}:=$ $\left\{(\vec{r}, \vec{w}) \in\left(\operatorname{span}\left\langle\vec{x}, \vec{e}_{n}\right\rangle \backslash \operatorname{span}\left\langle\vec{e}_{n}\right\rangle\right) \times\left(\mathbb{F}_{q}^{n} \backslash \operatorname{span}\left\langle\vec{e}_{n}\right\rangle^{\perp}\right) \mid \vec{r} \cdot \vec{w}=\pi\right\}$.

For all $(\vec{x}, \vec{v}) \in\left(\mathbb{F}_{q}^{n} \backslash \operatorname{span}\left\langle\vec{e}_{n}\right\rangle\right) \times\left(\mathbb{F}_{q}^{n} \backslash \operatorname{span}\left\langle\vec{e}_{n}\right\rangle^{\perp}\right)$, for all $(\vec{r}, \vec{w}) \in W_{\vec{x},(\vec{x} \cdot \vec{v})}, \operatorname{Pr}[\vec{x} U=\vec{r} \wedge$ $\vec{v} Z=\vec{w}]=1 / \sharp W_{\vec{x},(\vec{x} \cdot \vec{v})}$, where $U \cup \mathcal{H}\left(n, \mathbb{F}_{q}\right) \cap G L\left(n, \mathbb{F}_{q}\right)$ and $Z:=\left(U^{-1}\right)^{\mathrm{T}}$.

6.4.2 Proof Outline

At the top level of strategy of the security proof, we follow the dual system encryption methodology proposed by Waters [22]. In the methodology, ciphertexts and secret keys have two forms, normal and semi-functional. In the proof herein, we also introduce other forms of secret keys called 1st-pre-semi-functional and 2nd-pre-semi-functional. The real system uses only normal ciphertexts and normal secret keys, and semi-functional ciphertexts and semi-functional/1st-pre-semi-functional/2nd-pre-semi-functional keys are used only in a sequence of security games for the security proof. To prove this theorem, we employ Game 0 (original adaptive-security game) through Game 3. In Game 1, the challenge ciphertext is changed to semi-functional. When at most ν secret key queries are issued by an adversary, there are 3ν game changes from Game 1 (Game 2-0-3), Game 2-1-1, Game 2-1-2, Game 2-1-3 through Game 2- $\nu-3$.

In Game $2-h-1$, the first $(h-1)$ keys are semi-functional and the h-th key is $1 s t$-pre-semifunctional, while the remaining keys are normal, and the challenge ciphertext is semi-functional. In Game $2-h-2$, the first $(h-1)$ keys are semi-functional and the h-th key is $2 n d$-pre-semifunctional, while the remaining keys are normal, and the challenge ciphertext is semi-functional. In Game $2-h-3$, the first h keys are semi-functional (i.e., and the h-th key is semi-functional), while the remaining keys are normal, and the challenge ciphertext is semi-functional.

The final game (Game 3) with advantage 0 is conceptually changed from Game $2-\nu-3$. As usual, we prove that the advantage gaps between neighboring games are negligible.

When at most ν key queries are issued by an adversary, we set a sequence of $\mathrm{sk}:=\mathrm{sk}_{\vec{v}}$'s, i.e., $\left(\mathbf{s k}^{(1) *}, \ldots, \mathbf{s k}^{(\nu) *}\right)$, in the order of the adversary's queries. Here we focus on $\overrightarrow{\boldsymbol{k}}_{\vec{v}}^{(h) *}:=$ $\left(\boldsymbol{k}_{0}^{(h) *}, \boldsymbol{k}_{1}^{(h) *}\right)$, and $\overrightarrow{\boldsymbol{c}}_{\vec{x}}:=\left(\boldsymbol{c}_{0},\left\{C_{1, j}, C_{2, j}\right\}_{j=1, \ldots, 4}, c_{3}\right)$, and ignore the other part of $\mathrm{sk}_{\vec{v}}$ (resp. $\mathrm{ct}_{\vec{x}}$),
i.e., \vec{v} (resp.i.e., \vec{x}), and call them secret key and ciphertext, respectively, in this proof outline. In addition, we ignore a negligible factor in the (informal) descriptions of this proof outline. For example, we say " A is bounded by B " when $A \leq B+\epsilon(\lambda)$ where $\epsilon(\lambda)$ is negligible in security parameter λ.

A normal secret key, $\overrightarrow{\boldsymbol{k}}_{\vec{v}}^{(h) * \text { norm }}$, is the correct form of the secret key of the proposed NIPE scheme, and is expressed by Eq. (7). Similarly, a normal ciphertext $\overrightarrow{\boldsymbol{c}}_{\vec{x}}^{\text {norm }}$, is expressed by Eq. (8). A 1st-pre-semi-functional secret key, $\overrightarrow{\boldsymbol{k}}_{\vec{v}}^{(h) * 1 \text { st-psemi }}$, is expressed by Eq. (10), a $2 n d-$ pre-semi-functional secret key, $\overrightarrow{\boldsymbol{k}}_{\vec{v}}^{(h) * 2 n d-p s e m i}$, is expressed by Eq. (11), a semi-functional secret key, $\overrightarrow{\boldsymbol{k}}_{\vec{v}}^{(h) * \text { semi }}$, is expressed by Eq. (12), and a semi-functional ciphertext, $\overrightarrow{\boldsymbol{c}}_{\vec{x}}^{\text {semi }}$, is expressed by Eq. (9).

To prove that the advantage gap between Games 0 and 1 is bounded by the advantage of Problem 1 (to guess $\beta \in\{0,1\}$), we construct a simulator of the challenger of Game 0 (or 1) (against an adversary \mathcal{A}) by using an instance with $\beta \stackrel{\cup}{\leftarrow}\{0,1\}$ of Problem 1. We then show that the distribution of the secret keys and challenge ciphertext replied by the simulator is equivalent to those of Game 0 when $\beta=0$ and Game 1 when $\beta=1$. That is, the advantage gap between Games 0 and 1 is bounded by the advantage of Problem 1 (Lemma 7). The advantage of Problem 1 is proven to be bounded by that of the DLIN assumption (Lemma 4). The advantage gap between Games $2-(h-1)-3$ and $2-h-1$ is similarly shown to be bounded by the advantage of Problem 2 (i.e., advantage of the DLIN assumption) (Lemmas 8 and 5). The distributions of 1st-pre-semi-functional secret key $\overrightarrow{\boldsymbol{k}}_{\vec{v}}^{(h) * 1 \text { st-psemi }}$ (Eq. (10)) and 2nd-pre-semifunctional secret key $\overrightarrow{\boldsymbol{k}}_{\vec{v}}^{(h) * 2 n d-p s e m i}$ (Eq. (11)) are distinguishable by the simulator or challenger,
 other keys are (information theoretically) equivalent for the adversary's view, when $\vec{x} \cdot \vec{v}=0$, i.e., $R^{\text {NIPE }}(\vec{x}, \vec{v}) \neq 1$. Therefore, as shown in Lemma 9, the advantages of Games 2-h-1 and $2-h-2$ are equivalent. The advantage gap between Games $2-h-2$ and $2-h-3$ is similarly shown to be bounded by the advantage of Problem 2 (i.e., advantage of the DLIN assumption) (Lemmas 10 and 5). Finally we show that Game $2-\nu-3$ can be conceptually changed to Game 3 (Lemma 11) by using the fact that basis vectors $\boldsymbol{b}_{0,2}$ and $\boldsymbol{b}_{0,3}^{*}$ are unknown to the adversary.

6.4.3 Proof of Theorem 1

To prove Theorem 1, we consider the following $(3 \nu+3)$ games. In Game 0 , a part framed by a box indicates coefficients to be changed in a subsequent game. In the other games, a part framed by a box indicates coefficients that were changed in a game from the previous game.
Game 0 : Original game. That is, the reply to a key query for \vec{v} is

$$
\begin{equation*}
\boldsymbol{k}_{0}^{*}:=\left(\delta, \boxed{0}, 1, \varphi_{0}, 0\right)_{\mathbb{B}_{0}^{*}}, \quad \boldsymbol{k}_{1}^{*}:=\left(\delta \vec{v}, 0^{n}, \vec{\varphi}_{1}, 0^{n}\right)_{\mathbb{B}_{1}^{*}} \tag{7}
\end{equation*}
$$

where $\delta, \varphi_{0} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}, \vec{\varphi}_{1} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}^{n}$ and $\vec{v}:=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{F}_{q}^{n}$ with $v_{n} \neq 0$. The challenge ciphertext for challenge plaintexts $\left(m^{(0)}, m^{(1)}\right)$ and $\vec{x},\left(\vec{x}, \boldsymbol{c}_{0},\left\{C_{1, j}, C_{2, j}\right\}_{j=1, . .4}, c_{3}\right)$, which is identified with $\left(\vec{x}, \boldsymbol{c}_{0}, \boldsymbol{c}_{1}, c_{3}\right)$ in Remark 2 , is

$$
\begin{equation*}
\boldsymbol{c}_{0}:=\left(-\omega, \boxed{0}, \boxed{\zeta}, 0, \eta_{0}\right)_{\mathbb{B}_{0}}, \boldsymbol{c}_{1}:=\left(\omega \vec{x}, \boxed{0^{n}}, 0^{n}, \eta_{1} \vec{x}\right)_{\mathbb{B}_{1}}, c_{3}:=g_{T}^{\zeta} m \tag{8}
\end{equation*}
$$

where $b \stackrel{U}{\leftarrow}\{0,1\} ; \omega, \zeta, \eta_{0}, \eta_{1} \stackrel{U}{\leftarrow} \mathbb{F}_{q}$ and $\vec{x}:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$ with $x_{l} \neq 0$ for some $l \in$ $\{1, . ., n-1\}$.
Game 1 : Same as Game 0 except that the challenge ciphertext for challenge plaintexts $\left(m^{(0)}, m^{(1)}\right)$ and \vec{x} is

$$
\begin{equation*}
\boldsymbol{c}_{0}:=\left(-\omega, \boxed{-\tau}, \zeta, 0, \eta_{0}\right)_{\mathbb{B}_{0}}, \quad \boldsymbol{c}_{1}:=\left(\omega \vec{x}, \boxed{\tau} U, 0^{n}, \eta_{1} \vec{x}\right)_{\mathbb{B}_{1}}, c_{3}:=g_{T}^{\zeta} m \tag{9}
\end{equation*}
$$

where $\tau \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}, U \stackrel{\cup}{\leftarrow} \mathcal{H}\left(n, \mathbb{F}_{q}\right) \cap G L\left(n, \mathbb{F}_{q}\right)$, and all the other variables are generated as in Game 0.

Game 2-h-1 $(\boldsymbol{h}=\mathbf{1}, \ldots, \nu)$: Game $2-0-3$ is Game 1. Game $2-h-1$ is the same as Game 2 - $(h-1)$-3 except that the reply to the h-th key query for $\vec{v},\left(\boldsymbol{k}_{0}^{*}, \boldsymbol{k}_{1}^{*}\right)$, is

$$
\begin{equation*}
\boldsymbol{k}_{0}^{*}:=\left(\delta, \boxed{\rho}, 1, \varphi_{0}, 0\right)_{\mathbb{B}_{0}^{*}}, \quad \boldsymbol{k}_{1}^{*}:=\left(\delta \vec{v}, \quad \rho \vec{v} Z, \vec{\varphi}_{1}, 0^{n}\right)_{\mathbb{B}_{1}^{*}} \tag{10}
\end{equation*}
$$

where $\rho \stackrel{U}{\leftarrow} \mathbb{F}_{q}, Z:=\left(U^{-1}\right)^{\mathrm{T}}$ for $U \stackrel{U}{\leftarrow} \mathcal{H}\left(n, \mathbb{F}_{q}\right) \cap G L\left(n, \mathbb{F}_{q}\right)$ used in Eq. (9) and all the other variables are generated as in Game 2-($h-1$)-3.
Game 2-h-2 $(\boldsymbol{h}=\mathbf{1}, \ldots, \boldsymbol{\nu})$: Game $2-h-2$ is the same as Game 2-h-1 except that a part of the reply to the h-th key query for $\vec{v},\left(\boldsymbol{k}_{0}^{*}, \boldsymbol{k}_{1}^{*}\right)$, is

$$
\begin{equation*}
\boldsymbol{k}_{0}^{*}:=\left(\delta, \boxed{w}, 1, \varphi_{0}, 0\right)_{\mathbb{B}_{0}^{*}}, \quad \boldsymbol{k}_{1}^{*}:=\left(\delta \vec{v}, \rho \vec{v} Z, \vec{\varphi}_{1}, 0^{n}\right)_{\mathbb{B}_{1}^{*}}, \tag{11}
\end{equation*}
$$

where $w \stackrel{U}{\leftarrow} \mathbb{F}_{q}$ and all the other variables are generated as in Game 2-h-1.
Game 2-h-3 $(\boldsymbol{h}=\mathbf{1}, \ldots, \boldsymbol{\nu})$: Game $2-h-3$ is the same as Game 2-h-2 except that the reply to the h-th key query for $\vec{v},\left(\boldsymbol{k}_{0}^{*}, \boldsymbol{k}_{1}^{*}\right)$, is

$$
\begin{equation*}
\boldsymbol{k}_{0}^{*}:=\left(\delta, w, 1, \varphi_{0}, 0\right)_{\mathbb{B}_{0}^{*}}, \quad \boldsymbol{k}_{1}^{*}:=\left(\delta \vec{v}, 0^{n}, \vec{\varphi}_{1}, 0^{n}\right)_{\mathbb{B}_{1}^{*}} \tag{12}
\end{equation*}
$$

where all the variables are generated as in Game 2-h-2.
Game 3 : Same as Game 2- $\nu-3$ except that \boldsymbol{c}_{0} and c_{3} of the challenge ciphertext are

$$
\boldsymbol{c}_{0}:=\left(-\omega,-\tau, \boxed{\zeta^{\prime}}, 0, \eta_{0}\right)_{\mathbb{B}_{0}}, \quad c_{3}:=g_{T}^{\zeta} m^{(b)}
$$

where $\zeta^{\prime} \stackrel{U}{\leftarrow} \mathbb{F}_{q}$ (i.e., independent from $\zeta \stackrel{U}{\leftarrow} \mathbb{F}_{q}$), and all the other variables are generated as in Game 2- $\nu-3$.

Let $\operatorname{Adv}_{\mathcal{A}}^{(0)}(\lambda), \operatorname{Adv}_{\mathcal{A}}^{(1)}(\lambda), \operatorname{Adv}_{\mathcal{A}}^{(2-h-\iota)}(\lambda)(h=1, \ldots, \nu ; \iota=1,2,3)$ and $\operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)$ be the advantage of \mathcal{A} in Game $0,1,2-h-\iota$ and 3 , respectively. $\operatorname{Adv}_{\mathcal{A}}^{(0)}(\lambda)$ is equivalent to $\operatorname{Adv}_{\mathcal{A}}^{\mathrm{NIPE}, \mathrm{PH}}(\lambda)$ and it is obtained that $\operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)=0$ by Lemma 12. We will show five lemmas (Lemmas 7-11) that evaluate the gaps between pairs of $\operatorname{Adv}_{\mathcal{A}}^{(0)}(\lambda), \operatorname{Adv}_{\mathcal{A}}^{(1)}(\lambda), \operatorname{Adv}_{\mathcal{A}}^{(2-h-\iota)}(\lambda)$ for $h=1, \ldots, \nu ; \iota=1,2,3$ and $\operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)$. From these lemmas and Lemmas 4 and 5 , we obtain Theorem 1.

Lemma 7 For any adversary \mathcal{A}, there exists a probabilistic machine \mathcal{B}_{1}, whose running time is essentially the same as that of \mathcal{A}, such that for any security parameter $\lambda, \mid \operatorname{Adv}_{\mathcal{A}}^{(0)}(\lambda)-$ $\operatorname{Adv}_{\mathcal{A}}^{(1)}(\lambda) \mid \leq \operatorname{Adv}_{\mathcal{B}_{1}}^{\mathrm{P}_{1}}(\lambda)$.

Lemma 8 For any adversary \mathcal{A}, there exists a probabilistic machine \mathcal{B}_{2-1}, whose running time is essentially the same as that of \mathcal{A}, such that for any security parameter $\lambda, \mid \operatorname{Adv}_{\mathcal{A}}^{(2-(h-1)-3)}(\lambda)-$ $\operatorname{Adv}_{\mathcal{A}}^{(2-h-1)}(\lambda) \mid \leq \operatorname{Adv}_{\mathcal{B}_{2-h-1}}^{\mathrm{P} 2}(\lambda)$, where $\mathcal{B}_{2-h-1}(\cdot):=\mathcal{B}_{2-1}(h, \cdot)$.

Lemma 9 For any adversary \mathcal{A}, for any security parameter $\lambda,\left|\operatorname{Adv}_{\mathcal{A}}^{(2-h-1)}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{(2-h-2)}(\lambda)\right| \leq$ $1 / q$.

Lemma 10 For any adversary \mathcal{A}, there exists a probabilistic machine \mathcal{B}_{2-2}, whose running time is essentially the same as that of \mathcal{A}, such that for any security parameter $\lambda, \mid \operatorname{Adv}_{\mathcal{A}}^{(2-h-2)}(\lambda)-$ $\operatorname{Adv}_{\mathcal{A}}^{(2-h-3)}(\lambda) \mid \leq \operatorname{Adv}_{\mathcal{B}_{2-h-2}}^{\mathrm{P} 2}(\lambda)$, where $\mathcal{B}_{2-h-2}(\cdot):=\mathcal{B}_{2-2}(h, \cdot)$.
Lemma 11 For any adversary \mathcal{A}, for any security parameter $\lambda,\left|\operatorname{Adv}_{\mathcal{A}}^{(2-\nu-3)}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)\right| \leq$ $1 / q$.

Lemma 12 For any adversary \mathcal{A}, for any security parameter $\lambda, \operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)=0$.

7 NIPE Scheme with Constant-Size Secret-Keys

7.1 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator $\mathcal{G}_{\mathrm{ob}}^{\mathrm{NIPE}, \mathrm{SK}}$ below, which is used as a subroutine in the proposed NIPE scheme, where $\mathcal{G}_{\mathrm{ob}}^{\mathrm{NIPE}, \mathrm{CT}}$ is given in Section 6.2.

$$
\begin{gathered}
\mathcal{G}_{\mathrm{ob}}^{\text {NIPE,SK }}\left(1^{\lambda}, 4, n\right):\left(\operatorname{param}_{n}, \mathbb{D}_{0}, \mathbb{D}_{0}^{*},\left\{D_{i, j}, D_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots, 4 ; l=1, \ldots, n}, \mathbb{D}_{1}^{*}\right) \leftarrow \mathcal{G}_{\mathrm{ob}}^{\mathrm{R}} \mathcal{G}^{\text {NIPE,CT }}\left(1^{\lambda}, 4, n\right), \\
\mathbb{B}_{0}:=\mathbb{D}_{0}^{*}, \mathbb{B}_{0}^{*}:=\mathbb{D}_{0}, \mathbb{B}_{1}:=\mathbb{D}_{1}^{*}, B_{i, j}^{*}:=D_{i, j}, B_{i, j, l}^{\prime *}:=D_{i, j, l}^{\prime} \\
\text { for } i, j=1, \ldots, 4 ; l=1, \ldots, n, \\
\text { return }\left(\operatorname{param}_{n}, \mathbb{B}_{0}, \mathbb{B}_{0}^{*}, \mathbb{B}_{1},\left\{B_{i, j}^{*}, B_{i, j, j, l}^{\prime *}\right\}_{i, j=1, \ldots, 4 ; l=1, \ldots, n}\right) .
\end{gathered}
$$

Remark 5 From Remark $1,\left\{B_{i, j}^{*}, B_{i, j, l}^{\prime *}\right\}_{i, j=1, \ldots, 4 ; l=1, \ldots, n}$ is identified with basis $\mathbb{B}_{1}^{*}:=\left(b_{1,1}^{*}, \ldots\right.$, $\boldsymbol{b}_{1,4 n}^{*}$) dual to \mathbb{B}_{1}.

7.2 Construction and Security

In the description of the scheme, we assume that input vector, $\vec{v}:=\left(v_{1}, \ldots, v_{n}\right)$, has an index l $(1 \leq l \leq n-1)$ with $v_{l} \neq 0$, and that input vector, $\vec{x}:=\left(x_{1}, \ldots, x_{n}\right)$, satisfies $x_{n} \neq 0$.

$$
\begin{aligned}
& \operatorname{Setup}\left(1^{\lambda}, n\right):\left(\operatorname{param}_{n}, \mathbb{B}_{0}, \mathbb{B}_{0}^{*}, \mathbb{B}_{1},\left\{B_{i, j}^{*}, B_{i, j, l}^{\prime *}\right\}_{i, j=1, . .4 ; l=1, \ldots, n}\right) \stackrel{R}{\leftarrow} \mathcal{G}_{\mathrm{ob}}^{\mathrm{NIPE}, S \mathrm{SK}}\left(1^{\lambda}, 4, n\right), \\
& \widehat{\mathbb{B}}_{0}:=\left(\boldsymbol{b}_{0,1}, \boldsymbol{b}_{0,3}, \boldsymbol{b}_{0,5}\right), \widehat{\mathbb{B}}_{0}^{*}:=\left(\boldsymbol{b}_{0,1}^{*}, \boldsymbol{b}_{0,3}^{*}, \boldsymbol{b}_{0,4}^{*}\right) \text {, } \\
& \widehat{\mathbb{B}}_{1}:=\left(\boldsymbol{b}_{1,1}, . ., \boldsymbol{b}_{1, n}, \boldsymbol{b}_{1,3 n+1}, . ., \boldsymbol{b}_{1,4 n}\right) \text {, } \\
& \text { return pk: }=\left(1^{\lambda}, \operatorname{param}_{n},\left\{\widehat{\mathbb{B}}_{t}\right\}_{t=0,1}\right) \text {, sk }:=\left(\widehat{\mathbb{B}}_{0}^{*},\left\{B_{i, j}^{*}, B_{i, j, l}^{\prime *}\right\}_{i=1,3 ; j=1, . ., 4 ; l=1, \ldots, n}\right) \text {. } \\
& \operatorname{KeyGen}(\mathrm{pk}, \text { sk, } \vec{v}): \quad \delta, \varphi_{0}, \varphi_{1} \stackrel{U}{\leftarrow} \mathbb{F}_{q}, \quad \boldsymbol{k}_{0}^{*}:=\left(\delta, 0,1, \varphi_{0}, 0\right)_{\mathbb{B}_{0}^{*}}, \\
& K_{1, j}^{*}:=\delta B_{1, j}^{*}+\varphi_{1} B_{3, j}^{*}, \quad K_{2, j}^{*}:=\sum_{l=1}^{n} v_{l}\left(\delta B_{1, j, l}^{\prime *}+\varphi_{1} B_{3, j, l}^{\prime *}\right) \text { for } j=1, . ., 4 \text {, } \\
& \text { return } \mathrm{sk}_{\vec{v}}:=\left(\vec{v}, \boldsymbol{k}_{0}^{*},\left\{K_{1, j}^{*}, K_{2, j}^{*}\right\}_{j=1, \ldots, 4}\right) \text {. } \\
& \operatorname{Enc}(\mathrm{pk}, m, \vec{x}): \quad \omega, \eta_{0}, \zeta \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}, \vec{\eta}_{1} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}^{n}, \quad \boldsymbol{c}_{0}:=\left(-\omega, 0, \zeta, 0, \eta_{0}\right)_{\mathbb{B}_{0}}, \\
& \boldsymbol{c}_{1}:=\left(\omega \vec{x}, 0^{n}, 0^{n}, \vec{\eta}_{1}\right)_{\mathbb{B}_{1}}, \quad c_{3}:=g_{T}^{\zeta} m, \text { return } \mathrm{ct}_{\vec{x}}:=\left(\vec{x}, \boldsymbol{c}_{0}, \boldsymbol{c}_{1}, c_{3}\right) \text {. } \\
& \operatorname{Dec}\left(\mathrm{pk}, \mathrm{sk}_{\vec{v}}:=\left(\vec{v}, \boldsymbol{k}_{0}^{*},\left\{K_{1, j}^{*}, K_{2, j}^{*}\right\}_{j=1, \ldots, 4}\right), \mathrm{ct}_{\vec{x}}:=\left(\vec{x}, \boldsymbol{c}_{0}, \boldsymbol{c}_{1}, c_{3}\right)\right): \\
& \text { Parse } \boldsymbol{c}_{1} \text { as a } 4 n \text {-tuple }\left(C_{1}, \ldots, C_{4 n}\right) \in \mathbb{G}^{4 n} \text {, } \\
& D_{j}:=\sum_{l=1}^{n-1}\left((\vec{x} \cdot \vec{v})^{-1} v_{l}\right) C_{(j-1) n+l} \text { for } j=1, . ., 4 \text {, } \\
& F:=e\left(\boldsymbol{c}_{0}, \boldsymbol{k}_{0}^{*}\right) \cdot \prod_{j=1}^{4}\left(e\left(D_{j}, K_{1, j}^{*}\right) \cdot e\left(C_{j n}, K_{2, j}^{*}\right)\right), \quad \text { return } m^{\prime}:=c_{3} / F \text {. }
\end{aligned}
$$

Remark 6 A part of output of $\operatorname{Setup}\left(1^{\lambda}, n\right),\left\{B_{i, j}^{*}, B_{i, j, l}^{\prime *}\right\}_{i=1,3 ; j=1, \ldots, 4 ; l=1, \ldots, n}$, can be identified with $\widehat{\mathbb{B}}_{1}^{*}:=\left(\boldsymbol{b}_{1,1}^{*}, \ldots, \boldsymbol{b}_{1, n}^{*}, \boldsymbol{b}_{1,2 n+1}^{*}, \ldots, \boldsymbol{b}_{1,3 n}^{*}\right)$, while $\mathbb{B}_{1}^{*}:=\left(\boldsymbol{b}_{1,1}^{*}, \ldots, \boldsymbol{b}_{1,4 n}^{*}\right)$ is identified with $\left\{B_{i, j}^{*}\right.$, $\left.B_{i, j, l}^{\prime *}\right\}_{i, j=1, \ldots, 4 ; l=1, \ldots, n}$ in Remark 5. Decryption Dec can be alternatively described as:

$$
\begin{aligned}
& \operatorname{Dec}^{\prime}\left(\mathrm{pk}, \mathrm{sk}_{\vec{v}}:=\left(\vec{v}, \boldsymbol{k}_{0}^{*},\left\{K_{1, j}^{*}, K_{2, j}^{*}\right\}_{j=1, \ldots, 4}\right), \mathrm{ct}_{\vec{x}}:=\left(\vec{x}, \boldsymbol{c}_{0}, \boldsymbol{c}_{1}, c_{3}\right)\right): \\
& \boldsymbol{k}_{1}^{*}:=(\overbrace{v_{1} K_{1,1}^{*}, . ., v_{n-1} K_{1,1}^{*}, K_{2,1}^{*},}^{n}, \quad \ldots, \overbrace{v_{1} K_{1,4}^{*}, . ., v_{n-1} K_{1,4}^{*}, K_{2,4}^{*}}^{n}), \\
& \text { that is, } \boldsymbol{k}_{1}^{*}=\left(\delta \vec{v}, 0^{n}, 0^{n}, \varphi_{1} \vec{v}\right)_{\mathbb{B}_{1}^{*}}, F:=e\left(\boldsymbol{c}_{0}, \boldsymbol{k}_{0}^{*}\right) \cdot e\left((\vec{x} \cdot \vec{v})^{-1} \boldsymbol{c}_{1}, \boldsymbol{k}_{1}^{*}\right) \text {, } \\
& \text { return } m^{\prime}:=c_{3} / F \text {. }
\end{aligned}
$$

Theorem 2 The proposed NIPE scheme is adaptively payload-hiding against chosen plaintext attacks under the DLIN assumption.

For any adversary \mathcal{A}, there exist probabilistic machines $\mathcal{E}_{1}, \mathcal{E}_{2-1}$ and \mathcal{E}_{2-2} whose running times are essentially the same as that of \mathcal{A}, such that for any security parameter $\lambda, \operatorname{Adv}_{\mathcal{A}}^{\mathrm{NIPE}, \mathrm{PH}}(\lambda) \leq$ $\operatorname{Adv}_{\mathcal{E}_{1}}^{\operatorname{DLIN}}(\lambda)+\sum_{h=1}^{\nu}\left(\operatorname{Adv}_{\mathcal{E}_{2-h-1}}^{\mathrm{DLIN}}(\lambda)+\operatorname{Adv}_{\mathcal{E}_{2-h-2}}^{\mathrm{DLIN}}(\lambda)\right)+\epsilon$, where $\mathcal{E}_{2-h-1}(\cdot):=\mathcal{E}_{2-1}(h, \cdot), \mathcal{E}_{2-h-2}(\cdot):=$ $\mathcal{E}_{2-2}(h, \cdot), \nu$ is the maximum number of \mathcal{A} 's key queries and $\epsilon:=(11 \nu+6) / q$.

Theorem 2 is proven similarly to Theorem 1.

8 ZIPE Scheme with Constant-Size Ciphertexts

8.1 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator $\mathcal{G}_{\text {ob }}^{\text {ZIPE,CT }}$ below, which is used as a subroutine in the proposed Zero IPE scheme. Since the definition is employed for the scheme with $w=5$ in Section 10, we describe $\mathcal{G}_{\mathrm{ob}}^{\text {ZIPE,CT }}$ for general w. (We use only the cases with $w=4,5$).

$$
\begin{aligned}
& \mathcal{G}_{\mathrm{ob}}^{\text {ZIPE,CT }}\left(1^{\lambda}, w, n\right): \operatorname{param}_{\mathbb{G}}:=\left(q, \mathbb{G}, \mathbb{G}_{T}, G, e\right) \stackrel{\mathrm{R}}{\leftarrow} \mathcal{G}_{\mathrm{bpg}}\left(1^{\lambda}\right), N:=w n+1, \\
& \psi \stackrel{U}{\leftarrow} \mathbb{F}_{q}^{\times}, g_{T}:=e(G, G)^{\psi}, \operatorname{param}_{\mathbb{V}}:=\left(q, \mathbb{V}, \mathbb{G}_{T}, \mathbb{A}, e\right):=\mathcal{G}_{\mathrm{dpvs}}\left(1^{\lambda}, N, \operatorname{param}_{\mathbb{G}}\right), \\
& \text { param }{ }_{n}:=\left(\operatorname{param}_{\mathbb{V}}, g_{T}\right), X \stackrel{\cup}{\leftarrow} \mathcal{L}^{+}\left(w, n, \mathbb{F}_{q}\right) \text {, hereafter, } \\
& \left\{\chi_{0,0}, \chi_{0, j}, \chi_{i, 0, l}, \mu_{i, j}, \mu_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots w ; l=1, \ldots, n} \text { denotes non-zero entries of } X, \\
& \text { where }\left\{\mu_{i, j}, \mu_{i, j, l}^{\prime}\right\} \text { are non-zero entries of submatrices } X_{i, j} \text { of } X \\
& \text { as given in Eqs. (5) and }(1), \quad\left(\vartheta_{i, j}\right)_{i, j=0, \ldots, w n}:=\psi \cdot\left(X^{\mathrm{T}}\right)^{-1}, \\
& B_{0,0}:=\chi_{0,0} G, B_{0, j}:=\chi_{0, j} G, B_{i, 0, l}:=\chi_{i, 0, l} G, B_{i, j}:=\mu_{i, j} G, B_{i, j, l}^{\prime}:=\mu_{i, j, l}^{\prime} G \\
& \quad \text { for } i, j=1, \ldots, w ; l=1, \ldots, n, \\
& \boldsymbol{b}_{i}^{*}:=\left(\vartheta_{i, 1}, \ldots, \vartheta_{i, N}\right)_{\mathbb{A}}=\sum_{j=0}^{w n} \vartheta_{i, j} \boldsymbol{a}_{j} \text { for } i=0, \ldots, w n, \mathbb{B}^{*}:=\left(\boldsymbol{b}_{0}^{*}, \ldots, \boldsymbol{b}_{w n}^{*}\right), \\
& \quad \text { return }\left(\operatorname{param}_{n},\left\{B_{0,0}, B_{0, j}, B_{i, 0, l}, B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots, w ; l=1, \ldots, n}, \mathbb{B}^{*}\right) .
\end{aligned}
$$

Remark $7\left\{B_{0,0}, B_{0, j}, B_{i, 0, l}, B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots, w ; l=1, \ldots, n}$ is identified with basis $\mathbb{B}:=\left(\boldsymbol{b}_{0}, \ldots\right.$, $\boldsymbol{b}_{w n}$) dual to \mathbb{B}^{*} as in Remark 1.

8.2 Construction and Security

In the description of the scheme, we assume that input vector, $\vec{x}:=\left(x_{1}, \ldots, x_{n}\right)$, has an index $l(1 \leq l \leq n-1)$ with $x_{l} \neq 0$, and that input vector, $\vec{v}:=\left(v_{1}, \ldots, v_{n}\right)$, satisfies $v_{n} \neq 0$.

```
Setup \(\left(1^{\lambda}, n\right):\)
    \(\left(\operatorname{param}_{n},\left\{B_{0,0}, B_{0, j}, B_{i, 0, l}, B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots, 4 ; l=1, \ldots, n}, \mathbb{B}^{*}\right) \stackrel{\mathrm{R}}{\leftarrow} \mathcal{G}_{\mathrm{ob}}^{\mathrm{ZIPE}, \mathrm{CT}}\left(1^{\lambda}, 4, n\right)\),
    \(\widehat{\mathbb{B}}^{*}:=\left(\boldsymbol{b}_{0}^{*}, \ldots, \boldsymbol{b}_{n}^{*}, \boldsymbol{b}_{2 n+1}^{*}, \ldots, \boldsymbol{b}_{3 n}^{*}\right)\),
    return pk \(:=\left(1^{\lambda}, \operatorname{param}_{n},\left\{B_{0,0}, B_{0, j}, B_{i, 0, l}, B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i=1,4 ; j=1, \ldots, 4 ; l=1, \ldots, n}\right)\), sk \(:=\widehat{\mathbb{B}}^{*}\).
\(\operatorname{KeyGen}(\mathrm{pk}, \mathrm{sk}, \vec{v}): \delta \leftarrow \mathbb{F}_{q}, \vec{\varphi} \leftarrow \mathbb{F}_{q}^{n}, \boldsymbol{k}^{*}:=(1, \overbrace{\delta \vec{v},}^{n} \overbrace{0^{n},}^{n} \overbrace{\vec{\varphi},}^{n} \overbrace{0^{n}}^{n})_{\mathbb{B}^{*}}\), return \(\mathrm{sk}_{\vec{v}}:=\boldsymbol{k}^{*}\).
\(\operatorname{Enc}(\mathrm{pk}, m, \vec{x}): \quad \omega, \eta, \zeta \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}, \quad C_{0}:=\zeta B_{0,0}+\sum_{l=1}^{n} x_{l}\left(\omega B_{1,0, l}+\eta B_{4,0, l}\right)\),
    \(c_{3}:=g_{T}^{\zeta} m, \quad C_{1, j}:=\omega B_{1, j}+\eta B_{4, j}\),
    \(C_{2, j}:=\zeta B_{0, j}+\sum_{l=1}^{n} x_{l}\left(\omega B_{1, j, l}^{\prime}+\eta B_{4, j, l}^{\prime}\right)\) for \(j=1, \ldots, 4\),
    return \(\mathrm{ct}_{\vec{x}}:=\left(\vec{x}, C_{0},\left\{C_{1, j}, C_{2, j}\right\}_{j=1, \ldots, 4}, c_{3}\right)\).
```

$$
\begin{aligned}
& \operatorname{Dec}\left(\mathrm{pk}, \mathrm{sk}_{\vec{v}}:=\boldsymbol{k}^{*}, \mathrm{ct}_{\vec{x}}:=\left(\vec{x}, C_{0},\left\{C_{1, j}, C_{2, j}\right\}_{j=1, \ldots, 4}, c_{3}\right)\right): \\
& \quad \text { Parse } \boldsymbol{k}^{*} \text { as a }(4 n+1) \text {-tuple }\left(K_{0}^{*}, \ldots, K_{4 n}^{*}\right) \in \mathbb{G}^{4 n+1}, \\
& \quad D_{j}^{*}:=\sum_{l=1}^{n-1} x_{l} K_{(j-1) n+l}^{*} \text { for } j=1, \ldots, 4, \\
& \quad F:=e\left(C_{0}, K_{0}^{*}\right) \cdot \prod_{j=1}^{4}\left(e\left(C_{1, j}, D_{j}^{*}\right) \cdot e\left(C_{2, j}, K_{j n}^{*}\right)\right), \text { return } m^{\prime}:=c_{3} / F .
\end{aligned}
$$

Remark 8 A part of output of $\operatorname{Setup}\left(1^{\lambda}, n\right),\left\{B_{0,0}, B_{0, j}, B_{i, 0, l}, B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i=1,4 ; j=1, ., 4 ; l=1, . ., n}$, can be identified with $\widehat{\mathbb{B}}:=\left(\boldsymbol{b}_{0}, . ., \boldsymbol{b}_{n}, \boldsymbol{b}_{3 n+1}, . ., \boldsymbol{b}_{4 n}\right)$, while $\mathbb{B}:=\left(\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{4 n}\right)$ is identified with $\left\{B_{0,0}, B_{0, j}, B_{i, 0, l}, B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots, 4 ; l=1, \ldots, n}$ in Remark 7. Decryption Dec can be alternatively described as:

$$
\begin{aligned}
& \operatorname{Dec}^{\prime}(\text { pk }, \mathbf{s k}_{\vec{v}}:=\boldsymbol{k}^{*}, \overbrace{\left.\operatorname{ct}_{\vec{x}}:=\left(\vec{x}, C_{0},\left\{C_{1, j}, C_{2, j}\right\}_{j=1, \ldots, 4}, c_{3}\right)\right):}^{\boldsymbol{c}:=(C_{0}, \overbrace{x_{1} C_{1,1}, \ldots, x_{n-1} C_{1,1}, C_{2,1}}^{n},}, \ldots, \overbrace{x_{1} C_{1,4}, . ., x_{n-1} C_{1,4}, C_{2,4}}^{n}), \\
& \text { that is, } \boldsymbol{c}=(\zeta, \overbrace{\omega \vec{x},}^{n} \overbrace{0^{n},}^{n} \overbrace{0^{n},}^{n} \overbrace{\eta \vec{x}}^{n})_{\mathbb{B}}, F:=e\left(\boldsymbol{c}, \boldsymbol{k}^{*}\right), \text { return } m^{\prime}:=c_{3} / F .
\end{aligned}
$$

[Correctness] Using the alternate decryption Dec', $F=e(\boldsymbol{c}, \boldsymbol{k})=g_{T}^{\zeta+\omega \delta \vec{x} \cdot \vec{v}}=g_{T}^{\zeta} \quad$ if $\vec{x} \cdot \vec{v}=0$.
Remark 9 The proposed ZIPE in this section employs a single basis, \mathbb{B}, generated by $X \in$ $G L\left(4 n+1, \mathbb{F}_{q}\right)$ (or $X \in \mathcal{L}^{+}\left(4, n, \mathbb{F}_{q}\right)$ of Eq. (5)), and a ciphertext can be expressed as $\left(\boldsymbol{c}, g_{T}^{\zeta} m\right)$ with $\boldsymbol{c}=\left(\zeta, \omega \vec{x}, 0^{2 n}, \eta \vec{x}\right)_{\mathbb{B}}$ as shown in Remark 8. The proposed NIPE scheme in Section 6.3 employs two bases, \mathbb{B}_{0} and \mathbb{B}_{1}, generated by $X_{0} \in G L\left(5, \mathbb{F}_{q}\right)$ and $X_{1} \in G L\left(4 n, \mathbb{F}_{q}\right)$, and a ciphertext can be expressed as $\left(\boldsymbol{c}_{0}, \boldsymbol{c}_{1}, g_{T}^{\zeta} m\right)$ with $\boldsymbol{c}_{0}:=\left(-\omega, 0, \zeta, 0, \eta_{0}\right)_{\mathbb{B}_{0}}$ and $\boldsymbol{c}_{1}=\left(\omega \vec{x}, 0^{2 n}, \eta_{1} \vec{x}\right)_{\mathbb{B}_{1}}$. Hence, the ciphertext and secret key of the ZIPE scheme are shorter than those of the NIPE scheme (see Table 1 in Section 11). It is due to the difference of the decryption tricks in the ZIPE and NIPE schemes. Similarly to the fact on $\mathcal{L}\left(4, n, \mathbb{F}_{q}\right)$ (for the security of the NIPE scheme) shown in Section 6.1, it is crucial for the security of the ZIPE scheme that $\mathcal{L}^{+}\left(4, n, \mathbb{F}_{q}\right)$ is a subgroup of $G L\left(4 n+1, \mathbb{F}_{q}\right)$ (Lemma 3), and its security proof is made in the essentially same manner as explained in Section 6.1.

Theorem 3 The proposed ZIPE scheme is adaptively payload-hiding against chosen plaintext attacks under the DLIN assumption. For any adversary \mathcal{A}, there exist probabilistic machines \mathcal{E}_{1} and \mathcal{E}_{2}, whose running times are essentially the same as that of \mathcal{A}, such that for any security parameter $\lambda, \operatorname{Adv}_{\mathcal{A}}^{\mathrm{ZIPE}, \mathrm{PH}}(\lambda) \leq \operatorname{Adv}_{\mathcal{E}_{1}}^{\mathrm{DLIN}}(\lambda)+\sum_{h=1}^{\nu} \operatorname{Adv}_{\mathcal{E}_{2-h}}^{\mathrm{DLIN}}(\lambda)+\epsilon$, where $\mathcal{E}_{2-h}(\cdot):=\mathcal{E}_{2}(h, \cdot), \nu$ is the maximum number of \mathcal{A} 's key queries, and $\epsilon:=(11 \nu+6) / q$.

Proof. To prove Theorem 3, we consider the following $(\nu+3)$ games. In Game 0, a part framed by a box indicates coefficients to be changed in a subsequent game. In the other games, a part framed by a box indicates coefficients that were changed in a game from the previous game.
Game 0 : Original game. That is, the reply to a key query for \vec{v} is

$$
\boldsymbol{k}^{*}:=\left(1, \delta \vec{v}, 0^{n}, \vec{\varphi}, 0^{n}\right)_{\mathbb{B}^{*}},
$$

where $\delta \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}, \varphi \stackrel{U}{\leftarrow} \mathbb{F}_{q}^{n}$ and $\vec{v}:=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{F}_{q}^{n}$ with $v_{n} \neq 0$. The challenge ciphertext for challenge plaintexts $\left(m^{(0)}, m^{(1)}\right)$ and $\vec{x},\left(\vec{x}, \boldsymbol{c}_{0},\left\{C_{1, j}, C_{2, j}\right\}_{j=1, . .4}, c_{3}\right)$, which is identified with $\left(\vec{x}, \boldsymbol{c}, c_{3}\right)$ in Remark 8, is

$$
c:=\left(\boxed{\zeta}, \omega \vec{x}, 0^{n}, 0^{n}, \eta \vec{x}\right)_{\mathbb{B}}, \quad c_{3}:=g_{T}^{\zeta} m,
$$

where $b \underset{\leftarrow}{\leftarrow}\{0,1\} ; \omega, \zeta, \eta \stackrel{U}{\leftarrow} \mathbb{F}_{q}$ and $\vec{x}:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$ with $x_{l} \neq 0$ for some $l \in\{1, . ., n-1\}$. Game 1 : Same as Game 0 except that the challenge ciphertext for challenge plaintexts $\left(m^{(0)}, m^{(1)}\right)$ and \vec{x} is

$$
c:=\left(\zeta, \omega \vec{x}, \vec{r}, 0^{n}, \eta \vec{x}\right)_{\mathbb{B}}, \quad c_{3}:=g_{T}^{\zeta} m
$$

where $\vec{r} \stackrel{U}{\leftarrow} \operatorname{span}\left\langle\vec{x}, \vec{e}_{n}\right\rangle$, and all the other variables are generated as in Game 0 .
Game 2-h $(\boldsymbol{h}=\mathbf{1}, \ldots, \boldsymbol{\nu})$: Game 2-0 is Game 1. Game 2 - h is the same as Game $2-(h-1)$ except that a part of the reply to the h-th key query for $\vec{v}, \boldsymbol{k}^{*}$, is

$$
\boldsymbol{k}^{*}:=\left(1, \delta \vec{v}, \vec{w}, \vec{\varphi}, 0^{n}\right)_{\mathbb{B}^{*}}
$$

where $\vec{w} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}^{n}$ and all the other variables are generated as in Game 2-($h-1$).
Game 3 : Same as Game $2-\nu$ except that \boldsymbol{c} and c_{3} of the challenge ciphertext are

$$
\boldsymbol{c}:=\left(\zeta^{\prime}, \omega \vec{x}, \vec{r}, 0^{n}, \eta \vec{x}\right)_{\mathbb{B}}, \quad c_{3}:=g_{T}^{\zeta} m^{(b)}
$$

where $\zeta^{\prime} \stackrel{U}{\leftarrow} \mathbb{F}_{q}$ (i.e., independent from $\zeta \leftarrow \mathbb{F}_{q}$), and all the other variables are generated as in Game $2-\nu$.

Let $\operatorname{Adv}_{\mathcal{A}}^{(0)}(\lambda), \operatorname{Adv}_{\mathcal{A}}^{(1)}(\lambda), \operatorname{Adv}_{\mathcal{A}}^{(2-h)}(\lambda)(h=1, \ldots, \nu)$ and $\operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)$ be the advantage of \mathcal{A} in Game $0,1,2-h$ and 3, respectively. $\operatorname{Adv}_{\mathcal{A}}^{(0)}(\lambda)$ is equivalent to $\operatorname{Adv}_{\mathcal{A}}^{\mathrm{ZIPE}, \mathrm{PH}}(\lambda)$ and $\operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)=0$. We can evaluate the gaps between pairs of $\operatorname{Adv}_{\mathcal{A}}^{(0)}(\lambda), \operatorname{Adv}_{\mathcal{A}}^{(1)}(\lambda), \operatorname{Adv}_{\mathcal{A}}^{(2-h)}(\lambda)$ for $h=1, \ldots, \nu$ using (variants of) Problems 1 and 2 as in the proof of Theorem 1. The following Lemma 13 gives a gap evaluation between $\operatorname{Adv}_{\mathcal{A}}^{(2-\nu-2)}(\lambda)$ and $\operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)$, which requires a detailed proof for our ZIPE with constant-size ciphertexts (see Appendix A. 3 for the proof). Combining the gap evaluations, we obtain Theorem 3.

Lemma 13 For any adversary \mathcal{A}, for any security parameter $\lambda,\left|\operatorname{Adv}_{\mathcal{A}}^{(2-\nu)}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)\right| \leq 1 / q$.

9 ZIPE Scheme with Constant-Size Secret-Keys

9.1 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator $\mathcal{G}_{\mathrm{ob}}^{\mathrm{ZIPE}, S K}$ below, which is used as a subroutine in the proposed ZIPE scheme, where $\mathcal{G}_{\mathrm{ob}}^{\text {ZIPE,CT }}$ is defined in Section 7.1. Since the definition is employed for the scheme with $w=5$ in Section 10 , we describe $\mathcal{G}_{\mathrm{ob}}^{\text {ZIPE,SK }}$ for general w. (We use only the cases with $w=4,5)$.

$$
\begin{aligned}
& \mathcal{G}_{\mathrm{ob}}^{\mathrm{ZIPE}, \mathrm{SK}}\left(1^{\lambda}, w, n\right): \\
& \quad\left(\operatorname{param}_{n},\left\{D_{0,0}, D_{0, j}, D_{i, 0, l}, D_{i, j}, D_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots, w ; l=1, \ldots, n}, \mathbb{D}^{*}\right) \stackrel{\mathrm{R}}{\leftarrow} \mathcal{G}_{\mathrm{ob}}^{\mathrm{ZIPE}, \mathrm{CT}}\left(1^{\lambda}, w, n\right), \\
& \mathbb{B}:=\mathbb{D}^{*}, B_{0,0}^{*}:=D_{0,0}, B_{0, j}^{*}:=D_{0, j}, B_{i, 0, l}^{*}:=D_{i, 0, l}, B_{i, j}^{*}:=D_{i, j}, B_{i, j, l}^{\prime *}:=D_{i, j, l}^{\prime} \\
& \quad \text { for } i, j=1, \ldots, w ; l=1, \ldots, n, \\
& \quad \text { return }\left(\text { param }_{n}, \mathbb{B},\left\{B_{0,0}^{*}, B_{0, j}^{*}, B_{i, 0, l}^{*}, B_{i, j}^{*}, B_{i, j, l}^{\prime *}\right\}_{i, j=1, \ldots, w ; l=1, \ldots, n}\right) .
\end{aligned}
$$

Remark $10\left\{B_{0,0}^{*}, B_{0, j}^{*}, B_{i, 0, l}^{*}, B_{i, j}^{*}, B_{i, j, l}^{\prime *}\right\}_{i, j=1, \ldots, w ; l=1, \ldots, n}$ is identified with basis $\mathbb{B}^{*}:=\left(\boldsymbol{b}_{0}^{*}, \ldots\right.$, $\left.\boldsymbol{b}_{w n}^{*}\right)$ dual to \mathbb{B} as in Remark 5 .

9.2 Construction and Security

In the description of the scheme, we assume that input vector, $\vec{v}:=\left(v_{1}, \ldots, v_{n}\right)$, has an index l $(1 \leq l \leq n-1)$ with $v_{l} \neq 0$, and that input vector, $\vec{x}:=\left(x_{1}, \ldots, x_{n}\right)$, satisfies $x_{n} \neq 0$.

```
\(\operatorname{Setup}\left(1^{\lambda}, n\right):\left(\operatorname{param}_{n}, \mathbb{B},\left\{B_{0,0}^{*}, B_{0, j}^{*}, B_{i, 0, l}^{*}, B_{i, j}^{*}, B_{i, j, l}^{\prime *}\right\}_{i, j=1, \ldots, 4 ; l=1, \ldots, n}\right) \stackrel{\mathrm{R}}{\mathcal{G}_{\mathrm{ob}}^{\text {ZIPE,SK }}\left(1^{\lambda}, 4, n\right), ~}\)
    \(\widehat{\mathbb{B}}:=\left(\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{n}, \boldsymbol{b}_{3 n+1}, \ldots, \boldsymbol{b}_{4 n}\right)\),
    return pk:=( \(\left.1^{\lambda}, \operatorname{param}_{n}, \widehat{\mathbb{B}}\right)\), sk \(:=\left\{B_{0,0}^{*}, B_{0, j}^{*}, B_{i, 0, l}^{*}, B_{i, j}^{*}, B_{i, j, l}^{\prime *}\right\}_{i=1,3 ; j=1, \ldots, 4 ; l=1, \ldots, n}\).
\(\operatorname{KeyGen}(\mathrm{pk}, \mathrm{sk}, \vec{v}): \quad \delta, \varphi \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}, \quad K_{0}^{*}:=B_{0,0}^{*}+\sum_{l=1}^{n} v_{l}\left(\delta B_{1,0, l}^{*}+\varphi B_{3,0, l}^{*}\right)\),
    \(K_{1, j}^{*}:=\delta B_{1, j}^{*}+\varphi B_{3, j}^{*}, \quad K_{2, j}^{*}:=B_{0, j}^{*}+\sum_{l=1}^{n} v_{l}\left(\delta B_{1, j, l}^{\prime *}+\varphi B_{3, j, l}^{\prime *}\right)\) for \(j=1, \ldots, 4\),
    return \(\mathrm{sk}_{\vec{v}}:=\left(\vec{v}, K_{0}^{*},\left\{K_{1, j}^{*}, K_{2, j}^{*}\right\}_{j=1, \ldots, 4}\right)\).
\(\operatorname{Enc}(\mathrm{pk}, m, \vec{x}): \omega, \zeta \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}, \vec{\eta} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}^{n}, \quad c:=(\zeta, \overbrace{\omega \vec{x}}^{n}, \overbrace{0^{n}}^{n}, \overbrace{0^{n}}^{n}, \overbrace{\vec{\eta}}^{n})_{\mathbb{B}}, c_{3}:=g_{T}^{\zeta} m\),
    return \(\mathrm{ct}_{\vec{x}}:=\left(\boldsymbol{c}, c_{3}\right)\).
\(\operatorname{Dec}\left(\mathrm{pk}, \mathrm{sk}_{\vec{v}}:=\left(\vec{v}, K_{0}^{*},\left\{K_{1, j}^{*}, K_{2, j}^{*}\right\}_{j=1, \ldots, 4}\right), \mathrm{ct}_{\vec{x}}:=\left(\boldsymbol{c}, c_{3}\right)\right):\)
Parse \(\boldsymbol{c}\) as a \((4 n+1)\)-tuple \(\left(C_{0}, \ldots, C_{4 n}\right) \in \mathbb{G}^{4 n+1}\),
\(D_{j}:=\sum_{l=1}^{n-1} v_{l} C_{(j-1) n+l}\) for \(j=1, \ldots, 4\),
\(F:=e\left(C_{0}, K_{0}^{*}\right) \cdot \prod_{j=1}^{4}\left(e\left(D_{j}, K_{1, j}^{*}\right) \cdot e\left(C_{j n}, K_{2, j}^{*}\right)\right)\) return \(m^{\prime}:=c_{3} / F\).
```

Remark 11 A part of output of $\operatorname{Setup}\left(1^{\lambda}, n\right),\left\{B_{0,0}^{*}, B_{0, j}^{*}, B_{i, 0, l}^{*}, B_{i, j}^{*}, B_{i, j, l}^{\prime *}\right\}_{i=1,3 ; j=1, \ldots, 4 ; l=1, \ldots, n}$, can be identified with $\widehat{\mathbb{B}}^{*}:=\left(\boldsymbol{b}_{0}^{*}, \ldots, \boldsymbol{b}_{n}^{*}, \boldsymbol{b}_{2 n+1}^{*}, \ldots, \boldsymbol{b}_{3 n}^{*}\right)$, while $\mathbb{B}^{*}:=\left(\boldsymbol{b}_{0}^{*}, \ldots, \boldsymbol{b}_{4 n}^{*}\right)$ is identified with $\left\{B_{0,0}^{*}, B_{0, j}^{*}, B_{i, 0, l}^{*}, B_{i, j}^{*}, B_{i, j, l}^{\prime *}\right\}_{i=1, \ldots, 4 ; j=1, \ldots, 4 ; l=1, \ldots, n}$ in Remark 10. Decryption Dec can be alternatively described as:

$$
\begin{aligned}
& \operatorname{Dec}^{\prime}\left(\mathrm{pk}, \mathrm{sk}_{\vec{v}}:=\left(\vec{v}, K_{0}^{*},\left\{K_{1, j}^{*}, K_{2, j}^{*}\right\}_{j=1, \ldots, 4}\right), \mathrm{ct}_{\vec{x}}:=\left(\boldsymbol{c}, c_{3}\right)\right): \\
& \boldsymbol{k}^{*}:=(K_{0}^{*}, \overbrace{v_{1} K_{1,1}^{*}, . ., v_{n-1} K_{1,1}^{*}, K_{2,1}^{*},}^{n}, \ldots, \overbrace{v_{1} K_{1,4}^{*}, . ., v_{n-1} K_{1,4}^{*}, K_{2,4}^{*}}^{n}), \\
& \text { that is, } \boldsymbol{k}^{*}=(1, \overbrace{\delta \vec{v},}^{n}, \overbrace{0^{n},}^{n}, \overbrace{\varphi \vec{v}}^{n} \overbrace{0^{n}}^{n})_{\mathbb{B}^{*}}, \quad F:=e\left(\boldsymbol{c}, \boldsymbol{k}^{*}\right), \\
& \text { return } m^{\prime}:=c_{3} / F \text {. }
\end{aligned}
$$

[Correctness] Using the alternate decryption Dec', $F=e(\boldsymbol{c}, \boldsymbol{k})=g_{T}^{\zeta+\omega \delta \vec{x} \cdot \vec{v}}=g_{T}^{\zeta} \quad$ if $\vec{x} \cdot \vec{v}=0$.
Theorem 4 The proposed ZIPE scheme is adaptively weakly-attribute-hiding against chosen plaintext attacks under the DLIN assumption. For any adversary \mathcal{A}, there exist probabilistic machines \mathcal{E}_{1} and \mathcal{E}_{2}, whose running times are essentially the same as that of \mathcal{A}, such that for any security parameter $\lambda, \operatorname{Adv}_{\mathcal{A}}^{\mathrm{ZIPE}, w \operatorname{AH}}(\lambda) \leq \operatorname{Adv}_{\mathcal{E}_{1}}^{\mathrm{DLIN}}(\lambda)+\sum_{h=1}^{\nu} \operatorname{Adv}_{\mathcal{E}_{2-h}}^{\mathrm{DLIN}}(\lambda)+\epsilon$, where $\mathcal{E}_{2-h}(\cdot):=$ $\mathcal{E}_{2}(h, \cdot), \nu$ is the maximum number of \mathcal{A} 's key queries, and $\epsilon:=(11 \nu+6) / q$.

Proof. To prove Theorem 4, we consider the following $(\nu+3)$ games. In Game 0, a part framed by a box indicates coefficients to be changed in a subsequent game. In the other games, a part framed by a box indicates coefficients that were changed in a game from the previous game.
Game 0 : Original game. That is, the reply to a key query for \vec{v} is

$$
\boldsymbol{k}^{*}:=\left(1, \delta \vec{v}, 0^{n}, \varphi \vec{v}, 0^{n}\right)_{\mathbb{B}^{*}},
$$

where $\delta, \varphi \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}$ and $\vec{v}:=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{F}_{q}^{n}$ with $v_{n} \neq 0$. The challenge ciphertext for challenge plaintexts $\left(m^{(0)}, m^{(1)}\right)$ and $\vec{x},\left(\vec{x}, \boldsymbol{c}_{0},\left\{C_{1, j}, C_{2, j}\right\}_{j=1, . .4}, c_{3}\right)$, which is identified with $\left(\vec{x}, \boldsymbol{c}, c_{3}\right)$ in Remark 8, is

$$
c:=\left(\boxed{\zeta}, \omega \vec{x}, 0^{n}, \quad 0^{n}, \vec{\eta}\right)_{\mathbb{B}}, \quad c_{3}:=g_{T}^{\zeta} m
$$

where $b \stackrel{\cup}{\leftarrow}\{0,1\} ; \omega, \zeta \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}, \vec{\eta} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}^{n}$ and $\vec{x}:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$ with $x_{l} \neq 0$ for some $l \in\{1, . ., n-1\}$.
Game 1 : Same as Game 0 except that the challenge ciphertext for challenge plaintexts $\left(m^{(0)}, m^{(1)}\right)$ and \vec{x} is

$$
c:=\left(\zeta, \omega \vec{x}, \vec{r}, 0^{n}, \vec{\eta}\right)_{\mathbb{B}}, \quad c_{3}:=g_{T}^{\zeta} m
$$

where $\vec{r} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}^{n}$, and all the other variables are generated as in Game 0 .
Game 2-h $(\boldsymbol{h}=\mathbf{1}, \ldots, \boldsymbol{\nu})$: Game 2-0 is Game 1. Game 2-h is the same as Game 2-(h-1) except that a part of the reply to the h-th key query for $\vec{v}, \boldsymbol{k}^{*}$, is

$$
\boldsymbol{k}^{*}:=\left(1, \delta \vec{v}, \vec{w}, \varphi \vec{v}, 0^{n}\right)_{\mathbb{B}^{*}}
$$

where $\vec{w} \stackrel{U}{\leftarrow} \operatorname{span}\left\langle\vec{v}, \vec{e}_{n}\right\rangle$ and all the other variables are generated as in Game 2-(h-1).
Game 3 : Same as Game $2-\nu$ except that \boldsymbol{c} and c_{3} of the challenge ciphertext are

$$
c:=\left(\zeta^{\prime}, \quad \vec{x}^{\prime}, \vec{r}, 0^{n}, \vec{\eta}\right)_{\mathbb{B}}, \quad c_{3}:=g_{T}^{\zeta} m^{(b)}
$$

where $\zeta^{\prime} \stackrel{U}{\leftarrow} \mathbb{F}_{q}$ (i.e., independent from $\zeta \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}$), $\vec{x}^{\prime} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}^{n}$ (i.e., independent from $\vec{x} \stackrel{U}{\leftarrow} \mathbb{F}_{q}^{n}$), and all the other variables are generated as in Game 2- ν.

Let $\operatorname{Adv}_{\mathcal{A}}^{(0)}(\lambda), \operatorname{Adv}_{\mathcal{A}}^{(1)}(\lambda), \operatorname{Adv}_{\mathcal{A}}^{(2-h)}(\lambda)(h=1, \ldots, \nu)$ and $\operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)$ be the advantage of \mathcal{A} in Game $0,1,2-h$ and 3 , respectively. $\operatorname{Adv}_{\mathcal{A}}^{(0)}(\lambda)$ is equivalent to $\operatorname{Adv}_{\mathcal{A}}^{Z I P E}, w \operatorname{AH}(\lambda)$ and $\operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)=0$. We can evaluate the gaps between pairs of $\operatorname{Adv}_{\mathcal{A}}^{(0)}(\lambda), \operatorname{Adv}_{\mathcal{A}}^{(1)}(\lambda), \operatorname{Adv}_{\mathcal{A}}^{(2-h)}(\lambda)$ for $h=1, \ldots, \nu$ using (variants of) Problems 1 and 2 as in the proof of Theorem 1. The following Lemma 14 gives a gap evaluation between $\operatorname{Adv}_{\mathcal{A}}^{(2-\nu)}(\lambda)$ and $\operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)$, which requires a detailed proof for our ZIPE with constant-size secret-keys (see Appendix A. 4 for the proof). Combining the gap evaluations, we obtain Theorem 4.

Lemma 14 For any adversary \mathcal{A}, for any security parameter $\lambda,\left|\operatorname{Adv}_{\mathcal{A}}^{(2-\nu)}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)\right| \leq 1 / q$.

10 Fully-Attribute-Hiding ZIPE Scheme with Constant-Size Secret-Keys

By applying our technique to the fully-attribute-hiding ZIPE scheme in [19], we obtain a fully-attribute-hiding ZIPE scheme with short secret-keys.

10.1 Construction and Security

In the description of the scheme, we assume that input vector, $\vec{v}:=\left(v_{1}, \ldots, v_{n}\right)$, has an index l $(1 \leq l \leq n-1)$ with $v_{l} \neq 0$, and that input vector, $\vec{x}:=\left(x_{1}, \ldots, x_{n}\right)$, satisfies $x_{n} \neq 0$.

$$
\begin{aligned}
& \operatorname{Setup}\left(1^{\lambda}, n\right):\left(\operatorname{param}_{n}, \mathbb{B},\left\{B_{0,0}^{*}, B_{0, j}^{*}, B_{i, 0, l}^{*}, B_{i, j}^{*}, B_{i, j, l}^{\prime *}\right\}_{i, j=1, \ldots, 5 ; l=1, \ldots, n}\right) \stackrel{\mathrm{R}}{\leftarrow} \mathcal{G}_{\mathrm{ob}}^{\mathrm{ZIPE}, \mathrm{SK}}\left(1^{\lambda}, 5, n\right), \\
& \quad \widehat{\mathbb{B}}:=\left(\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{n}, \boldsymbol{b}_{4 n+1}, \ldots, \boldsymbol{b}_{5 n}\right) \\
& \quad \text { return pk }:=\left(1^{\lambda}, \operatorname{param}_{n}, \widehat{\mathbb{B}}\right), \quad \text { sk }:=\left\{B_{0,0}^{*}, B_{0, j}^{*}, B_{i, 0, l}^{*}, B_{i, j}^{*}, B_{i, j, l}^{\prime *}\right\}_{i=1,4 ; j=1, \ldots, 5 ; l=1, \ldots, n}
\end{aligned}
$$

```
\(\operatorname{KeyGen}(\mathrm{pk}, \mathrm{sk}, \vec{v}): \quad \delta, \varphi \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}, \quad K_{0}^{*}:=B_{0,0}^{*}+\sum_{l=1}^{n} v_{l}\left(\delta B_{1,0, l}^{*}+\varphi B_{4,0, l}^{*}\right)\),
    \(K_{1, j}^{*}:=\delta B_{1, j}^{*}+\varphi B_{4, j}^{*}, \quad K_{2, j}^{*}:=B_{0, j}^{*}+\sum_{l=1}^{n} v_{l}\left(\delta B_{1, j, l}^{\prime *}+\varphi B_{4, j, l}^{\prime *}\right)\) for \(j=1, \ldots, 5\),
    return \(\mathrm{sk}_{\vec{v}}:=\left(\vec{v}, K_{0}^{*},\left\{K_{1, j}^{*}, K_{2, j}^{*}\right\}_{j=1, \ldots, 5}\right)\).
\(\operatorname{Enc}(\mathrm{pk}, m, \vec{x}): \omega, \zeta \leftarrow \mathbb{F}_{q}, \vec{\eta} \leftarrow \mathbb{F}_{q}^{n}, \quad \boldsymbol{c}:=(\zeta, \overbrace{\omega \vec{x}}^{n}, \overbrace{0^{2 n}}^{2 n}, \overbrace{0^{n}}^{n}, \overbrace{\vec{\eta}}^{n})_{\mathbb{B}}, \quad c_{3}:=g_{T}^{\zeta} m\),
    return \(\mathrm{ct}_{\vec{x}}:=\left(\boldsymbol{c}, c_{3}\right)\).
\(\operatorname{Dec}\left(\mathrm{pk}, \mathrm{sk}_{\vec{v}}:=\left(\vec{v}, K_{0}^{*},\left\{K_{1, j}^{*}, K_{2, j}^{*}\right\}_{j=1, \ldots, 5}\right), \mathrm{ct}_{\vec{x}}:=\left(\boldsymbol{c}, c_{3}\right)\right):\)
Parse \(\boldsymbol{c}\) as a \((5 n+1)\)-tuple \(\left(C_{0}, \ldots, C_{5 n}\right) \in \mathbb{G}^{5 n+1}\),
\(D_{j}:=\sum_{l=1}^{n-1} v_{l} C_{(j-1) n+l}\) for \(j=1, \ldots, 5\),
\(F:=e\left(C_{0}, K_{0}^{*}\right) \cdot \prod_{j=1}^{5}\left(e\left(D_{j}, K_{1, j}^{*}\right) \cdot e\left(C_{j n}, K_{2, j}^{*}\right)\right), \quad\) return \(m^{\prime}:=c_{3} / F\).
```

$\operatorname{Remark} 12$ A part of output of $\operatorname{Setup}\left(1^{\lambda}, n\right),\left\{B_{0,0}^{*}, B_{0, j}^{*}, B_{i, 0, l}^{*}, B_{i, j}^{*}, B_{i, j, l}^{\prime *}\right\}_{i=1,4 ; j=1, \ldots, 5 ; l=1, \ldots, n}$, can be identified with $\widehat{\mathbb{B}}^{*}:=\left(\boldsymbol{b}_{0}^{*}, \ldots, \boldsymbol{b}_{n}^{*}, \boldsymbol{b}_{3 n+1}^{*}, \ldots, \boldsymbol{b}_{4 n}^{*}\right)$, while $\mathbb{B}^{*}:=\left(\boldsymbol{b}_{0}^{*}, \ldots, \boldsymbol{b}_{5 n}^{*}\right)$ is identified with $\left\{B_{0,0}^{*}, B_{0, j}^{*}, B_{i, 0, l}^{*}, B_{i, j}^{*}, B_{i, j, l}^{\prime *}\right\}_{i=1, \ldots, 5 ; j=1, \ldots, 5 ; l=1, \ldots, n}$ in Remark 10. Decryption Dec can be alternatively described as:

$$
\begin{aligned}
& \operatorname{Dec}^{\prime}\left(\mathrm{pk}, \operatorname{sk}_{\vec{v}}:=\left(\vec{v}, K_{0}^{*},\left\{K_{1, j}^{*}, K_{2, j}^{*}\right\}_{j=1, \ldots, 5}\right), \operatorname{ct}_{\vec{x}}:=\left(\boldsymbol{c}, c_{3}\right)\right): \\
& \boldsymbol{k}^{*}:=(K_{0}^{*}, \overbrace{v_{1} K_{1,1}^{*}, \ldots, v_{n-1} K_{1,1}^{*}, K_{2,1}^{*}}^{n}, \overbrace{v_{1} K_{1,5}^{*}, . ., v_{n-1} K_{1,5}^{*}, K_{2,5}^{*}}^{n}), \\
& \quad \begin{array}{l}
\text { that is, } \boldsymbol{k}^{*}=(1, \overbrace{\delta \vec{v},}^{n} \overbrace{0^{2 n},}^{2 n} \overbrace{\varphi \vec{v}}^{n} \overbrace{0^{n}}^{n})_{\mathbb{B}^{*}}, \quad F:=e\left(\boldsymbol{c}, \boldsymbol{k}^{*}\right),
\end{array} \\
& \text { return } m^{\prime}:=c_{3} / F .
\end{aligned}
$$

[Correctness] Using the alternate decryption $\mathrm{Dec}^{\prime}, F=e(\boldsymbol{c}, \boldsymbol{k})=g_{T}^{\zeta+\omega \delta \vec{x} \cdot \vec{v}}=g_{T}^{\zeta} \quad$ if $\vec{x} \cdot \vec{v}=0$.
Theorem 5 The proposed ZIPE scheme is adaptively fully-attribute-hiding against chosen plaintext attacks under the DLIN assumption.

For any adversary \mathcal{A}, there exist probabilistic machines $\mathcal{E}_{0-1}, \mathcal{E}_{0-2}, \mathcal{E}_{1-1}, \mathcal{E}_{1-2-1}$ and \mathcal{E}_{1-2-2}, whose running times are essentially the same as that of \mathcal{A}, such that for any security parameter λ, $\operatorname{Adv}_{\mathcal{A}}^{\mathrm{ZIPE}, \mathrm{AH}}(\lambda) \leq \operatorname{Adv}_{\mathcal{E}_{0-1}}^{\mathrm{DLIN}}(\lambda)+\operatorname{Adv}_{\mathcal{E}_{1-1}}^{\mathrm{DLIN}}(\lambda)+\sum_{h=1}^{\nu}\left(\operatorname{Adv}_{\mathcal{E}_{0-2-h}}^{\operatorname{DLIN}}(\lambda)+\operatorname{Adv}_{\mathcal{E}_{1-2-h-1}}^{\operatorname{DLIN}}(\lambda)+\operatorname{Adv}_{\mathcal{E}_{1-2-h-2}}^{\mathrm{DLIN}}(\lambda)\right)$ $+\epsilon$, where $\mathcal{E}_{0-2-h}(\cdot):=\mathcal{E}_{0-2}(h, \cdot), \mathcal{E}_{1-2-h-1}(\cdot):=\mathcal{E}_{1-2-1}(h, \cdot), \mathcal{E}_{1-2-h-2}(\cdot):=\mathcal{E}_{1-2-2}(h, \cdot), \nu$ is the maximum number of \mathcal{A} 's key queries and $\epsilon:=(29 \nu+17) / q$.

Proof. Similarly to the proof of Theorem 1 in [19], the proof of Theorem 5 is reduced to that of Lemma 15.

First, we execute a preliminary game transformation from Game 0 (original security game in Definition 6) to Game 0^{\prime}, which is the same as Game 0 except that flip a coin $t \stackrel{U}{\leftarrow}\{0,1\}$ before setup, and the game is aborted in the challenge step if $t \neq s$. We define that \mathcal{A} wins with probability $1 / 2$ when the game is aborted (and the advantage in Game 0 ' is $\operatorname{Pr}[\mathcal{A}$ wins $]-1 / 2$ as well). Since t is independent from s, the game is aborted with probability $1 / 2$. Hence, the advantage in Game 0^{\prime} is a half of that in Game 0, i.e., $\operatorname{Adv}_{\mathcal{A}}^{\mathrm{IPE}, \mathrm{AH}, 0^{\prime}}(\lambda)=1 / 2 \cdot \operatorname{Adv}_{\mathcal{A}}^{\mathrm{IPE}, \mathrm{AH}}(\lambda)$. Moreover, $\operatorname{Pr}[\mathcal{A}$ wins $]=1 / 2 \cdot(\operatorname{Pr}[\mathcal{A}$ wins $\mid t=0]+\operatorname{Pr}[\mathcal{A}$ wins $\mid t=1])$ in Game 0^{\prime} since t is uniformly and independently generated.

As for the conditional probability with $t=0$, it holds that, for any adversary \mathcal{A}, there exist probabilistic machines \mathcal{E}_{1} and \mathcal{E}_{2}, whose running times are essentially the same as that of \mathcal{A},
such that for any security parameter λ, in Game $0, \operatorname{Pr}[\mathcal{A}$ wins $\mid t=0]-1 / 2 \leq \operatorname{Adv}_{\mathcal{E}_{1}}^{\mathrm{DLIN}}(\lambda)+$ $\sum_{h=1}^{\nu} \operatorname{Adv}_{\mathcal{E}_{2-h}}^{\mathrm{DLIN}}(\lambda)+\epsilon$, where $\mathcal{E}_{2-h}(\cdot):=\mathcal{E}_{2}(h, \cdot)$ and ν is the maximum number of \mathcal{A} 's key queries and $\epsilon:=(6 \nu+5) / q$. This is obtained in the same manner as the weakly attribute-hiding security of the OT10 IPE in the full version of [18]: Since the difference between our IPE and the OT10 IPE is only the dimension of the hidden subspaces, i.e., the former has $2 n$ and the latter has n, the weakly attribute-hiding security of the OT10 IPE implies the security with $t=0$ of our IPE.

As for the conditional probability with $t=1$, i.e., $\operatorname{Pr}[\mathcal{A}$ wins $\mid t=1]$, Lemma 15 holds.
Therefore, $\operatorname{Adv}_{\mathcal{A}}^{\text {ZIPE, } \mathrm{AH}}(\lambda)=2 \cdot \operatorname{Adv}_{\mathcal{A}}^{\text {ZIPE,AH, } 0^{\prime}}(\lambda)=\operatorname{Pr}[\mathcal{A}$ wins $\mid t=0]+\operatorname{Pr}[\mathcal{A}$ wins $\mid t=1]-1=$ $(\operatorname{Pr}[\mathcal{A}$ wins $\mid t=0]-1 / 2)+(\operatorname{Pr}[\mathcal{A}$ wins $\mid t=1]-1 / 2) \leq \operatorname{Adv}_{\mathcal{E}_{0-1}}^{\mathrm{DLIN}}(\lambda)+\sum_{h=1}^{\nu} \operatorname{Adv}_{\mathcal{E}_{0-2-h} \mathrm{DLIN}}^{\operatorname{LLN}}(\lambda)+$ $\operatorname{Adv} \mathcal{E}_{\mathcal{E}_{1-1}}^{\mathrm{DLIN}}(\lambda)+\sum_{h=1}^{\nu}\left(\operatorname{Adv}_{\mathcal{E}_{1-2-h-1}}^{\mathrm{DLLN}}(\lambda)+\operatorname{Adv}_{\mathcal{E}_{1-2-h-2}}^{\mathrm{DLIN}}(\lambda)\right)+\epsilon$, where $\epsilon:=(29 \nu+17) / q$.

Lemma 15 For any adversary \mathcal{A}, there exist probabilistic machines $\mathcal{E}_{1}, \mathcal{E}_{2-1}$ and \mathcal{E}_{2-2}, whose running times are essentially the same as that of \mathcal{A}, such that for any security parameter λ, in Game 0' (described in the proof of Theorem 5), $\operatorname{Pr}[\mathcal{A}$ wins $\mid t=1]-\frac{1}{2} \leq \operatorname{Adv}_{\mathcal{E}_{1}}^{\mathrm{DLIN}}(\lambda)+$ $\sum_{h=1}^{\nu}\left(\operatorname{Adv}_{\mathcal{E}_{2-h-1}}^{\mathrm{DLIN}}(\lambda)+\operatorname{Adv}_{\mathcal{E}_{2-h-2}}^{\mathrm{DLIN}}(\lambda)\right)+\epsilon$, where $\mathcal{E}_{2-h-1}(\cdot):=\mathcal{E}_{2-1}(h, \cdot), \mathcal{E}_{2-h-2}(\cdot):=\mathcal{E}_{2-2}(h, \cdot), \nu$ is the maximum number of \mathcal{A} 's key queries and $\epsilon:=(23 \nu+12) / q$.

Proof. To prove Lemma 15, we consider the following $4 \nu+3$ games when $t=1$. In Game 0 ', a part framed by a box indicates coefficients to be changed in a subsequent game. In the other games, a part framed by a box indicates coefficients which were changed in a game from the previous game.

Game $\mathbf{0}^{\prime}$: Same as Game 0 except that flip a coin $t \stackrel{U}{\leftarrow}\{0,1\}$ before setup, and the game is aborted in the challenge step if $t \neq s$. In order to prove Lemma 15 , we consider the case with $t=1$.
The reply to a key query for \vec{v} is:

$$
\boldsymbol{k}^{*}:=\left(1, \delta \vec{v}, 0^{n}, 0^{n}, \varphi \vec{v}, 0^{n}\right)_{\mathbb{B}^{*}}
$$

where $\delta, \varphi \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}$. The challenge ciphertext for challenge plaintext $m:=m^{(0)}=m^{(1)}$ and vectors $\left(\vec{x}^{(0)}, \vec{x}^{(1)}\right)$ is:

$$
c:=\left(\zeta, \omega \vec{x}^{(b)}, 0^{n}, 0^{n}, 0^{n}, \vec{\eta}\right)_{\mathbb{B}}, \quad c_{3}:=g_{T}^{\zeta} m,
$$

where $b \longleftarrow\{0,1\}$ and $\zeta, \omega \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}$ and $\vec{\eta} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}^{n}$. Here, we note that c_{3} is independent from bit b.

Game 1: Game 1 is the same as Game 0^{\prime} except that \boldsymbol{c}_{1} of the challenge ciphertext for (challenge plaintext $m:=m^{(0)}=m^{(1)}$ and) vectors $\left(\vec{x}^{(0)}, \vec{x}^{(1)}\right)$ is:

$$
\boldsymbol{c}_{1}:=\left(\zeta, \omega \vec{x}^{(b)}, \omega^{\prime} \vec{x}^{(b)}, 0^{n}, 0^{n}, \vec{\eta}\right)_{\mathbb{B}},
$$

where $\omega^{\prime} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}$ and all the other variables are generated as in Game 0 '.
Game 2-h-1 $(h=\mathbf{1}, \ldots, \nu)$: Game 2-0-4 is Game 1. Game 2-h-1 is the same as Game 2($h-1$)-4 except that \boldsymbol{c}_{1} of the challenge ciphertext for (challenge plaintext $m:=m^{(0)}=$ $m^{(1)}$ and) vectors ($\vec{x}^{(0)}, \vec{x}^{(1)}$) is:

$$
\boldsymbol{c}_{1}:=\left(\zeta, \omega \vec{x}^{(b)}, \omega^{\prime} \vec{x}^{(b)}, \omega_{0}^{\prime \prime} \vec{x}^{(0)}+\omega_{1}^{\prime \prime} \vec{x}^{(1)}, 0^{n}, \vec{\eta}\right)_{\mathbb{B}},
$$

where $\omega^{\prime}, \omega_{0}^{\prime \prime}, \omega_{1}^{\prime \prime} \longleftarrow \mathbb{F}_{q}$ and all the other variables are generated as in Game 2-($h-1$)-4.

Game 2-h-2 $(\boldsymbol{h}=\mathbf{1}, \ldots, \boldsymbol{\nu}):$ Game $2-h-2$ is the same as Game $2-h-1$ except that the reply to the h-th key query for \vec{v} is:

$$
\boldsymbol{k}^{*}:=\left(1, \sigma \vec{v}, \sigma^{\prime} \vec{v}, 0^{n}, \varphi \vec{v}, 0^{n}\right)_{\mathbb{B}^{*}}
$$

where $\sigma^{\prime} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}$ and all the other variables are generated as in Game 2-h-1.
Game 2-h-3 $(\boldsymbol{h}=\mathbf{1}, \ldots, \boldsymbol{\nu})$: Game $2-h-3$ is the same as Game $2-h-2$ except that \boldsymbol{c}_{1} of the challenge ciphertext for (challenge plaintexts $m:=m^{(0)}=m^{(1)}$ and) vectors $\left(\vec{x}^{(0)}, \vec{x}^{(1)}\right)$ is:

$$
\boldsymbol{c}_{1}:=\left(\zeta, \omega \vec{x}^{(b)}, \omega_{0}^{\prime} \vec{x}^{(0)}+\omega_{1}^{\prime} \vec{x}^{(1)}, \omega_{0}^{\prime \prime} \vec{x}^{(0)}+\omega_{1}^{\prime \prime} \vec{x}^{(1)}, 0^{n}, \vec{\eta}\right)_{\mathbb{B}}
$$

where $\omega_{0}^{\prime}, \omega_{1}^{\prime} \stackrel{U}{\leftarrow} \mathbb{F}_{q}$ and all the other variables are generated as in Game 2-h-2.
Game 2-h-4 $(\boldsymbol{h}=\mathbf{1}, \ldots, \boldsymbol{\nu})$: Game $2-h-4$ is the same as Game 2-h-3 except that the reply to the h-th key query for \vec{v} is:

$$
\boldsymbol{k}^{*}:=\left(1, \sigma \vec{v}, 0^{n}, \sigma^{\prime \prime} \vec{v}, \varphi \vec{v}, 0^{n}\right)_{\mathbb{B}^{*}}
$$

where $\sigma^{\prime \prime} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}$ and all the other variables are generated as in Game 2-h-3.
Game 3: Game 3 is the same as Game 2- $\nu-4$ except that \boldsymbol{c}_{1} of the challenge ciphertext for (challenge plaintexts $m:=m^{(0)}=m^{(1)}$ and) vectors $\left(\vec{x}^{(0)}, \vec{x}^{(1)}\right)$ is:

$$
\boldsymbol{c}_{1}:=\left(\zeta, \omega_{0} \vec{x}^{(0)}+\omega_{1} \vec{x}^{(1)}, \omega_{0}^{\prime} \vec{x}^{(0)}+\omega_{1}^{\prime} \vec{x}^{(1)}, \omega_{0}^{\prime \prime} \vec{x}^{(0)}+\omega_{1}^{\prime \prime} \vec{x}^{(1)}, 0^{n}, \vec{\eta}\right)_{\mathbb{B}}
$$

where $\omega_{0}, \omega_{1} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}$ and all the other variables are generated as in Game 2- $\nu-4$. Here, we note that \boldsymbol{c}_{1} is independent from bit $b \underset{\leftarrow}{\leftarrow}\{0,1\}$.

Let $\operatorname{Adv} v_{\mathcal{A}}^{\left(0^{\prime}\right)}(\lambda), \operatorname{Adv}_{\mathcal{A}}^{(1)}(\lambda), \operatorname{Adv}_{\mathcal{A}}^{(2-h-1)}(\lambda), \ldots, \operatorname{Adv}_{\mathcal{A}}^{(2-h-4)}(\lambda)$ and $\operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)$ be the advantage of \mathcal{A} in Game $0^{\prime}, 1,2-h-1, \ldots, 2-h-4$ and 3 when $t=1$, respectively. $\operatorname{Adv}_{\mathcal{A}}^{\left(0^{\prime}\right)}(\lambda)$ is equivalent to the left-hand side of Eq. (15) and $\operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)=0$.

We can evaluate the gaps between pairs of neighboring games, $\operatorname{Adv}_{\mathcal{A}}^{\left(0^{\prime}\right)}(\lambda), \operatorname{Adv}_{\mathcal{A}}^{(1)}(\lambda), \ldots$, $\operatorname{Adv}_{\mathcal{A}}^{(2-\nu-4)}(\lambda), \operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)$, similarly to [19]. This completes the proof of Lemma 15.

11 Comparison

Table 1 compares the proposed ZIPE and NIPE schemes (ZIPE with short ciphertexts in Section 8, NIPE with short ciphertexts in Section 6, ZIPE with short secret-keys in Section 9, NIPE with short secret-keys in Section 7, and fully-attribute-hiding ZIPE with short secret-keys in Section 10) with the ZIPE and NIPE schemes in [2] that are secure under standard assumptions.

Table 1: Comparison with IPE schemes in [2], where $|\mathbb{G}|,\left|\mathbb{G}_{T}\right|,\left|\mathbb{F}_{q}\right|, \mathrm{P}$ and M represent size of an element of \mathbb{G}, that of \mathbb{G}_{T}, that of \mathbb{F}_{q}, pairing operation, and scalar multiplication on \mathbb{G}, respectively. CT, SK, PH, AH, IP and DBDH stand for ciphertexts, secret-keys, payload-hiding, attribute-hiding, inner-product and decisional bilinear Diffie-Hellman, respectively.

	$\begin{gathered} \text { AL10 }[2] \\ \text { ZIPE with } \\ \text { short CT } \end{gathered}$	AL10 [2] NIPE with short CT	Proposed ZIPE with short CT	Proposed NIPE with short CT	Proposed ZIPE with short SK	Proposed NIPE with short SK	Proposed fully-AH ZIPE with short SK
Security	$\begin{aligned} & \hline \text { adaptive } \\ & \text { PH } \end{aligned}$	$\begin{gathered} \left\|\begin{array}{c} \text { co-selective } \mid \\ \text { PH } \end{array}\right\| \end{gathered}$	adaptive PH	adaptive PH	$\begin{gathered} \hline \text { adaptive } \\ \text { weakly-AH } \end{gathered}$	adaptive PH	adaptive fully-AH
Assump.	$\begin{gathered} \text { DLIN \& } \\ \text { DBDH } \end{gathered}$	DLIN \& DBDH	DLIN	DLIN	DLIN	DLIN	DLIN
IP rel.	zero	-2-z	zero	non-zero	zero	non-	zero
$\begin{aligned} & \text { PK } \\ & \text { size } \end{aligned}$	$\begin{gathered} \hline(n+11)\|\mathbb{G}\| \\ +\left\|\mathbb{G}_{T}\right\| \\ \hline \end{gathered}$	$\begin{gathered} (n+11)\|\mathbb{G}\| \\ +\left\|\mathbb{G}_{T}\right\| \end{gathered}$	$\begin{gathered} (10 n+13)\|\mathbb{G}\| \\ +\left\|\mathbb{G}_{T}\right\| \end{gathered}$	$\begin{gathered} (8 n+23)\|\mathbb{G}\| \\ +\left\|\mathbb{G}_{T}\right\| \\ \hline \end{gathered}$	$\begin{gathered} (10 n+13)\|\mathbb{G}\| \\ +\left\|\mathbb{G}_{T}\right\| \end{gathered}$	$\begin{gathered} (8 n+23)\|\mathbb{G}\| \\ +\left\|\mathbb{G}_{T}\right\| \end{gathered}$	$\begin{gathered} (12 n+16)\|\mathbb{G}\| \\ +\left\|\mathbb{G}_{T}\right\| \end{gathered}$
$\begin{gathered} \text { SK } \\ \text { size } \end{gathered}$	$\left\lvert\, \begin{gathered} (n+6)\|\mathbb{G}\| \\ +(n-1)\left\|\mathbb{F}_{q}\right\| \end{gathered}\right.$	$(n+6)\|\mathbb{G}\|$	$(4 n+1)\|\mathbb{G}\|$	$(4 n+5)\|\mathbb{G}\|$	$9\|\mathbb{G}\|$	$13\|\mathbb{G}\|$	$11\|\mathbb{G}\|$
$\begin{aligned} & \text { CT } \\ & \text { size } \end{aligned}$	$\begin{gathered} 9\|\mathbb{G}\|+\left\|\mathbb{G}_{T}\right\| \\ +\left\|\mathbb{F}_{q}\right\| \\ \hline \end{gathered}$	$\begin{gathered} 9\|\mathbb{G}\| \\ +\left\|\mathbb{G}_{T}\right\| \end{gathered}$	$\begin{gathered} 9\|\mathbb{G}\| \\ +\left\|\mathbb{G}_{T}\right\| \\ \hline \end{gathered}$	$\begin{gathered} 13\|\mathbb{G}\| \\ +\left\|\mathbb{G}_{T}\right\| \\ \hline \end{gathered}$	$\begin{gathered} (4 n+1)\|\mathbb{G}\| \\ +\left\|\mathbb{G}_{T}\right\| \\ \hline \end{gathered}$	$\begin{gathered} (4 n+5)\|\mathbb{G}\| \\ +\left\|\mathbb{G}_{T}\right\| \end{gathered}$	$\begin{gathered} (5 n+1)\|\mathbb{G}\| \\ +\left\|\mathbb{G}_{T}\right\| \\ \hline \end{gathered}$
Dec time	$9 \mathrm{P}+n \mathrm{M}$	$9 \mathrm{P}+n \mathrm{M}$	$\begin{gathered} 9 \mathrm{P}+ \\ 4(n-1) \mathrm{M} \end{gathered}$	$\begin{gathered} 13 \mathrm{P}+ \\ 4(n-1) \mathrm{M} \end{gathered}$	$\begin{gathered} 9 \mathrm{P}+ \\ 4(n-1) \mathrm{M} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 13 \mathrm{P}+ \\ 4(n-1) \mathrm{M} \\ \hline \end{array}$	$\begin{gathered} 11 \mathrm{P}+ \\ 5(n-1) \mathrm{M} \end{gathered}$

12 Hierarchical ZIPE Scheme with Constant-Size Ciphertexts

The proposed hierarchical ZIPE (HIPE) scheme with short ciphertexts is constructed by using two vector spaces, 5 -dimensional \mathbb{V}_{0} and $4 n$-dimensional \mathbb{V}_{1}, where hierarchical vector $\left(\vec{v}_{1}, \ldots, \vec{v}_{\ell}\right)$ (resp. $\left(\vec{x}_{1}, \ldots, \vec{x}_{\ell^{\prime}}\right)$) of secret-key (resp. ciphertext) is embedded in an element in \mathbb{V}_{1}. The delegation mechanism is based on the payload hiding HIPE scheme given in Appendix H. 3 in the full version of [18].

12.1 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator $\mathcal{G}_{\text {ob }}^{\text {HIPE,CT }}$ below, which is used as a subroutine in the proposed hierarchical ZIPE scheme.

$$
\begin{aligned}
& \mathcal{G}_{\mathrm{ob}}^{\mathrm{HIPE}, \mathrm{CT}}\left(1^{\lambda}, 4, \vec{n}:=\left(d ; n_{1}, \ldots, n_{d}\right)\right): n:=\sum_{t=1}^{d} n_{t}, \\
& \operatorname{param}_{\mathbb{G}}:=\left(q, \mathbb{G}, \mathbb{G}_{T}, G, e\right) \stackrel{R}{\leftarrow} \mathcal{G}_{\mathrm{bpg}}\left(1^{\lambda}\right), \quad N_{0}:=5, N_{1}:=4 n, \\
& \operatorname{param}_{\mathbb{V}_{t}}:=\left(q, \mathbb{V}_{t}, \mathbb{G}_{T}, \mathbb{A}_{t}, e\right):=\mathcal{G}_{\text {dpvs }}\left(1^{\lambda}, N_{t}, \operatorname{param}_{\mathbb{G}}\right) \text { for } t=0,1 \text {, } \\
& \psi \stackrel{U}{\leftarrow} \mathbb{F}_{q}^{\times}, g_{T}:=e(G, G)^{\psi}, \operatorname{param}_{\vec{n}}:=\left(\vec{n},\left\{\operatorname{param}_{\mathbb{V}_{t}}\right\}_{t=0,1}, g_{T}\right), \\
& X_{0}:=\left(\chi_{0, i, j}\right)_{i, j=1, \ldots, 5}{ }^{\cup} G L\left(N_{0}, \mathbb{F}_{q}\right), X_{1} \stackrel{\cup}{\leftarrow} \widetilde{\mathcal{L}}\left(4, n, \mathbb{F}_{q}\right) \text {, hereafter, } \\
& \left\{\mu_{i, j}, \mu_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots 4 ; l=1, \ldots, n} \text { denotes non-zero entries of } X_{1} \text { as in Eq. (4), } \\
& \boldsymbol{b}_{0, i}:=\left(\chi_{0, i, 1}, . ., \chi_{0, i, 5}\right)_{\mathbb{A}}=\sum_{j=1}^{5} \chi_{0, i, j} \boldsymbol{a}_{j} \text { for } i=1, \ldots, 5, \mathbb{B}_{0}:=\left(\boldsymbol{b}_{0,1}, . ., \boldsymbol{b}_{0,5}\right) \text {, } \\
& B_{i, j}:=\mu_{i, j} G, B_{i, j, l}^{\prime}:=\mu_{i, j, l}^{\prime} G \text { for } i, j=1, \ldots, 4 ; l=1, \ldots, n, \\
& \text { for } t=0,1, \quad\left(\vartheta_{t, i, j}\right)_{i, j=1, \ldots, N_{t}}:=\psi \cdot\left(X_{t}^{\mathrm{T}}\right)^{-1} \text {, } \\
& \boldsymbol{b}_{t, i}^{*}:=\left(\vartheta_{t, i, 1}, . ., \vartheta_{t, i, N_{t}}\right)_{\mathbb{A}}=\sum_{j=1}^{N_{t}} \vartheta_{t, i, j} \boldsymbol{a}_{j} \text { for } i=1, . ., N_{t}, \mathbb{B}_{t}^{*}:=\left(\boldsymbol{b}_{t, 1}^{*}, . ., \boldsymbol{b}_{t, N_{t}}^{*}\right) \text {, } \\
& \text { return }\left(\operatorname{param}_{\vec{n}}, \mathbb{B}_{0}, \mathbb{B}_{0}^{*},\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots, 4 ; l=1, \ldots, n}, \mathbb{B}_{1}^{*}\right) \text {. }
\end{aligned}
$$

Remark 13 Let

$$
\begin{aligned}
& \left(\begin{array}{c}
\boldsymbol{b}_{1,(i-1) n+1} \\
\vdots \\
\boldsymbol{b}_{1, \text { in }}
\end{array}\right):=\left(\begin{array}{cccccccc}
B_{i, 1,1}^{\prime} & & & & B_{i, 4,1}^{\prime} & & & \\
B_{i, 1,2}^{\prime} & B_{i, 1} & & & \ldots & B_{i, 4,2}^{\prime} & B_{i, 4} & \\
\vdots & & \ddots & & & \vdots & & \ddots \\
\hline B_{i, 1, n}^{\prime} & & & B_{i, 1} & & B_{i, 4, n}^{\prime} & & \\
\\
\text { for } i=1, \ldots, 4, & & & & & & B_{i, 4}
\end{array}\right) \\
& \mathbb{B}_{1}:=\left(\boldsymbol{b}_{1,1}, \ldots, \boldsymbol{b}_{1,4 n}\right)
\end{aligned}
$$

where a blank element in the matrix denotes $0 \in \mathbb{G}$. \mathbb{B}_{1} is the dual orthonormal basis of \mathbb{B}_{1}^{*}, i.e., $e\left(\boldsymbol{b}_{1, i}, \boldsymbol{b}_{1, i}^{*}\right)=g_{T}$ and $e\left(\boldsymbol{b}_{1, i}, \boldsymbol{b}_{1, j}^{*}\right)=1$ for $1 \leq i \neq j \leq 4 n$.

12.2 Construction and Security

In the description of the scheme, we assume that input vector, $\vec{x}_{t}:=\left(x_{t, 1}, \ldots, x_{t, n_{t}}\right)$, has an index $(t, l) \neq(1,1)$ with $x_{t, l} \neq 0$, and that level-1 input vector, $\vec{v}_{1}:=\left(v_{1,1}, \ldots, v_{1, n_{1}}\right)$, satisfies $v_{1,1} \neq 0$.
$\operatorname{Setup}\left(1^{\lambda}, \vec{n}:=\left(d ; n_{1}, \ldots, n_{d}\right)\right): n:=\sum_{t=1}^{d} n_{t}$,
$\left(\operatorname{param}_{\vec{n}}, \mathbb{B}_{0}, \mathbb{B}_{0}^{*},\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots, 4 ; l=1, \ldots, n}, \mathbb{B}_{1}^{*}\right) \stackrel{R}{\leftarrow} \mathcal{G}_{\mathrm{ob}}^{\mathrm{HIPE}, \mathrm{CT}}\left(1^{\lambda}, 4, \vec{n}\right)$,
$\widehat{\mathbb{B}}_{0}:=\left(\boldsymbol{b}_{0,1}, \boldsymbol{b}_{0,3}, \boldsymbol{b}_{0,5}\right), \quad \widehat{\mathbb{B}}_{0}^{*}:=\left(\boldsymbol{b}_{0,1}^{*}, \boldsymbol{b}_{0,4}^{*}\right), \quad \widehat{\mathbb{B}}_{1}^{*}:=\left(\boldsymbol{b}_{1,1}^{*}, . ., \boldsymbol{b}_{1, n}^{*}, \boldsymbol{b}_{1,2 n+1}^{*}, . ., \boldsymbol{b}_{1,3 n}^{*}\right)$,
return pk $:=\left(1^{\lambda}, \operatorname{param}_{\vec{n}}, \widehat{\mathbb{B}}_{0},\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i=1,4 ; j=1, \ldots, 4 ; l=1, \ldots, n},\left\{\widehat{\mathbb{B}}_{t}^{*}\right\}_{t=0,1}\right), \quad$ sk $:=\boldsymbol{b}_{0,3}^{*}$.
$\operatorname{KeyGen}\left(\mathrm{pk}, \mathrm{sk},\left(\vec{v}_{1}, \ldots, \vec{v}_{\ell}\right) \in \mathbb{F}_{q}^{n_{1}} \times \cdots \times \mathbb{F}_{q}^{n_{\ell}}\right)$:
$s_{t}, \theta_{t}, \varphi_{0} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}$ for $t=1, \ldots, \ell, \quad s_{0}:=\sum_{t=1}^{\ell} s_{t}, \quad \vec{\varphi}_{1} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}^{n}$,
$\boldsymbol{k}_{\ell, 0}^{*}:=\left(-s_{0}, 0,1, \varphi_{0}, 0\right)_{\mathbb{B}_{0}^{*}}$,
$\boldsymbol{k}_{\ell, 1}^{*}:=(\overbrace{s_{1} \vec{e}_{1,1}+\theta_{1} \vec{v}_{1}, \ldots, s_{\ell} \vec{e}_{\ell, 1}+\theta_{\ell} \vec{v}_{\ell}, 0^{n_{\ell+1}}, \ldots, 0^{n_{d}},}^{n} \quad 0^{n}, \quad \vec{\varphi}_{1}, \quad 0^{n})_{\mathbb{B}_{1}^{*}}$,
return $\mathrm{sk}_{\ell}:=\left(\left(\vec{v}_{1}, \ldots, \vec{v}_{\ell}\right), \boldsymbol{k}_{\ell, 0}^{*}, \boldsymbol{k}_{\ell, 1}^{*}\right)$.
$\operatorname{Enc}\left(\mathrm{pk}, m \in \mathbb{G}_{T},\left(\vec{x}_{1}, \ldots, \vec{x}_{\ell}\right) \in \mathbb{F}_{q}^{n_{1}} \times \cdots \times \mathbb{F}_{q}^{n_{\ell}}\right):$
$\omega, \eta_{0}, \eta_{1} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}, \boldsymbol{c}_{0}:=\left(\omega, 0, \zeta, 0, \eta_{0}\right)_{\mathbb{B}_{0}}, \quad \vec{x}:=\left(x_{l}\right)_{l=1, \ldots, n}:=\left(\vec{x}_{1}, \ldots, \vec{x}_{\ell}, 0^{n_{\ell+1}}, \ldots, 0^{n_{d}}\right) \in \mathbb{F}_{q}^{n}$,
$C_{1, j}:=\omega B_{1, j}+\eta_{1} B_{4, j}, \quad C_{2, j}:=\sum_{l=1}^{n} x_{l}\left(\omega B_{1, j, l}^{\prime}+\eta_{1} B_{4, j, l}^{\prime}\right)$ for $j=1, \ldots, 4$,
$c_{3}:=g_{T}^{\zeta} m, \quad$ return $\mathrm{ct}:=\left(\left(\vec{x}_{1}, \ldots, \vec{x}_{\ell}\right), \boldsymbol{c}_{0},\left\{C_{1, j}, C_{2, j}\right\}_{j=1, \ldots, 4}, c_{3}\right)$.
$\operatorname{Dec}\left(\mathrm{pk}, \mathrm{sk}_{\ell}:=\left(\left(\vec{v}_{1}, \ldots, \vec{v}_{\ell}\right), \boldsymbol{k}_{\ell, 0}^{*}, \boldsymbol{k}_{\ell, 1}^{*}\right), \mathrm{ct}:=\left(\left(\vec{x}_{1}, \ldots, \vec{x}_{\ell^{\prime}}\right), \boldsymbol{c}_{0},\left\{C_{1, j}, C_{2, j}\right\}_{j=1, \ldots, 4}, c_{3}\right)\right):$
if $\ell \leq \ell^{\prime}, \quad$ parse \boldsymbol{k}_{1}^{*} as a $4 n$-tuple $\left(K_{1}^{*}, \ldots, K_{4 n}^{*}\right) \in \mathbb{G}^{4 n}$,
$\vec{x}:=\left(x_{1}, \ldots, x_{n}\right):=\left(\vec{x}_{1}, \ldots, \vec{x}_{\ell^{\prime}}, 0^{n_{\ell^{\prime}+1}}, \ldots, 0^{n_{d}}\right) \in \mathbb{F}_{q}^{n}$,
$D_{j}^{*}:=\sum_{l=2}^{n} x_{l} K_{(j-1) n+l}^{*}$ for $j=1, \ldots, 4$,
$F:=e\left(\boldsymbol{c}_{0}, \boldsymbol{k}_{0}^{*}\right) \cdot \prod_{j=1}^{4}\left(e\left(C_{1, j}, D_{j}^{*}\right) \cdot e\left(C_{2, j}, K_{(j-1) n+1}^{*}\right)\right), \quad$ return $m^{\prime}:=c_{3} / F$,
else, return \perp.
Delegate $_{\ell}\left(\mathrm{pk}, \mathrm{sk}_{\ell}, \vec{v}_{\ell+1}\right)$:
$s_{\text {del }, t}, \theta_{\text {del }, t}, \varphi_{\text {del }, 0} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}$ for $t=1, \ldots, \ell+1, \quad s_{\text {del }, 0}:=\sum_{t=1}^{\ell+1} s_{\text {del }, t}, \quad \vec{\varphi}_{\text {del }, 1} \stackrel{U}{\leftarrow} \mathbb{F}_{q}^{n}$, $\boldsymbol{k}_{\text {del }, 0}^{*}:=\left(-s_{\text {del }, 0}, 0,0, \varphi_{\text {del }, 0}, 0\right)_{\mathbb{B}_{0}^{*}}$,

$$
\begin{aligned}
& \boldsymbol{k}_{\mathrm{del}, 1}^{*}:=(\overbrace{s_{\mathrm{del}, 1} \vec{e}_{1,1}+\theta_{1} \vec{v}_{1}, \ldots, s_{\mathrm{del}, \ell+1} \vec{e}_{\ell+1,1}+\theta_{\mathrm{del}, \ell+1} \vec{v}_{\ell+1},}^{n} \begin{array}{l}
0^{n_{\ell+2}}, \ldots, 0^{n_{d}}, \\
0^{n}, \quad \vec{\varphi}_{\mathrm{del}, 1},
\end{array} 0^{n})_{\mathbb{B}_{1}^{*}}, \\
& \boldsymbol{k}_{\ell+1, \iota}^{*}:=\boldsymbol{k}_{\ell, \iota}^{*}+\boldsymbol{k}_{\text {del }, \iota}^{*} \text { for } \iota=0,1, \\
& \text { return } \mathrm{sk}_{\ell+1}:=\left(\left(\vec{v}_{1}, \ldots, \vec{v}_{\ell+1}\right), \boldsymbol{k}_{\ell+1,0}^{*}, \boldsymbol{k}_{\ell+1,1}^{*}\right) .
\end{aligned}
$$

Remark 14 A part of output of $\operatorname{Setup}\left(1^{\lambda}, \vec{n}\right),\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i=1,4 ; j=1, \ldots, 4 ; l=1, \ldots, n}$, can be identified with $\widehat{\mathbb{B}}_{1}:=\left(\boldsymbol{b}_{1,1}, \ldots, \boldsymbol{b}_{1, n}, \boldsymbol{b}_{1,3 n+1}, . ., \boldsymbol{b}_{1,4 n}\right)$ through the form of Eq. (6), while $\mathbb{B}_{1}:=$ $\left(\boldsymbol{b}_{1,1}, \ldots, \boldsymbol{b}_{1,4 n}\right)$ is identified with $\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots, 4 ; l=1, \ldots, n}$ by Eq. (6). Decryption Dec can be alternatively described as:

$$
\begin{aligned}
& \operatorname{Dec}^{\prime}\left(\mathrm{pk}, \mathrm{sk}_{\ell}:=\left(\left(\vec{v}_{1}, \ldots, \vec{v}_{\ell}\right), \boldsymbol{k}_{\ell, 0}^{*}, \boldsymbol{k}_{\ell, 1}^{*}\right), \mathrm{ct}:=\left(\left(\vec{x}_{1}, \ldots, \vec{x}_{\ell^{\prime}}\right), \boldsymbol{c}_{0},\left\{C_{1, j}, C_{2, j}\right\}_{j=1, \ldots, 4}, c_{3}\right)\right): \\
& \vec{x}:=\left(x_{1}, \ldots, x_{n}\right):=\left(\vec{x}_{1}, \ldots, \vec{x}_{\ell^{\prime}}, 0^{n_{\ell^{\prime}+1}}, \ldots, 0^{n_{d}}\right) \in \mathbb{F}_{q}^{n}, \\
& \boldsymbol{c}_{1}:=(\overbrace{C_{2,1}, x_{2} C_{1,1}, . ., x_{n} C_{1,1},}^{n} \quad \ldots, \overbrace{C_{2,4}, x_{2} C_{1,4}, . ., x_{n} C_{1,4}}^{n}), \\
& \text { that is, } \boldsymbol{c}_{1}=(\overbrace{\omega \vec{x},}^{n}, \overbrace{0^{n},}^{n}, \overbrace{0^{n},}^{n}, \overbrace{\eta_{1} \vec{x}}^{n})_{\mathbb{B}_{1}}, F:=e\left(\boldsymbol{c}_{0}, \boldsymbol{k}_{0}^{*}\right) \cdot e\left(\boldsymbol{c}_{1}, \boldsymbol{k}_{1}^{*}\right), \\
& \text { return } m^{\prime}:=c_{3} / F \text {. }
\end{aligned}
$$

[Correctness] Using the alternate decryption Dec',$F=e\left(\boldsymbol{c}_{0}, \boldsymbol{k}_{0}^{*}\right) \cdot e\left(\boldsymbol{c}_{1}, \boldsymbol{k}_{1}^{*}\right)=g_{T}^{-\omega s_{0}+\zeta} g_{T}^{\omega \sum_{t=1}^{\ell} s_{t}}$ $=g_{T}^{\zeta} \quad$ if $\ell \leq \ell^{\prime}$ and $\vec{x}_{t} \cdot \vec{v}_{t}=0$ for $t=1, \ldots, \ell$.

The definition of adaptively payload-hiding security and the advantage $\operatorname{Adv}_{\mathcal{A}}{ }_{\mathcal{H}}, \mathrm{PH}(\lambda)$ of adversary \mathcal{A} can be obtained through a straightforward extension of that of HIBE, e.g., [8], with replacing ID-matching by vector-orthogonality.

Theorem 6 The proposed HIPE scheme is adaptively payload-hiding against chosen plaintext attacks under the DLIN assumption.

For any adversary \mathcal{A}, there exist probabilistic machines \mathcal{E}_{1} and \mathcal{E}_{2}, whose running times are essentially the same as that of \mathcal{A}, such that for any security parameter $\lambda, \operatorname{Adv}_{\mathcal{A}}^{\mathrm{HPE}, \mathrm{PH}}(\lambda) \leq$ $\operatorname{Adv}_{\mathcal{E}_{1}}^{\operatorname{DLIN}}(\lambda)+\sum_{h=1}^{\nu} \operatorname{Adv}_{\mathcal{E}_{2-h}}^{\mathrm{DLIN}}(\lambda)+\epsilon$, where $\mathcal{E}_{2-h}(\cdot):=\mathcal{E}_{2}(h, \cdot)$, ν is the maximum number of adversary \mathcal{A} 's key queries, and $\epsilon=(11 \nu+6) / q$.

Theorem 6 is proven similarly to Theorem 3 .

13 Concluding Remarks

The technique with using special type matrices shown in this paper can reduce the size of ciphertexts or secret-keys of adaptively secure FE schemes in [18] from $O(d n)$ to $O(d)$, where d is the number of sub-universes of attributes, and n is the maximal length of attribute vectors. A key-policy attribute-based encryption (ABE) system with constant-size ciphertext [3] is selectively secure in the standard model. Therefore, it is an interesting open problem to realize an adaptively secure and constant-size ciphertext ABE scheme.

Acknowledgments The authors would like to thank Sherman S.M. Chow for his invaluable comments and suggestions on our preliminary manuscript. We also appreciate anonymous reviewers of CANS 2011 for their valuable comments.

References

[1] Michel Abdalla, Eike Kiltz, and Gregory Neven. Generalized key delegation for hierarchical identity-based encryption. In Joachim Biskup and Javier Lopez, editors, ESORICS 2007, volume 4734 of Lecture Notes in Computer Science, pages 139-154. Springer, 2007.
[2] Nuttapong Attrapadung and Benoît Libert. Functional encryption for inner product: Achieving constant-size ciphertexts with adaptive security or support for negation. In Nguyen and Pointcheval [16], pages 384-402.
[3] Nuttapong Attrapadung, Benoît Libert, and Elie de Panafieu. Expressive key-policy attribute-based encryption with constant-size ciphertexts. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 90-108. Springer, 2011.
[4] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryption. In IEEE Symposium on Security and Privacy, pages 321-334. IEEE Computer Society, 2007.
[5] Dan Boneh and Michael Hamburg. Generalized identity based and broadcast encryption schemes. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of $L N C S$, pages 455470. Springer, 2008.
[6] Cécile Delerablée. Identity-based broadcast encryption with constant size ciphertexts and private keys. In Kaoru Kurosawa, editor, ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages 200-215. Springer, 2007.
[7] Keita Emura, Atsuko Miyaji, Akito Nomura, Kazumasa Omote, and Masakazu Soshi. A ciphertext-policy attribute-based encryption scheme with constant ciphertext length. In Feng Bao, Hui Li, and Guilin Wang, editors, ISPEC 2009, volume 5451 of Lecture Notes in Computer Science, pages 13-23. Springer, 2009.
[8] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 548-566. Springer, 2002.
[9] Craig Gentry and Brent Waters. Adaptive security in broadcast encryption systems (with short ciphertexts). In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages 171-188. Springer, 2009.
[10] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM Conference on Computer and Communications Security, pages 89-98. ACM, 2006.
[11] Javier Herranz, Fabien Laguillaumie, and Carla Ràfols. Constant size ciphertexts in threshold attribute-based encryption. In Nguyen and Pointcheval [16], pages 19-34.
[12] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polynomial equations, and inner products. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of $L N C S$, pages 146-162. Springer, 2008.
[13] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In Henri Gilbert, editor, EUROCRYPT 2008, volume 6110 of LNCS, pages 62-91. Springer, 2010. Full version is available at http: //eprint.iacr.org/2010/110.
[14] Allison B. Lewko, Amit Sahai, and Brent Waters. Revocation systems with very small private keys. In IEEE Symposium on Security and Privacy, pages 273-285. IEEE Computer Society, 2010.
[15] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure hibe with short ciphertexts. In Daniele Micciancio, editor, TCC 2010, volume 5978 of $L N C S$, pages 455-479. Springer, 2010.
[16] Phong Q. Nguyen and David Pointcheval, editors. Public Key Cryptography - PKC 2010, 13th International Conference on Practice and Theory in Public Key Cryptography, Paris, France, May 26-28, 2010. Proceedings, volume 6056 of Lecture Notes in Computer Science. Springer, 2010.
[17] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption for innerproducts. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 214-231. Springer, 2009.
[18] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general relations from the decisional linear assumption. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of $L N C S$, pages 191-208. Springer, 2010. Full version is available at http://eprint.iacr.org/2010/563.
[19] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hierarchical) inner product encryption. IACR Cryptology ePrint Archive, 2011:543, 2011. http:// eprint.iacr.org/2011/543, To appear in Eurocrypt 2012.
[20] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of $L N C S$, pages 457-473. Springer, 2005.
[21] Ryuichi Sakai and Jun Furukawa. Identity-based broadcast encryption. IACR Cryptology ePrint Archive, 2007:217, 2007.
[22] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 619-636. Springer, 2009.

A Proofs of Lemmas

A. 1 Proofs of Lemmas 2 and 3 in Section 5

For a positive integer x, let $[x]:=\{1, \ldots, x\}$.
Lemma $2 \mathcal{L}\left(w, n, \mathbb{F}_{q}\right)$ and $\widetilde{\mathcal{L}}\left(w, n, \mathbb{F}_{q}\right)$ are subgroups of $G L\left(w n, \mathbb{F}_{q}\right)$.
Proof. Below, we will show that $\mathcal{L}\left(w, n, \mathbb{F}_{q}\right)$ is a subgroup of $G L\left(w n, \mathbb{F}_{q}\right)$. For $\widetilde{\mathcal{L}}\left(w, n, \mathbb{F}_{q}\right)$, the lemma is proven in the same manner as for $\mathcal{L}\left(w, n, \mathbb{F}_{q}\right)$.

Based on the block partition on $X \in \mathbb{F}_{q}^{w n \times w n}$ with submatrices $X_{i, j} \in \mathbb{F}_{q}^{n \times n}$, i.e., $X:=$ $\left(X_{i, j}\right)_{i, j \in[w]}:=\left(\begin{array}{ccc}X_{1,1} & \cdots & X_{1, w} \\ \vdots & & \vdots \\ X_{w, 1} & \cdots & X_{w, w}\end{array}\right)$, we will define a permutation matrix Π. Since $X_{i, j} \in$ $\mathbb{F}_{q}^{n \times n}$, each row of X is indexed by a pair (i, k) with $i \in[w] ; k \in[n]$, which is corresponding to the $((i-1) n+k)$-th row. The swapping of the index pair $(i, k) \mapsto(k, i)$ leads to a permutation π on the set $[w n]$ as,

$$
\begin{array}{cccc}
\pi: & {[w n]} & \rightarrow & {[w n]} \\
\Psi & & \vdots \tag{13}\\
& (i-1) n+k & \mapsto & (k-1) w+i
\end{array}
$$

with $i \in[w] ; k \in[n]$. We denote the corresponding permutation matrix by Π, i.e., the left multiplication by Π is equivalent to the permutation π on rows (of X). $\Pi^{-1}=\Pi^{\mathrm{T}}$ since Π is a permutation matrix, and we see that the right multiplication by Π^{-1} is equivalent to the permutation π on columns (of X).

Let the conjugate set $\mathcal{P}\left(w, n, \mathbb{F}_{q}\right):=\Pi \cdot \mathcal{L}\left(w, n, \mathbb{F}_{q}\right) \cdot \Pi^{-1}$. Since the rows and columns are permuted by π, for $X:=\left(X_{i, j}\right)_{i, j \in[w]} \in \mathcal{L}\left(w, n, \mathbb{F}_{q}\right)$ with $X_{i, j}:=\left(\begin{array}{cccc}\mu_{i, j} & & & \\ & \mu_{i, j, 1}^{\prime} \\ & \ddots & & \\ & & \mu_{i, j} & \mu_{i, j, n-1}^{\prime} \\ & & & \\ i_{i, j, n}\end{array}\right)$, $Y:=\Pi \cdot X \cdot \Pi^{-1}$ is given as $Y=\left(\begin{array}{cccc}Y_{0} & & & \\ & \ddots & & Y_{1} \\ & & Y_{0} & Y_{n-1} \\ & & & Y_{n}\end{array}\right)$, where $Y_{0}:=\left(\begin{array}{ccc}\mu_{1,1} & \cdots & \mu_{1,4} \\ \vdots & & \vdots \\ \mu_{4,1} & \cdots & \mu_{4,4}\end{array}\right)$ and $Y_{i}:=\left(\begin{array}{ccc}\mu_{1,1, i}^{\prime} & \cdots & \mu_{1, w, i}^{\prime} \\ \vdots & & \vdots \\ \mu_{w, 1, i}^{\prime} & \cdots & \mu_{w, w, i}^{\prime}\end{array}\right)$. Therefore, since $\mathcal{L}\left(w, n, \mathbb{F}_{q}\right) \subset G L\left(w n, \mathbb{F}_{q}\right)$,

$$
\mathcal{P}\left(w, n, \mathbb{F}_{q}\right)=\left\{Y:=\left(\begin{array}{cccc}
Y_{0} & & & \tag{14}\\
& & & Y_{1} \\
& \ddots & & \vdots \\
& & Y_{0} & Y_{n-1} \\
& & & Y_{n}
\end{array}\right) \left\lvert\, \begin{array}{c}
Y_{0}, Y_{n} \in G L\left(w, \mathbb{F}_{q}\right), \\
Y_{1}, \ldots, Y_{n-1} \in \mathbb{F}_{q}^{w \times w}, \\
\text { a blank element in the } \\
\text { matrix denotes } 0 \in \mathbb{F}_{q}
\end{array}\right.\right\} .
$$

We see that $\mathcal{P}\left(w, n, \mathbb{F}_{q}\right)$ is a subgroup of $G L\left(w n, \mathbb{F}_{q}\right)$. So, $\mathcal{L}\left(w, n, \mathbb{F}_{q}\right)=\Pi^{-1} \cdot \mathcal{P}\left(w, n, \mathbb{F}_{q}\right) \cdot \Pi$ is also a subgroup of $G L\left(w n, \mathbb{F}_{q}\right)$. This completes the proof of Lemma 2.

Lemma $3 \mathcal{L}^{+}\left(w, n, \mathbb{F}_{q}\right)$ is a subgroup of $G L\left(w n+1, \mathbb{F}_{q}\right)$.
Proof. For the proof, we define an injective group homomorphism,

$$
\begin{array}{ccc}
\iota: G L\left(w n+1, \mathbb{F}_{q}\right) & \hookrightarrow & G L\left((w+1) n, \mathbb{F}_{q}\right) \\
w & & \\
X & \mapsto & \left(\begin{array}{cc}
I_{n-1} & 0 \\
0 & X
\end{array}\right)
\end{array}
$$

We will show the following claim.
Claim $1 \iota\left(\mathcal{L}^{+}\left(w, n, \mathbb{F}_{q}\right)\right)=\mathcal{L}\left(w+1, n, \mathbb{F}_{q}\right) \cap \iota\left(G L\left((w+1) n, \mathbb{F}_{q}\right)\right)$.
This equality is on the right-down corner of the following diagram,

$$
\begin{aligned}
\iota: G L\left(w n+1, \mathbb{F}_{q}\right) & \hookrightarrow G L\left((w+1) n, \mathbb{F}_{q}\right) \\
\cup & \cup \\
\mathcal{L}^{+}\left(w, n, \mathbb{F}_{q}\right) & \cong \iota\left(\mathcal{L}^{+}\left(w, n, \mathbb{F}_{q}\right)\right) \quad=\mathcal{L}\left(w+1, n, \mathbb{F}_{q}\right) \cap \iota\left(G L\left((w+1) n, \mathbb{F}_{q}\right)\right) .
\end{aligned}
$$

Proof of Claim 1. Since $X \in \mathcal{L}\left(w+1, n, \mathbb{F}_{q}\right) \cap \iota\left(G L\left((w+1) n, \mathbb{F}_{q}\right)\right)$ is given as $\left(X_{i, j}\right)_{i, j \in[w+1]}:=$
 element in the submatrices denotes $0 \in \mathbb{F}_{q}$. That is,

$$
X:=\left(\begin{array}{ccccc}
I_{n-1} & & & & \\
& \mu_{1,1, n}^{\prime} & \mu_{1,2, n}^{\prime} \vec{e}_{n} & \cdots & \mu_{1, w+1, n}^{\prime} \vec{e}_{n} \\
& \vec{\mu}_{2,1}^{\prime T} & X_{2,2} & \cdots & X_{2, w+1} \\
& \vdots & \vdots & & \vdots \\
& \vec{\mu}_{w+1,1}^{\prime T} & X_{w+1,2} & \cdots & X_{w+1, w+1}
\end{array}\right)
$$

where $\vec{\mu}_{i, 1}^{\prime}:=\left(\mu_{i, 1,1}^{\prime}, \ldots, \mu_{i, 1, n}^{\prime}\right)$. This shows that $\iota\left(\mathcal{L}^{+}\left(w, n, \mathbb{F}_{q}\right)\right)=\mathcal{L}\left(w+1, n, \mathbb{F}_{q}\right) \cap \iota(G L((w+$ 1) $\left.n, \mathbb{F}_{q}\right)$), i.e., Claim 1 holds.

Since $\mathcal{L}\left(w+1, n, \mathbb{F}_{q}\right)$ (and $\iota\left(G L\left((w+1) n, \mathbb{F}_{q}\right)\right)$) are subgroups of $G L\left((w+1) n, \mathbb{F}_{q}\right)$ (Lemma 2), from Claim $1, \iota\left(\mathcal{L}^{+}\left(w, n, \mathbb{F}_{q}\right)\right)$ is a subgroup of $G L\left((w+1) n, \mathbb{F}_{q}\right)$. Therefore, since ι is an injective group homomorphism, $\left.\mathcal{L}^{+}\left(w, n, \mathbb{F}_{q}\right)\right)$ is also a subgroup of $G L\left(w n+1, \mathbb{F}_{q}\right)$. This completes the proof of Lemma 3.

Figure 1: Structure of Reductions for Theorem 1

A. 2 Proofs of Lemmas 4-12 in Section 6

A.2.1 Preliminaries

Figure 1 shows the structure of security reduction for Theorem 1 , where the security of the scheme is hierarchically reduced to the intractability of the DLIN problem. Basic Problems 0 , 1,2 are defined below. The reduction steps indicated by arrows will be shown below, and the step given by dotted arrow can be shown in the same manner as that in (the full version of) [18].

For the proofs of Lemmas 4 and 5, we give the following intermediate problem, Basic Problem 0 (Definition 10) and Lemma 16. (In [18], an additional element $\delta \xi G$ is included in an output of Basic Problem 0 for a shorter dimension $3 n+1$ than $4 n$. Here, it is not necessary.)

Definition 10 (Basic Problem 0) Basic Problem 0 is to guess $\beta \in\{0,1\}$, given (param ${ }_{\mathrm{BPO}}$, $\left.\widehat{\mathbb{B}}, \mathbb{B}^{*}, \boldsymbol{y}_{\beta}^{*}, \boldsymbol{f}, \kappa G, \xi G\right) \stackrel{R}{\leftarrow} \mathcal{G}_{\beta}^{\mathrm{BPO}}\left(1^{\lambda}\right)$, where

$$
\begin{aligned}
& \mathcal{G}_{\beta}^{\mathrm{BPO}}\left(1^{\lambda}\right): \quad \operatorname{param}_{\mathbb{G}}:=\left(q, \mathbb{G}, \mathbb{G}_{T}, G, e\right) \stackrel{\mathrm{R}}{\leftarrow} \mathcal{G}_{\mathrm{bpg}}\left(1^{\lambda}\right), \\
& \operatorname{param}_{\mathbb{V}}:=\left(q, \mathbb{V}, \mathbb{G}_{T}, \mathbb{A}, e\right):=\mathcal{G}_{\text {dpvs }}\left(1^{\lambda}, 3, \operatorname{param}_{\mathbb{G}}\right), \\
& X:=\left(\begin{array}{c}
\vec{\chi}_{1} \\
\vec{\chi}_{2} \\
\vec{\chi}_{3}
\end{array}\right):=\left(\chi_{i, j}\right)_{i, j} \leftarrow G L\left(3, \mathbb{F}_{q}\right),\left(\vartheta_{i, j}\right)_{i, j}:=\left(\begin{array}{c}
\vec{\vartheta}_{1} \\
\vec{\vartheta}_{2} \\
\vec{\vartheta}_{3}
\end{array}\right):=\left(X^{T}\right)^{-1}, \quad \kappa, \xi \uplus \mathbb{F}_{q}^{\times}, \\
& \boldsymbol{b}_{i}:=\kappa\left(\vec{\chi}_{i}\right)_{\mathbb{A}}=\kappa \sum_{j=1}^{3} \chi_{i, j} \boldsymbol{a}_{j} \text { for } i=1,3, \quad \widehat{\mathbb{B}}:=\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{3}\right) \text {, } \\
& \boldsymbol{b}_{i}^{*}:=\xi\left(\vec{\vartheta}_{i}\right)_{\mathbb{A}}=\xi \sum_{j=1}^{3} \vartheta_{i, j} \boldsymbol{a}_{t, j} \quad \text { for } i=1,2,3, \quad \mathbb{B}^{*}:=\left(\boldsymbol{b}_{1}^{*}, \boldsymbol{b}_{2}^{*}, \boldsymbol{b}_{3}^{*}\right), \\
& g_{T}:=e(G, G)^{\kappa \xi}, \quad \operatorname{param}_{\mathrm{BPO}}:=\left(\operatorname{param}_{\mathbb{V}}, g_{T}\right), \quad \delta, \sigma, \omega \longleftarrow \mathbb{F}_{q}, \quad \rho, \tau \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}^{\times}, \\
& \boldsymbol{y}_{0}^{*}:=(\delta, 0, \sigma)_{\mathbb{B}^{*}}, \quad \boldsymbol{y}_{1}^{*}:=(\delta, \rho, \sigma)_{\mathbb{B}^{*}}, \quad \boldsymbol{f}:=(\omega, \tau, 0)_{\mathbb{B}}, \\
& \text { return }\left(\operatorname{param}_{\mathrm{BPO}}, \widehat{\mathbb{B}}, \mathbb{B}^{*}, \boldsymbol{y}_{\beta}^{*}, \boldsymbol{f}, \kappa G, \xi G\right) \text {. }
\end{aligned}
$$

for $\beta \stackrel{\cup}{\leftarrow}\{0,1\}$. For a probabilistic machine \mathcal{D}, we define the advantage of \mathcal{D} for Basic Problem $0, \operatorname{Adv}_{\mathcal{D}}^{\mathrm{BPO}}(\lambda)$, is similarly defined as in Definition 8.

Lemma 16 For any adversary \mathcal{D}, there is a probabilistic machine \mathcal{E}, whose running time is essentially the same as that of \mathcal{E}, such that for any security parameter $\lambda, \operatorname{Adv}_{\mathcal{D}}^{\mathrm{BPO}}(\lambda) \leq$ $\operatorname{Adv} \mathcal{E}_{\mathcal{E}} \operatorname{LIN}_{(\lambda)}+5 / q$.

Proof. We note that dual bases $\left(\mathbb{B}, \mathbb{B}^{*}\right)$ in Basic Problem 0 are generated by a general linear matrix $X \cup G L\left(3, \mathbb{F}_{q}\right)$, so Lemma 16 is proven in a similar manner to the security proof of Basic Problem 0 in [18].

The following Remark 15 is for the proofs of Lemmas of 17 and 19.
Remark 15 For matrix $W:=\left(\chi_{i, j}\right)_{i, j=1, \ldots, N} \in \mathbb{F}_{q}^{N \times N}$ and element \boldsymbol{v} in N-dimensional $\mathbb{V}, W(\boldsymbol{v})$ denotes $\sum_{i=1, j=1}^{N, N} \chi_{i, j} \phi_{i, j}(\boldsymbol{v})$ using canonical maps $\left\{\phi_{i, j}\right\}$ (Definition 2). Similarly, for matrix $\left(\vartheta_{i, j}\right):=\left(W^{-1}\right)^{\mathrm{T}},\left(W^{-1}\right)^{\mathrm{T}}(\boldsymbol{v}):=\sum_{i=1, j=1}^{N, N} \vartheta_{i, j} \phi_{i, j}(\boldsymbol{v})$. It holds that $e\left(W(\boldsymbol{x}),\left(W^{-1}\right)^{\mathrm{T}}(\boldsymbol{y})\right)=$ $e(\boldsymbol{x}, \boldsymbol{y})$ for any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{V}$.

A.2. 2 Proof of Lemma 4

Lemma 4. For any adversary \mathcal{B}, there exists a probabilistic machine \mathcal{E}, whose running times are essentially the same as that of \mathcal{B}, such that for any security parameter $\lambda, \operatorname{Adv}_{\mathcal{B}}^{\mathrm{P}^{1}}(\lambda) \leq$ $\operatorname{Adv}_{\mathcal{E}}^{\mathrm{DLIN}}(\lambda)+5 / q$.

Proof. At the top level, the proof of Lemma 4 is similar to the security proof of Problem 1 in [18]. The main difference is that special form matrices Eq. (3) are used for generating master public and secret keys in our schemes. One key fact for the security reduction is that $\mathcal{L}\left(4, n, \mathbb{F}_{q}\right)$ is a subgroup of $G L\left(4 n, \mathbb{F}_{q}\right)$ (Lemma 2).

For the proof of Lemma 4, we give the following intermediate problem, Basic Problems 1 (Definition 11). From Lemmas 16, 17 and 18, we obtain Lemma 4.

Based on Remark 3, hereafter, we consider the output of $\mathcal{G}_{\beta}^{\mathrm{P} 1}\left(1^{\lambda}, n\right)$ is expressed as (param ${ }_{n}$, $\left.\mathbb{B}_{0}, \widehat{\mathbb{B}}_{0}^{*}, \boldsymbol{e}_{\beta, 0}, \mathbb{B}_{1}, \widehat{\mathbb{B}}_{1}^{*},\left\{\boldsymbol{e}_{\beta, 1, i}\right\}_{i=1, \ldots, n}\right)$ and also we give the output of Basic Problem 1 as such a vector form over bases $\left\{\mathbb{B}_{t}\right\}_{t=0,1}$.
Definition 11 (Basic Problem 1) Basic Problem 1 is to guess $\beta \in\{0,1\}$, given (param ${ }_{n}$, $\left.\left\{\mathbb{B}_{t}, \widehat{\mathbb{B}}_{t}^{*}\right\}_{t=0,1}, \boldsymbol{f}_{\beta, 0},\left\{\boldsymbol{f}_{\beta, 1, i}\right\}_{i=1, ., n}\right) \stackrel{R}{\leftarrow} \mathcal{G}_{\beta}^{\mathrm{BP} 1}\left(1^{\lambda}, n\right)$, where

$$
\begin{aligned}
& \mathcal{G}_{\beta}^{\mathrm{BP1}}\left(1^{\lambda}, n\right): \quad\left(\operatorname{param}_{n},\left\{\mathbb{B}_{t}, \mathbb{B}_{t}^{*}\right\}_{t=0,1}\right) \stackrel{R}{\leftarrow} \mathcal{G}_{\mathrm{ob}}^{\mathrm{NIPE}, \mathrm{CT}}\left(1^{\lambda}, 4, n\right), \\
& \widehat{\mathbb{B}}_{0}^{*}:=\left(\boldsymbol{b}_{0,1}, \boldsymbol{b}_{0,3}, \ldots, \boldsymbol{b}_{0,5}\right), \quad \widehat{\mathbb{B}}_{1}^{*}:=\left(\boldsymbol{b}_{1,1}, \ldots, \boldsymbol{b}_{1, n}, \boldsymbol{b}_{1,2 n+1}, \ldots, \boldsymbol{b}_{1,4 n}\right), \\
& \omega, \gamma_{0}, \gamma_{1} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}, \quad \tau \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}^{\times}, \quad \boldsymbol{f}_{0,0}:=\left(\omega, 0,0,0, \gamma_{0}\right)_{\mathbb{B}_{0}}, \quad \boldsymbol{f}_{1,0}:=\left(\omega, \tau, 0,0, \gamma_{0}\right)_{\mathbb{B}_{0}}, \\
& \text { for } i=1, \ldots, n \text {; } \\
& \vec{e}_{i}:=\left(0^{i-1}, 1,0^{n-i}\right) \in \mathbb{F}_{q}^{n}, \\
& \overbrace{\substack{\boldsymbol{f}_{0,1, i} \\
\boldsymbol{f}_{1,1, i}=\\
\omega \vec{e}_{i}, \omega \vec{e}_{i},}}^{n} \overbrace{\begin{array}{c}
0^{n}, \\
\tau \vec{e}_{i},
\end{array}}^{n} \overbrace{\begin{array}{l}
0^{n}, \\
0^{n},
\end{array}}^{n} \overbrace{\begin{array}{l}
\gamma_{1} \vec{e}_{i} \\
\gamma_{1} \vec{e}_{i}
\end{array}}^{n} \overbrace{\substack{\left.\mathbb{B}_{1},\\
\right)_{\mathbb{B}_{1}},}}^{n}
\end{aligned}
$$

$$
\text { return }\left(\operatorname{param}_{n},\left\{\mathbb{B}_{t}, \widehat{\mathbb{B}}_{t}^{*}\right\}_{t=0,1}, \boldsymbol{f}_{\beta, 0},\left\{\boldsymbol{f}_{\beta, 1, i}\right\}_{i=1, \ldots, n}\right)
$$

for $\beta \stackrel{\cup}{\leftarrow}\{0,1\}$. For a probabilistic machine \mathcal{C}, we define the advantage of \mathcal{C} for Basic Problem 1, $\operatorname{Adv}_{\mathcal{C}}^{\mathrm{BP1}}(\lambda)$, as in Definition 8.

Lemma 17 For any adversary \mathcal{C}, there is a probabilistic machine \mathcal{D}, whose running time is essentially the same as that of \mathcal{C}, such that for any security parameter $\lambda, \operatorname{Adv}_{\mathcal{C}}^{\mathrm{BP1}}(\lambda) \leq \operatorname{Adv}_{\mathcal{D}}^{\mathrm{BPO}}(\lambda)$.

Proof. \mathcal{D} is given a Basic Problem 0 instance

$$
\left(\operatorname{param}_{\mathrm{BP} 0}, \widehat{\mathbb{B}}, \mathbb{B}^{*}, \boldsymbol{y}_{\beta}^{*}, \boldsymbol{f}, \kappa G, \xi G\right) .
$$

By using param $\mathbb{G}:=\left(q, \mathbb{G}, \mathbb{G}_{T}, G, e\right)$ underlying param ${ }_{\mathrm{BPO}}, \mathcal{D}$ calculates

$$
\begin{aligned}
& \operatorname{param}_{0}:=\left(q, \mathbb{V}_{0}, \mathbb{G}_{T}, \mathbb{A}_{0}, e\right):=\mathcal{G}_{\text {dpvs }}\left(1^{\lambda}, 5, \operatorname{param}_{\mathbb{G}}\right), \\
& \operatorname{param}_{1}:=\left(q, \mathbb{V}_{1}, \mathbb{G}_{T}, \mathbb{A}_{1}, e\right):=\mathcal{G}_{\text {dpvs }}\left(1^{\lambda}, 4 n, \operatorname{param}_{\mathbb{G}}\right), \\
& \operatorname{param}_{n}:=\left(\left\{\operatorname{param}_{t}\right\}_{t=0,1}, g_{T}\right),
\end{aligned}
$$

where g_{T} is contained in param ${ }_{\text {BPO }}$.
\mathcal{D} generates random linear transformation defined by matrices $W_{0} \stackrel{U}{\leftarrow} G L\left(5, \mathbb{F}_{q}\right)$ on \mathbb{V}_{0} and $W_{1} \stackrel{\cup}{\leftarrow} \mathcal{P}\left(4, n, \mathbb{F}_{q}\right)$ on \mathbb{V}_{1} as in Remark 15, where $\mathcal{P}\left(4, n, \mathbb{F}_{q}\right)$ is given in Eq. (14). Then \mathcal{D} sets

$$
\begin{aligned}
& \boldsymbol{d}_{0, \iota}:=W_{0}\left(\boldsymbol{b}_{\iota}^{*}, 0,0\right) \text { for } \iota=1,2, \quad \boldsymbol{d}_{0,3}:=W_{0}(0,0,0, \xi G, 0), \\
& \boldsymbol{d}_{0,4}:=W_{0}(0,0,0,0, \xi G), \quad \boldsymbol{d}_{0,5}:=W_{0}\left(\boldsymbol{b}_{3}^{*}, 0,0\right), \\
& \boldsymbol{d}_{0, \iota}^{*}:=\left(W_{0}^{-1}\right)^{\mathrm{T}}\left(\boldsymbol{b}_{\iota}, 0,0\right) \text { for } \iota=1,2, \quad \boldsymbol{d}_{0,3}^{*}:=\left(W_{0}^{-1}\right)^{\mathrm{T}}(0,0,0, \kappa G, 0), \\
& \boldsymbol{d}_{0,4}^{*}:=\left(W_{0}^{-1}\right)^{\mathrm{T}}(0,0,0,0, \kappa G), \quad \boldsymbol{d}_{0,5}^{*}:=\left(W_{0}^{-1}\right)^{\mathrm{T}}\left(\boldsymbol{b}_{3}, 0,0\right), \\
& \boldsymbol{g}_{\beta, 0}:=W_{0}\left(\boldsymbol{y}_{\beta}^{*}, 0,0\right)+\eta \boldsymbol{d}_{0,5} \text { where } \eta \leftarrow \mathbb{F}_{q}, \\
& \text { for } i=1, \ldots, n, \\
& \boldsymbol{p}_{1,4(i-1)+\iota}:=W_{1}\left(0^{4(i-1)}, \boldsymbol{b}_{\iota}^{*}, 0,0^{4(n-i)}\right) \text { for } \iota=1,2, \\
& \boldsymbol{p}_{1,4(i-1)+3}:=W_{1}\left(0^{4(i-1)}, 0^{3}, \xi G, 0^{4(n-i)}\right), \quad \boldsymbol{p}_{1,4 i}:=W_{1}\left(0^{4(i-1)}, \boldsymbol{b}_{3}^{*}, 0,0^{4(n-i)}\right), \\
& \boldsymbol{p}_{1,4(i-1)+\iota}^{*}:=\left(W_{1}^{-1}\right)^{\mathrm{T}}\left(0^{4(i-1)}, \boldsymbol{b}_{\iota}, 0,0^{4(n-i)}\right) \text { for } \iota=1,2, \\
& \boldsymbol{p}_{1,4(i-1)+3}^{*}:=\left(W_{1}^{-1}\right)^{\mathrm{T}}\left(0^{4(i-1)}, 0^{3}, \kappa G, 0^{4(n-i)}\right), \boldsymbol{p}_{1,4 i}^{*}:=W_{1}\left(0^{4(i-1)}, \boldsymbol{b}_{3}, 0,0^{4(n-i)}\right), \\
& \boldsymbol{g}_{\beta, 1, i}:=W_{1}\left(0^{4(i-1)}, \boldsymbol{y}_{\beta}^{*}, 0,0^{4(n-i)}\right),
\end{aligned}
$$

where $\left(0^{4(i-1)}, \boldsymbol{v}, 0,0^{4(n-i)}\right):=\left(0^{4(i-1)}, \widetilde{G}_{1}, \widetilde{G}_{2}, \widetilde{G}_{3}, 0,0^{4(n-i)}\right)$ for any $\boldsymbol{v}:=\left(\widetilde{G}_{1}, \widetilde{G}_{2}, \widetilde{G}_{3}\right) \in \mathbb{V}=$ \mathbb{G}^{3}. Then, $\mathbb{D}_{0}:=\left(\boldsymbol{d}_{0, i}\right)_{i=1, \ldots, 5}$ and $\mathbb{D}_{0}^{*}:=\left(\boldsymbol{d}_{0, i}^{*}\right)_{i=1, \ldots, 5}, \mathbb{P}_{1}:=\left(\boldsymbol{p}_{1, i}\right)_{i=1, \ldots, 4 n}$ and $\mathbb{P}_{1}^{*}:=\left(\boldsymbol{p}_{1, i}^{*}\right)_{i=1, \ldots, 4 n}$ are dual orthonormal bases.

Moreover, we see that the distribution of \mathbb{D}_{1} is equivalent to that of bases generated by using random special type matrix $Y \underset{\cup}{\cup} \mathcal{P}\left(4, n, \mathbb{F}_{q}\right)$. For the permutation π given in Eq. (13) and the associated matrix Π, the left multiplication by Π gives the permutation π of the basis vectors $\left\{\boldsymbol{p}_{1, i}\right\}_{i=1, \ldots, 4 n}$ and the right multiplication by Π^{-1} gives the permutation π of the coordinates of vectors in $\mathbb{G}^{4 n}$. Therefore, by the conjugate action of the matrix Π, we obtain a basis $\mathbb{D}_{1}:=\left(\boldsymbol{d}_{1, \iota}\right)_{\iota=1 \ldots, 4 n}$, whose distribution is equivalent to that of bases generated by using random special type matrix $X \stackrel{\cup}{\leftarrow} \mathcal{L}\left(4, n, \mathbb{F}_{q}\right)=\Pi^{-1} \cdot \mathcal{P}\left(4, n, \mathbb{F}_{q}\right) \cdot \Pi$, and its dual $\mathbb{D}_{1}^{*}:=\left(\boldsymbol{d}_{1, \iota}^{*}\right)_{\iota=1, \ldots, 4 n}$.
\mathcal{D} can compute $\mathbb{D}_{0}, \mathbb{D}_{1}, \widehat{\mathbb{D}}_{0}^{*}:=\left(\boldsymbol{d}_{0,1}^{*}, \boldsymbol{d}_{0,3}^{*}, \ldots, \boldsymbol{d}_{0,5}^{*}\right), \widehat{\mathbb{D}}_{1}^{*}:=\left(\boldsymbol{d}_{1,1}^{*}, \ldots, \boldsymbol{d}_{1, n}^{*}, \boldsymbol{d}_{1,2 n+1}^{*}, \ldots, \boldsymbol{d}_{1,4 n}^{*}\right)$ from $\widehat{\mathbb{B}}:=\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{3}\right), \mathbb{B}^{*}, \kappa G$, and ξG. \mathcal{D} then gives $\left(\operatorname{param}_{n},\left\{\mathbb{D}_{t}, \widehat{\mathbb{D}}_{t}^{*}\right\}_{t=0,1}, \boldsymbol{g}_{\beta, 0},\left\{\boldsymbol{g}_{\beta, 1, i}\right\}_{i=1, \ldots, n}\right)$ to \mathcal{C}, and outputs $\beta^{\prime} \in\{0,1\}$ if \mathcal{C} outputs β^{\prime}.
$\boldsymbol{g}_{\beta, 0}$ is expressed over basis \mathbb{D}_{0} as

$$
\boldsymbol{g}_{0,0}=W_{0}\left(\boldsymbol{y}_{0}^{*}, 0,0\right)+\eta \boldsymbol{d}_{0,5}=\left(\delta, 0,0,0, \sigma_{0}\right)_{\mathbb{D}_{0}}, \quad \boldsymbol{g}_{1,0}=W_{0}\left(\boldsymbol{y}_{1}^{*}, 0,0\right)+\eta \boldsymbol{d}_{0,5}=\left(\delta, \rho, 0,0, \sigma_{0}\right)_{\mathbb{D}_{0}},
$$

with $\sigma_{0}:=\sigma+\eta$, and $\boldsymbol{g}_{\beta, 1, i}(i=1, \ldots, n)$ are expressed over bases \mathbb{P}_{1} and \mathbb{D}_{1} as

$$
\begin{aligned}
& \boldsymbol{g}_{0,1, i}=W_{1}\left(0^{4(i-1)}, \boldsymbol{y}_{0}^{*}, 0,0^{4(n-i)}\right)=\left(0^{4(i-1)}, \delta, 0,0, \sigma, 0^{4(n-i)}\right)_{\mathbb{P}_{1}}=(\overbrace{\delta \vec{e}_{i}}^{n}, \overbrace{0^{n}}^{n}, \overbrace{0^{n}}^{n}, \overbrace{\sigma \vec{e}_{i}}^{n})_{\mathbb{D}_{1}}, \\
& \boldsymbol{g}_{1,1, i}=W_{1}\left(0^{4(i-1)}, \boldsymbol{y}_{1}^{*}, 0,0^{4(n-i)}\right)=\left(0^{4(i-1)}, \delta, \rho, 0, \sigma, 0^{4(n-i)}\right)_{\mathbb{P}_{1}}=(\overbrace{\delta \vec{e}_{i}}^{n}, \overbrace{\rho \vec{e}_{i}}^{n}, \overbrace{0^{n}}^{n}, \overbrace{\sigma \vec{e}_{i}}^{n})_{\mathbb{D}_{1}},
\end{aligned}
$$

where δ, ρ, σ, and σ_{0} are distributed uniformly in \mathbb{F}_{q}. Therefore, the distribution of (param ${ }_{n}$, $\left.\left\{\mathbb{D}_{t}, \widehat{\mathbb{D}}_{t}^{*}\right\}_{t=0,1}, \boldsymbol{g}_{\beta, 0},\left\{\boldsymbol{g}_{\beta, 1, i}\right\}_{i=1, \ldots, n}\right)$ is exactly the same as $\left\{\varrho \mid \varrho \stackrel{\mathrm{R}}{\leftarrow} \mathcal{G}_{\beta}^{\mathrm{BP}}\left(1^{\lambda}, n\right)\right\}$.

Lemma 18 For any adversary \mathcal{B}, there is a probabilistic machine \mathcal{C}, whose running time is essentially the same as that of \mathcal{B}, such that for any security parameter $\lambda, \operatorname{Adv}_{\mathcal{B}}^{\mathrm{P}^{1}}(\lambda)=\operatorname{Adv}_{\mathcal{C}}^{\mathrm{BP}}(\lambda)$.

Proof. Given a Basic Problem 1 instance

$$
\left(\operatorname{param}_{n},\left\{\mathbb{B}_{t}, \widehat{\mathbb{B}}_{t}^{*}\right\}_{t=0,1}, \boldsymbol{f}_{\beta, 0},\left\{\boldsymbol{f}_{\beta, 1, i}\right\}_{i=1, . ., n}\right)
$$

\mathcal{C} generates $u, u_{n}^{\prime} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}^{\times}, u_{1}^{\prime}, \ldots, u_{n-1}^{\prime} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}$ and

$$
U:=\left(\begin{array}{cccc}
u & & & u_{1}^{\prime} \\
& \ddots & & \vdots \\
& & u & u_{n-1}^{\prime} \\
& & & u_{n}^{\prime}
\end{array}\right), \quad Z:=\left(U^{-1}\right)^{\mathrm{T}}:=\left(\begin{array}{cccc}
u^{-1} & & \\
& \ddots & \\
-\left(u_{n}^{\prime}\right)^{-1} u_{1}^{\prime} & \ldots & -\left(u_{n}^{\prime}\right)^{-1} u_{n-1}^{\prime} & u_{n}^{\prime-1}
\end{array}\right)
$$

$\left(\boldsymbol{d}_{1, n+1}, \ldots, \boldsymbol{d}_{1,2 n}\right)^{\mathrm{T}}:=Z \cdot\left(\boldsymbol{b}_{1, n+1}, \ldots, \boldsymbol{b}_{1,2 n}\right)^{\mathrm{T}}$ and $\left(\boldsymbol{d}_{1, n+1}^{*}, \ldots, \boldsymbol{d}_{1,2 n}^{*}\right)^{\mathrm{T}}:=U \cdot\left(\boldsymbol{b}_{1, n+1}^{*}, \ldots, \boldsymbol{b}_{1,2 n}^{*}\right)^{\mathrm{T}}$. We set

$$
\begin{aligned}
\mathbb{D}_{1} & :=\left(\boldsymbol{b}_{1,1}, \ldots, \boldsymbol{b}_{1, n}, \boldsymbol{d}_{1, n+1}, \ldots, \boldsymbol{d}_{1,2 n}, \boldsymbol{b}_{1,2 n+1}, \ldots, \boldsymbol{b}_{1,4 n}\right) \\
\mathbb{D}_{1}^{*} & :=\left(\boldsymbol{b}_{1,1}^{*}, \ldots, \boldsymbol{b}_{1, n}^{*}, \boldsymbol{d}_{1, n+1}^{*}, \ldots, \boldsymbol{d}_{1,2 n}^{*}, \boldsymbol{b}_{1,2 n+1}^{*}, \ldots, \boldsymbol{b}_{1,4 n}^{*}\right)
\end{aligned}
$$

We then easily verify that \mathbb{D}_{1} and \mathbb{D}_{1}^{*} are dual orthonormal, and are distributed the same as the original bases, \mathbb{B}_{1} and \mathbb{B}_{1}^{*}. We note that \mathcal{C} cannot calculate above $\boldsymbol{d}_{1, i}^{*}$ for $i=n+1, \ldots, 2 n$ $\left(\right.$ from $\left.\widehat{\mathbb{B}}_{1}^{*}\right)$ and \mathbb{D}_{1}^{*} is consistent with $\widehat{\mathbb{B}}_{1}^{*}$. \mathcal{C} gives (param $, \mathbb{B}_{0}, \widehat{\mathbb{B}}_{0}^{*}, \mathbb{D}_{1}, \widehat{\mathbb{B}}_{1}^{*}, \boldsymbol{f}_{\beta, 0},\left\{\boldsymbol{f}_{\beta, 1, i}\right\}_{i=1, \ldots, n}$) to \mathcal{B}, and outputs $\beta^{\prime} \in\{0,1\}$ if \mathcal{B} outputs β^{\prime}.

Then, with respect to $\mathbb{D}_{1}, \mathbb{D}_{1}^{*}\left(\right.$ instead of $\left.\mathbb{B}_{1}, \mathbb{B}_{1}^{*}\right)$, the above answer to \mathcal{B} has the same distribution as the Problem 1 instance, i.e., the above instance has the same distribution as the one given by generator $\mathcal{G}_{\beta}^{\mathrm{P} 1}\left(1^{\lambda}, n\right)$.

A.2.3 Proof of Lemma 5

Lemma 5. For any adversary \mathcal{B}, there exists a probabilistic machine \mathcal{E}, whose running time is essentially the same as that of \mathcal{B}, such that for any security parameter $\lambda, \operatorname{Adv}_{\mathcal{B}}^{\mathrm{P}^{2}}(\lambda) \leq$ $\operatorname{Adv}_{\mathcal{E}}^{\operatorname{DLIN}}(\lambda)+5 / q$.

Proof. Similarly to Lemma 4 , we employ the fact that $\mathcal{L}\left(4, n, \mathbb{F}_{q}\right)$ is a subgroup of $G L\left(4 n, \mathbb{F}_{q}\right)$ (Lemma 2) in the proof. For the proof of Lemma 5, we give an intermediate problem, Basic Problem 2 below (Definition 12). From Lemmas 16, 19 and 20, we obtain Lemma 5.

Based on Remark 4, hereafter, we consider the output of $\mathcal{G}_{\beta}^{\mathrm{P} 2}\left(1^{\lambda}, n\right)$ is expressed as (param n, $\left.\widehat{\mathbb{B}}_{0}, \mathbb{B}_{0}^{*}, \boldsymbol{h}_{\beta, 0}^{*}, \boldsymbol{e}_{0}, \widehat{\mathbb{B}}_{1}, \mathbb{B}_{1}^{*},\left\{\boldsymbol{h}_{\beta, 1, i}^{*}, \boldsymbol{e}_{1, i}\right\}_{i=1, \ldots, n}\right)$ and also we give the output of Basic Problem 2 as such a vector form over bases $\left\{\mathbb{B}_{t}, \mathbb{B}_{t}^{*}\right\}_{t=0,1}$.

Definition 12 (Basic Problem 2) Basic Problem 2 is to guess $\beta \in\{0,1\}$, given (param $_{n}$, $\left.\left\{\widehat{\mathbb{B}}_{t}, \mathbb{B}_{t}^{*}\right\}_{t=0,1}, \boldsymbol{y}_{\beta, 0}^{*}, \boldsymbol{f}_{0},\left\{\boldsymbol{y}_{\beta, 1, i}^{*}, \boldsymbol{f}_{1, i}\right\}_{i=1, . ., n}\right) \stackrel{\mathrm{R}}{\leftarrow} \mathcal{G}_{\beta}^{\mathrm{BP2}}\left(1^{\lambda}, n\right)$, where

```
\(\mathcal{G}_{\beta}^{\mathrm{BP} 2}\left(1^{\lambda}, n\right): \quad\left(\operatorname{param}_{n},\left\{\mathbb{B}_{t}, \mathbb{B}_{t}^{*}\right\}_{t=0,1}\right) \stackrel{\mathrm{R}}{\leftarrow} \mathcal{G}_{\mathrm{ob}}^{\mathrm{NIPE}, \mathrm{CT}}\left(1^{\lambda}, 4, n\right)\),
    \(\widehat{\mathbb{B}}_{0}:=\left(\boldsymbol{b}_{0,1}, \boldsymbol{b}_{0,3}, \ldots, \boldsymbol{b}_{0,5}\right), \quad \widehat{\mathbb{B}}_{1}:=\left(\boldsymbol{b}_{1,1}, \ldots, \boldsymbol{b}_{1, n}, \boldsymbol{b}_{1,2 n+1}, \ldots, \boldsymbol{b}_{1,4 n}\right)\),
    \(\delta, \delta_{0}, \omega \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}, \quad \rho, \tau \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}^{\times}\),
    \(\boldsymbol{y}_{0,0}^{*}:=\left(\delta, 0,0, \delta_{0}, 0\right)_{\mathbb{B}_{0}^{*}}, \quad \boldsymbol{y}_{1,0}^{*}:=\left(\delta, \rho, 0, \delta_{0}, 0\right)_{\mathbb{B}_{0}^{*}}, \quad \boldsymbol{f}_{0}:=(\omega, \tau, 0,0,0)_{\mathbb{B}_{0}}\),
    for \(i=1, \ldots, n\);
        \(\vec{e}_{i}:=\left(0^{i-1}, 1,0^{n-i}\right) \in \mathbb{F}_{q}^{n}\),
\begin{tabular}{|c|c|c|c|c|}
\hline \(\boldsymbol{y}_{0,1, i}^{*}:=\) & \(\delta \vec{e}_{i}\), & \(0^{n}\), & \(\delta_{0} \vec{e}_{i}\) & \(0^{n}\) \\
\hline \(\boldsymbol{y}_{1,1, i}^{*}:=\) & \(\delta \vec{e}_{i}\), & \(\rho \vec{e}_{i}\), & \(\delta_{0} \vec{e}_{i}\) & \(0^{n}\) \\
\hline \(\boldsymbol{f}_{1, i}:=\) & \(\omega \vec{e}_{i}\), & \(\tau \vec{e}_{i}\), & \(0^{n}\), & \\
\hline
\end{tabular}
```

return $\left(\operatorname{param}_{n},\left\{\widehat{\mathbb{B}}_{t}, \mathbb{B}_{t}^{*}\right\}_{t=0,1}, \boldsymbol{y}_{\beta, 0}^{*}, \boldsymbol{f}_{0},\left\{\boldsymbol{y}_{\beta, 1, i}^{*}, \boldsymbol{f}_{1, i}\right\}_{i=1, . ., n}\right)$.
for $\beta \stackrel{U}{\leftarrow}\{0,1\}$. For a probabilistic machine \mathcal{C}, we define the advantage of \mathcal{C} for Basic Problem 2, $\operatorname{Adv}_{\mathcal{C}}^{\mathrm{BP} 2}(\lambda)$, as in Definition 8.

Lemma 19 For any adversary \mathcal{C}, there is a probabilistic machine \mathcal{D}, whose running time is essentially the same as that of \mathcal{C}, such that for any security parameter $\lambda, \operatorname{Adv}_{\mathcal{C}}^{\mathrm{BP2}}(\lambda) \leq \operatorname{Adv}_{\mathcal{D}}^{\mathrm{BP}}(\lambda)$.

Proof. \mathcal{D} is given a Basic Problem 0 instance

$$
\left(\operatorname{param}_{\mathrm{BPO}}, \widehat{\mathbb{B}}, \mathbb{B}^{*}, \boldsymbol{y}_{\beta}^{*}, \boldsymbol{f}, \kappa G, \xi G\right)
$$

By using $\operatorname{param}_{\mathbb{G}}:=\left(q, \mathbb{G}, \mathbb{G}_{T}, G, e\right)$ underlying param ${ }_{\mathrm{BPO}}, \mathcal{D}$ calculates

$$
\begin{aligned}
& \operatorname{param}_{0}:=\left(q, \mathbb{V}_{0}, \mathbb{G}_{T}, \mathbb{A}_{0}, e\right):=\mathcal{G}_{\mathrm{dpvs}}\left(1^{\lambda}, 5, \operatorname{param}_{\mathbb{G}}\right), \\
& \operatorname{param}_{1}:=\left(q, \mathbb{V}_{1}, \mathbb{G}_{T}, \mathbb{A}_{t}, e\right):=\mathcal{G}_{\mathrm{dpvs}}\left(1^{\lambda}, 4 n, \operatorname{param}_{\mathbb{G}}\right), \\
& \operatorname{param}_{n}:=\left(\left\{\operatorname{param}_{t}\right\}_{t=0,1}, g_{T}\right)
\end{aligned}
$$

where g_{T} is contained in param BPO .
\mathcal{D} generates random linear transformations defined by matrices $W_{0} \stackrel{U}{\leftarrow} G L\left(5, \mathbb{F}_{q}\right)$ on \mathbb{V}_{0} and $W_{1} \stackrel{U}{\leftarrow} \mathcal{P}\left(4, n, \mathbb{F}_{q}\right)$ on \mathbb{V}_{1} as in Remark 15 , where $\mathcal{P}\left(4, n, \mathbb{F}_{q}\right)$ is given in Eq. (14). Then \mathcal{D} sets

$$
\begin{aligned}
& \boldsymbol{d}_{0, \iota}:=W_{0}\left(\boldsymbol{b}_{\iota}, 0,0\right) \quad \text { for } \iota=1,2, \quad \boldsymbol{d}_{0,3}:=W_{0}(0,0,0, \kappa G, 0), \\
& \boldsymbol{d}_{0,4}:=W_{0}\left(\boldsymbol{b}_{3}, 0,0\right), \quad \boldsymbol{d}_{0,5}:=W_{0}(0,0,0,0, \kappa G), \\
& \boldsymbol{d}_{0, \iota}^{*}:=\left(W_{0}^{-1}\right)^{\mathrm{T}}\left(\boldsymbol{b}_{\iota}^{*}, 0,0\right) \quad \text { for } \iota=1,2, \quad \boldsymbol{d}_{0,3}^{*}:=\left(W_{0}^{-1}\right)^{\mathrm{T}}(0,0,0, \xi G, 0), \\
& \boldsymbol{d}_{0,4}^{*}:=\left(W_{0}^{-1}\right)^{\mathrm{T}}\left(\boldsymbol{b}_{3}^{*}, 0,0\right) \quad \boldsymbol{d}_{0,5}^{*}:=\left(W_{0}^{-1}\right)^{\mathrm{T}}(0,0,0,0, \xi G), \\
& \boldsymbol{q}_{\beta, 0}^{*}:=\left(W_{0}^{-1}\right)^{\mathrm{T}}\left(\boldsymbol{y}_{\beta}^{*}, 0,0\right), \quad \boldsymbol{g}_{0}:=W_{0}(\boldsymbol{f}, 0,0), \\
& \text { for } i=1, \ldots, n, \\
& \quad \boldsymbol{p}_{1,4(i-1)+\iota}:=W_{1}\left(0^{4(i-1)}, \boldsymbol{b}_{\iota}, 0,0^{4(n-i)}\right) \text { for } \iota=1,2,3, \\
& \boldsymbol{p}_{1,4 i}:=W_{t}\left(0^{4(i-1)}, 0^{3}, \kappa G, 0^{4(n-i)}\right), \\
& \boldsymbol{p}_{1,4(i-1)+\iota}^{*}:=\left(W_{1}^{-1}\right)^{\mathrm{T}}\left(0^{4(i-1)}, \boldsymbol{b}_{\iota}^{*}, 0,0^{4(n-i)}\right) \text { for } \iota=1,2,3, \\
& \boldsymbol{p}_{1,4 i}^{*}:=\left(W_{1}^{-1}\right)^{\mathrm{T}}\left(0^{4(i-1)}, 0^{3}, \xi G, 0^{4(n-i)}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{q}_{\beta, 1, i}^{*}:=\left(W_{1}^{-1}\right)^{\mathrm{T}}\left(0^{4(i-1)}, \boldsymbol{y}_{\beta}^{*}, 0,0^{4(n-i)}\right)+\sum_{j=1}^{n} \eta_{i, j} \boldsymbol{p}_{1,4(j-1)+3}^{*} \\
& \text { where } \vec{\eta}_{i}:=\left(\eta_{i, 1}, \ldots, \eta_{i, n}\right) \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}^{n} \\
& \boldsymbol{g}_{1, i}:=W_{1}\left(0^{4(i-1)}, \boldsymbol{f}, 0,0^{4(n-i)}\right)
\end{aligned}
$$

where $\left(0^{4(i-1)}, \boldsymbol{v}, 0,0^{4(n-i)}\right):=\left(0^{4(i-1)}, \widetilde{G}_{1}, \widetilde{G}_{2}, \widetilde{G}_{3}, 0,0^{4(n-i)}\right)$ for any $\boldsymbol{v}:=\left(\widetilde{G}_{1}, \widetilde{G}_{2}, \widetilde{G}_{3}\right) \in \mathbb{V}=$ \mathbb{G}^{3}. Then, $\mathbb{D}_{0}:=\left(\boldsymbol{d}_{0, i}\right)_{i=1, \ldots, 5}$ and $\mathbb{D}_{0}^{*}:=\left(\boldsymbol{d}_{0, i}^{*}\right)_{i=1, \ldots, 5}, \mathbb{P}_{1}:=\left(\boldsymbol{p}_{1, i}\right)_{i=1, \ldots, 4 n}$ and $\mathbb{P}_{1}^{*}:=\left(\boldsymbol{p}_{1, i}^{*}\right)_{i=1, \ldots, 4 n}$ are dual orthonormal bases.

Moreover, we see that the distribution of \mathbb{P}_{1} is equivalent to that of bases generated by using random special type matrix $Y \stackrel{U}{\leftarrow} \mathcal{P}\left(4, n, \mathbb{F}_{q}\right)$. For the permutation π given in Eq. (13) and the associated matrix Π, the left multiplication by Π gives the permutation π of the basis vectors $\left\{\boldsymbol{p}_{1, i}\right\}_{i=1, \ldots, 4 n}$ and the right multiplication by Π^{-1} gives the permutation π of the coordinates of vectors in $\mathbb{G}^{4 n}$. Therefore, by the conjugate action of the matrix Π, we obtain a basis $\mathbb{D}_{1}:=\left(\boldsymbol{d}_{1, \iota}\right)_{\iota=1 \ldots, 4 n}$, whose distribution is equivalent to that of bases generated by using random special type matrix $X \underset{\cup}{\leftarrow} \mathcal{L}\left(4, n, \mathbb{F}_{q}\right)=\Pi^{-1} \cdot \mathcal{P}\left(4, n, \mathbb{F}_{q}\right) \cdot \Pi$, and its dual $\mathbb{D}_{1}^{*}:=\left(\boldsymbol{d}_{1, \iota}^{*}\right)_{\iota=1 \ldots, 4 n}$.
\mathcal{D} can compute $\widehat{\mathbb{D}}_{0}:=\left(\boldsymbol{d}_{0,1}, \boldsymbol{d}_{0,3}, \ldots, \boldsymbol{d}_{0,5}\right), \widehat{\mathbb{D}}_{1}:=\left(\boldsymbol{d}_{1,1}, \ldots, \boldsymbol{d}_{1, n}, \boldsymbol{d}_{1,2 n+1}, \ldots, \boldsymbol{d}_{1,4 n}\right), \mathbb{D}_{0}^{*}, \mathbb{D}_{1}^{*}$ from $\widehat{\mathbb{B}}:=\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{3}\right), \mathbb{B}^{*}, \kappa G$, and $\xi G . \mathcal{D}$ then gives $\left(\operatorname{param}_{n},\left\{\widehat{\mathbb{D}}_{t}, \mathbb{D}_{t}^{*}\right\}_{t=0,1}, \boldsymbol{q}_{\beta, 0}^{*}, \boldsymbol{g}_{0},\left\{\boldsymbol{q}_{\beta, 1, i}^{*}, \boldsymbol{g}_{1, i}\right\}_{i=1, \ldots, n}\right)$ to \mathcal{C}, and outputs $\beta^{\prime} \in\{0,1\}$ if \mathcal{C} outputs β^{\prime}.
$\boldsymbol{q}_{\beta, 0}^{*}, \boldsymbol{g}_{0}$ are expressed over bases $\left(\mathbb{D}_{0}, \mathbb{D}_{0}^{*}\right)$ as

$$
\begin{aligned}
& \boldsymbol{q}_{0,0}^{*}=\left(W_{0}^{-1}\right)^{\mathrm{T}}\left(\boldsymbol{y}_{0}^{*}, 0,0\right)=(\delta, 0,0, \sigma, 0)_{\mathbb{D}_{0}^{*}}, \quad \boldsymbol{q}_{1,0}^{*}=\left(W_{0}^{-1}\right)^{\mathrm{T}}\left(\boldsymbol{y}_{1}^{*}, 0,0\right)=(\delta, \rho, 0, \sigma, 0)_{\mathbb{D}_{0}^{*}}, \\
& \boldsymbol{g}_{0}=W_{0}(\boldsymbol{f}, 0,0)=(\omega, \tau, 0,0,0)_{\mathbb{D}_{0}}
\end{aligned}
$$

and $\boldsymbol{q}_{\beta, 1, i}^{*}, \boldsymbol{g}_{1, i}(i=1, \ldots, n)$ are expressed over bases $\left(\mathbb{P}_{1}, \mathbb{P}_{1}^{*}\right)$ and $\left(\mathbb{D}_{1}, \mathbb{D}_{1}^{*}\right)$ as

$$
\begin{aligned}
\boldsymbol{q}_{0,1, i}^{*} & =\left(W_{1}^{-1}\right)^{\mathrm{T}}\left(0^{4(i-1)}, \boldsymbol{y}_{0}^{*}, 0,0^{4(n-i)}\right)+\sum_{j=1}^{n} \eta_{i, j} \boldsymbol{p}_{1,4(j-1)+3}^{*} \\
& =\left(0^{4(i-1)}, \delta, 0, \sigma, 0,0^{4(n-i)}\right)_{\mathbb{P}_{1}^{*}}+\sum_{j=1}^{n} \eta_{i, j} \boldsymbol{p}_{1,4(j-1)+3}^{*}=\overbrace{\left(\vec{e}_{i},\right.}^{n} \overbrace{0^{n}}^{n}, \overbrace{\vec{\varphi}_{i}}^{n}, \overbrace{0^{n}}^{n})_{\mathbb{D}_{1}^{*}}^{n}, \\
\boldsymbol{q}_{1,1, i}^{*} & =\left(W_{1}^{-1}\right)^{\mathrm{T}}\left(0^{4(i-1)}, \boldsymbol{y}_{1}^{*}, 0,0^{4(n-i)}\right)+\sum_{j=1}^{n} \eta_{i, j} \boldsymbol{p}_{1,4(j-1)+3}^{*} \\
& =\left(0^{4(i-1)}, \delta, \rho, \sigma, 0,0^{4(n-i)}\right)_{\mathbb{P}_{1}^{*}}+\sum_{j=1}^{n} \eta_{i, j} \boldsymbol{p}_{1,4(j-1)+3}^{*}=\overbrace{\left(\delta \overrightarrow{e_{i}}\right.}^{n}, \overbrace{\rho \vec{e}_{i}}^{n}, \overbrace{\vec{\varphi}_{i}}^{n}, \overbrace{0^{n}}^{n})_{\mathbb{D}_{1}^{*}}^{n}, \\
\boldsymbol{g}_{1, i} & =W_{1}\left(0^{4(i-1)}, \boldsymbol{f}, 0,0^{4(n-i)}\right)=\left(0^{4(i-1)}, \omega, \tau, 0,0,0^{4(n-i)}\right)_{\mathbb{P}_{1}}=\overbrace{\omega \overrightarrow{e_{i}}}^{n}, \overbrace{\tau \vec{e}_{i}}^{n}, \overbrace{0^{n}}^{n}, \overbrace{0^{n}}^{n})_{\mathbb{D}_{1}},
\end{aligned}
$$

where $\vec{\varphi}_{i}:=\sigma \vec{e}_{i}+\vec{\eta}_{i}$, and $\delta, \rho, \sigma, \omega, \tau \in \mathbb{F}_{q}$, and $\vec{\varphi}_{i} \in \mathbb{F}_{q}^{n}$ are uniformly and independently distributed. Therefore, the distribution of $\left(\operatorname{param}_{n},\left\{\widehat{\mathbb{D}}_{t}, \mathbb{D}_{t}^{*}\right\}_{t=0,1}, \boldsymbol{q}_{\beta, 0}^{*}, \boldsymbol{g}_{0},\left\{\boldsymbol{q}_{\beta, 1, i}^{*}, \boldsymbol{g}_{1, i}\right\}_{i=1, \ldots, n}\right)$ is exactly the same as $\left\{\varrho \mid \varrho \stackrel{\mathrm{R}}{\leftarrow} \mathcal{G}_{\beta}^{\mathrm{BP} 2}\left(1^{\lambda}, n\right)\right\}$.

Lemma 20 For any adversary \mathcal{B}, there is a probabilistic machine \mathcal{C}, whose running time is essentially the same as that of \mathcal{B}, such that for any security parameter $\lambda, \operatorname{Adv}_{\mathcal{B}}^{\mathrm{P}^{2}}(\lambda)=\operatorname{Adv}_{\mathcal{C}}^{\mathrm{BP}}(\lambda)$.

Proof. Given a Basic Problem 2 instance

$$
\left(\operatorname{param}_{n},\left\{\widehat{\mathbb{B}}_{t}, \mathbb{B}_{t}^{*}\right\}_{t=0,1}, \boldsymbol{y}_{\beta, 0}^{*}, \boldsymbol{f}_{0},\left\{\boldsymbol{y}_{\beta, 1, i}^{*}, \boldsymbol{f}_{1, i}\right\}_{i=1, \ldots, n}\right),
$$

\mathcal{C} generates $u, u_{n}^{\prime} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}^{\times}, u_{1}^{\prime}, \ldots, u_{n-1}^{\prime} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}$ and
$U:=\left(\begin{array}{cccc}u & & & u_{1}^{\prime} \\ & \ddots & & \vdots \\ & & u & u_{n-1}^{\prime} \\ & & & u_{n}^{\prime}\end{array}\right), Z:=\left(U^{-1}\right)^{\mathrm{T}}:=\left(\begin{array}{cccc}u^{-1} & & \\ & \ddots & \\ & & u^{-1} & \\ -\left(u_{n}^{\prime}\right)^{-1} u_{1}^{\prime} & \ldots & -\left(u_{n}^{\prime}\right)^{-1} u_{n-1}^{\prime} & u_{n}^{\prime-1}\end{array}\right)$,
$\left(\boldsymbol{d}_{1, n+1}, \ldots, \boldsymbol{d}_{1,2 n}\right)^{\mathrm{T}}:=Z \cdot\left(\boldsymbol{b}_{1, n+1}, \ldots, \boldsymbol{b}_{1,2 n}\right)^{\mathrm{T}}$ and $\left(\boldsymbol{d}_{1, n+1}^{*}, \ldots, \boldsymbol{d}_{1,2 n}^{*}\right)^{\mathrm{T}}:=U \cdot\left(\boldsymbol{b}_{1, n+1}^{*}, \ldots, \boldsymbol{b}_{1,2 n}^{*}\right)^{\mathrm{T}}$.
We set

$$
\begin{aligned}
& \mathbb{D}_{1}:=\left(\boldsymbol{b}_{1,1}, \ldots, \boldsymbol{b}_{1, n}, \boldsymbol{d}_{1, n+1}, \ldots, \boldsymbol{d}_{1,2 n}, \boldsymbol{b}_{1,2 n+1}, \ldots, \boldsymbol{b}_{1,4 n}\right) \\
& \mathbb{D}_{1}^{*}:=\left(\boldsymbol{b}_{1,1}^{*}, \ldots, \boldsymbol{b}_{1, n}^{*}, \boldsymbol{d}_{1, n+1}^{*}, \ldots, \boldsymbol{d}_{1,2 n}^{*}, \boldsymbol{b}_{1,2 n+1}^{*}, \ldots, \boldsymbol{b}_{1,4 n}^{*}\right) .
\end{aligned}
$$

We then easily verify that \mathbb{D}_{1} and \mathbb{D}_{1}^{*} are dual orthonormal, and are distributed the same as the original bases, \mathbb{B}_{1} and \mathbb{B}_{1}^{*}. We note that \mathcal{C} cannot calculate above $\boldsymbol{d}_{1, i}$ for $i=n+1, \ldots, 2 n$ (from $\widehat{\mathbb{B}}_{1}$) and \mathbb{D}_{1} is consistent with $\widehat{\mathbb{B}}_{1}$. \mathcal{C} gives $\left(\operatorname{param}_{n}, \widehat{\mathbb{B}}_{0}, \mathbb{B}_{0}^{*}, \widehat{\mathbb{B}}_{1}, \mathbb{D}_{1}^{*}, \boldsymbol{y}_{\beta, 0}^{*}, \boldsymbol{f}_{0},\left\{\boldsymbol{y}_{\beta, 1, i}^{*}, \boldsymbol{f}_{1, i}\right\}_{i=1, \ldots, n}\right)$ to \mathcal{B}, and outputs $\beta^{\prime} \in\{0,1\}$ if \mathcal{B} outputs β^{\prime}.

Then, with respect to $\mathbb{D}_{1}, \mathbb{D}_{1}^{*}\left(\right.$ instead of $\left.\mathbb{B}_{1}, \mathbb{B}_{1}^{*}\right)$, the above answer to \mathcal{B} has the same distribution as the Problem 2 instance, i.e., the above instance has the same distribution as the one given by generator $\mathcal{G}_{\beta}^{\mathrm{P} 2}\left(1^{\lambda}, n\right)$.

Next is a key lemma for applying the proof techniques in [18] to our NIPE (and ZIPE) schemes, where limited randomness is used in public parameter, e.g., $\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i=1,4 ; j=1, . ., 4 ; l=1, . ., n}$, in the NIPE scheme in Section 6.

A.2.4 Proof of Lemma 6

Lemma 6. Let $\vec{e}_{n}:=(0, \ldots, 0,1) \in \mathbb{F}_{q}^{n}$. For all $\vec{x} \in \mathbb{F}_{q}^{n} \backslash \operatorname{span}\left\langle\vec{e}_{n}\right\rangle$ and $\pi \in \mathbb{F}_{q}$, let $W_{\vec{x}, \pi}:=$ $\left\{(\vec{r}, \vec{w}) \in\left(\operatorname{span}\left\langle\vec{x}, \vec{e}_{n}\right\rangle \backslash \operatorname{span}\left\langle\vec{e}_{n}\right\rangle\right) \times\left(\mathbb{F}_{q}^{n} \backslash \operatorname{span}\left\langle\vec{e}_{n}\right\rangle^{\perp}\right) \mid \vec{r} \cdot \vec{w}=\pi\right\}$.

For all $(\vec{x}, \vec{v}) \in\left(\mathbb{F}_{q}^{n} \backslash \operatorname{span}\left\langle\vec{e}_{n}\right\rangle\right) \times\left(\mathbb{F}_{q}^{n} \backslash \operatorname{span}\left\langle\vec{e}_{n}\right\rangle^{\perp}\right)$, for all $(\vec{r}, \vec{w}) \in W_{\vec{x},(\vec{x} \cdot \vec{v})}, \operatorname{Pr}[\vec{x} U=\vec{r} \wedge$ $\vec{v} Z=\vec{w}]=1 / \sharp W_{\vec{x},(\vec{x} \cdot \vec{v})}$, where $U \stackrel{U}{\leftarrow} \mathcal{H}\left(n, \mathbb{F}_{q}\right) \cap G L\left(n, \mathbb{F}_{q}\right)$ and $Z:=\left(U^{-1}\right)^{\mathrm{T}}$.
Proof. Let $\left(\begin{array}{cccc}u & & & u_{1}^{\prime} \\ & \ddots & & \vdots \\ & & u & u_{n-1}^{\prime} \\ & & & u_{n}^{\prime}\end{array}\right):=U,\left(\begin{array}{cccc}u^{-1} & & \\ & \ddots & \\ & & u^{-1} & \\ -\left(u u_{n}^{\prime}\right)^{-1} u_{1}^{\prime} & \ldots & -\left(u u_{n}^{\prime}\right)^{-1} u_{n-1}^{\prime} & \left(u_{n}^{\prime}\right)^{-1}\end{array}\right):=$ $\left(U^{-1}\right)^{\mathrm{T}}:=Z$, and $\vec{u}^{\prime}:=\left(u_{1}^{\prime}, \ldots, u_{n}^{\prime}\right)$. For $\vec{x}:=\left(x_{1}, \ldots, x_{n}\right)$ and $\vec{v}:=\left(v_{1}, \ldots, v_{n}\right)$ with $v_{n} \neq 0$, let

$$
\begin{aligned}
\vec{r} & :=\vec{x} U=\left(u x_{1}, \ldots, u x_{n-1}, \vec{x} \cdot \vec{u}^{\prime}\right)=\left(u x_{1}, \ldots, u x_{n-1}, p\right), \quad \text { and } \\
\vec{w} & :=\vec{v} Z=\left(u^{-1} v_{1}-u_{1}^{\prime}\left(u u_{n}^{\prime}\right)^{-1} v_{n}, \ldots, u^{-1} v_{n-1}-u_{n-1}^{\prime}\left(u u_{n}^{\prime}\right)^{-1} v_{n},\left(u_{n}^{\prime}\right)^{-1} v_{n}\right) \\
& =\left(u_{n}^{\prime}\right)^{-1} v_{n} \cdot\left(u^{-1}\left(u_{n}^{\prime}\left(v_{1} v_{n}^{-1}\right)-u_{1}^{\prime}\right), \ldots, u^{-1}\left(u_{n}^{\prime}\left(v_{n-1} v_{n}^{-1}\right)-u_{n-1}^{\prime}\right), 1\right) \\
& =\left(u_{n}^{\prime}\right)^{-1} v_{n} \cdot\left(\widetilde{u}_{1}, \ldots, \widetilde{u}_{n-1}, 1\right),
\end{aligned}
$$

where $\widetilde{u}_{j}:=u^{-1}\left(u_{n}^{\prime}\left(v_{j} v_{n}^{-1}\right)-u_{j}^{\prime}\right)$ for $j=1, \ldots, n-1$ and $p:=\vec{x} \cdot \vec{u}^{\prime}$. Then,

$$
\begin{equation*}
\vec{x} \cdot \vec{v}=\left(u_{n}^{\prime}\right)^{-1} v_{n}\left(\sum_{j=1}^{n-1}\left(u x_{j}\right) \widetilde{u}_{j}+p\right)=\vec{r} \cdot \vec{w} . \tag{15}
\end{equation*}
$$

Case that $\overrightarrow{\boldsymbol{x}} \cdot \overrightarrow{\boldsymbol{v}} \neq \mathbf{0}: \quad$ Since $\vec{x} \cdot \vec{v} \neq 0, u$ and \vec{u}^{\prime} can be generated as: $\left(u, \widetilde{u}_{1}, \ldots, \widetilde{u}_{n-1}, p\right) \stackrel{U}{\leftarrow}$ $\left\{\left(u,\left(\widetilde{u}_{j}\right)_{j=1, \ldots, n-1}, p\right) \in \mathbb{F}_{q} \times \mathbb{F}_{q}^{n} \mid \sum_{j=1}^{n-1}\left(u x_{j}\right) \widetilde{u}_{j}+p \neq 0\right\}, u_{n}^{\prime}:=v_{n}\left(\sum_{j=1}^{n-1}\left(u x_{j}\right) \widetilde{u}_{j}+p\right) /(\vec{x} \cdot \vec{v})$,
and $u_{j}^{\prime}:=u_{n}^{\prime}\left(v_{j} v_{n}^{-1}\right)-u \widetilde{u}_{j}$ for $j=1, \ldots, n-1$. We note that the condition $\sum_{j=1}^{n-1}\left(u x_{j}\right) \widetilde{u}_{j}+p \neq 0$ among $u, \widetilde{u}_{j}(j=1, \ldots, n-1)$ and p is equivalent to the condition $u_{n}^{\prime} \neq 0$.

Since $\left(u, \widetilde{u}_{1}, \ldots, \widetilde{u}_{n-1}, p\right) \stackrel{\cup}{\longleftarrow}\left\{\left(u,\left(\widetilde{u}_{j}\right)_{j=1, \ldots, n-1}, p\right) \in \mathbb{F}_{q}^{\times} \times \mathbb{F}_{q}^{n} \mid \sum_{j=1}^{n-1}\left(u x_{j}\right) \widetilde{u}_{j}+p \neq 0\right\}$ and $u_{n}^{\prime}:=v_{n}\left(\sum_{j=1}^{n-1}\left(u x_{j}\right) \widetilde{u}_{j}+p\right) /(\vec{x} \cdot \vec{v})$, the pair of $\vec{r}:=\left(u x_{1}, \ldots, u x_{n-1}, p\right)$ and $\vec{w}:=\left(u_{n}^{\prime}\right)^{-1} v_{n}$. $\left(\widetilde{u}_{1}, \ldots, \widetilde{u}_{n-1}, 1\right)$ is uniformly distributed in $W_{\vec{x},(\vec{x} \cdot \vec{v})}$.
Case that $\overrightarrow{\boldsymbol{x}} \cdot \overrightarrow{\boldsymbol{v}}=\mathbf{0}$: \quad Since $\vec{x} \cdot \vec{v}=0$, Eq. (15) is given as $\sum_{j=1}^{n-1}\left(u x_{j}\right) \widetilde{u}_{j}+p=0$. Since $\vec{x} \notin \operatorname{span}\left\langle\vec{e}_{n}\right\rangle$, there exists an index $j_{0} \in\{1, \ldots, n-1\}$ such that $x_{j_{0}} \neq 0$. Using the index j_{0}, u and \vec{u}^{\prime} can be generated as: $u \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}^{\times}, \widetilde{u}_{j} \leftarrow \mathbb{F}_{q}\left(j=1, \ldots, j_{0}-1, j_{0}+1, \ldots, n-1\right)$, $p \stackrel{U}{\leftarrow} \mathbb{F}_{q}, u_{j_{0}}^{\prime}:=\left(-\sum_{j=1, \ldots, j_{0}-1, j_{0}+1, n-1} x_{j} u_{j}^{\prime}-u^{-1} p\right) / x_{j_{0}}, u_{n}^{\prime} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}^{\times}$and $u_{j}^{\prime}:=u_{n}^{\prime}\left(v_{j} v_{n}^{-1}\right)-u \widetilde{u}_{j}$ for $j=1, \ldots, n-1$.

Since $\left(u, \widetilde{u}_{1}, \ldots, \widetilde{u}_{n-1}, p\right) \stackrel{\cup}{\leftarrow}\left\{\left(u,\left(\widetilde{u}_{j}\right)_{j=1, \ldots, n-1}, p\right) \in \mathbb{F}_{q}^{\times} \times \mathbb{F}_{q}^{n} \mid \sum_{j=1}^{n-1}\left(u x_{j}\right) \widetilde{u}_{j}+p=0\right\}$ and $u_{n}^{\prime} \stackrel{U}{\leftarrow} \mathbb{F}_{q}^{\times}$, the pair of $\vec{r}:=\left(u x_{1}, \ldots, u x_{n-1}, p\right)$ and $\vec{w}:=\left(u_{n}^{\prime}\right)^{-1} v_{n} \cdot\left(\widetilde{u}_{1}, \ldots, \widetilde{u}_{n-1}, 1\right)$ is uniformly distributed in $W_{\vec{x}, 0}$.

A.2.5 Proof of Lemma 7

Lemma 7. For any adversary \mathcal{A}, there exists a probabilistic machine \mathcal{B}_{1}, whose running time is essentially the same as that of \mathcal{A}, such that for any security parameter $\lambda, \mid \operatorname{Adv}_{\mathcal{A}}^{(0)}(\lambda)-$ $\operatorname{Adv}_{\mathcal{A}}^{(1)}(\lambda) \mid \leq \operatorname{Adv}_{\mathcal{B}_{1}}^{\mathrm{P}_{1}}(\lambda)$.

Proof. Lemma 7 is proven by the same manner as the proof of Lemma 4 in [18].
In order to prove Lemma 7 , we construct a probabilistic machine \mathcal{B}_{1} against Problem 1 using an adversary \mathcal{A} in a security game (Game 0 or 1) as a black box as follows:

1. \mathcal{B}_{1} is given a Problem 1 instance, $\left(\operatorname{param}_{n}, \mathbb{B}_{0}, \widehat{\mathbb{B}}_{0}^{*}, \boldsymbol{e}_{\beta, 0},\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i, j=1, \ldots, 4 ; l=1, \ldots, n}, \widehat{\mathbb{B}}_{1}^{*},\left\{E_{\beta, j}\right.\right.$, $\left.\left.E_{\beta, j, l}^{\prime}\right\}_{j=1, \ldots, 4 ; l=1, \ldots, n}\right)$, which is identified with $\left(\operatorname{param}_{n}, \mathbb{B}_{0}, \widehat{\mathbb{B}}_{0}^{*}, \boldsymbol{e}_{\beta, 0}, \mathbb{B}_{1}, \widehat{\mathbb{B}}_{1}^{*},\left\{\boldsymbol{e}_{\beta, 1, l}\right\}_{l=1, \ldots, n}\right)$ (Remark 3).
2. \mathcal{B}_{1} plays a role of the challenger in the security game against adversary \mathcal{A}.
3. At the first step of the game, \mathcal{B}_{1} provides \mathcal{A} a public key pk $:=\left(1^{\lambda}, \operatorname{param}_{n},\left\{\widehat{\mathbb{B}}_{t}\right\}_{t=0,1}\right)$ of Game 0 (and 1), where $\widehat{\mathbb{B}}_{0}:=\left(\boldsymbol{b}_{0,1}, \boldsymbol{b}_{0,3}, \boldsymbol{b}_{0,5}\right)$ and $\widehat{\mathbb{B}}_{1}:=\left(\boldsymbol{b}_{1,1}, . ., \boldsymbol{b}_{1, n}, \boldsymbol{b}_{1,3 n+1}, \ldots, \boldsymbol{b}_{1,4 n}\right)$, which are obtained from the Problem 1 instance.
4. When a key query is issued for vector \vec{v}, \mathcal{B}_{1} answers normal key ($\boldsymbol{k}_{0}^{*}, \boldsymbol{k}_{1}^{*}$) with Eq. (7), which is computed using $\left\{\widehat{\mathbb{B}}_{t}^{*}\right\}_{t=0,1}$ of the Problem 1 instance.
5. When \mathcal{B}_{1} receives an encryption query with challenge plaintexts $\left(m^{(0)}, m^{(1)}\right)$ and vector $\vec{x}:=\left(x_{1}, \ldots, x_{n}\right)$ from $\mathcal{A}, \mathcal{B}_{1}$ computes the challenge ciphertext $\left(\vec{x}, \boldsymbol{c}_{0},\left\{C_{1, j}, C_{2, j}\right\}_{j=1, \ldots, 4}\right.$, c_{3}) which is identified with ($\vec{x}, \boldsymbol{c}_{0}, \boldsymbol{c}_{1}, c_{3}$) in Remark 2 such that $\boldsymbol{c}_{0}:=-\boldsymbol{e}_{\beta, 0}+\zeta \boldsymbol{b}_{0,3}, \boldsymbol{c}_{1}:=$ $\sum_{l=1}^{n} x_{l} \boldsymbol{e}_{\beta, 1, l}, c_{3}:=g_{T}^{\zeta} m^{(b)}$, where $b \stackrel{\cup}{\leftarrow}\{0,1\}, \zeta \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}$, and $\left(\boldsymbol{e}_{\beta, 0}, \boldsymbol{b}_{0,3},\left\{\boldsymbol{e}_{\beta, 1, l}\right\}_{l=1, \ldots, n}\right)$ is a part of the Problem 1 instance.
6. When a key query is issued by \mathcal{A} after the encryption query, \mathcal{B}_{1} executes the same procedure as that of step 4.
7. \mathcal{A} finally outputs bit b^{\prime}. If $b=b^{\prime}, \mathcal{B}_{1}$ outputs $\beta^{\prime}:=1$. Otherwise, \mathcal{B}_{1} outputs $\beta^{\prime}:=0$.

Claim 2 The distribution of the view of adversary \mathcal{A} in the above-mentioned game simulated by \mathcal{B}_{1} given a Problem 1 instance with $\beta \in\{0,1\}$ is the same as that in Game 0 (resp. Game 1) if $\beta=0$ (resp. $\beta=1$).

Proof. Since the public key pk and secret keys $\mathrm{sk}_{\vec{v}}$ answered by \mathcal{A} are distributed as in Game 0 and 1, we consider the distribution of challenge ciphertext $\mathrm{ct}_{\vec{x}}:=\left(\vec{x}, \boldsymbol{c}_{0},\left\{C_{1, j}, C_{2, j}\right\}_{j=1, \ldots, 4}, c_{3}\right)$ which is equivalent to ($\vec{x}, \boldsymbol{c}_{0}, \boldsymbol{c}_{1}, c_{3}$) under the identification Eq. (6).

When $\beta=0$, ciphertext $\mathrm{ct}_{\vec{x}}$ generated in step 5 is

$$
\begin{aligned}
& \boldsymbol{c}_{0}=-\boldsymbol{e}_{0,0}+\zeta \boldsymbol{b}_{0,3}=\left(-\omega, 0, \zeta, 0,-\eta_{0}\right)_{\mathcal{B}_{0}}, \quad c_{3}:=g_{T}^{\zeta} m^{(b)} \\
& \boldsymbol{c}_{1}=\sum_{l=1}^{n} x_{l} \boldsymbol{e}_{0,1, l}=\left(\omega \vec{x}, 0^{n}, 0^{n}, \eta_{1} \vec{x}\right)_{\mathbb{B}_{1}}
\end{aligned}
$$

where variables $\omega, \zeta, \eta_{0}, \eta_{1} \in \mathbb{F}_{q}$ are uniformly and independently distributed. Therefore, generated $\mathrm{ct}_{\vec{x}}$ and $\mathrm{sk}_{\vec{v}}$ have the same distribution as in Game 0.

When $\beta=1$, ciphertext $\mathrm{ct}_{\vec{x}}$ generated in step 5 is

$$
\begin{aligned}
& \boldsymbol{c}_{0}=-\boldsymbol{e}_{1,0}+\zeta \boldsymbol{b}_{0,3}=\left(-\omega,-\tau, \zeta, 0,-\eta_{0}\right)_{\mathcal{B}_{0}}, \quad c_{3}:=g_{T}^{\zeta} m^{(b)} \\
& \boldsymbol{c}_{1}=\sum_{l=1}^{n} x_{l} \boldsymbol{e}_{1,1, l}=\left(\omega \vec{x}, \tau \vec{x}, 0^{n}, \eta_{1} \vec{x}\right)_{\mathbb{B}_{1}}
\end{aligned}
$$

where variables $\omega, \tau, \zeta, \eta_{0}, \eta_{1} \in \mathbb{F}_{q}$ are uniformly and independently distributed. Therefore, generated $\mathrm{ct}_{\vec{x}}$ and $s k_{\vec{v}}$ have the same distribution as in Game 1.
This completes the proof of Lemma 7.

A.2.6 Proof of Lemma 8

Lemma 8. For any adversary \mathcal{A}, there exists a probabilistic machine \mathcal{B}_{2-1}, whose running time is essentially the same as that of \mathcal{A}, such that for any security parameter $\lambda, \mid \operatorname{Adv}_{\mathcal{A}}^{(2-(h-1)-3)}(\lambda)-$ $\operatorname{Adv}_{\mathcal{A}}^{(2-h-1)}(\lambda) \mid \leq \operatorname{Adv}_{\mathcal{B}_{2-h-1}}^{\mathrm{P} 2}(\lambda)$, where $\mathcal{B}_{2-h-1}(\cdot):=\mathcal{B}_{2-1}(h, \cdot)$.

Proof. Lemma 8 is proven by the same manner as the proof of Lemma 5 in [18].
In order to prove Lemma 8 , we construct a probabilistic machine \mathcal{B}_{2-1} against Problem 2 using an adversary \mathcal{A} in a security game (Game $2-(h-1)-3$ or $2-h-1$) as a black box as follows:

1. \mathcal{B}_{2-1} is given an integer h and a Problem 2 instance, (param $, \widehat{\mathbb{B}}_{0}, \mathbb{B}_{0}^{*}, \boldsymbol{h}_{\beta, 0}^{*}, \boldsymbol{e}_{0}$, $\left.\left\{B_{i, j}, B_{i, j, l}^{\prime}\right\}_{i=1,3,4 ; j=1, \ldots, 4 ; l=1, \ldots, n}, \mathbb{B}_{1}^{*},\left\{\boldsymbol{h}_{\beta, 1, l}^{*}, E_{j}, E_{j, l}^{\prime}\right\}_{j=1, \ldots, 4 ; l=1, \ldots, n}\right)$, which is identified with $\left(\operatorname{param}_{n}, \widehat{\mathbb{B}}_{0}, \mathbb{B}_{0}^{*}, \boldsymbol{h}_{\beta, 0}^{*}, \boldsymbol{e}_{0}, \widehat{\mathbb{B}}_{1}, \mathbb{B}_{1}^{*},\left\{\boldsymbol{h}_{\beta, 1, l}^{*}, \boldsymbol{e}_{1, l}\right\}_{l=1, \ldots, n}\right)$ (Remark 4).
2. \mathcal{B}_{2-1} plays a role of the challenger in the security game against adversary \mathcal{A}.
3. At the first step of the game, \mathcal{B}_{2-1} provides \mathcal{A} a public key pk $:=\left(1^{\lambda}\right.$, param $\left._{n},\left\{\widehat{\mathbb{B}}_{t}^{\prime}\right\}_{t=0,1}\right)$ of Game 2-(h-1)-3 (and 2-h-1), where $\widehat{\mathbb{B}}_{0}^{\prime}:=\left(\boldsymbol{b}_{0,1}, \boldsymbol{b}_{0,3}, \boldsymbol{b}_{0,5}\right)$ and $\widehat{\mathbb{B}}_{1}^{\prime}:=\left(\boldsymbol{b}_{1,1}, \ldots, \boldsymbol{b}_{1, n}, \boldsymbol{b}_{1,3 n+1}\right.$, $\left.\ldots, \boldsymbol{b}_{1,4 n}\right)$.
4. When the ι-th key query is issued for $\vec{v}:=\left(v_{1}, \ldots, v_{n}\right), \mathcal{B}_{2-1}$ answers as follows:
(a) When $1 \leq \iota \leq h-1, \mathcal{B}_{2-1}$ answers semi-functional keys of the form Eq. (12), which is computed using $\left(\mathbb{B}_{0}^{*}, \mathbb{B}_{1}^{*}\right)$ of the Problem 2 instance.
(b) When $\iota=h, \mathcal{B}_{2-1}$ calculates $\left(\boldsymbol{k}_{0}^{*}, \boldsymbol{k}_{1}^{*}\right)$ using $\left(\boldsymbol{h}_{\beta, 0}^{*},\left\{\boldsymbol{h}_{\beta, 1, l}^{*}\right\}_{l=1, \ldots, n}\right)$ of the Problem 2 instance as follows: $\boldsymbol{k}_{0}^{*}:=\boldsymbol{h}_{\beta, 0}^{*}+\boldsymbol{b}_{0,3}^{*}, \boldsymbol{k}_{1}^{*}:=\sum_{l=1}^{n} v_{l} \boldsymbol{h}_{\beta, 1, l}^{*}$, where $\left(\boldsymbol{h}_{\beta, 0}^{*}, \boldsymbol{b}_{0,3}^{*},\left\{\boldsymbol{h}_{\beta, 1, l}^{*}\right\}_{l=1, \ldots, n}\right)$ is a part of the Problem 2 instance.
(c) When $\iota \geq h+1, \mathcal{B}_{2-1}$ answers normal keys of the form Eq. (7), which is computed using $\left(\mathbb{B}_{0}^{*}, \mathbb{B}_{1}^{*}\right)$ of the Problem 2 instance.
5. When \mathcal{B}_{2-1} receives an encryption query with challenge plaintexts $\left(m^{(0)}, m^{(1)}\right)$ and vector $\vec{x}:=\left(x_{1}, \ldots, x_{n}\right)$ from $\mathcal{A}, \mathcal{B}_{1}$ computes the challenge ciphertext $\left(\vec{x}, \boldsymbol{c}_{0},\left\{C_{1, j}, C_{2, j}\right\}_{j=1, \ldots, 4}\right.$, c_{3}) which is identified with $\left(\vec{x}, \boldsymbol{c}_{0}, \boldsymbol{c}_{1}, c_{3}\right)$ in Remark 2 such that $\boldsymbol{c}_{0}:=-\boldsymbol{e}_{0}+\zeta \boldsymbol{b}_{0,3}+$ $\eta_{0} \boldsymbol{b}_{0,5}, \boldsymbol{c}_{1}:=\sum_{l=1}^{n} x_{l}\left(\boldsymbol{e}_{1, l}+\eta_{1} \boldsymbol{b}_{1,3 n+l}\right), c_{3}:=g_{T}^{\zeta} m^{(b)}$, where $b \stackrel{\cup}{\leftarrow}\{0,1\}, \zeta, \eta_{0}, \eta_{1} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}$, and $\left(\boldsymbol{e}_{0}, \boldsymbol{b}_{0,3}, \boldsymbol{b}_{0,5},\left\{\boldsymbol{e}_{1, l}, \boldsymbol{b}_{1,3 n+l}\right\}_{l=1, \ldots, n}\right)$ is a part of the Problem 2 instance.
6. When a key query is issued by \mathcal{A} after the encryption query, \mathcal{B}_{2-1} executes the same procedure as that of step 4.
7. \mathcal{A} finally outputs bit b^{\prime}. If $b=b^{\prime}, \mathcal{B}_{2-1}$ outputs $\beta^{\prime}:=1$. Otherwise, \mathcal{B}_{2-1} outputs $\beta^{\prime}:=0$.

Claim 3 The distribution of the view of adversary \mathcal{A} in the above-mentioned game simulated by \mathcal{B}_{2-1} given a Problem 2 instance with $\beta \in\{0,1\}$ is the same as that in Game 2-(h-1)-3 (resp. Game 2-h-1) if $\beta=0$ (resp. $\beta=1$).

Proof. We consider the joint distribution of $\mathrm{ct}_{\vec{x}}$ and $\mathrm{sk}_{\vec{v}}$. We see that the distribution of challenge ciphertext $\mathrm{ct}_{\vec{x}}:=\left(\vec{x}, \boldsymbol{c}_{0},\left\{C_{1, j}, C_{2, j}\right\}_{j=1, \ldots, 4}, c_{3}\right)$ is the same as that in Game 2-($\left.h-1\right)$-3 (and Game 2-h-1) similarly to the proof of Claim 2 for the case with $\beta=1$.

When $\beta=0$, the h-th secret key sk ${ }_{\vec{v}}:=\left(\vec{v}, \boldsymbol{k}_{0}^{*}, \boldsymbol{k}_{1}^{*}\right)$ generated in case (b) of step 4 or 6 is $\boldsymbol{k}_{0}^{*}=\boldsymbol{h}_{0,0}^{*}+\boldsymbol{b}_{0,3}^{*}=\left(\delta, 0,1, \varphi_{0}, 0\right)_{\mathbb{B}_{0}^{*}}, \quad \boldsymbol{k}_{1}^{*}=\sum_{l=1}^{n} v_{l} \boldsymbol{h}_{0,1, l}^{*}=\left(\delta \vec{v}, 0^{n}, \vec{\varphi}_{1}^{\prime}, 0^{n}\right)_{\mathbb{B}_{1}^{*}}$, where, variables $\delta, \varphi_{0} \in \mathbb{F}_{q}, \vec{\varphi}_{1}^{\prime}:=\sum_{l=1}^{n} v_{l} \vec{\varphi}_{l} \in \mathbb{F}_{q}^{n}$ are uniformly and independently distributed. Therefore, generated $\mathrm{ct}_{\vec{x}}$ and $\mathrm{sk}_{\vec{v}}$ have the same joint distribution as in Game 2-($\left.h-1\right)-3$.

When $\beta=1$, the h-th secret key $\mathrm{sk}_{\vec{v}}:=\left(\vec{v}, \boldsymbol{k}_{0}^{*}, \boldsymbol{k}_{1}^{*}\right)$ generated in case (b) of step 4 or 6 is $\boldsymbol{k}_{0}^{*}=\boldsymbol{h}_{1,0}^{*}+\boldsymbol{b}_{0,3}^{*}=\left(\delta, \rho, 1, \varphi_{0}, 0\right)_{\mathbb{B}_{0}^{*}}, \quad \boldsymbol{k}_{1}^{*}=\sum_{l=1}^{n} v_{l} \boldsymbol{h}_{1,1, l}^{*}=\left(\delta \vec{v}, \rho \vec{v} Z, \vec{\varphi}_{1}^{\prime}, 0^{n}\right)_{\mathbb{B}_{1}^{*}}$, where, $Z:=\left(\begin{array}{cccc}z & & & \\ & \ddots & & \\ & & z & \\ z_{1}^{\prime} & \ldots & z_{n-1}^{\prime} & z_{n}^{\prime}\end{array}\right):=\left(\begin{array}{cccc}u^{-1} & & \\ & \ddots & & \\ -\left(u u_{n}^{\prime}\right)^{-1} u_{1}^{\prime} & \ldots & -\left(u u_{n}^{\prime}\right)^{-1} u_{n-1}^{\prime} & \left(u_{n}^{\prime}\right)^{-1}\end{array}\right):=\left(U^{-1}\right)^{\mathrm{T}}$
for $U \cup \mathcal{H}\left(n, \mathbb{F}_{q}\right) \cap G L\left(n, \mathbb{F}_{q}\right)$ used for challenge ciphertext $\mathrm{ct}_{\vec{x}}$, variables $\delta, \varphi_{0} \in \mathbb{F}_{q}, \vec{\varphi}_{1}^{\prime}:=$ $\sum_{l=1}^{n} v_{l} \vec{\varphi}_{l} \in \mathbb{F}_{q}^{n}$ are uniformly and independently distributed. Therefore, generated $\mathrm{ct}_{\vec{x}}$ and $\mathrm{sk}_{\vec{v}}$ have the same joint distribution as in Game 2-h-1.
This completes the proof of Lemma 8.

A.2.7 Proof of Lemma 9

Lemma 9. For any adversary \mathcal{A}, for any security parameter $\lambda,\left|\operatorname{Adv}_{\mathcal{A}}^{(2-h-1)}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{(2-h-2)}(\lambda)\right| \leq$ $1 / q$.

Proof. We consider joint distribution of the h-th answered key $\left(\vec{v}, \boldsymbol{k}_{0}^{*}, \boldsymbol{k}_{1}^{*}\right)$ and the challenge ciphertext ($\vec{x}, \boldsymbol{c}_{0}, \boldsymbol{c}_{1}$) in Game 2-h-1.

$$
\begin{aligned}
& \boldsymbol{k}_{0}^{*}:=\left(\delta, \rho, 1, \varphi_{0}, 0\right)_{\mathbb{B}_{0}^{*}}, \quad \boldsymbol{k}_{1}^{*}:=\left(\delta \vec{v}, \rho \vec{v} Z, \overrightarrow{\varphi_{1}}, 0^{n}\right)_{\mathbb{B}_{1}^{*}}, \\
& \boldsymbol{c}_{0}:=\left(-\omega,-\tau, \zeta, 0, \eta_{0}\right)_{\mathbb{B}_{0}}, \quad \boldsymbol{c}_{1}:=\left(\omega \vec{x}, \tau \vec{x} U, 0^{n}, \eta_{1} \vec{x}\right)_{\mathbb{B}_{1}},
\end{aligned}
$$

where $\delta, \rho, \varphi_{0}, \omega, \tau, \zeta, \eta_{0}, \eta_{1} \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}, \vec{\varphi}_{1} \stackrel{\cup}{\cup} \mathbb{F}_{q}^{n}, U \stackrel{\cup}{\leftarrow} \mathcal{H}\left(n, \mathbb{F}_{q}\right) \cap G L\left(n, \mathbb{F}_{q}\right)$ and $Z:=\left(U^{-1}\right)^{\mathrm{T}}$.
By the security definition, it holds that $\vec{x} \cdot \vec{v}=0$. From Lemma $6,(\tau \vec{x} U, \rho \vec{v} Z)$ is uniformly distributed in $W_{\tau \vec{x}, 0}$. In particular, if $\tau \neq 0$, it is uniformly distributed in $W_{\vec{x}, 0}$. That is, coefficient $-\tau$ in \boldsymbol{k}_{0}^{*} is independent from all the other variables except with negligible probability $1 / q$, and the joint distribution is equivalent to that in Game 2-h-2 except with negligible probability $1 / q$.

A.2.8 Proof of Lemma 10

Lemma 10. For any adversary \mathcal{A}, there exists a probabilistic machine \mathcal{B}_{2-2}, whose running time is essentially the same as that of \mathcal{A}, such that for any security parameter $\lambda, \mid \operatorname{Adv}_{\mathcal{A}}^{(2-h-2)}(\lambda)-$ $\operatorname{Adv}_{\mathcal{A}}^{(2-h-3)}(\lambda) \mid \leq \operatorname{Adv}_{\mathcal{B}_{2-h-2}}^{\mathrm{P} 2}(\lambda)$, where $\mathcal{B}_{2-h-2}(\cdot):=\mathcal{B}_{2-2}(h, \cdot)$.
Proof. Lemma 10 is proven by the similar manner to the proof of Lemma 8.

A.2.9 Proof of Lemma 11

Lemma 11. For any adversary \mathcal{A}, for any security parameter $\lambda,\left|\operatorname{Adv}_{\mathcal{A}}^{(2-\nu-3)}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)\right| \leq$ $1 / q$.

Proof. Lemma 11 is proven by the same manner as the proof of Lemma 7 in [18].

A.2.10 Proof of Lemma 12

Lemma 12. For any adversary \mathcal{A}, for any security parameter $\lambda, \operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)=0$.
Proof. The value of b is independent from the adversary's view in Game 3. Hence, $\operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)=$ 0 .

A. 3 Proof of Lemma 13 in Section 8

Lemma 13. For any adversary \mathcal{A}, for any security parameter $\lambda,\left|\operatorname{Adv}_{\mathcal{A}}^{(2-\nu)}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)\right| \leq$ $1 / q$.
Proof. To prove Lemma 13, we will show distribution ($\operatorname{param}_{\mathbb{V}}, \widehat{\mathbb{B}},\left\{\boldsymbol{k}^{(j) *}\right\}_{j=1, \ldots, \nu}, \boldsymbol{c}, c_{3}$) in Game $2-\nu$ and that in Game 3 are equivalent (see Remark 8). For that purpose, we define new bases \mathbb{D} of \mathbb{V} and \mathbb{D}^{*} of \mathbb{V}^{*} as follows:

We generate random $\theta \longleftarrow \mathbb{F}_{q}$, and set

$$
\begin{aligned}
& \boldsymbol{d}_{2 n}:=\boldsymbol{b}_{2 n}-\theta \boldsymbol{b}_{0}, \quad \boldsymbol{d}_{0}^{*}:=\boldsymbol{b}_{0}^{*}+\theta \boldsymbol{b}_{2 n}^{*}, \\
& \mathbb{D}:=\left(\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{2 n-1}, \boldsymbol{d}_{2 n}, \boldsymbol{b}_{2 n+1}, \ldots, \boldsymbol{b}_{4 n}\right), \quad \mathbb{D}^{*}:=\left(\boldsymbol{d}_{0}^{*}, \boldsymbol{b}_{1}^{*}, \ldots, \boldsymbol{b}_{4 n}^{*}\right) .
\end{aligned}
$$

We then easily verify that \mathbb{D} and \mathbb{D}^{*} are dual orthonormal, and are distributed the same as the original bases, \mathbb{B} and \mathbb{B}^{*}.

Keys and challenge ciphertext $\left(\left\{\boldsymbol{k}^{(j) *}\right\}_{j=1, \ldots, \nu}, \boldsymbol{c}, c_{3}\right)$ in Game 2- ν are expressed over bases $\left(\mathbb{B}, \mathbb{B}^{*}\right)$ and $\left(\mathbb{D}, \mathbb{D}^{*}\right)$ as

$$
\begin{aligned}
& \boldsymbol{k}^{(j) *}=\left(1, \delta^{(j)} \vec{v}^{(j)}, \vec{w}^{(j)}, \varphi^{(j)} \vec{v}^{(j)}, 0^{n}\right)_{\mathbb{B}^{*}}=\left(1, \delta^{(j)} \vec{v}^{(j)}, \vec{\gamma}^{(j)}, \varphi^{(j)} \vec{v}^{(j)}, 0^{n}\right)_{\mathbb{D}^{*}} \\
& \boldsymbol{c}=\left(\zeta, \omega \vec{x}, \vec{r}, 0^{n}, \vec{\eta}\right)_{\mathbb{B}}=\left(\zeta^{\prime}, \omega \vec{x}, \vec{r}, 0^{n}, \vec{\eta}\right)_{\mathbb{B}} \\
& c_{3}:=g_{T}^{\zeta} m^{(b)} .
\end{aligned}
$$

where

$$
\vec{r}:=p_{0} \vec{x}+p_{1} \vec{e}_{n} \text { with } p_{0}, p_{1} \stackrel{U}{\leftarrow} \mathbb{F}_{q}, \quad \vec{\gamma}^{(j)}:=\vec{w}^{(j)}-\theta \vec{e}_{n}, \quad \zeta^{\prime}:=\zeta+p_{1} \theta
$$

$\vec{\gamma}^{(j)}$ and ζ^{\prime} are uniformly, independently distributed since $\vec{w}^{(j)} \longleftarrow \mathbb{F}_{q}^{n}$ and $\theta \longleftarrow \mathbb{F}_{q}$, except for the case $p_{1}=0$, i.e., except with the probability $1 / q$.

In the light of the adversary's view, both $\left(\mathbb{B}, \mathbb{B}^{*}\right)$ and $\left(\mathbb{D}, \mathbb{D}^{*}\right)$ are consistent with public key pk $:=\left(1^{\lambda}, \operatorname{param}_{\mathbb{V}}, \widehat{\mathbb{B}}\right)$. Therefore, $\left\{\boldsymbol{k}^{(j) *}\right\}_{j=1, \ldots, \nu}$ and \boldsymbol{c} above can be expressed as keys and ciphertext in two ways, in Game $2-\nu$ over bases $\left(\mathbb{B}, \mathbb{B}^{*}\right)$ and in Game 3 over bases $\left(\mathbb{D}, \mathbb{D}^{*}\right)$. Thus, Game $2-\nu$ can be conceptually changed to Game 3.

A. 4 Proof of Lemma 14 in Section 9

Lemma 14. For any adversary \mathcal{A}, for any security parameter $\lambda,\left|\operatorname{Adv}_{\mathcal{A}}^{(2-\nu)}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{(3)}(\lambda)\right| \leq$ $1 / q$.

Proof. To prove Lemma 14, we will show distribution ($\operatorname{param}_{\mathbb{V}}, \widehat{\mathbb{B}},\left\{\boldsymbol{k}^{(j) *}\right\}_{j=1, \ldots, \nu}, \boldsymbol{c}, c_{3}$) in Game $2-\nu$ and that in Game 3 are equivalent. For that purpose, we define new bases \mathbb{D} of \mathbb{V} and \mathbb{D}^{*} of \mathbb{V}^{*} as follows:

We generate $F:=\left(\begin{array}{cccc}u & & & \\ & u_{1}^{\prime} \\ & \ddots & & \vdots \\ & & u & u_{n-1}^{\prime} \\ & & & u_{n}^{\prime}\end{array}\right) \stackrel{\cup}{H}\left(n, \mathbb{F}_{q}\right), \theta \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}$, and set

$$
\begin{aligned}
& \boldsymbol{d}_{n+i}:=\boldsymbol{b}_{n+i}-u \boldsymbol{b}_{i} \text { for } i=1, \ldots, n-1, \quad \boldsymbol{d}_{2 n}:=\boldsymbol{b}_{2 n}-\theta \boldsymbol{b}_{0}-\sum_{\iota=1}^{n} u_{\imath}^{\prime} \boldsymbol{b}_{\iota} \\
& \boldsymbol{d}_{0}^{*}:=\boldsymbol{b}_{0}^{*}+\theta \boldsymbol{b}_{2 n}^{*}, \quad \boldsymbol{d}_{i}^{*}:=\boldsymbol{b}_{i}^{*}+u \boldsymbol{b}_{n+i}^{*}+u_{i}^{\prime} \boldsymbol{b}_{2 n}^{*} \quad \text { for } i=1, \ldots, n-1, \quad \boldsymbol{d}_{n}^{*}:=\boldsymbol{b}_{n}^{*}+u_{n}^{\prime} \boldsymbol{b}_{2 n}^{*}
\end{aligned}
$$

Let

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{b}}_{1}:=\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right)^{\mathrm{T}}, \overrightarrow{\boldsymbol{b}}_{2}:=\left(\boldsymbol{b}_{n+1}, \ldots, \boldsymbol{b}_{2 n}\right)^{\mathrm{T}}, \overrightarrow{\boldsymbol{b}}_{1}^{*}:=\left(\boldsymbol{b}_{1}^{*}, \ldots, \boldsymbol{b}_{n}^{*}\right)^{\mathrm{T}}, \overrightarrow{\boldsymbol{b}}_{2}^{*}:=\left(\boldsymbol{b}_{n+1}^{*}, \ldots, \boldsymbol{b}_{2 n}^{*}\right)^{\mathrm{T}}, \\
& \overrightarrow{\boldsymbol{d}}_{2}:=\left(\boldsymbol{d}_{n+1}, \ldots, \boldsymbol{d}_{2 n}\right)^{\mathrm{T}}, \overrightarrow{\boldsymbol{d}}_{1}^{*}:=\left(\boldsymbol{d}_{1}^{*}, \ldots, \boldsymbol{d}_{n}^{*}\right)^{\mathrm{T}}, \vec{\theta}:=(0, \ldots, 0, \theta) \in \mathbb{F}_{q}^{n} .
\end{aligned}
$$

That is,

$$
\begin{aligned}
& \left(\begin{array}{c}
\boldsymbol{b}_{0} \\
\overrightarrow{\boldsymbol{b}}_{1} \\
\overrightarrow{\boldsymbol{d}}_{2}
\end{array}\right):=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & I_{n} & 0_{n} \\
-\vec{\theta}^{\mathrm{T}} & -F^{\mathrm{T}} & I_{n}
\end{array}\right)\left(\begin{array}{l}
\boldsymbol{b}_{0} \\
\overrightarrow{\boldsymbol{b}}_{1} \\
\overrightarrow{\boldsymbol{b}}_{2}
\end{array}\right), \\
& \left(\begin{array}{c}
\boldsymbol{d}_{0}^{*} \\
\overrightarrow{\boldsymbol{d}_{1}^{*}} \\
\overrightarrow{\boldsymbol{b}}_{2}^{*}
\end{array}\right):=\left(\begin{array}{ccc}
1 & 0 & \vec{\theta} \\
0 & I_{n} & F \\
0 & 0_{n} & I_{n}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{b}_{0}^{*} \\
\overrightarrow{\boldsymbol{b}}_{1}^{*} \\
\overrightarrow{\boldsymbol{b}}_{2}^{*}
\end{array}\right) .
\end{aligned}
$$

We set

$$
\mathbb{D}:=\left(\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{n}, \boldsymbol{d}_{n+1}, \ldots, \boldsymbol{d}_{2 n}, \boldsymbol{b}_{2 n+1}, \ldots, \boldsymbol{b}_{4 n}\right), \quad \mathbb{D}^{*}:=\left(\boldsymbol{d}_{0}^{*}, \ldots, \boldsymbol{d}_{n}^{*}, \boldsymbol{b}_{n+1}^{*}, \ldots, \boldsymbol{b}_{4 n}^{*}\right) .
$$

We then easily verify that \mathbb{D} and \mathbb{D}^{*} are dual orthonormal, and are distributed the same as the original bases, \mathbb{B} and \mathbb{B}^{*}.

Keys and challenge ciphertext $\left(\left\{\boldsymbol{k}^{(j) *}\right\}_{j=1, \ldots, \nu}, \boldsymbol{c}, c_{3}\right)$ in Game $2-\nu$ are expressed over bases \mathbb{B} and \mathbb{B}^{*} as

$$
\begin{aligned}
& \boldsymbol{k}^{(j) *}=\left(1, \delta^{(j)} \vec{v}^{(j)}, \vec{w}^{(j)}, \varphi^{(j)} \vec{v}^{(j)}, 0^{n}\right)_{\mathbb{B}^{*}}=\left(1, \delta^{(j)} \vec{v}^{(j)}, \vec{\gamma}^{(j)}, \varphi^{(j)} \vec{v}^{(j)}, 0^{n}\right)_{\mathbb{D}^{*}}, \\
& \boldsymbol{c}=\left(\zeta, \omega \vec{x}, \vec{r}, 0^{n}, \vec{\eta}\right)_{\mathbb{B}}=\left(\zeta^{\prime}, \vec{x}^{\prime}, \vec{r}, 0^{n}, \vec{\eta}\right)_{\mathbb{D}} \\
& c_{3}:=g_{T}^{\zeta} m^{(b)},
\end{aligned}
$$

where

$$
\begin{aligned}
& \vec{\gamma}^{(j)}:=\vec{w}^{(j)}-\left(\theta-u \delta^{(j)} v_{n}^{(j)}+\delta^{(j)} \sum_{\iota=1}^{n} v_{\iota}^{(j)} u_{\iota}^{\prime}\right) \vec{e}_{n}-u \delta^{(j)} \vec{v}^{(j)} \\
& \zeta^{\prime}:=\zeta+\theta r_{n}, \quad \vec{x}^{\prime}:=\omega \vec{x}+r_{n} \vec{u}^{\prime}+u \vec{r} .
\end{aligned}
$$

$\vec{\gamma}^{(j)} \in \operatorname{span}\left\langle\vec{v}^{(j)}, \vec{e}_{n}\right\rangle, \zeta^{\prime} \in \mathbb{F}_{q}, \vec{x}^{\prime} \in \mathbb{F}_{q}^{n}$ are uniformly, independently distributed since $\vec{w}^{(j)} \stackrel{U}{\longleftarrow}$ $\operatorname{span}\left\langle\vec{v}^{(j)}, \vec{e}_{n}\right\rangle, \theta \stackrel{\cup}{\leftarrow} \mathbb{F}_{q}, \vec{u}^{\prime}:=\left(u_{1}^{\prime}, \ldots, u_{n}^{\prime}\right) \longleftarrow \mathbb{F}_{q}^{n}$ except for the case $r_{n}=0$, i.e., except with the probability $1 / q$.

In the light of the adversary's view, both $\left(\mathbb{B}, \mathbb{B}^{*}\right)$ and $\left(\mathbb{D}, \mathbb{D}^{*}\right)$ are consistent with public key pk $:=\left(1^{\lambda}, \operatorname{param}_{\mathbb{V}}, \widehat{\mathbb{B}}\right)$. Therefore, $\left\{\boldsymbol{k}^{(j) *}\right\}_{j=1, \ldots, \nu}$ and \boldsymbol{c} above can be expressed as keys and ciphertext in two ways, in Game $2-\nu$ over bases $\left(\mathbb{B}, \mathbb{B}^{*}\right)$ and in Game 3 over bases $\left(\mathbb{D}, \mathbb{D}^{*}\right)$. Thus, Game $2-\nu$ can be conceptually changed to Game 3.

[^0]: *This is the full version of a paper appearing in CANS 2011, the 10th International Conference on Cryptology and Network Security, December 10-12, 2011, Sanya, China.

