
Achieving Short Ciphertexts or Short Secret-Keys

for Adaptively Secure General Inner-Product

Encryption∗

Tatsuaki Okamoto
NTT

okamoto.tatsuaki@lab.ntt.co.jp

Katsuyuki Takashima
Mitsubishi Electric

Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

January 27, 2012

Abstract

In this paper, we present two non-zero inner-product encryption (NIPE) schemes that are
adaptively secure under a standard assumption, the decisional linear (DLIN) assumption, in
the standard model. One of the proposed NIPE schemes features constant-size ciphertexts
and the other features constant-size secret-keys. Our NIPE schemes imply an identity-based
revocation (IBR) system with constant-size ciphertexts or constant-size secret-keys that is
adaptively secure under the DLIN assumption. Any previous IBR scheme with constant-
size ciphertexts or constant-size secret-keys was not adaptively secure in the standard model.
This paper also presents two zero inner-product encryption (ZIPE) schemes each of which
has constant-size ciphertexts or constant-size secret-keys and is adaptively secure under
the DLIN assumption in the standard model. They imply an identity-based broadcast
encryption (IBBE) system with constant-size ciphertexts or constant-size secret-keys that is
adaptively secure under the DLIN assumption. We also extend the proposed ZIPE schemes
into two directions, one is a fully-attribute-hiding ZIPE scheme with constant-size secret-keys,
and the other a hierarchical ZIPE scheme with constant-size ciphertexts.

∗This is the full version of a paper appearing in CANS 2011, the 10th International Conference on Cryptology
and Network Security, December 10–12, 2011, Sanya, China.

1

Contents

1 Introduction 3
1.1 Background . 3
1.2 Our Result . 4
1.3 Related Works . 4
1.4 Key Techniques . 4
1.5 Notations . 5

2 Dual Pairing Vector Spaces by Direct Product of Symmetric Pairing Groups 5

3 Definitions of Zero and Non-zero Inner-Product Encryption (ZIPE / NIPE) 6

4 Decisional Linear (DLIN) Assumption 8

5 Special Matrix Subgroups 8

6 NIPE Scheme with Constant-Size Ciphertexts 9
6.1 Key Ideas in Constructing the Proposed NIPE Scheme 9
6.2 Dual Orthonormal Basis Generator . 10
6.3 Construction . 11
6.4 Security . 12

7 NIPE Scheme with Constant-Size Secret-Keys 17
7.1 Dual Orthonormal Basis Generator . 17
7.2 Construction and Security . 17

8 ZIPE Scheme with Constant-Size Ciphertexts 18
8.1 Dual Orthonormal Basis Generator . 18
8.2 Construction and Security . 18

9 ZIPE Scheme with Constant-Size Secret-Keys 20
9.1 Dual Orthonormal Basis Generator . 20
9.2 Construction and Security . 21

10 Fully-Attribute-Hiding ZIPE Scheme with Constant-Size Secret-Keys 22
10.1 Construction and Security . 22

11 Comparison 25

12 Hierarchical ZIPE Scheme with Constant-Size Ciphertexts 26
12.1 Dual Orthonormal Basis Generator . 26
12.2 Construction and Security . 27

13 Concluding Remarks 28

A Proofs of Lemmas 31
A.1 Proofs of Lemmas 2 and 3 in Section 5 . 31
A.2 Proofs of Lemmas 4–12 in Section 6 . 33
A.3 Proof of Lemma 13 in Section 8 . 43
A.4 Proof of Lemma 14 in Section 9 . 44

2

1 Introduction

1.1 Background

Functional encryption (FE) is an advanced concept of encryption or a generalization of public-
key encryption (PKE) and identity-based encryption (IBE). In FE systems, a receiver can
decrypt a ciphertext using a secret-key corresponding to a parameter v if v is suitably related
to another parameter x specified for the ciphertext, or R(v, x) = 1 for some relation R (i.e.,
relation R holds for (v, x)) .

The first flavor of functional encryption traces back to the work of Sahai and Waters [20],
which was subsequently extended in [4, 10, 13, 18]. In their concept called attribute-based
encryption (ABE), for example, parameter v for a secret-key is an access control policy, and
parameter x for a ciphertext is a set of attributes. Decryption requires attribute set x to satisfy
policy v, i.e., relation RABE(v, x) = 1 iff x satisfies v. Identity-based broadcast encryption
(IBBE) [1, 5, 6, 9, 21] and revocation (IBR) [14] schemes can also be thought of as functional
encryption systems where a ciphertext is encrypted for a set of identities S = {ID1, . . . , IDn}
in IBBE (resp. IBR) systems, and to decrypt it by a secret-key associated with ID requires
that ID ∈ S (resp. ID �∈ S), i.e., relation RIBBE(ID, S) = 1 (resp. RIBR(ID, S) = 1) iff ID ∈ S
(resp. ID �∈ S).

Katz, Sahai and Waters [12] introduced a functional encryption scheme for zero inner prod-
ucts, zero inner product encryption (ZIPE) where a ciphertext encrypted with vector �x can be
decrypted by any key associated with vector �v such that �v · �x = 0, i.e., relation RZIPE(�v, �x) = 1
iff �v · �x = 0. Their scheme is selectively secure in the standard model and the ciphertext size
is linear in the dimension of vectors, n, although it achieves an additional security property,
attribute-hiding, in which �x is hidden from the ciphertext. As shown in [12], ZIPE provides
functional encryption for a wide class of relations corresponding to equalities, polynomials and
CNF/DNF formulae.

Attrapadung and Libert [2] proposed a ZIPE scheme as well as a non-zero IPE (NIPE)
scheme, where NIPE relation RNIPE(�v, �x) = 1 iff �v · �x �= 0. NIPE supports a wide class of
relations corresponding to the complement of those for ZIPE. In their ZIPE and NIPE schemes,
without retaining the attribute-hiding property, the ciphertext size reduces to a constant in n
(the dimension of vectors, �v and �x), as long as the description of the vector is not considered a
part of the ciphertext, which is a common assumption in the broadcast encryption/revocation
applications. Hereafter in this paper, “constant” will be used in this sense. In addition, the
number of pairing operations for decryption in [2] is constant. Their ZIPE system is adaptively
secure in the standard model, but the NIPE scheme is not adaptively secure (co-selectively
secure) in the standard model.

The ZIPE system [2] implies an adaptively secure identity-based broadcast encryption (IBBE)
scheme with constant-size ciphertexts in the standard model, while previous IBBE schemes with
constant-size ciphertexts were either only selective-ID secure [1, 5, 6] or secure in a non-standard
model [9, 21]. Among IBBE systems with short ciphertexts (including selective-ID secure ones),
the IBBE scheme [2] is the only one relying on standard assumptions, DBDH and DLIN assump-
tions. The NIPE scheme [2] implies a co-selectively secure (not adaptively secure) identity-based
revocation (IBR) system [14] with constant-size ciphertexts in the standard model. Lewko, Sa-
hai and Waters [14] presented IBR systems with constant-size public and secret keys that are
not adaptively secure. Hence, the following problems are still remained.

1. No NIPE scheme with constant-size ciphertexts is adaptively secure in the standard model,
and no IBR scheme with constant-size ciphertexts or constant-size secret-keys is adaptively
secure in the standard model. No NIPE scheme with constant-size secret-keys has been

3

presented.

2. No ZIPE (or no IBBE) scheme with constant-size ciphertexts is adaptively (or selectively)
secure under a single standard assumption in the standard model. No ZIPE scheme with
constant-size secret-keys has been presented.

1.2 Our Result

1. This paper presents the first NIPE scheme that has constant-size ciphertexts or constant-
size secret-keys and that is adaptively secure in the standard model (Sections 6 and 7).
The security assumption is a standard one, the decisional linear (DLIN) assumption. This
implies the first IBR scheme with constant-size ciphertexts or constant-size secret-keys
that is adaptively secure in the standard model.

2. This paper also presents the first ZIPE scheme that has constant-size ciphertexts or
constant-size secret-keys and is adaptively secure solely under a single standard assump-
tion, the DLIN assumption, in the standard model (Sections 8 and 9). This implies the
first IBBE scheme with constant-size ciphertexts that is adaptively secure solely under a
single standard assumption in the standard model.

3. We present two extensions of the proposed ZIPE schemes. One is a fully-attribute-hiding
ZIPE scheme with constant-size secret-keys (Section 10). It is obtained by applying the
technique of the fully-attribute-hiding ZIPE scheme in [19] to the proposed ZIPE scheme
with constant-size secret-keys in Section 9, while the ZIPE scheme in Section 9 is weakly-
attribute-hiding. The other extension is a hierarchical ZIPE scheme with constant-size
ciphertexts (Section 12). These schemes are adaptively secure under the DLIN assumption
in the standard model.

The number of pairing operations for decryption is constant in all the proposed schemes.
We summarize a comparison of our results with those of [2] in Table 1 in Section 11 (see the
items of ‘Security’, ‘Assump.’, ‘CT Size’ and ‘SK Size’ in Table 1, for the features discussed in
Sections 1.1 and 1.2).

1.3 Related Works

Several ABE schemes [3, 7, 11] with constant-size ciphertexts have been proposed. Among them,
[7, 11] only support limited classes of predicates that do not cover the classes supported by ZIPE
or NIPE, while [3] supports a wider class of relations, non-monotone predicates, than those by
ZIPE or NIPE. All of these ABE schemes, however, are only selectively secure in the standard
model. Adaptively secure and attribute-hiding ZIPE scheme under the DLIN assumption has
been presented [18], but the ciphertext-size is linear in n (not constant), while our ZIPE scheme
has constant-size ciphertexts and is adaptively secure but not attribute-hiding.

1.4 Key Techniques

All of the proposed schemes in this paper are constructed on dual system encryption [22, 15]
and dual pairing vector spaces (DPVS) [17, 13, 18]. See Section 1.5 for some notations in this
section. In DPVS, a pair of dual (or orthonormal) bases, B and B

∗, are randomly generated using
a fully random linear transformation X U← GL(N,Fq) (N : dimension of span〈B〉 and span〈B∗〉)
such that B and B

∗ are transformed from canonical basis A by X and (X−1)T, respectively (see
Section 2 and [17, 13, 18]). In a typical application of DPVS to cryptography, a part of B (say

4

B̂) is used as a public key and the corresponding part of B
∗ (say B̂

∗) is used as a secret key or
trapdoor.

In this paper, we develop a novel technique on DPVS, where we employ a special form of
random linear transformation X ∈ GL(N,Fq), or X ∈ L(4, n,Fq) of Eq. (3) in Section 6.2, in

place of fully random linear transformation X
U← GL(N,Fq). This form of X provides us a

framework to achieve short ciphertexts or short secret-keys as well as a small number of pairing
operations in decryption. It, however, is a challenging task to find such a special form of X like
Eq. (3) that meet the several requirements for the dual system encryption method to prove the
adaptive security of ZIPE and NIPE schemes under the DLIN assumption. Such requirements
are given hereafter. To reduce the security of our schemes, especially Problems 1 and 2 in this
paper, to the DLIN assumption, the form of X should be consistent with the distribution of
the DLIN problem. The form of X should be sparse enough to achieve short ciphertexts or
secret-keys. We should also have a special pairwise independence lemma, Lemma 6 in Section
6.4, that is due to the special form of X, where linear random transformations U and Z are
more restricted (or specific) than those of previous results, e.g., [18], with fully random X. See
Section 6.1 for more details.

1.5 Notations

When A is a random variable or distribution, y R← A denotes that y is randomly selected from A

according to its distribution. When A is a set, y U← A denotes that y is uniformly selected from
A. A vector symbol denotes a vector representation over Fq, e.g., �x denotes (x1, . . . , xn) ∈ F

n
q .

For two vectors �x = (x1, . . . , xn) and �v = (v1, . . . , vn), �x ·�v denotes the inner-product
∑n

i=1 xivi.
The vector �0 is abused as the zero vector in F

n
q for any n. XT denotes the transpose of matrix

X. I� denotes the �× � identity matrix. A bold face letter denotes an element of vector space
V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . , �), span〈b1, . . . , b�〉 ⊆ V (resp. span〈�x1, . . . , �x�〉)
denotes the subspace generated by b1, . . . , b� (resp. �x1, . . . , �x�). For bases B := (b1, . . . , bN) and
B
∗ := (b∗1, . . . , b∗N), (x1, . . . , xN)B :=

∑N
i=1 xibi and (y1, . . . , yN)B∗ :=

∑N
i=1 yib

∗
i . For dimension

n of vectors, �ej denotes the canonical basis vector (

j−1︷ ︸︸ ︷
0 · · · 0, 1,

n−j︷ ︸︸ ︷
0 · · · 0) ∈ F

n
q for j = 1, . . . , n.

GL(n,Fq) denotes the general linear group of degree n over Fq. For a linear subspace V ⊂ F
n
q ,

V ⊥ denotes the orthogonal complement, i.e., V ⊥ :={�w ∈ F
n
q |�w · �v = 0 for all �v ∈ V }.

2 Dual Pairing Vector Spaces by Direct Product of Symmetric
Pairing Groups

Definition 1 “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple of a prime q,
cyclic additive group G and multiplicative group GT of order q, G �= 0 ∈ G, and a polynomial-
time computable nondegenerate bilinear pairing e : G×G→ GT i.e., e(sG, tG) = e(G,G)st and
e(G,G) �= 1.

Let Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear pairing
groups (q,G,GT , G, e) with security parameter λ.

Definition 2 “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct product of sym-
metric pairing groups (q,G,GT , G, e) are a tuple of prime q, N -dimensional vector space V :=

N︷ ︸︸ ︷
G× · · · ×G over Fq, cyclic group GT of order q, canonical basis A := (a1, . . . ,aN) of V,

where ai := (
i−1︷ ︸︸ ︷

0, . . . , 0, G,
N−i︷ ︸︸ ︷

0, . . . , 0), and pairing e : V × V → GT . The pairing is defined by

5

e(x,y) :=
∏N
i=1 e(Gi, Hi) ∈ GT where x := (G1, . . . , GN) ∈ V and y := (H1, . . . , HN) ∈ V.

This is nondegenerate bilinear i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then
x = 0. For all i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and 0 otherwise, and
e(G,G) �= 1 ∈ GT .

DPVS also has linear transformations φi,j on V s.t.φi,j(aj) = ai and φi,j(ak) = 0 if k �= j,

which can be easily achieved by φi,j(x) := (
i−1︷ ︸︸ ︷

0, . . . , 0, Gj ,
N−i︷ ︸︸ ︷

0, . . . , 0) where x := (G1, . . . , GN). We
call φi,j “canonical maps”.

DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N) and N ∈ N, and outputs a descrip-
tion of paramV := (q,V,GT ,A, e) with security parameter λ and N -dimensional V. It can be
constructed by using Gbpg.

For the asymmetric version of DPVS, (q,V,V∗,GT ,A,A
∗, e), see Appendix A.2 in [18].

3 Definitions of Zero and Non-zero Inner-Product Encryption
(ZIPE / NIPE)

This section defines zero and non-zero inner-product encryption (ZIPE / NIPE) and their
security. The relations RZIPE of ZIPE and RNIPE of NIPE are defined over vectors �x ∈ F

n
q \ {�0}

and �v ∈ F
n
q \ {�0}, where RZIPE(�v, �x) := 1 iff �x · �v = 0, and RNIPE(�v, �x) := 1 iff �x · �v �= 0,

respectively

Definition 3 (Zero and Non-zero Inner-Product Encryption: ZIPE / NIPE) Let a re-
lation R be RZIPE or RNIPE. A zero (resp. non-zero) inner-product encryption scheme consists
of four algorithms with R := RZIPE (resp.R := RNIPE).

Setup This is a randomized algorithm that takes as input security parameter. It outputs public
parameters pk and master secret key sk.

KeyGen This is a randomized algorithm that takes as input vector �v, pk and sk. It outputs a
decryption key sk�v.

Enc This is a randomized algorithm that takes as input message m, a vector, �x, and public
parameters pk. It outputs a ciphertext ct�x.

Dec This takes as input ciphertext ct�x that was encrypted under a vector �x, decryption key sk�v
for vector �v, and public parameters pk. It outputs either plaintext m or the distinguished
symbol ⊥.

A ZIPE (or NIPE) scheme should have the following correctness property: for all (pk, sk) R←
Setup(1λ), all vectors �v, all decryption keys sk�v

R← KeyGen(pk, sk, �v), all messages m, all vectors
�x, all ciphertexts ct�x

R← Enc(pk,m, �x), it holds that m = Dec(pk, sk�v, ct�x) with overwhelming
probability, if R(�v, �x) = 1.

Definition 4 (Adaptively Payload-Hiding Security) The model for proving the adaptively
payload-hiding security of ZIPE (or NIPE) under chosen plaintext attacks is given hereafter.

Setup The challenger runs the setup algorithm, (pk, sk) R← Setup(1λ), and gives public param-
eters pk to the adversary.

6

Phase 1 The adversary is allowed to adaptively issue a polynomial number of queries, �v, to
the challenger or oracle KeyGen(pk, sk, ·) for private keys, sk�v, associated with �v.

Challenge The adversary submits two messages, m(0) and m(1), and a vector, �x, provided that
no �v queried to the challenger in Phase 1 satisfies R(�v, �x) = 1. The challenger flips a coin
b

U← {0, 1}, and computes ct
(b)
�x

R← Enc(pk,m(b), �x). It gives ct
(b)
�x to the adversary.

Phase 2 The adversary is allowed to adaptively issue a polynomial number of queries, �v, to
the challenger or oracle KeyGen(pk, sk, ·) for private keys, sk�v, associated with �v, provided
that R(�v, �x) �= 1.

Guess The adversary outputs a guess b′ of b.

The advantage of adversary A in the above game, AdvZIPE,PH
A (λ) (or AdvNIPE,PH

A (λ)), is
defined by Pr[b′ = b]−1/2 for any security parameter λ. A ZIPE (or NIPE) scheme is adaptively
payload-hiding secure if all polynomial time adversaries have at most a negligible advantage in
the game.

Definition 5 (Adaptively Weakly-Attribute-Hiding Security) The model for proving the
adaptively weakly-attribute-hiding security of ZIPE under chosen plaintext attacks is obtained
from the above game by replacing Challenge and Phase 2 steps by the following:

Challenge The adversary submits two messages, (m(0),m(1)), and two vectors, (�x(0), �x(1)), pro-
vided that no �v queried to the challenger in Phase 1 satisfies R(�v, �x(0)) = 1 or R(�v, �x(1)) =
1. The challenger flips a coin b

U← {0, 1}, and computes ct�x(b)
R← Enc(pk,m(b), �x(b)). It

gives ct�x(b) to the adversary.

Phase 2 The adversary is allowed to adaptively issue a polynomial number of queries, �v, to
the challenger or oracle KeyGen(pk, sk, ·) for private keys, sk�v, associated with �v, provided
that R(�v, �x(0)) �= 1 and R(�v, �x(1)) �= 1.

The advantage of adversary A in the above game, AdvZIPE,wAH
A (λ), is defined by Pr[b′ =

b] − 1/2 for any security parameter λ. A ZIPE scheme is adaptively weakly-attribute-hiding
secure if all polynomial time adversaries have at most a negligible advantage in the game.

Informally, in adaptively fully-attribute-hiding security game, adversary is allowed to issue
both types of key queries, R(�v, �x(b)) = 0 and R(�v, �x(b)) = 1, in a single security game. It gives
a strong security than Definition 5 and is given in the following Definition 6.

Definition 6 (Adaptively Fully-Attribute-Hiding Security) The model for proving the
adaptively fully-attribute-hiding security of ZIPE under chosen plaintext attacks is obtained
from the above game by replacing Challenge and Phase 2 steps by the following:

Challenge The adversary submits challenge attribute vector (�x(0), �x(1)) and challenge plaintexts
(m(0),m(1)), subject to the following restrictions:

• �v · �x(0) �= 0 and �v · �x(1) �= 0 for all the key queried predicate vectors, �v.

• Two challenge plaintexts are equal, i.e., m(0) = m(1), and any key query �v satisfies
R(�v, �x(0)) = R(�v, �x(1)), i.e., one of the following conditions.

– �v · �x(0) = 0 and �v · �x(1) = 0,
– �v · �x(0) �= 0 and �v · �x(1) �= 0,

7

The challenger flips a coin b
U← {0, 1}, and computes ct�x(b)

R← Enc(pk,m(b), �x(b)). It gives
ct�x(b) to the adversary.

Phase 2 The adversary is allowed to adaptively issue a polynomial number of queries, �v, to
the challenger or oracle KeyGen(pk, sk, ·) for private keys, sk�v, associated with �v, subject
to the restriction given in the challenge step.

The advantage of adversary A in the above game is defined as AdvZIPE,AH
A (λ) := Pr[A wins]−1/2

for any security parameter λ. An IPE scheme is adaptively fully-attribute-hiding (AH) (against
chosen plaintext attacks) if all probabilistic polynomial-time adversaries A have at most negli-
gible advantage in the above game.

For each run of the game, the variable s is defined as s := 0 if m(0) �= m(1) for challenge
plaintexts m(0) and m(1), and s := 1 otherwise.

4 Decisional Linear (DLIN) Assumption

Definition 7 The DLIN problem is to guess β ∈ {0, 1}, given (paramG, G, ξG, κG, δξG, σκG, Yβ)
R← GDLIN

β (1λ), where GDLIN
β (1λ) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ), κ, δ, ξ, σ
U← Fq, Y0 :=

(δ + σ)G, Y1
U← G, return (paramG, G, ξG, κG, δξG, σκG, Yβ), for β U← {0, 1}. For a prob-

abilistic machine E, we define the advantage of E for the DLIN problem as: AdvDLIN
E (λ) :=∣∣∣Pr

[
E(1λ, �)→ 1

∣∣∣� R←GDLIN
0 (1λ)

]
−Pr

[
E(1λ, �)→ 1

∣∣∣� R←GDLIN
1 (1λ)

]∣∣∣ . The DLIN assumption is:

For any probabilistic polynomial-time adversary E, the advantage AdvDLIN
E (λ) is negligible in λ.

5 Special Matrix Subgroups

Lemmas 1–3 are key lemmas for the security proof for our (H)IPE schemes. For positive integers
w and n, let

H(n,Fq) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

u u′1
. . .

...
u u′n−1

u′n

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
u, u′l ∈ Fq for l = 1, . . . , n,
a blank element in the matrix
denotes 0 ∈ Fq

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , (1)

H̃(n,Fq) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

u′1
u′2 u
...

. . .
u′n u

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
u, u′l ∈ Fq for l = 1, . . . , n,
a blank element in the matrix
denotes 0 ∈ Fq

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , (2)

Lemma 1 H(n,Fq) ∩ GL(n,Fq) and H̃(n,Fq) ∩ GL(n,Fq) are subgroups of GL(n,Fq).

Lemma 1 is directly verified from the definition of groups. �

L(w, n,Fq) :=⎧⎪⎪⎪⎨
⎪⎪⎪⎩X :=

⎛
⎜⎝

X1,1 · · · X1,w
...

...
Xw,1 · · · Xw,w

⎞
⎟⎠
∣∣∣∣∣∣∣Xi,j :=

⎛
⎜⎜⎜⎝

μi,j μ′i,j,1
. . .

...
μi,j μ′i,j,n−1

μ′i,j,n

⎞
⎟⎟⎟⎠
∈ H(n,Fq)
for i, j =
1, . . . , w

⎫⎪⎪⎪⎬
⎪⎪⎪⎭⋂

GL(wn,Fq). (3)

8

L̃(w, n,Fq) :=⎧⎪⎪⎪⎨
⎪⎪⎪⎩X :=

⎛
⎜⎝

X1,1 · · · X1,w
...

...
Xw,1 · · · Xw,w

⎞
⎟⎠
∣∣∣∣∣∣∣Xi,j :=

⎛
⎜⎜⎜⎝

μ′i,j,1
μ′i,j,2 μi,j

...
. . .

μ′i,j,n μi,j

⎞
⎟⎟⎟⎠
∈ H̃(n,Fq)
for i, j =
1, . . . , w

⎫⎪⎪⎪⎬
⎪⎪⎪⎭⋂

GL(wn,Fq). (4)

Lemma 2 L(w, n,Fq) and L̃(w, n,Fq) are subgroups of GL(wn,Fq).

L+(w, n,Fq) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩X :=

⎛
⎜⎜⎜⎝

χ0,0 χ0,1�en · · · χ0,w�en
�χT

1,0 X1,1 · · · X1,w

...
...

...
�χT
w,0 Xw,1 · · · Xw,w

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
Xi,j ∈ H(n,Fq),
�χi,0 := (χi,0,l)l=1,...,n ∈ F

n
q ,

χ0,0, χ0,j ∈ Fq

for i, j = 1, . . . , w

⎫⎪⎪⎪⎬
⎪⎪⎪⎭⋂

GL(wn+ 1,Fq). (5)

Lemma 3 L+(w, n,Fq) is a subgroup of GL(wn+ 1,Fq).

Proofs of Lemmas 2 and 3 are given in Appendix A.1.

6 NIPE Scheme with Constant-Size Ciphertexts

6.1 Key Ideas in Constructing the Proposed NIPE Scheme

In this section, we will explain key ideas of constructing and proving the security of the proposed
NIPE scheme.

First, we will show how short ciphertexts and efficient decryption can be achieved in our
scheme. Here, we will use a simplified (or toy) version of the proposed NIPE scheme, for which
the security is no more ensured in the standard model under the DLIN assumption.

A ciphertext in the simplified NIPE scheme consists of two vector elements, (c0, c1) ∈ G
5×

G
n, and c3 ∈ GT . A secret-key consists of two vector elements, (k∗

0,k
∗
1) ∈ G

5 ×G
n. Therefore,

to achieve constant-size ciphertexts, we have to compress c1 ∈ G
n to a constant size in n. We

now employ a special form of basis generation matrix, X :=

⎛
⎜⎜⎜⎝

μ μ′1
. . .

...
μ μ′n−1

μ′n

⎞
⎟⎟⎟⎠ ∈ H(n,Fq)

of Eq. (1) in Section 6.2, where μ, μ′1, . . . , μ′n
U← Fq and a blank in the matrix denotes 0 ∈ Fq.

The system parameter or DPVS public basis is B :=

⎛
⎜⎜⎜⎝

b1
...

bn

⎞
⎟⎟⎟⎠ :=

⎛
⎜⎜⎜⎝

μG μ′1G
. . .

...
μG μ′n−1G

μ′nG

⎞
⎟⎟⎟⎠.

Let a ciphertext associated with �x := (x1, . . . , xn) be c1 := (ω�x)B = ω(x1b1 + · · · + xnbn) =
(x1ωμG, . . . , xn−1ωμG, ω(

∑n
i=1 xiμ

′
i)G), where ω U← Fq. Then, c1 can be compressed to only

two group elements (C1 := ωμG, C2 := ω(
∑n

i=1 xiμ
′
i)G) as well as �x, since c1 can be obtained

by (x1C1, . . . , xn−1C1, C2) (note that xiC1 = xiωμG for i = 1, . . . , n− 1). That is, a ciphertext
(excluding �x) can be just two group elements, or the size is constant in n.

9

Let B
∗ := (b∗i) be the dual orthonormal basis of B := (bi), and B

∗ be the master secret
key in the simplified NIPE scheme. We specify (c0,k

∗
0, c3) such that e(c0,k

∗
0) = gζT · gωδT and

c3 := gζTm ∈ GT . We also set a secret-key for �v as k∗
1 := (δ�v)B∗ = δ(v1b∗1 + · · · + vnb

∗
n).

From the dual orthonormality of B and B
∗, it then holds that e(c1,k

∗
1) = g

ωδ(�x·�v)
T . Hence,

a decryptor can compute gωδT if and only if �x · �v �= 0, i.e., can obtain plaintext m by c3 ·
e(c0,k

∗
0)

−1 · e(c1,k
∗
1)

(�x·�v)−1
. Since c1 is expressed as (x1C1, . . . , xn−1C1, C2) ∈ G

n and k∗
1 is

parsed as a n-tuple (K1, . . . ,Kn) ∈ G
n, the value of e(c1,k

∗
1) is

∏n−1
i=1 e(xiC1,Ki) · e(C2,Kn) =∏n−1

i=1 e(C1, xiKi)·e(C2,Kn) = e(C1,
∑n−1

i=1 xiKi)·e(C2,Kn). That is, n−1 scalar multiplications
in G and two pairing operations are enough for computing e(c1,k

∗
1). Therefore, only a small

(constant) number of pairing operations are required for decryption.
We then explain how our full NIPE scheme is constructed on the above-mentioned simplified

NIPE scheme. The target of designing the full NIPE scheme is to achieve the adaptive security
under the DLIN assumption. Here, we adopt a strategy similar to that of [18], in which the
dual system encryption methodology is employed in a modular or hierarchical manner. That
is, two top level assumptions, the security of Problems 1 and 2, are directly used in the dual
system encryption methodology and these assumptions are reduced to a primitive assumption,
the DLIN assumption.

To meet the requirements for applying to the dual system encryption methodology and
reducing to the DLIN assumption, the underlying vector space as well as the basis generator
matrixX is four times greater than that of the above-mentioned simplified scheme. For example,

k∗
1 := (δ�v, 0n, �ϕ1, 0n)B∗ , c1 = (ω�x, 0n, 0n, η1�x)B, andX :=

⎛
⎜⎝

X1,1 · · · X1,4
...

...
X4,1 · · · X4,4

⎞
⎟⎠ ∈ L(4, n,Fq)

of Eq. (3) in Section 6.2, where each Xi,j is of the form of X ∈ H(n,Fq) in the simplified scheme.
The vector space consists of four orthogonal subspaces, i.e., real encoding part, hidden part,
secret-key randomness part, and ciphertext randomness part. The simplified NIPE scheme
corresponds to the first real encoding part.

A key fact in the security reduction is that L(4, n,Fq) is a subgroup of GL(4n,Fq) (Lemma 2),
which enables a random-self-reducibility argument for reducing the DLIN problem to Problems
1 and 2 in this paper. The property that H(n,Fq) ∩ GL(n,Fq) is a subgroup of GL(n,Fq) is
also crucial for a special form of pairwise independence lemma in this paper (Lemma 6), where
H(n,Fq) is specified in L(4, n,Fq) or X. Our Problem 2, which is based on this lemma, employs

special form matrices U U← H(n,Fq) ∩ GL(n,Fq) and Z := (U−1)T. Informally, our pairwise
independence lemma implies that, for all (�x,�v), a pair, (�xU,�vZ), are uniformly distributed over
(span〈�x,�en〉 \ span〈�en〉) × (Fn

q \ span〈�en〉⊥) with preserving the inner-product value, �x · �v, i.e.,
(�xU,�vZ) reveal no information but �x and �x · �v.

A difference of matrix X with the ZIPE scheme will be noted in Remark 9.

6.2 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator GNIPE,CT
ob below, which is used as a sub-

routine in the proposed NIPE scheme.

GNIPE,CT
ob (1λ, 4, n) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ), N0 := 5, N1 := 4n,

paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG) for t = 0, 1,

ψ
U← F

×
q , gT := e(G,G)ψ, paramn := ({paramVt

}t=0,1, gT),

X0 := (χ0,i,j)i,j=1,...,5
U← GL(N0,Fq), X1

U← L(4, n,Fq), hereafter,

10

{μi,j , μ′i,j,l}i,j=1,...4;l=1,...,n denotes non-zero entries of X1 as in Eq. (3),

b0,i := (χ0,i,1, .., χ0,i,5)A =
∑5

j=1 χ0,i,jaj for i = 1, .., 5, B0 := (b0,1, .., b0,5),

Bi,j := μi,jG, B
′
i,j,l := μ′i,j,lG for i, j = 1, . . . , 4; l = 1, . . . , n,

for t = 0, 1, (ϑt,i,j)i,j=1,...,Nt := ψ · (XT
t)−1,

b∗t,i := (ϑt,i,1, .., ϑt,i,Nt)A =
∑Nt

j=1 ϑt,i,jaj for i = 1, .., Nt, B
∗
t := (b∗t,1, .., b∗t,Nt

),

return (paramn,B0,B
∗
0, {Bi,j , B′

i,j,l}i,j=1,...,4;l=1,...,n,B
∗
1).

Remark 1 Let

⎛
⎜⎜⎝

b1,(i−1)n+1

...

b1,in

⎞
⎟⎟⎠ :=

⎛
⎜⎜⎜⎜⎜⎝

Bi,1 B′
i,1,1

. . .
...

Bi,1 B′
i,1,n−1

B′
i,1,n

· · ·

Bi,4 B′
i,4,1

. . .
...

Bi,4 B′
i,4,n−1

B′
i,4,n

⎞
⎟⎟⎟⎟⎟⎠

for i = 1, . . . , 4,

B1 := (b1,1, . . . , b1,4n),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

where a blank element in the matrix denotes 0 ∈ G. B1 is the dual orthonormal basis of B
∗
1,

i.e., e(b1,i, b
∗
1,i) = gT and e(b1,i, b

∗
1,j) = 1 for 1 ≤ i �= j ≤ 4n.

6.3 Construction

In the description of the scheme, we assume that input vector, �x := (x1, . . . , xn), has an index
l (1 ≤ l ≤ n− 1) with xl �= 0, and that input vector, �v := (v1, . . . , vn), satisfies vn �= 0.

Setup(1λ, n) : (paramn,B0,B
∗
0, {Bi,j , B′

i,j,l}i,j=1,...,4;l=1,...,n,B
∗
1)

R← GNIPE,CT
ob (1λ, 4, n),

B̂0 := (b0,1, b0,3, b0,5), B̂∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4), B̂

∗
1 := (b∗1,1, .., b

∗
1,n, b

∗
1,2n+1, .., b

∗
1,3n),

return pk := (1λ, paramn, B̂0, {Bi,j , B′
i,j,l}i=1,4;j=1,...,4;l=1,...,n), sk := {B̂∗

t }t=0,1.

KeyGen(pk, sk, �v) : δ, ϕ0
U← Fq, �ϕ1

U← F
n
q , k∗

0 := (δ, 0, 1, ϕ0, 0)B∗
0
,

k∗
1 := (

n︷︸︸︷
δ�v ,

n︷︸︸︷
0n ,

n︷︸︸︷
�ϕ1 ,

n︷︸︸︷
0n)B∗

1
, return sk�v := (�v,k∗

0,k
∗
1).

Enc(pk, m, �x) : ω, η0, η1, ζ
U← Fq, c0 := (−ω, 0, ζ, 0, η0)B0 , c3 := gζTm,

C1,j := ωB1,j + η1B4,j , C2,j :=
∑n

l=1 xl(ωB
′
1,j,l + η1B

′
4,j,l) for j = 1, . . . , 4,

return ct�x := (�x, c0, {C1,j , C2,j}j=1,...,4, c3).
Dec(pk, sk�v := (�v,k∗

0,k
∗
1), ct�x := (�x, c0, {C1,j , C2,j}j=1,...,4, c3)) :

Parse k∗
1 as a 4n-tuple (K∗

1 , . . . ,K
∗
4n) ∈ G

4n,

D∗
j :=

∑n−1
l=1 ((�x · �v)−1xl)K∗

(j−1)n+l for j = 1, .., 4,

F := e(c0,k
∗
0) ·

∏4
j=1

(
e(C1,j , D

∗
j) · e(C2,j ,K

∗
jn)
)
, return m′ := c3/F.

Remark 2 A part of output of Setup(1λ, n), {Bi,j , B′
i,j,l}i=1,4;j=1,...,4;l=1,...,n, can be identified

with B̂1 := (b1,1, . . . , b1,n, b1,3n+1, .., b1,4n) through the form of Eq. (6), while B1 := (b1,1, . . . ,
b1,4n) is identified with {Bi,j , B′

i,j,l}i,j=1,..,4; l=1,..,n by Eq. (6). Decryption Dec can be alterna-

11

tively described as:

Dec′(pk, sk�v := (�v,k∗
0,k

∗
1), ct�x := (�x, c0, {C1,j , C2,j}j=1,...,4, c3)) :
n︷ ︸︸ ︷ n︷ ︸︸ ︷

c1 := (x1C1,1, .., xn−1C1,1, C2,1, . . . , x1C1,4, .., xn−1C1,4, C2,4),

that is, c1 = (

n︷ ︸︸ ︷
ω�x,

n︷︸︸︷
0n,

n︷︸︸︷
0n,

n︷ ︸︸ ︷
η1�x)B1 , F := e(c0,k

∗
0) · e(c1, (�x · �v)−1k∗

1),
return m′ := c3/F.

[Correctness] Using the alternate decryption Dec′, F = e(c0,k
∗
0) · e(c1, (�x · �v)−1k∗

1) =
g−ωδ+ζT g

ωδ(�x·�v)/(�x·�v)
T = gζT if �x · �v �= 0.

6.4 Security

The proofs of Lemmas 4–12 are given in Appendix A.2.

Theorem 1 The proposed NIPE scheme is adaptively payload-hiding against chosen plaintext
attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines E1, E2-1 and E2-2 whose running times
are essentially the same as that of A, such that for any security parameter λ, AdvNIPE,PH

A (λ) ≤
AdvDLIN

E1
(λ) +

∑ν
h=1

(
AdvDLIN

E2-h-1
(λ)+AdvDLIN

E2-h-2
(λ)
)

+ε, where E2-h-1(·) := E2-1(h, ·), E2-h-2(·) :=
E2-2(h, ·), ν is the maximum number of A’s key queries and ε := (11ν + 6)/q.

6.4.1 Lemmas for the Proof of Theorem 1

We will show Lemmas 4–6 for the proof of Theorem 1.

Definition 8 (Problem 1) Problem 1 is to guess β, given
(paramn,B0, B̂

∗
0, eβ,0, {Bi,j , B′

i,j,l}i,j=1,..,4;l=1,..,n, B̂
∗
1, {Eβ,j , E′

β,j,l}j=1,..,4;l=1,..,n)
R← GP1

β (1λ, n), where

GP1
β (1λ, n) : (paramn,B0,B

∗
0, {Bi,j , B′

i,j,l}i,j=1,...,4;l=1,...,n, B̂
∗
1)

R← GNIPE,CT
ob (1λ, 4, n),

B̂
∗
0 := (b∗0,1, b

∗
0,3, .., b

∗
0,5), B̂

∗
1 := (b∗1,1, . . . , b

∗
1,n, b

∗
t,2n+1, . . . , b

∗
t,4n),

ω, τ, η0, η1
U← Fq, U

U← H(n,Fq) ∩GL(n,Fq), hereafter, u, u′n ∈ F
×
q ,

u′1, . . . , u
′
n−1 ∈ Fq denote non-zero entries of U, as in Eq. (1),

e0,0 := (ω, 0, 0, 0, η0)B0 , e1,0 := (ω, τ, 0, 0, η0)B0 ,

for j = 1, . . . , 4;
E0,j := ωB1,j + η1B4,j , E

′
0,j,l := ωB′

1,j,l + η1B
′
4,j,l for l = 1, . . . , n,

E1,j := ωB1,j + τuB2,j + η1B4,j ,

E′
1,j,l := ωB′

1,j,l + τuB′
2,j,l + τu′lB

′
2,j,n + η1B

′
4,j,l

for l = 1, . . . , n− 1, and E′
1,j,n := ωB′

1,j,n + τu′nB
′
2,j,n + η1B

′
4,j,n,

return (paramn,B0, B̂
∗
0, eβ,0, {Bi,j , B′

i,j,l}i,j=1,...,4;l=1,...,n, B̂
∗
1,

{Eβ,j , E′
β,j,l}j=1,...,4;l=1,...,n),

for β U← {0, 1}. For a probabilistic machine B, we define the advantage of B as the quantity
AdvP1

B (λ) :=
∣∣∣Pr

[
B(1λ, �)→ 1

∣∣∣� R← GP1
0 (1λ, n)

]
− Pr

[
B(1λ, �)→ 1

∣∣∣� R← GP1
1 (1λ, n)

]∣∣∣ .
12

Remark 3 A part of output of GP1
β (1λ, n), {Bi,j , B′

i,j,l}i,j=1,...,4;l=1,...,n, is identified with B1 :=
(b1,1, . . . , b1,4n) (Eq. (6)). If we make eβ,1,l ∈ V1 for β = 0, 1; l = 1, . . . , n as:

n︷ ︸︸ ︷ n︷ ︸︸ ︷
eβ,1,l := (0l−1, Eβ,1, 0n−l−1, E′

β,1,l, . . . , 0l−1, Eβ,4, 0n−l−1, E′
β,4,l)

for l = 1, . . . , n− 1,
eβ,1,n := (0n−1, E′

β,1,n, . . . , 0n−1, E′
β,4,n),

they are expressed over B1 as:

n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
e0,1,l := (ω�el, 0n, 0n, η1�el)B1 for l = 1, . . . , n,
e1,1,l := (ω�el, τ�elU, 0n, η1�el)B1 for l = 1, . . . , n.

Using these vector expressions, the output of GP1
β (1λ, n) is expressed as (paramn,B0, B̂

∗
0, eβ,0,B1,

B̂
∗
1, {eβ,1,l}l=1,...,n).

Lemma 4 For any adversary B, there exists a probabilistic machine E, whose running times
are essentially the same as that of B, such that for any security parameter λ, AdvP1

B (λ) ≤
AdvDLIN

E (λ) + 5/q.

Definition 9 (Problem 2) Problem 2 is to guess β, given
(paramn, B̂0,B

∗
0,h

∗
β,0, e0, {Bi,j , B′

i,j,l}i=1,3,4;j=1,..,4;l=1,..,n,B
∗
1, {h∗

β,1,l, Ej , E
′
j,l}j=1,..,4;l=1,..,n)

R←
GP2
β (1λ, n), where

GP2
β (1λ, n) : (paramn,B0, B̂

∗
0, {Bi,j , B′

i,j,l}i,j=1,...,4;l=1,...,n, B̂
∗
1)

R← GNIPE,CT
ob (1λ, 4, n),

B̂0 := (b0,1, b0,3, .., b0,5), δ, ρ, ϕ0, ω, τ
U← Fq, �ϕl

U← F
n
q for l = 1, . . . , n,

U
U← H(n,Fq) ∩GL(n,Fq), Z := (U−1)T,

hereafter, u, u′n ∈ F
×
q , u

′
1, . . . , u

′
n−1 ∈ Fq and z, z′n ∈ F

×
q , z

′
1, . . . , z

′
n−1 ∈ Fq

denote non-zero entries of U and ZT, as in Eq. (1), respectively,
h∗

0,0 := (δ, 0, 0, ϕ0, 0)B∗
0
, h∗

1,0 := (δ, ρ, 0, ϕ0, 0)B∗
0
, e0 := (ω, τ, 0, 0, 0)B0 ,

�el := (0l−1, 1, 0n−l) ∈ F
n
q for l = 1, . . . , n;

n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗

0,1,l := (δ�el, 0n, �ϕl, 0n)B∗
1

for l = 1, . . . , n,
h∗

1,1,l := (δ�el, ρ�elZ, �ϕl, 0n)B∗
1

for l = 1, . . . , n,
for j = 1, . . . , 4; Ej := ωB1,j + τuB2,j ,

E′
j,l := ωB′

1,j,l + τuB′
2,j,l + τu′lB

′
2,j,n for l = 1, . . . , n− 1,

E′
j,n := ωB′

1,j,n + τu′nB
′
2,j,n,

return (paramn, B̂0,B
∗
0,h

∗
β,0, e0, {Bi,j , B′

i,j,l}i=1,3,4;j=1,...,4;l=1,...,n,B
∗
1,

{h∗
β,1,l, Ej , E

′
j,l}j=1,...,4;l=1,...,n),

for β U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem 2, AdvP2
B (λ), is

similarly defined as in Definition 8.

13

Remark 4 A part of output of GP2
β (1λ, n), {Bi,j , B′

i,j,l}i=1,3,4;j=1,...,4;l=1,...,n, can be identified
with B̂1 := (b1,1, . . . , b1,n, b1,2n+1, . . . , b1,4n) in the form of Eq. (6), while B1 := (b1,1, .., b1,4n) is
identified with {Bi,j , B′

i,j,l}i,j=1,...,4;l=1,...,n by Eq. (6). If we make e1,l ∈ V1 for l = 1, . . . , n as:

n︷ ︸︸ ︷ n︷ ︸︸ ︷
e1,l := (0l−1, E1, 0n−l−1, E′

1,l, . . . , 0l−1, E4, 0n−l−1, E′
4,l)

for l = 1, . . . , n− 1,
e1,n := (0n−1, E′

1,n, . . . , 0n−1, E′
4,n),

they are expressed over B1 as:

n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
e1,l := (ω�el, τ�elU, 0n, 0n)B1 for l = 1, . . . , n.

Using these vector expressions, the output of GP2
β (1λ, n) is expressed as (paramn, B̂0,B

∗
0,h

∗
β,0, e0,

B̂1,B
∗
1, {h∗

β,1,l, e1,l}l=1,...,n).

Lemma 5 For any adversary B, there exists a probabilistic machine E, whose running time
is essentially the same as that of B, such that for any security parameter λ, AdvP2

B (λ) ≤
AdvDLIN

E (λ) + 5/q.

Lemma 6 Let �en := (0, . . . , 0, 1) ∈ F
n
q . For all �x ∈ F

n
q \ span〈�en〉 and π ∈ Fq, let W�x,π :=

{(�r, �w) ∈ (span〈�x,�en〉 \ span〈�en〉)× (Fn
q \ span〈�en〉⊥) | �r · �w = π}.

For all (�x,�v) ∈ (Fn
q \ span〈�en〉

) × (Fn
q \ span〈�en〉⊥

)
, for all (�r, �w) ∈ W�x,(�x·�v), Pr [�xU = �r∧

�vZ = �w] = 1
/
�W�x,(�x·�v), where U U← H(n,Fq) ∩GL(n,Fq) and Z := (U−1)T.

6.4.2 Proof Outline

At the top level of strategy of the security proof, we follow the dual system encryption method-
ology proposed by Waters [22]. In the methodology, ciphertexts and secret keys have two forms,
normal and semi-functional. In the proof herein, we also introduce other forms of secret keys
called 1st-pre-semi-functional and 2nd-pre-semi-functional. The real system uses only normal
ciphertexts and normal secret keys, and semi-functional ciphertexts and semi-functional/1st-
pre-semi-functional/2nd-pre-semi-functional keys are used only in a sequence of security games
for the security proof. To prove this theorem, we employ Game 0 (original adaptive-security
game) through Game 3. In Game 1, the challenge ciphertext is changed to semi-functional.
When at most ν secret key queries are issued by an adversary, there are 3ν game changes from
Game 1 (Game 2-0-3), Game 2-1-1, Game 2-1-2, Game 2-1-3 through Game 2-ν-3.

In Game 2-h-1, the first (h − 1) keys are semi-functional and the h-th key is 1st-pre-semi-
functional, while the remaining keys are normal, and the challenge ciphertext is semi-functional.
In Game 2-h-2, the first (h − 1) keys are semi-functional and the h-th key is 2nd-pre-semi-
functional, while the remaining keys are normal, and the challenge ciphertext is semi-functional.
In Game 2-h-3, the first h keys are semi-functional (i.e., and the h-th key is semi-functional),
while the remaining keys are normal, and the challenge ciphertext is semi-functional.

The final game (Game 3) with advantage 0 is conceptually changed from Game 2-ν-3. As
usual, we prove that the advantage gaps between neighboring games are negligible.

When at most ν key queries are issued by an adversary, we set a sequence of sk := sk�v’s,
i.e., (sk(1)∗, . . . , sk(ν)∗), in the order of the adversary’s queries. Here we focus on �k

(h)∗
�v :=

(k(h)∗
0 ,k

(h)∗
1), and �c�x := (c0, {C1,j , C2,j}j=1,...,4, c3), and ignore the other part of sk�v (resp. ct�x),

14

i.e., �v (resp. i.e., �x), and call them secret key and ciphertext, respectively, in this proof outline.
In addition, we ignore a negligible factor in the (informal) descriptions of this proof outline. For
example, we say “A is bounded by B” when A ≤ B + ε(λ) where ε(λ) is negligible in security
parameter λ.

A normal secret key, �k(h)∗norm
�v , is the correct form of the secret key of the proposed NIPE

scheme, and is expressed by Eq. (7). Similarly, a normal ciphertext �c norm
�x , is expressed by

Eq. (8). A 1st-pre-semi-functional secret key, �k(h)∗ 1st-psemi
�v , is expressed by Eq. (10), a 2nd-

pre-semi-functional secret key, �k(h)∗ 2nd-psemi
�v , is expressed by Eq. (11), a semi-functional secret

key, �k(h)∗ semi
�v , is expressed by Eq. (12), and a semi-functional ciphertext, �c semi

�x , is expressed by
Eq. (9).

To prove that the advantage gap between Games 0 and 1 is bounded by the advantage of
Problem 1 (to guess β ∈ {0, 1}), we construct a simulator of the challenger of Game 0 (or 1)
(against an adversary A) by using an instance with β

U← {0, 1} of Problem 1. We then show
that the distribution of the secret keys and challenge ciphertext replied by the simulator is
equivalent to those of Game 0 when β = 0 and Game 1 when β = 1. That is, the advantage
gap between Games 0 and 1 is bounded by the advantage of Problem 1 (Lemma 7). The
advantage of Problem 1 is proven to be bounded by that of the DLIN assumption (Lemma 4).
The advantage gap between Games 2-(h− 1)-3 and 2-h-1 is similarly shown to be bounded by
the advantage of Problem 2 (i.e., advantage of the DLIN assumption) (Lemmas 8 and 5). The
distributions of 1st-pre-semi-functional secret key �k

(h)∗ 1st-psemi
�v (Eq. (10)) and 2nd-pre-semi-

functional secret key �k(h)∗ 2nd-psemi
�v (Eq. (11)) are distinguishable by the simulator or challenger,

but the joint distributions of (�k(h)∗ 1st-psemi
�v , �c semi

�x) and (�k(h)∗ 2nd-psemi
�v , �c semi

�x) along with the
other keys are (information theoretically) equivalent for the adversary’s view, when �x · �v = 0,
i.e., RNIPE(�x,�v) �= 1. Therefore, as shown in Lemma 9, the advantages of Games 2-h-1 and
2-h-2 are equivalent. The advantage gap between Games 2-h-2 and 2-h-3 is similarly shown to
be bounded by the advantage of Problem 2 (i.e., advantage of the DLIN assumption) (Lemmas
10 and 5). Finally we show that Game 2-ν-3 can be conceptually changed to Game 3 (Lemma
11) by using the fact that basis vectors b0,2 and b∗0,3 are unknown to the adversary.

6.4.3 Proof of Theorem 1

To prove Theorem 1, we consider the following (3ν + 3) games. In Game 0, a part framed by
a box indicates coefficients to be changed in a subsequent game. In the other games, a part
framed by a box indicates coefficients that were changed in a game from the previous game.
Game 0 : Original game. That is, the reply to a key query for �v is

k∗
0 := (δ, 0 , 1, ϕ0, 0)B∗

0
, k∗

1 := (δ�v, 0n , �ϕ1, 0n)B∗
1
, (7)

where δ, ϕ0
U← Fq, �ϕ1

U← F
n
q and �v := (v1, . . . , vn) ∈ F

n
q with vn �= 0. The challenge ciphertext

for challenge plaintexts (m(0),m(1)) and �x, (�x, c0, {C1,j , C2,j}j=1,..,4, c3), which is identified with
(�x, c0, c1, c3) in Remark 2, is

c0 := (−ω, 0 , ζ , 0, η0)B0 , c1 := (ω�x, 0n , 0n, η1�x)B1 , c3 := gζTm, (8)

where b
U← {0, 1};ω, ζ, η0, η1

U← Fq and �x := (x1, . . . , xn) ∈ F
n
q with xl �= 0 for some l ∈

{1, .., n− 1}.
Game 1 : Same as Game 0 except that the challenge ciphertext for challenge plaintexts
(m(0),m(1)) and �x is

c0 := (−ω, −τ , ζ, 0, η0)B0 , c1 := (ω�x, τ�xU , 0n, η1�x)B1 , c3 := gζTm, (9)

15

where τ U← Fq, U
U← H(n,Fq)∩GL(n,Fq), and all the other variables are generated as in Game

0.
Game 2-h-1 (h = 1, . . . , ν) : Game 2-0-3 is Game 1. Game 2-h-1 is the same as Game
2-(h− 1)-3 except that the reply to the h-th key query for �v, (k∗

0,k
∗
1), is

k∗
0 := (δ, ρ , 1, ϕ0, 0)B∗

0
, k∗

1 := (δ�v, ρ�vZ , �ϕ1, 0n)B∗
1
, (10)

where ρ U← Fq, Z := (U−1)T for U U← H(n,Fq) ∩ GL(n,Fq) used in Eq. (9) and all the other
variables are generated as in Game 2-(h− 1)-3.
Game 2-h-2 (h = 1, . . . , ν) : Game 2-h-2 is the same as Game 2-h-1 except that a part of
the reply to the h-th key query for �v, (k∗

0,k
∗
1), is

k∗
0 := (δ, w , 1, ϕ0, 0)B∗

0
, k∗

1 := (δ�v, ρ�vZ, �ϕ1, 0n)B∗
1
, (11)

where w U← Fq and all the other variables are generated as in Game 2-h-1.
Game 2-h-3 (h = 1, . . . , ν) : Game 2-h-3 is the same as Game 2-h-2 except that the reply
to the h-th key query for �v, (k∗

0,k
∗
1), is

k∗
0 := (δ, w, 1, ϕ0, 0)B∗

0
, k∗

1 := (δ�v, 0n , �ϕ1, 0n)B∗
1
, (12)

where all the variables are generated as in Game 2-h-2.
Game 3 : Same as Game 2-ν-3 except that c0 and c3 of the challenge ciphertext are

c0 := (−ω, −τ, ζ ′ , 0, η0)B0 , c3 := gζTm
(b),

where ζ ′ U← Fq (i.e., independent from ζ
U← Fq), and all the other variables are generated as in

Game 2-ν-3.
Let Adv

(0)
A (λ),Adv

(1)
A (λ),Adv

(2-h-ι)
A (λ) (h = 1, . . . , ν; ι = 1, 2, 3) and Adv

(3)
A (λ) be the advan-

tage of A in Game 0, 1, 2-h-ι and 3, respectively. Adv
(0)
A (λ) is equivalent to AdvNIPE,PH

A (λ) and
it is obtained that Adv

(3)
A (λ) = 0 by Lemma 12. We will show five lemmas (Lemmas 7-11) that

evaluate the gaps between pairs of Adv
(0)
A (λ), Adv

(1)
A (λ),Adv

(2-h-ι)
A (λ) for h = 1, . . . , ν; ι = 1, 2, 3

and Adv
(3)
A (λ). From these lemmas and Lemmas 4 and 5, we obtain Theorem 1. �

Lemma 7 For any adversary A, there exists a probabilistic machine B1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(0)
A (λ) −

Adv
(1)
A (λ)| ≤ AdvP1

B1
(λ).

Lemma 8 For any adversary A, there exists a probabilistic machine B2-1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-(h−1)-3)
A (λ)−

Adv
(2-h-1)
A (λ)| ≤ AdvP2

B2-h-1
(λ), where B2-h-1(·) := B2-1(h, ·).

Lemma 9 For any adversary A, for any security parameter λ, |Adv
(2-h-1)
A (λ)−Adv

(2-h-2)
A (λ)| ≤

1/q.

Lemma 10 For any adversary A, there exists a probabilistic machine B2-2, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-h-2)
A (λ) −

Adv
(2-h-3)
A (λ)| ≤ AdvP2

B2-h-2
(λ), where B2-h-2(·) := B2-2(h, ·).

Lemma 11 For any adversary A, for any security parameter λ, |Adv
(2-ν-3)
A (λ) − Adv

(3)
A (λ)| ≤

1/q.

Lemma 12 For any adversary A, for any security parameter λ, Adv
(3)
A (λ) = 0.

16

7 NIPE Scheme with Constant-Size Secret-Keys

7.1 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator GNIPE,SK
ob below, which is used as a sub-

routine in the proposed NIPE scheme, where GNIPE,CT
ob is given in Section 6.2.

GNIPE,SK
ob (1λ, 4, n) : (paramn,D0,D

∗
0, {Di,j , D

′
i,j,l}i,j=1,...,4;l=1,...,n,D

∗
1)

R← GNIPE,CT
ob (1λ, 4, n),

B0 := D
∗
0, B

∗
0 := D0, B1 := D

∗
1, B

∗
i,j := Di,j , B

′ ∗
i,j,l := D′

i,j,l

for i, j = 1, . . . , 4; l = 1, . . . , n,
return (paramn,B0,B

∗
0,B1, {B∗

i,j , B
′ ∗
i,j,l}i,j=1,...,4;l=1,...,n).

Remark 5 From Remark 1, {B∗
i,j , B

′ ∗
i,j,l}i,j=1,...,4;l=1,...,n is identified with basis B

∗
1 := (b∗1,1, . . . ,

b∗1,4n) dual to B1.

7.2 Construction and Security

In the description of the scheme, we assume that input vector, �v := (v1, . . . , vn), has an index l
(1 ≤ l ≤ n− 1) with vl �= 0, and that input vector, �x := (x1, . . . , xn), satisfies xn �= 0.

Setup(1λ, n) : (paramn,B0,B
∗
0,B1, {B∗

i,j , B
′ ∗
i,j,l}i,j=1,..,4; l=1,..,n)

R← GNIPE,SK
ob (1λ, 4, n),

B̂0 := (b0,1, b0,3, b0,5), B̂
∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4),

B̂1 := (b1,1, .., b1,n, b1,3n+1, .., b1,4n),

return pk :=(1λ, paramn, {B̂t}t=0,1), sk :=(B̂∗
0, {B∗

i,j , B
′ ∗
i,j,l}i=1,3; j=1,..,4; l=1,..,n).

KeyGen(pk, sk, �v) : δ, ϕ0, ϕ1
U← Fq, k∗

0 := (δ, 0, 1, ϕ0, 0)B∗
0
,

K∗
1,j := δB∗

1,j + ϕ1B
∗
3,j , K∗

2,j :=
∑n

l=1 vl(δB
′ ∗
1,j,l + ϕ1B

′ ∗
3,j,l) for j = 1, .., 4,

return sk�v := (�v,k∗
0, {K∗

1,j ,K
∗
2,j}j=1,...,4).

Enc(pk, m, �x) : ω, η0, ζ
U← Fq, �η1

U← F
n
q , c0 := (−ω, 0, ζ, 0, η0)B0 ,

c1 := (ω�x, 0n, 0n, �η1)B1 , c3 := gζTm, return ct�x := (�x, c0, c1, c3).
Dec(pk, sk�v := (�v,k∗

0, {K∗
1,j ,K

∗
2,j}j=1,...,4), ct�x := (�x, c0, c1, c3)) :

Parse c1 as a 4n-tuple (C1, . . . , C4n) ∈ G
4n,

Dj :=
∑n−1

l=1 ((�x · �v)−1vl)C(j−1)n+l for j = 1, .., 4,

F := e(c0,k
∗
0) ·

∏4
j=1

(
e(Dj ,K

∗
1,j) · e(Cjn,K∗

2,j)
)
, return m′ := c3/F.

Remark 6 A part of output of Setup(1λ, n), {B∗
i,j , B

′ ∗
i,j,l}i=1,3;j=1,...,4;l=1,...,n, can be identified

with B̂
∗
1 := (b∗1,1, . . . , b∗1,n, b∗1,2n+1, . . . , b

∗
1,3n), while B

∗
1 := (b∗1,1, . . . , b∗1,4n) is identified with {B∗

i,j ,
B′ ∗
i,j,l}i,j=1,...,4;l=1,...,n in Remark 5. Decryption Dec can be alternatively described as:

Dec′(pk, sk�v := (�v,k∗
0, {K∗

1,j ,K
∗
2,j}j=1,...,4), ct�x := (�x, c0, c1, c3)) :

n︷ ︸︸ ︷ n︷ ︸︸ ︷
k∗

1 := (v1K
∗
1,1, .., vn−1K

∗
1,1,K

∗
2,1, . . . , v1K

∗
1,4, .., vn−1K

∗
1,4,K

∗
2,4),

that is, k∗
1 = (δ�v, 0n, 0n, ϕ1�v)B∗

1
, F := e(c0,k

∗
0) · e((�x · �v)−1c1,k

∗
1),

return m′ := c3/F.

17

Theorem 2 The proposed NIPE scheme is adaptively payload-hiding against chosen plaintext
attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines E1, E2-1 and E2-2 whose running times
are essentially the same as that of A, such that for any security parameter λ, AdvNIPE,PH

A (λ) ≤
AdvDLIN

E1
(λ) +

∑ν
h=1

(
AdvDLIN

E2-h-1
(λ) + AdvDLIN

E2-h-2
(λ)
)

+ε, where E2-h-1(·) := E2-1(h, ·), E2-h-2(·) :=
E2-2(h, ·), ν is the maximum number of A’s key queries and ε := (11ν + 6)/q.

Theorem 2 is proven similarly to Theorem 1.

8 ZIPE Scheme with Constant-Size Ciphertexts

8.1 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator GZIPE,CT
ob below, which is used as a sub-

routine in the proposed Zero IPE scheme. Since the definition is employed for the scheme with
w = 5 in Section 10, we describe GZIPE,CT

ob for general w. (We use only the cases with w = 4, 5).

GZIPE,CT
ob (1λ, w, n) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ), N := wn+ 1,

ψ
U← F

×
q , gT := e(G,G)ψ, paramV := (q,V,GT ,A, e) := Gdpvs(1λ, N, paramG),

paramn := (paramV, gT), X U← L+(w, n,Fq), hereafter,
{χ0,0, χ0,j , χi,0,l, μi,j , μ

′
i,j,l}i,j=1,...w;l=1,...,n denotes non-zero entries of X,

where {μi,j , μ′i,j,l} are non-zero entries of submatrices Xi,j of X

as given in Eqs. (5) and (1), (ϑi,j)i,j=0,...,wn := ψ · (XT)−1,

B0,0 := χ0,0G, B0,j := χ0,jG, Bi,0,l := χi,0,lG, Bi,j := μi,jG, B
′
i,j,l := μ′i,j,lG

for i, j = 1, . . . , w; l = 1, . . . , n,
b∗i := (ϑi,1, . . . , ϑi,N)A =

∑wn
j=0 ϑi,jaj for i = 0, . . . , wn, B

∗ := (b∗0, . . . , b∗wn),

return (paramn, {B0,0, B0,j , Bi,0,l, Bi,j , B
′
i,j,l}i,j=1,...,w;l=1,...,n,B

∗).

Remark 7 {B0,0, B0,j , Bi,0,l, Bi,j , B
′
i,j,l}i,j=1,...,w;l=1,...,n is identified with basis B := (b0, . . . ,

bwn) dual to B
∗ as in Remark 1.

8.2 Construction and Security

In the description of the scheme, we assume that input vector, �x := (x1, . . . , xn), has an index
l (1 ≤ l ≤ n− 1) with xl �= 0, and that input vector, �v := (v1, . . . , vn), satisfies vn �= 0.

Setup(1λ, n) :

(paramn, {B0,0, B0,j , Bi,0,l, Bi,j , B
′
i,j,l}i,j=1,...,4; l=1,...,n,B

∗) R← GZIPE,CT
ob (1λ, 4, n),

B̂
∗ := (b∗0, . . . , b

∗
n, b

∗
2n+1, . . . , b

∗
3n),

return pk := (1λ, paramn, {B0,0, B0,j , Bi,0,l, Bi,j , B
′
i,j,l}i=1,4;j=1,...,4;l=1,...,n), sk := B̂

∗.

KeyGen(pk, sk, �v) : δ U← Fq, �ϕ
U← F

n
q , k∗ := (1,

n︷︸︸︷
δ�v,

n︷︸︸︷
0n,

n︷︸︸︷
�ϕ,

n︷︸︸︷
0n)B∗ , return sk�v := k∗.

Enc(pk, m, �x) : ω, η, ζ
U← Fq, C0 := ζB0,0 +

∑n
l=1 xl(ωB1,0,l + ηB4,0,l),

c3 := gζTm, C1,j := ωB1,j + ηB4,j ,

C2,j := ζB0,j +
∑n

l=1 xl(ωB
′
1,j,l + ηB′

4,j,l) for j = 1, . . . , 4,
return ct�x := (�x,C0, {C1,j , C2,j}j=1,...,4, c3).

18

Dec(pk, sk�v := k∗, ct�x := (�x,C0, {C1,j , C2,j}j=1,...,4, c3)) :
Parse k∗ as a (4n+ 1)-tuple (K∗

0 , . . . ,K
∗
4n) ∈ G

4n+1,

D∗
j :=

∑n−1
l=1 xlK

∗
(j−1)n+l for j = 1, . . . , 4,

F := e(C0,K
∗
0) ·∏4

j=1

(
e(C1,j , D

∗
j) · e(C2,j ,K

∗
jn)
)
, return m′ := c3/F.

Remark 8 A part of output of Setup(1λ, n), {B0,0, B0,j , Bi,0,l, Bi,j , B
′
i,j,l}i=1,4;j=1,..,4;l=1,..,n, can

be identified with B̂ := (b0, .., bn, b3n+1, .., b4n), while B := (b0, . . . , b4n) is identified with
{B0,0, B0,j , Bi,0,l, Bi,j , B

′
i,j,l}i,j=1,..,4;l=1,..,n in Remark 7. Decryption Dec can be alternatively

described as:

Dec′(pk, sk�v := k∗, ct�x := (�x,C0, {C1,j , C2,j}j=1,...,4, c3)) :
n︷ ︸︸ ︷ n︷ ︸︸ ︷

c := (C0, x1C1,1, .., xn−1C1,1, C2,1, . . . , x1C1,4, .., xn−1C1,4, C2,4),

that is, c = (ζ,

n︷ ︸︸ ︷
ω�x,

n︷︸︸︷
0n,

n︷︸︸︷
0n,

n︷︸︸︷
η�x)B, F := e(c,k∗), return m′ := c3/F.

[Correctness] Using the alternate decryption Dec′, F = e(c,k) = gζ+ωδ�x·�vT = gζT if �x · �v = 0.

Remark 9 The proposed ZIPE in this section employs a single basis, B, generated by X ∈
GL(4n+ 1,Fq) (or X ∈ L+(4, n,Fq) of Eq. (5)), and a ciphertext can be expressed as (c, gζTm)
with c = (ζ, ω�x, 02n, η�x)B as shown in Remark 8. The proposed NIPE scheme in Section 6.3
employs two bases, B0 and B1, generated by X0 ∈ GL(5,Fq) and X1 ∈ GL(4n,Fq), and a cipher-
text can be expressed as (c0, c1, g

ζ
Tm) with c0 := (−ω, 0, ζ, 0, η0)B0 and c1 = (ω�x, 02n, η1�x)B1 .

Hence, the ciphertext and secret key of the ZIPE scheme are shorter than those of the NIPE
scheme (see Table 1 in Section 11). It is due to the difference of the decryption tricks in the
ZIPE and NIPE schemes. Similarly to the fact on L(4, n,Fq) (for the security of the NIPE
scheme) shown in Section 6.1, it is crucial for the security of the ZIPE scheme that L+(4, n,Fq)
is a subgroup of GL(4n + 1,Fq) (Lemma 3), and its security proof is made in the essentially
same manner as explained in Section 6.1.

Theorem 3 The proposed ZIPE scheme is adaptively payload-hiding against chosen plaintext
attacks under the DLIN assumption. For any adversary A, there exist probabilistic machines E1
and E2, whose running times are essentially the same as that of A, such that for any security
parameter λ, AdvZIPE,PH

A (λ) ≤ AdvDLIN
E1

(λ) +
∑ν

h=1 AdvDLIN
E2-h

(λ) + ε, where E2-h(·) := E2(h, ·), ν is
the maximum number of A’s key queries, and ε := (11ν + 6)/q.

Proof. To prove Theorem 3, we consider the following (ν+3) games. In Game 0, a part framed
by a box indicates coefficients to be changed in a subsequent game. In the other games, a part
framed by a box indicates coefficients that were changed in a game from the previous game.
Game 0 : Original game. That is, the reply to a key query for �v is

k∗ := (1, δ�v, 0n , �ϕ, 0n)B∗ ,

where δ U← Fq, ϕ
U← F

n
q and �v := (v1, . . . , vn) ∈ F

n
q with vn �= 0. The challenge ciphertext

for challenge plaintexts (m(0),m(1)) and �x, (�x, c0, {C1,j , C2,j}j=1,..,4, c3), which is identified with
(�x, c, c3) in Remark 8, is

c := (ζ , ω�x, 0n , 0n, η�x)B, c3 := gζTm,

19

where b U← {0, 1};ω, ζ, η U← Fq and �x := (x1, . . . , xn) ∈ F
n
q with xl �= 0 for some l ∈ {1, .., n− 1}.

Game 1 : Same as Game 0 except that the challenge ciphertext for challenge plaintexts
(m(0),m(1)) and �x is

c := (ζ, ω�x, �r , 0n, η�x)B, c3 := gζTm,

where �r U← span〈�x,�en〉, and all the other variables are generated as in Game 0.
Game 2-h (h = 1, . . . , ν) : Game 2-0 is Game 1. Game 2-h is the same as Game 2-(h − 1)
except that a part of the reply to the h-th key query for �v, k∗, is

k∗ := (1, δ�v, �w , �ϕ, 0n)B∗ ,

where �w
U← F

n
q and all the other variables are generated as in Game 2-(h− 1).

Game 3 : Same as Game 2-ν except that c and c3 of the challenge ciphertext are

c := (ζ ′ , ω�x, �r, 0n, η�x)B, c3 := gζTm
(b),

where ζ ′ U← Fq (i.e., independent from ζ
U← Fq), and all the other variables are generated as in

Game 2-ν.

Let Adv
(0)
A (λ),Adv

(1)
A (λ),Adv

(2-h)
A (λ) (h = 1, . . . , ν) and Adv

(3)
A (λ) be the advantage of A in

Game 0, 1, 2-h and 3, respectively. Adv
(0)
A (λ) is equivalent to AdvZIPE,PH

A (λ) and Adv
(3)
A (λ) = 0.

We can evaluate the gaps between pairs of Adv
(0)
A (λ),Adv

(1)
A (λ),Adv

(2-h)
A (λ) for h = 1, . . . , ν

using (variants of) Problems 1 and 2 as in the proof of Theorem 1. The following Lemma 13
gives a gap evaluation between Adv

(2-ν-2)
A (λ) and Adv

(3)
A (λ), which requires a detailed proof for

our ZIPE with constant-size ciphertexts (see Appendix A.3 for the proof). Combining the gap
evaluations, we obtain Theorem 3. �

Lemma 13 For any adversary A, for any security parameter λ, |Adv
(2-ν)
A (λ)−Adv

(3)
A (λ)| ≤ 1/q.

9 ZIPE Scheme with Constant-Size Secret-Keys

9.1 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator GZIPE,SK
ob below, which is used as a subrou-

tine in the proposed ZIPE scheme, where GZIPE,CT
ob is defined in Section 7.1. Since the definition

is employed for the scheme with w = 5 in Section 10, we describe GZIPE,SK
ob for general w. (We

use only the cases with w = 4, 5).

GZIPE,SK
ob (1λ, w, n) :

(paramn, {D0,0, D0,j , Di,0,l, Di,j , D
′
i,j,l}i,j=1,...,w;l=1,...,n,D

∗) R← GZIPE,CT
ob (1λ, w, n),

B := D
∗, B∗

0,0 := D0,0, B
∗
0,j := D0,j , B

∗
i,0,l := Di,0,l, B

∗
i,j := Di,j , B

′ ∗
i,j,l := D′

i,j,l

for i, j = 1, . . . , w; l = 1, . . . , n,
return (paramn,B, {B∗

0,0, B
∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i,j=1,...,w;l=1,...,n).

Remark 10 {B∗
0,0, B

∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i,j=1,...,w;l=1,...,n is identified with basis B

∗ := (b∗0, . . . ,
b∗wn) dual to B as in Remark 5.

20

9.2 Construction and Security

In the description of the scheme, we assume that input vector, �v := (v1, . . . , vn), has an index l
(1 ≤ l ≤ n− 1) with vl �= 0, and that input vector, �x := (x1, . . . , xn), satisfies xn �= 0.

Setup(1λ, n) : (paramn,B, {B∗
0,0, B

∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i,j=1,...,4;l=1,...,n)

R← GZIPE,SK
ob (1λ, 4, n),

B̂ := (b0, . . . , bn, b3n+1, . . . , b4n),
return pk := (1λ, paramn, B̂), sk := {B∗

0,0, B
∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i=1,3;j=1,...,4;l=1,...,n.

KeyGen(pk, sk, �v) : δ, ϕ
U← Fq, K∗

0 := B∗
0,0 +

∑n
l=1 vl(δB

∗
1,0,l + ϕB∗

3,0,l),
K∗

1,j := δB∗
1,j + ϕB∗

3,j , K∗
2,j := B∗

0,j +
∑n

l=1 vl(δB
′ ∗
1,j,l + ϕB′ ∗

3,j,l) for j = 1, . . . , 4,
return sk�v := (�v,K∗

0 , {K∗
1,j ,K

∗
2,j}j=1,...,4).

Enc(pk, m, �x) : ω, ζ
U← Fq, �η

U← F
n
q , c := (ζ,

n︷︸︸︷
ω�x ,

n︷︸︸︷
0n ,

n︷︸︸︷
0n ,

n︷︸︸︷
�η)B, c3 := gζTm,

return ct�x := (c, c3).
Dec(pk, sk�v := (�v,K∗

0 , {K∗
1,j ,K

∗
2,j}j=1,...,4), ct�x := (c, c3)) :

Parse c as a (4n+ 1)-tuple (C0, . . . , C4n) ∈ G
4n+1,

Dj :=
∑n−1

l=1 vlC(j−1)n+l for j = 1, . . . , 4,

F := e(C0,K
∗
0) ·∏4

j=1

(
e(Dj ,K

∗
1,j) · e(Cjn,K∗

2,j)
)
, return m′ := c3/F.

Remark 11 A part of output of Setup(1λ, n), {B∗
0,0, B

∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i=1,3;j=1,...,4;l=1,...,n,

can be identified with B̂
∗ := (b∗0, . . . , b∗n, b∗2n+1, . . . , b

∗
3n), while B

∗ := (b∗0, . . . , b∗4n) is identified
with {B∗

0,0, B
∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i=1,...,4;j=1,...,4;l=1,...,n in Remark 10. Decryption Dec can be

alternatively described as:

Dec′(pk, sk�v := (�v,K∗
0 , {K∗

1,j ,K
∗
2,j}j=1,...,4), ct�x := (c, c3)) :
n︷ ︸︸ ︷ n︷ ︸︸ ︷

k∗ := (K∗
0 , v1K

∗
1,1, .., vn−1K

∗
1,1,K

∗
2,1, . . . , v1K

∗
1,4, .., vn−1K

∗
1,4,K

∗
2,4),

that is, k∗ = (1,

n︷︸︸︷
δ�v,

n︷︸︸︷
0n,

n︷︸︸︷
ϕ�v

n︷︸︸︷
0n)B∗ , F := e(c,k∗),

return m′ := c3/F.

[Correctness] Using the alternate decryption Dec′, F = e(c,k) = gζ+ωδ�x·�vT = gζT if �x · �v = 0.

Theorem 4 The proposed ZIPE scheme is adaptively weakly-attribute-hiding against chosen
plaintext attacks under the DLIN assumption. For any adversary A, there exist probabilistic
machines E1 and E2, whose running times are essentially the same as that of A, such that for
any security parameter λ, AdvZIPE,wAH

A (λ) ≤ AdvDLIN
E1

(λ)+
∑ν

h=1 AdvDLIN
E2-h

(λ)+ε, where E2-h(·) :=
E2(h, ·), ν is the maximum number of A’s key queries, and ε := (11ν + 6)/q.

Proof. To prove Theorem 4, we consider the following (ν+3) games. In Game 0, a part framed
by a box indicates coefficients to be changed in a subsequent game. In the other games, a part
framed by a box indicates coefficients that were changed in a game from the previous game.
Game 0 : Original game. That is, the reply to a key query for �v is

k∗ := (1, δ�v, 0n , ϕ�v, 0n)B∗ ,

21

where δ, ϕ U← Fq and �v := (v1, . . . , vn) ∈ F
n
q with vn �= 0. The challenge ciphertext for challenge

plaintexts (m(0),m(1)) and �x, (�x, c0, {C1,j , C2,j}j=1,..,4, c3), which is identified with (�x, c, c3) in
Remark 8, is

c := (ζ , ω�x , 0n , 0n, �η)B, c3 := gζTm,

where b
U← {0, 1};ω, ζ U← Fq, �η

U← F
n
q and �x := (x1, . . . , xn) ∈ F

n
q with xl �= 0 for some

l ∈ {1, .., n− 1}.
Game 1 : Same as Game 0 except that the challenge ciphertext for challenge plaintexts
(m(0),m(1)) and �x is

c := (ζ, ω�x, �r , 0n, �η)B, c3 := gζTm,

where �r U← F
n
q , and all the other variables are generated as in Game 0.

Game 2-h (h = 1, . . . , ν) : Game 2-0 is Game 1. Game 2-h is the same as Game 2-(h − 1)
except that a part of the reply to the h-th key query for �v, k∗, is

k∗ := (1, δ�v, �w , ϕ�v, 0n)B∗ ,

where �w
U← span〈�v,�en〉 and all the other variables are generated as in Game 2-(h− 1).

Game 3 : Same as Game 2-ν except that c and c3 of the challenge ciphertext are

c := (ζ ′ , �x′ , �r, 0n, �η)B, c3 := gζTm
(b),

where ζ ′ U← Fq (i.e., independent from ζ
U← Fq), �x′

U← F
n
q (i.e., independent from �x

U← F
n
q), and

all the other variables are generated as in Game 2-ν.

Let Adv
(0)
A (λ),Adv

(1)
A (λ),Adv

(2-h)
A (λ) (h = 1, . . . , ν) and Adv

(3)
A (λ) be the advantage of A in

Game 0, 1, 2-h and 3, respectively. Adv
(0)
A (λ) is equivalent to AdvZIPE,wAH

A (λ) and Adv
(3)
A (λ) = 0.

We can evaluate the gaps between pairs of Adv
(0)
A (λ),Adv

(1)
A (λ),Adv

(2-h)
A (λ) for h = 1, . . . , ν

using (variants of) Problems 1 and 2 as in the proof of Theorem 1. The following Lemma 14
gives a gap evaluation between Adv

(2-ν)
A (λ) and Adv

(3)
A (λ), which requires a detailed proof for

our ZIPE with constant-size secret-keys (see Appendix A.4 for the proof). Combining the gap
evaluations, we obtain Theorem 4. �
Lemma 14 For any adversary A, for any security parameter λ, |Adv

(2-ν)
A (λ)−Adv

(3)
A (λ)| ≤ 1/q.

10 Fully-Attribute-Hiding ZIPE Scheme with Constant-Size
Secret-Keys

By applying our technique to the fully-attribute-hiding ZIPE scheme in [19], we obtain a fully-
attribute-hiding ZIPE scheme with short secret-keys.

10.1 Construction and Security

In the description of the scheme, we assume that input vector, �v := (v1, . . . , vn), has an index l
(1 ≤ l ≤ n− 1) with vl �= 0, and that input vector, �x := (x1, . . . , xn), satisfies xn �= 0.

Setup(1λ, n) : (paramn,B, {B∗
0,0, B

∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i,j=1,...,5;l=1,...,n)

R← GZIPE,SK
ob (1λ, 5, n),

B̂ := (b0, . . . , bn, b4n+1, . . . , b5n),
return pk := (1λ, paramn, B̂), sk := {B∗

0,0, B
∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i=1,4;j=1,...,5;l=1,...,n.

22

KeyGen(pk, sk, �v) : δ, ϕ
U← Fq, K∗

0 := B∗
0,0 +

∑n
l=1 vl(δB

∗
1,0,l + ϕB∗

4,0,l),
K∗

1,j := δB∗
1,j + ϕB∗

4,j , K∗
2,j := B∗

0,j +
∑n

l=1 vl(δB
′ ∗
1,j,l + ϕB′ ∗

4,j,l) for j = 1, . . . , 5,
return sk�v := (�v,K∗

0 , {K∗
1,j ,K

∗
2,j}j=1,...,5).

Enc(pk, m, �x) : ω, ζ
U← Fq, �η

U← F
n
q , c := (ζ,

n︷︸︸︷
ω�x ,

2n︷ ︸︸ ︷
02n ,

n︷︸︸︷
0n ,

n︷︸︸︷
�η)B, c3 := gζTm,

return ct�x := (c, c3).
Dec(pk, sk�v := (�v,K∗

0 , {K∗
1,j ,K

∗
2,j}j=1,...,5), ct�x := (c, c3)) :

Parse c as a (5n+ 1)-tuple (C0, . . . , C5n) ∈ G
5n+1,

Dj :=
∑n−1

l=1 vlC(j−1)n+l for j = 1, . . . , 5,

F := e(C0,K
∗
0) ·∏5

j=1

(
e(Dj ,K

∗
1,j) · e(Cjn,K∗

2,j)
)
, return m′ := c3/F.

Remark 12 A part of output of Setup(1λ, n), {B∗
0,0, B

∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i=1,4;j=1,...,5;l=1,...,n,

can be identified with B̂
∗ := (b∗0, . . . , b∗n, b∗3n+1, . . . , b

∗
4n), while B

∗ := (b∗0, . . . , b∗5n) is identified
with {B∗

0,0, B
∗
0,j , B

∗
i,0,l, B

∗
i,j , B

′ ∗
i,j,l}i=1,...,5;j=1,...,5;l=1,...,n in Remark 10. Decryption Dec can be

alternatively described as:

Dec′(pk, sk�v := (�v,K∗
0 , {K∗

1,j ,K
∗
2,j}j=1,...,5), ct�x := (c, c3)) :
n︷ ︸︸ ︷ n︷ ︸︸ ︷

k∗ := (K∗
0 , v1K

∗
1,1, .., vn−1K

∗
1,1,K

∗
2,1, . . . , v1K

∗
1,5, .., vn−1K

∗
1,5,K

∗
2,5),

that is, k∗ = (1,

n︷︸︸︷
δ�v,

2n︷ ︸︸ ︷
02n,

n︷︸︸︷
ϕ�v

n︷︸︸︷
0n)B∗ , F := e(c,k∗),

return m′ := c3/F.

[Correctness] Using the alternate decryption Dec′, F = e(c,k) = gζ+ωδ�x·�vT = gζT if �x · �v = 0.

Theorem 5 The proposed ZIPE scheme is adaptively fully-attribute-hiding against chosen plain-
text attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines E0-1, E0-2, E1-1, E1-2-1 and E1-2-2, whose
running times are essentially the same as that of A, such that for any security parameter λ,
AdvZIPE,AH

A (λ) ≤ AdvDLIN
E0-1

(λ)+AdvDLIN
E1-1

(λ)+
∑ν

h=1

(
AdvDLIN

E0-2-h
(λ) + AdvDLIN

E1-2-h-1
(λ) + AdvDLIN

E1-2-h-2
(λ)
)

+ε, where E0-2-h(·) := E0-2(h, ·), E1-2-h-1(·) := E1-2-1(h, ·), E1-2-h-2(·) := E1-2-2(h, ·), ν is the
maximum number of A’s key queries and ε := (29ν + 17)/q.

Proof. Similarly to the proof of Theorem 1 in [19], the proof of Theorem 5 is reduced to that
of Lemma 15.

First, we execute a preliminary game transformation from Game 0 (original security game
in Definition 6) to Game 0’, which is the same as Game 0 except that flip a coin t

U← {0, 1}
before setup, and the game is aborted in the challenge step if t �= s. We define that A wins with
probability 1/2 when the game is aborted (and the advantage in Game 0’ is Pr[A wins]− 1/2
as well). Since t is independent from s, the game is aborted with probability 1/2. Hence, the
advantage in Game 0’ is a half of that in Game 0, i.e., AdvIPE,AH,0′

A (λ) = 1/2 · AdvIPE,AH
A (λ).

Moreover, Pr[A wins] = 1/2 · (Pr[A wins | t = 0] + Pr[A wins | t = 1]) in Game 0’ since t is
uniformly and independently generated.

As for the conditional probability with t = 0, it holds that, for any adversary A, there exist
probabilistic machines E1 and E2, whose running times are essentially the same as that of A,

23

such that for any security parameter λ, in Game 0’, Pr[A wins | t = 0] − 1/2 ≤ AdvDLIN
E1

(λ) +∑ν
h=1 AdvDLIN

E2-h
(λ)+ ε, where E2-h(·) := E2(h, ·) and ν is the maximum number of A’s key queries

and ε := (6ν+5)/q. This is obtained in the same manner as the weakly attribute-hiding security
of the OT10 IPE in the full version of [18]: Since the difference between our IPE and the OT10
IPE is only the dimension of the hidden subspaces, i.e., the former has 2n and the latter has
n, the weakly attribute-hiding security of the OT10 IPE implies the security with t = 0 of our
IPE.

As for the conditional probability with t = 1, i.e., Pr[A wins | t = 1], Lemma 15 holds.
Therefore, AdvZIPE,AH

A (λ) = 2·AdvZIPE,AH,0′
A (λ) = Pr[A wins | t = 0]+Pr[A wins | t = 1]−1 =

(Pr[A wins | t = 0] − 1/2) + (Pr[A wins | t = 1] − 1/2) ≤ AdvDLIN
E0-1

(λ) +
∑ν

h=1 AdvDLIN
E0-2-h

(λ) +
AdvDLIN

E1-1
(λ) +

∑ν
h=1

(
AdvDLIN

E1-2-h-1
(λ) + AdvDLIN

E1-2-h-2
(λ)
)

+ ε, where ε := (29ν + 17)/q. �
Lemma 15 For any adversary A, there exist probabilistic machines E1, E2-1 and E2-2, whose
running times are essentially the same as that of A, such that for any security parameter λ,
in Game 0’ (described in the proof of Theorem 5), Pr[A wins | t = 1] − 1

2 ≤ AdvDLIN
E1

(λ) +∑ν
h=1

(
AdvDLIN

E2-h-1
(λ) + AdvDLIN

E2-h-2
(λ)
)

+ ε, where E2-h-1(·) := E2-1(h, ·), E2-h-2(·) := E2-2(h, ·), ν is
the maximum number of A’s key queries and ε := (23ν + 12)/q.

Proof. To prove Lemma 15, we consider the following 4ν + 3 games when t = 1. In Game 0’,
a part framed by a box indicates coefficients to be changed in a subsequent game. In the other
games, a part framed by a box indicates coefficients which were changed in a game from the
previous game.

Game 0’ : Same as Game 0 except that flip a coin t
U← {0, 1} before setup, and the game is

aborted in the challenge step if t �= s. In order to prove Lemma 15, we consider the case
with t = 1.

The reply to a key query for �v is:

k∗ := (1, δ�v, 0n , 0n , ϕ�v, 0n)B∗ ,

where δ, ϕ U← Fq. The challenge ciphertext for challenge plaintext m := m(0) = m(1) and
vectors (�x(0), �x(1)) is:

c := (ζ, ω�x(b) , 0n , 0n , 0n, �η)B, c3 := gζTm,

where b U← {0, 1} and ζ, ω
U← Fq and �η

U← F
n
q . Here, we note that c3 is independent from

bit b.

Game 1 : Game 1 is the same as Game 0’ except that c1 of the challenge ciphertext for
(challenge plaintext m := m(0) = m(1) and) vectors (�x(0), �x(1)) is:

c1 := (ζ, ω�x(b), ω′�x(b) , 0n, 0n, �η)B,

where ω′ U← Fq and all the other variables are generated as in Game 0’.

Game 2-h-1 (h = 1, . . . , ν) : Game 2-0-4 is Game 1. Game 2-h-1 is the same as Game 2-
(h− 1)-4 except that c1 of the challenge ciphertext for (challenge plaintext m := m(0) =
m(1) and) vectors (�x(0), �x(1)) is:

c1 := (ζ, ω�x(b), ω′�x(b) , ω′′
0�x

(0) + ω′′
1�x

(1) , 0n, �η)B,

where ω′, ω′′
0 , ω

′′
1

U← Fq and all the other variables are generated as in Game 2-(h− 1)-4.

24

Game 2-h-2 (h = 1, . . . , ν) : Game 2-h-2 is the same as Game 2-h-1 except that the reply
to the h-th key query for �v is:

k∗ := (1, σ�v, σ′�v , 0n, ϕ�v, 0n)B∗ ,

where σ′ U← Fq and all the other variables are generated as in Game 2-h-1.

Game 2-h-3 (h = 1, . . . , ν) : Game 2-h-3 is the same as Game 2-h-2 except that c1 of the
challenge ciphertext for (challenge plaintexts m := m(0) = m(1) and) vectors (�x(0), �x(1))
is:

c1 := (ζ, ω�x(b), ω′
0�x

(0) + ω′
1�x

(1) , ω′′
0�x

(0) + ω′′
1�x

(1), 0n, �η)B,

where ω′
0, ω

′
1

U← Fq and all the other variables are generated as in Game 2-h-2.

Game 2-h-4 (h = 1, . . . , ν) : Game 2-h-4 is the same as Game 2-h-3 except that the reply
to the h-th key query for �v is:

k∗ := (1, σ�v, 0n , σ′′�v , ϕ�v, 0n)B∗ ,

where σ′′ U← Fq and all the other variables are generated as in Game 2-h-3.

Game 3 : Game 3 is the same as Game 2-ν-4 except that c1 of the challenge ciphertext for
(challenge plaintexts m := m(0) = m(1) and) vectors (�x(0), �x(1)) is:

c1 := (ζ, ω0�x
(0) + ω1�x

(1) , ω′
0�x

(0) + ω′
1�x

(1), ω′′
0�x

(0) + ω′′
1�x

(1), 0n, �η)B,

where ω0, ω1
U← Fq and all the other variables are generated as in Game 2-ν-4. Here, we

note that c1 is independent from bit b U← {0, 1}.

Let Adv
(0′)
A (λ),Adv

(1)
A (λ),Adv

(2-h-1)
A (λ), . . . ,Adv

(2-h-4)
A (λ) and Adv

(3)
A (λ) be the advantage of

A in Game 0′, 1, 2-h-1, . . . , 2-h-4 and 3 when t = 1, respectively. Adv
(0′)
A (λ) is equivalent to the

left-hand side of Eq. (15) and Adv
(3)
A (λ) = 0.

We can evaluate the gaps between pairs of neighboring games, Adv
(0′)
A (λ),Adv

(1)
A (λ), . . . ,

Adv
(2-ν-4)
A (λ),Adv

(3)
A (λ), similarly to [19]. This completes the proof of Lemma 15. �

11 Comparison

Table 1 compares the proposed ZIPE and NIPE schemes (ZIPE with short ciphertexts in Section
8, NIPE with short ciphertexts in Section 6, ZIPE with short secret-keys in Section 9, NIPE
with short secret-keys in Section 7, and fully-attribute-hiding ZIPE with short secret-keys in
Section 10) with the ZIPE and NIPE schemes in [2] that are secure under standard assumptions.

25

Table 1: Comparison with IPE schemes in [2], where |G|, |GT |, |Fq|, P and M represent size
of an element of G, that of GT , that of Fq, pairing operation, and scalar multiplication on G,
respectively. CT, SK, PH, AH, IP and DBDH stand for ciphertexts, secret-keys, payload-hiding,
attribute-hiding, inner-product and decisional bilinear Diffie-Hellman, respectively.

AL10 [2] AL10 [2] Proposed Proposed Proposed Proposed Proposed
ZIPE with NIPE with ZIPE with NIPE with ZIPE with NIPE with fully-AH ZIPE
short CT short CT short CT short CT short SK short SK with short SK

Security
adaptive

PH
co-selective

PH
adaptive

PH
adaptive

PH
adaptive

weakly-AH
adaptive

PH
adaptive
fully-AH

Assump. DLIN &
DBDH

DLIN &
DBDH DLIN DLIN DLIN DLIN DLIN

IP rel. zero non-zero zero non-zero zero non-zero zero
PK
size

(n+11)|G|
+ |GT |

(n+11)|G|
+ |GT |

(10n+13)|G|
+ |GT |

(8n+23)|G|
+ |GT |

(10n+13)|G|
+ |GT |

(8n+23)|G|
+ |GT |

(12n+16)|G|
+ |GT |

SK
size

(n+ 6)|G|
+(n−1)|Fq| (n+ 6)|G| (4n+ 1)|G| (4n+ 5)|G| 9|G| 13|G| 11|G|

CT
size

9|G|+ |GT |
+ |Fq|

9|G|
+ |GT |

9|G|
+ |GT |

13|G|
+ |GT |

(4n+ 1)|G|
+ |GT |

(4n+ 5)|G|
+ |GT |

(5n+ 1)|G|
+ |GT |

Dec
time 9P + nM 9P + nM

9P +
4(n− 1)M

13P +
4(n− 1)M

9P +
4(n− 1)M

13P +
4(n− 1)M

11P +
5(n− 1)M

12 Hierarchical ZIPE Scheme with Constant-Size Ciphertexts

The proposed hierarchical ZIPE (HIPE) scheme with short ciphertexts is constructed by us-
ing two vector spaces, 5-dimensional V0 and 4n-dimensional V1, where hierarchical vector
(�v1, . . . , �v�) (resp. (�x1, . . . , �x�′)) of secret-key (resp. ciphertext) is embedded in an element in
V1. The delegation mechanism is based on the payload hiding HIPE scheme given in Appendix
H.3 in the full version of [18].

12.1 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator GHIPE,CT
ob below, which is used as a sub-

routine in the proposed hierarchical ZIPE scheme.

GHIPE,CT
ob (1λ, 4, �n := (d;n1, . . . , nd)) : n :=

∑d
t=1 nt,

paramG := (q,G,GT , G, e)
R← Gbpg(1λ), N0 := 5, N1 := 4n,

paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG) for t = 0, 1,

ψ
U← F

×
q , gT := e(G,G)ψ, param�n := (�n, {paramVt

}t=0,1, gT),

X0 := (χ0,i,j)i,j=1,...,5
U← GL(N0,Fq), X1

U← L̃(4, n,Fq), hereafter,
{μi,j , μ′i,j,l}i,j=1,...4;l=1,...,n denotes non-zero entries of X1 as in Eq. (4),

b0,i := (χ0,i,1, .., χ0,i,5)A =
∑5

j=1 χ0,i,jaj for i = 1, .., 5, B0 := (b0,1, .., b0,5),

Bi,j := μi,jG, B
′
i,j,l := μ′i,j,lG for i, j = 1, . . . , 4; l = 1, . . . , n,

for t = 0, 1, (ϑt,i,j)i,j=1,...,Nt := ψ · (XT
t)−1,

b∗t,i := (ϑt,i,1, .., ϑt,i,Nt)A =
∑Nt

j=1 ϑt,i,jaj for i = 1, .., Nt, B
∗
t := (b∗t,1, .., b∗t,Nt

),

return (param�n,B0,B
∗
0, {Bi,j , B′

i,j,l}i,j=1,...,4;l=1,...,n,B
∗
1).

26

Remark 13 Let

⎛
⎜⎝

b1,(i−1)n+1
...

b1,in

⎞
⎟⎠ :=

⎛
⎜⎜⎜⎝

B′
i,1,1

B′
i,1,2 Bi,1
...

. . .
B′
i,1,n Bi,1

· · ·

B′
i,4,1

B′
i,4,2 Bi,4
...

. . .
B′
i,4,n Bi,4

⎞
⎟⎟⎟⎠

for i = 1, . . . , 4,
B1 := (b1,1, . . . , b1,4n),

where a blank element in the matrix denotes 0 ∈ G. B1 is the dual orthonormal basis of B
∗
1,

i.e., e(b1,i, b
∗
1,i) = gT and e(b1,i, b

∗
1,j) = 1 for 1 ≤ i �= j ≤ 4n.

12.2 Construction and Security

In the description of the scheme, we assume that input vector, �xt := (xt,1, . . . , xt,nt), has an
index (t, l) �= (1, 1) with xt,l �= 0, and that level-1 input vector, �v1 := (v1,1, . . . , v1,n1), satisfies
v1,1 �= 0.

Setup(1λ, �n := (d;n1, . . . , nd)) : n :=
∑d

t=1 nt,

(param�n,B0,B
∗
0, {Bi,j , B′

i,j,l}i,j=1,...,4;l=1,...,n,B
∗
1)

R← GHIPE,CT
ob (1λ, 4, �n),

B̂0 := (b0,1, b0,3, b0,5), B̂
∗
0 := (b∗0,1, b

∗
0,4), B̂

∗
1 := (b∗1,1, .., b

∗
1,n, b

∗
1,2n+1, .., b

∗
1,3n),

return pk := (1λ, param�n, B̂0, {Bi,j , B′
i,j,l}i=1,4;j=1,...,4;l=1,...,n, {B̂∗

t }t=0,1), sk := b∗0,3.
KeyGen(pk, sk, (�v1, . . . , �v�) ∈ F

n1
q × · · · × F

n�
q) :

st, θt, ϕ0
U← Fq for t = 1, . . . , �, s0 :=

∑�
t=1 st, �ϕ1

U← F
n
q ,

k∗
�,0 := (−s0, 0, 1, ϕ0, 0)B∗

0
,

k∗
�,1 := (

n︷ ︸︸ ︷
s1�e1,1 + θ1�v1, . . . , s��e�,1 + θ��v�, 0n�+1 , . . . , 0nd , 0n, �ϕ1, 0n)B∗

1
,

return sk� := ((�v1, . . . , �v�),k∗
�,0,k

∗
�,1).

Enc(pk,m ∈ GT , (�x1, . . . , �x�) ∈ F
n1
q × · · · × F

n�
q) :

ω, η0, η1
U← Fq, c0 := (ω, 0, ζ, 0, η0)B0 , �x := (xl)l=1,...,n := (�x1, . . . , �x�, 0n�+1 , . . . , 0nd) ∈ F

n
q ,

C1,j := ωB1,j + η1B4,j , C2,j :=
∑n

l=1 xl(ωB
′
1,j,l + η1B

′
4,j,l) for j = 1, . . . , 4,

c3 := gζTm, return ct := ((�x1, . . . , �x�), c0, {C1,j , C2,j}j=1,...,4, c3).
Dec(pk, sk� := ((�v1, . . . , �v�),k∗

�,0,k
∗
�,1), ct := ((�x1, . . . , �x�′), c0, {C1,j , C2,j}j=1,...,4, c3)) :

if � ≤ �′, parse k∗
1 as a 4n-tuple (K∗

1 , . . . ,K
∗
4n) ∈ G

4n,

�x := (x1, . . . , xn) := (�x1, . . . , �x�′ , 0n�′+1 , . . . , 0nd) ∈ F
n
q ,

D∗
j :=

∑n
l=2 xlK

∗
(j−1)n+l for j = 1, .., 4,

F := e(c0,k
∗
0) ·

∏4
j=1

(
e(C1,j , D

∗
j) · e(C2,j ,K

∗
(j−1)n+1)

)
, return m′ := c3/F,

else, return ⊥.
Delegate�(pk, sk�, �v�+1) :

sdel,t, θdel,t, ϕdel,0
U← Fq for t = 1, . . . , �+ 1, sdel,0 :=

∑�+1
t=1 sdel,t, �ϕdel,1

U← F
n
q ,

k∗
del,0 := (−sdel,0, 0, 0, ϕdel,0, 0)B∗

0
,

27

k∗
del,1 := (

n︷ ︸︸ ︷
sdel,1�e1,1 + θ1�v1, . . . , sdel,�+1�e�+1,1 + θdel,�+1�v�+1, 0n�+2 , . . . , 0nd ,

0n, �ϕdel,1, 0n)B∗
1
,

k∗
�+1,ι := k∗

�,ι + k∗
del,ι for ι = 0, 1,

return sk�+1 := ((�v1, . . . , �v�+1),k∗
�+1,0,k

∗
�+1,1).

Remark 14 A part of output of Setup(1λ, �n), {Bi,j , B′
i,j,l}i=1,4;j=1,...,4;l=1,...,n, can be iden-

tified with B̂1 := (b1,1, . . . , b1,n, b1,3n+1, .., b1,4n) through the form of Eq. (6), while B1 :=
(b1,1, . . . , b1,4n) is identified with {Bi,j , B′

i,j,l}i,j=1,..,4; l=1,..,n by Eq. (6). Decryption Dec can
be alternatively described as:

Dec′(pk, sk� := ((�v1, . . . , �v�),k∗
�,0,k

∗
�,1), ct := ((�x1, . . . , �x�′), c0, {C1,j , C2,j}j=1,...,4, c3)) :

�x := (x1, . . . , xn) := (�x1, . . . , �x�′ , 0n�′+1 , . . . , 0nd) ∈ F
n
q ,

n︷ ︸︸ ︷ n︷ ︸︸ ︷
c1 := (C2,1, x2C1,1, .., xnC1,1, . . . , C2,4, x2C1,4, .., xnC1,4),

that is, c1 = (

n︷ ︸︸ ︷
ω�x,

n︷︸︸︷
0n,

n︷︸︸︷
0n,

n︷ ︸︸ ︷
η1�x)B1 , F := e(c0,k

∗
0) · e(c1,k

∗
1),

return m′ := c3/F.

[Correctness] Using the alternate decryption Dec′, F = e(c0,k
∗
0)·e(c1,k

∗
1) = g−ωs0+ζ

T g
ω

P�
t=1 st

T

= gζT if � ≤ �′ and �xt · �vt = 0 for t = 1, . . . , �.

The definition of adaptively payload-hiding security and the advantage AdvHIPE,PH
A (λ) of

adversary A can be obtained through a straightforward extension of that of HIBE, e.g., [8],
with replacing ID-matching by vector-orthogonality.

Theorem 6 The proposed HIPE scheme is adaptively payload-hiding against chosen plaintext
attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines E1 and E2, whose running times
are essentially the same as that of A, such that for any security parameter λ, AdvHIPE,PH

A (λ) ≤
AdvDLIN

E1
(λ) +

∑ν
h=1 AdvDLIN

E2-h
(λ) + ε, where E2-h(·) := E2(h, ·), ν is the maximum number of

adversary A’s key queries, and ε = (11ν + 6)/q.

Theorem 6 is proven similarly to Theorem 3.

13 Concluding Remarks

The technique with using special type matrices shown in this paper can reduce the size of ci-
phertexts or secret-keys of adaptively secure FE schemes in [18] from O(dn) to O(d), where d
is the number of sub-universes of attributes, and n is the maximal length of attribute vectors.
A key-policy attribute-based encryption (ABE) system with constant-size ciphertext [3] is se-
lectively secure in the standard model. Therefore, it is an interesting open problem to realize
an adaptively secure and constant-size ciphertext ABE scheme.

Acknowledgments The authors would like to thank Sherman S.M. Chow for his invaluable
comments and suggestions on our preliminary manuscript. We also appreciate anonymous
reviewers of CANS 2011 for their valuable comments.

28

References

[1] Michel Abdalla, Eike Kiltz, and Gregory Neven. Generalized key delegation for hierarchical
identity-based encryption. In Joachim Biskup and Javier Lopez, editors, ESORICS 2007,
volume 4734 of Lecture Notes in Computer Science, pages 139–154. Springer, 2007.

[2] Nuttapong Attrapadung and Benôıt Libert. Functional encryption for inner product:
Achieving constant-size ciphertexts with adaptive security or support for negation. In
Nguyen and Pointcheval [16], pages 384–402.

[3] Nuttapong Attrapadung, Benôıt Libert, and Elie de Panafieu. Expressive key-policy
attribute-based encryption with constant-size ciphertexts. In Dario Catalano, Nelly Fazio,
Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages
90–108. Springer, 2011.

[4] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based en-
cryption. In IEEE Symposium on Security and Privacy, pages 321–334. IEEE Computer
Society, 2007.

[5] Dan Boneh and Michael Hamburg. Generalized identity based and broadcast encryption
schemes. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 455–
470. Springer, 2008.

[6] Cécile Delerablée. Identity-based broadcast encryption with constant size ciphertexts and
private keys. In Kaoru Kurosawa, editor, ASIACRYPT 2007, volume 4833 of Lecture Notes
in Computer Science, pages 200–215. Springer, 2007.

[7] Keita Emura, Atsuko Miyaji, Akito Nomura, Kazumasa Omote, and Masakazu Soshi. A
ciphertext-policy attribute-based encryption scheme with constant ciphertext length. In
Feng Bao, Hui Li, and Guilin Wang, editors, ISPEC 2009, volume 5451 of Lecture Notes
in Computer Science, pages 13–23. Springer, 2009.

[8] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Yuliang Zheng,
editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 548–566. Springer, 2002.

[9] Craig Gentry and Brent Waters. Adaptive security in broadcast encryption systems (with
short ciphertexts). In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of Lecture
Notes in Computer Science, pages 171–188. Springer, 2009.

[10] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption
for fine-grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, ACM Conference on Computer and Communi-
cations Security, pages 89–98. ACM, 2006.

[11] Javier Herranz, Fabien Laguillaumie, and Carla Ràfols. Constant size ciphertexts in thresh-
old attribute-based encryption. In Nguyen and Pointcheval [16], pages 19–34.

[12] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products. In Nigel P. Smart, editor, EUROCRYPT
2008, volume 4965 of LNCS, pages 146–162. Springer, 2008.

29

[13] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent
Waters. Fully secure functional encryption: Attribute-based encryption and (hierar-
chical) inner product encryption. In Henri Gilbert, editor, EUROCRYPT 2008, vol-
ume 6110 of LNCS, pages 62–91. Springer, 2010. Full version is available at http:
//eprint.iacr.org/2010/110.

[14] Allison B. Lewko, Amit Sahai, and Brent Waters. Revocation systems with very small
private keys. In IEEE Symposium on Security and Privacy, pages 273–285. IEEE Computer
Society, 2010.

[15] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully
secure hibe with short ciphertexts. In Daniele Micciancio, editor, TCC 2010, volume 5978
of LNCS, pages 455–479. Springer, 2010.

[16] Phong Q. Nguyen and David Pointcheval, editors. Public Key Cryptography - PKC 2010,
13th International Conference on Practice and Theory in Public Key Cryptography, Paris,
France, May 26-28, 2010. Proceedings, volume 6056 of Lecture Notes in Computer Science.
Springer, 2010.

[17] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption for inner-
products. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages
214–231. Springer, 2009.

[18] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with
general relations from the decisional linear assumption. In Tal Rabin, editor, CRYPTO
2010, volume 6223 of LNCS, pages 191–208. Springer, 2010. Full version is available at
http://eprint.iacr.org/2010/563.

[19] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hierarchical)
inner product encryption. IACR Cryptology ePrint Archive, 2011:543, 2011. http://
eprint.iacr.org/2011/543, To appear in Eurocrypt 2012.

[20] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, 2005.

[21] Ryuichi Sakai and Jun Furukawa. Identity-based broadcast encryption. IACR Cryptology
ePrint Archive, 2007:217, 2007.

[22] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple
assumptions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 619–636.
Springer, 2009.

30

A Proofs of Lemmas

A.1 Proofs of Lemmas 2 and 3 in Section 5

For a positive integer x, let [x] := {1, . . . , x}.
Lemma 2 L(w, n,Fq) and L̃(w, n,Fq) are subgroups of GL(wn,Fq).

Proof. Below, we will show that L(w, n,Fq) is a subgroup of GL(wn,Fq). For L̃(w, n,Fq), the
lemma is proven in the same manner as for L(w, n,Fq).

Based on the block partition on X ∈ F
wn×wn
q with submatrices Xi,j ∈ F

n×n
q , i.e., X :=

(Xi,j)i,j∈[w] :=

⎛
⎜⎝

X1,1 · · · X1,w
...

...
Xw,1 · · · Xw,w

⎞
⎟⎠, we will define a permutation matrix Π. Since Xi,j ∈

F
n×n
q , each row of X is indexed by a pair (i, k) with i ∈ [w]; k ∈ [n], which is corresponding to

the ((i− 1)n+ k)-th row. The swapping of the index pair (i, k) �→ (k, i) leads to a permutation
π on the set [wn] as,

π : [wn] → [wn]

∈ ∈
(i− 1)n+ k �→ (k − 1)w + i

(13)

with i ∈ [w]; k ∈ [n]. We denote the corresponding permutation matrix by Π, i.e., the left
multiplication by Π is equivalent to the permutation π on rows (of X). Π−1 = ΠT since Π
is a permutation matrix, and we see that the right multiplication by Π−1 is equivalent to the
permutation π on columns (of X).

Let the conjugate set P(w, n,Fq) := Π · L(w, n,Fq) · Π−1. Since the rows and columns are

permuted by π, for X := (Xi,j)i,j∈[w] ∈ L(w, n,Fq) with Xi,j :=

⎛
⎜⎜⎜⎝

μi,j μ′i,j,1
. . .

...
μi,j μ′i,j,n−1

μ′i,j,n

⎞
⎟⎟⎟⎠,

Y := Π · X · Π−1 is given as Y =

⎛
⎜⎜⎜⎝

Y0 Y1

. . .
...

Y0 Yn−1

Yn

⎞
⎟⎟⎟⎠, where Y0 :=

⎛
⎜⎝

μ1,1 · · · μ1,4
...

...
μ4,1 · · · μ4,4

⎞
⎟⎠

and Yi :=

⎛
⎜⎝

μ′1,1,i · · · μ′1,w,i
...

...
μ′w,1,i · · · μ′w,w,i

⎞
⎟⎠. Therefore, since L(w, n,Fq) ⊂ GL(wn,Fq),

P(w, n,Fq) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩Y :=

⎛
⎜⎜⎜⎝

Y0 Y1

. . .
...

Y0 Yn−1

Yn

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
Y0, Yn ∈ GL(w,Fq),
Y1, . . . , Yn−1 ∈ F

w×w
q ,

a blank element in the
matrix denotes 0 ∈ Fq

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ . (14)

We see that P(w, n,Fq) is a subgroup of GL(wn,Fq). So, L(w, n,Fq) = Π−1 · P(w, n,Fq) ·Π is
also a subgroup of GL(wn,Fq). This completes the proof of Lemma 2. �

31

Lemma 3 L+(w, n,Fq) is a subgroup of GL(wn+ 1,Fq).

Proof. For the proof, we define an injective group homomorphism,

ι : GL(wn+ 1,Fq) ↪→ GL((w + 1)n,Fq)

∈ ∈

X �→
(
In−1 0

0 X

)
.

We will show the following claim.

Claim 1 ι(L+(w, n,Fq)) = L(w + 1, n,Fq) ∩ ι(GL((w + 1)n,Fq)).
This equality is on the right-down corner of the following diagram,

ι : GL(wn+ 1,Fq) ↪→ GL((w + 1)n,Fq)
∪ ∪

L+(w, n,Fq) ∼= ι(L+(w, n,Fq)) = L(w + 1, n,Fq) ∩ ι(GL((w + 1)n,Fq)).

Proof of Claim 1. Since X ∈ L(w+1, n,Fq)∩ι(GL((w+1)n,Fq)) is given as (Xi,j)i,j∈[w+1] :=⎛
⎜⎝

X1,1 · · · X1,w+1
...

...
Xw+1,1 · · · Xw+1,w+1

⎞
⎟⎠, X1,1 =

⎛
⎜⎜⎜⎝

1
. . .

1
μ′1,1,n

⎞
⎟⎟⎟⎠, Xi,1 =

⎛
⎜⎜⎜⎝

μ′i,1,1
...

μ′i,1,n

⎞
⎟⎟⎟⎠

for i = 2, . . . , w + 1, and X1,j =

⎛
⎜⎜⎝

μ′1,j,n

⎞
⎟⎟⎠ for j = 2, . . . , w + 1, where a blank

element in the submatrices denotes 0 ∈ Fq. That is,

X :=

⎛
⎜⎜⎜⎜⎜⎝

In−1

μ′1,1,n μ′1,2,n�en · · · μ′1,w+1,n�en
�μ′T2,1 X2,2 · · · X2,w+1

...
...

...
�μ′Tw+1,1 Xw+1,2 · · · Xw+1,w+1

⎞
⎟⎟⎟⎟⎟⎠ ,

where �μ′i,1 := (μ′i,1,1, . . . , μ
′
i,1,n). This shows that ι(L+(w, n,Fq)) = L(w+ 1, n,Fq)∩ ι(GL((w+

1)n,Fq)), i.e., Claim 1 holds. �
Since L(w+ 1, n,Fq) (and ι(GL((w+ 1)n,Fq))) are subgroups of GL((w+ 1)n,Fq) (Lemma

2), from Claim 1, ι(L+(w, n,Fq)) is a subgroup of GL((w + 1)n,Fq). Therefore, since ι is
an injective group homomorphism, L+(w, n,Fq)) is also a subgroup of GL(wn + 1,Fq). This
completes the proof of Lemma 3. �

32

Game
0

Game
1

Game
2-1-1

Game
2-1-2

Game
2-v-2

Game 2-0-3

=

…
~~

…

~~~~~~

Problem 1

Game 
2-v-1

Game 
2-(v-1)-3

=

Game 
2-v-3

==

Game
2-2-1

Game
3

Game
2-1-3

~~

DLIN

~~ ~~

Problem 2

Basic Problem 1

Basic Problem 0

Basic Problem 2

Figure 1: Structure of Reductions for Theorem 1

A.2 Proofs of Lemmas 4–12 in Section 6

A.2.1 Preliminaries

Figure 1 shows the structure of security reduction for Theorem 1, where the security of the
scheme is hierarchically reduced to the intractability of the DLIN problem. Basic Problems 0,
1, 2 are defined below. The reduction steps indicated by arrows will be shown below, and the
step given by dotted arrow can be shown in the same manner as that in (the full version of)
[18].

For the proofs of Lemmas 4 and 5, we give the following intermediate problem, Basic Problem
0 (Definition 10) and Lemma 16. (In [18], an additional element δξG is included in an output
of Basic Problem 0 for a shorter dimension 3n+ 1 than 4n. Here, it is not necessary.)

Definition 10 (Basic Problem 0) Basic Problem 0 is to guess β ∈ {0, 1}, given (paramBP0,

B̂,B∗,y∗
β ,f , κG, ξG) R← GBP0

β (1λ), where

GBP0
β (1λ) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ),

paramV := (q,V,GT ,A, e) := Gdpvs(1λ, 3, paramG),

X :=

⎛
⎝ �χ1

�χ2

�χ3

⎞
⎠ := (χi,j)i,j

U← GL(3,Fq), (ϑi,j)i,j :=

⎛
⎜⎝

�ϑ1

�ϑ2

�ϑ3

⎞
⎟⎠ := (XT)−1, κ, ξ

U← F
×
q ,

bi := κ(�χi)A = κ
∑3

j=1 χi,jaj for i = 1, 3, B̂ := (b1, b3),

b∗i := ξ(�ϑi)A = ξ
∑3

j=1 ϑi,jat,j for i = 1, 2, 3, B
∗ := (b∗1, b∗2, b∗3),

gT := e(G,G)κξ, paramBP0 := (paramV, gT ), δ, σ, ω
U← Fq, ρ, τ

U← F
×
q ,

y∗
0 := (δ, 0, σ)B∗ , y∗

1 := (δ, ρ, σ)B∗ , f := (ω, τ, 0)B,

return (paramBP0, B̂,B
∗,y∗

β ,f , κG, ξG).

33



for β U← {0, 1}. For a probabilistic machine D, we define the advantage of D for Basic Problem
0, AdvBP0

D (λ), is similarly defined as in Definition 8.

Lemma 16 For any adversary D, there is a probabilistic machine E, whose running time
is essentially the same as that of E, such that for any security parameter λ, AdvBP0

D (λ) ≤
AdvDLIN

E (λ) + 5/q.

Proof. We note that dual bases (B,B∗) in Basic Problem 0 are generated by a general linear
matrix X

U← GL(3,Fq), so Lemma 16 is proven in a similar manner to the security proof of
Basic Problem 0 in [18]. �

The following Remark 15 is for the proofs of Lemmas of 17 and 19.

Remark 15 For matrixW := (χi,j)i,j=1,...,N ∈ F
N×N
q and element v inN -dimensional V, W (v)

denotes
∑N,N

i=1,j=1 χi,jφi,j(v) using canonical maps {φi,j} (Definition 2). Similarly, for matrix
(ϑi,j) := (W−1)T, (W−1)T(v) :=

∑N,N
i=1,j=1 ϑi,jφi,j(v). It holds that e(W (x), (W−1)T(y)) =

e(x,y) for any x,y ∈ V.

A.2.2 Proof of Lemma 4

Lemma 4. For any adversary B, there exists a probabilistic machine E, whose running times
are essentially the same as that of B, such that for any security parameter λ, AdvP1

B (λ) ≤
AdvDLIN

E (λ) + 5/q.

Proof. At the top level, the proof of Lemma 4 is similar to the security proof of Problem 1 in
[18]. The main difference is that special form matrices Eq. (3) are used for generating master
public and secret keys in our schemes. One key fact for the security reduction is that L(4, n,Fq)
is a subgroup of GL(4n,Fq) (Lemma 2).

For the proof of Lemma 4, we give the following intermediate problem, Basic Problems 1
(Definition 11). From Lemmas 16, 17 and 18, we obtain Lemma 4. �

Based on Remark 3, hereafter, we consider the output of GP1
β (1λ, n) is expressed as (paramn,

B0, B̂
∗
0, eβ,0,B1, B̂

∗
1, {eβ,1,i}i=1,...,n) and also we give the output of Basic Problem 1 as such a

vector form over bases {Bt}t=0,1.

Definition 11 (Basic Problem 1) Basic Problem 1 is to guess β ∈ {0, 1}, given (paramn,

{Bt, B̂∗
t }t=0,1,fβ,0, {fβ,1,i}i=1,..,n)

R← GBP1
β (1λ, n), where

GBP1
β (1λ, n) : (paramn, {Bt,B∗

t }t=0,1)
R← GNIPE,CT

ob (1λ, 4, n),

B̂
∗
0 := (b0,1, b0,3, . . . , b0,5), B̂

∗
1 := (b1,1, . . . , b1,n, b1,2n+1, . . . , b1,4n),

ω, γ0, γ1
U← Fq, τ

U← F
×
q , f0,0 := (ω, 0, 0, 0, γ0)B0 , f1,0 := (ω, τ, 0, 0, γ0)B0 ,

for i = 1, . . . , n;
�ei := (0i−1, 1, 0n−i) ∈ F

n
q ,

n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
f0,1,i := ( ω�ei, 0n, 0n, γ1�ei )B1 ,
f1,1,i := ( ω�ei, τ�ei, 0n, γ1�ei )B1 ,

return (paramn, {Bt, B̂∗
t }t=0,1,fβ,0, {fβ,1,i}i=1,..,n).

for β U← {0, 1}. For a probabilistic machine C, we define the advantage of C for Basic Problem
1, AdvBP1

C (λ), as in Definition 8.

34



Lemma 17 For any adversary C, there is a probabilistic machine D, whose running time is es-
sentially the same as that of C, such that for any security parameter λ, AdvBP1

C (λ) ≤ AdvBP0
D (λ).

Proof. D is given a Basic Problem 0 instance

(paramBP0, B̂,B
∗,y∗

β ,f , κG, ξG).

By using paramG := (q,G,GT , G, e) underlying paramBP0, D calculates

param0 := (q,V0,GT ,A0, e) := Gdpvs(1λ, 5, paramG),
param1 := (q,V1,GT ,A1, e) := Gdpvs(1λ, 4n, paramG),
paramn := ({paramt}t=0,1, gT ),

where gT is contained in paramBP0.
D generates random linear transformation defined by matrices W0

U← GL(5,Fq) on V0 and

W1
U← P(4, n,Fq) on V1 as in Remark 15, where P(4, n,Fq) is given in Eq. (14). Then D sets

d0,ι := W0(b∗ι , 0, 0) for ι = 1, 2, d0,3 := W0(0, 0, 0, ξG, 0),
d0,4 := W0(0, 0, 0, 0, ξG), d0,5 := W0(b∗3, 0, 0),
d∗

0,ι := (W−1
0 )T(bι, 0, 0) for ι = 1, 2, d∗

0,3 := (W−1
0 )T(0, 0, 0, κG, 0),

d∗
0,4 := (W−1

0 )T(0, 0, 0, 0, κG), d∗
0,5 := (W−1

0 )T(b3, 0, 0),

gβ,0 := W0(y∗
β , 0, 0) + ηd0,5 where η U← Fq,

for i = 1, . . . , n,
p1,4(i−1)+ι := W1(04(i−1), b∗ι , 0, 0

4(n−i)) for ι = 1, 2,

p1,4(i−1)+3 := W1(04(i−1), 03, ξG, 04(n−i)), p1,4i := W1(04(i−1), b∗3, 0, 0
4(n−i)),

p∗
1,4(i−1)+ι := (W−1

1 )T(04(i−1), bι, 0, 04(n−i)) for ι = 1, 2,

p∗
1,4(i−1)+3 := (W−1

1 )T(04(i−1), 03, κG, 04(n−i)), p∗
1,4i := W1(04(i−1), b3, 0, 04(n−i)),

gβ,1,i := W1(04(i−1),y∗
β , 0, 0

4(n−i)),

where (04(i−1),v, 0, 04(n−i)) := (04(i−1), G̃1, G̃2, G̃3, 0, 04(n−i)) for any v := (G̃1, G̃2, G̃3) ∈ V =
G

3. Then, D0 := (d0,i)i=1,...,5 and D
∗
0 := (d∗

0,i)i=1,...,5, P1 := (p1,i)i=1,...,4n and P
∗
1 := (p∗

1,i)i=1,...,4n

are dual orthonormal bases.
Moreover, we see that the distribution of D1 is equivalent to that of bases generated by using

random special type matrix Y U← P(4, n,Fq). For the permutation π given in Eq. (13) and the
associated matrix Π, the left multiplication by Π gives the permutation π of the basis vectors
{p1,i}i=1,...,4n and the right multiplication by Π−1 gives the permutation π of the coordinates
of vectors in G

4n. Therefore, by the conjugate action of the matrix Π, we obtain a basis
D1 := (d1,ι)ι=1....,4n, whose distribution is equivalent to that of bases generated by using random

special type matrix X U← L(4, n,Fq) = Π−1 · P(4, n,Fq) ·Π, and its dual D
∗
1 := (d∗

1,ι)ι=1....,4n.
D can compute D0,D1, D̂

∗
0 := (d∗

0,1,d
∗
0,3, . . . ,d

∗
0,5), D̂

∗
1 := (d∗

1,1, . . . ,d
∗
1,n,d

∗
1,2n+1, . . . ,d

∗
1,4n)

from B̂ := (b1, b3), B
∗, κG, and ξG. D then gives (paramn, {Dt, D̂

∗
t }t=0,1, gβ,0, {gβ,1,i}i=1,...,n) to

C, and outputs β′ ∈ {0, 1} if C outputs β′.
gβ,0 is expressed over basis D0 as

g0,0 = W0(y∗
0, 0, 0) + ηd0,5 = (δ, 0, 0, 0, σ0)D0 , g1,0 = W0(y∗

1 , 0, 0) + ηd0,5 = (δ, ρ, 0, 0, σ0)D0 ,

35



with σ0 := σ + η, and gβ,1,i (i = 1, . . . , n) are expressed over bases P1 and D1 as

g0,1,i = W1(04(i−1),y∗
0, 0, 0

4(n−i)) = (04(i−1), δ, 0, 0, σ, 04(n−i))P1 = (

n︷︸︸︷
δ�ei ,

n︷︸︸︷
0n ,

n︷︸︸︷
0n ,

n︷︸︸︷
σ�ei )D1 ,

g1,1,i = W1(04(i−1),y∗
1, 0, 0

4(n−i)) = (04(i−1), δ, ρ, 0, σ, 04(n−i))P1 = (

n︷︸︸︷
δ�ei ,

n︷︸︸︷
ρ�ei ,

n︷︸︸︷
0n ,

n︷︸︸︷
σ�ei )D1 ,

where δ, ρ, σ, and σ0 are distributed uniformly in Fq. Therefore, the distribution of (paramn,

{Dt, D̂
∗
t }t=0,1, gβ,0, {gβ,1,i}i=1,...,n) is exactly the same as

{
�
∣∣∣ � R← GBP1

β (1λ, n)
}

. �

Lemma 18 For any adversary B, there is a probabilistic machine C, whose running time is
essentially the same as that of B, such that for any security parameter λ, AdvP1

B (λ) = AdvBP1
C (λ).

Proof. Given a Basic Problem 1 instance

(paramn, {Bt, B̂∗
t }t=0,1,fβ,0, {fβ,1,i}i=1,..,n),

C generates u, u′n
U← F

×
q , u

′
1, . . . , u

′
n−1

U← Fq and

U :=

⎛
⎜⎜⎜⎝

u u′1
. . .

...
u u′n−1

u′n

⎞
⎟⎟⎟⎠ , Z := (U−1)T :=

⎛
⎜⎜⎜⎝

u−1

. . .
u−1

−(u′n)−1u′1 . . . −(u′n)−1u′n−1 u′−1
n

⎞
⎟⎟⎟⎠ ,

(d1,n+1, . . . ,d1,2n)T := Z ·(b1,n+1, . . . , b1,2n)T and (d∗
1,n+1, . . . ,d

∗
1,2n)

T := U ·(b∗1,n+1, . . . , b
∗
1,2n)

T.
We set

D1 := (b1,1, . . . , b1,n,d1,n+1, . . . ,d1,2n, b1,2n+1, . . . , b1,4n),
D
∗
1 := (b∗1,1, . . . , b

∗
1,n,d

∗
1,n+1, . . . ,d

∗
1,2n, b

∗
1,2n+1, . . . , b

∗
1,4n).

We then easily verify that D1 and D
∗
1 are dual orthonormal, and are distributed the same as

the original bases, B1 and B
∗
1. We note that C cannot calculate above d∗

1,i for i = n+ 1, . . . , 2n
(from B̂

∗
1) and D

∗
1 is consistent with B̂

∗
1. C gives (paramn,B0, B̂

∗
0,D1, B̂

∗
1,fβ,0, {fβ,1,i}i=1,..,n) to

B, and outputs β′ ∈ {0, 1} if B outputs β′.
Then, with respect to D1,D

∗
1 (instead of B1,B

∗
1), the above answer to B has the same

distribution as the Problem 1 instance, i.e., the above instance has the same distribution as the
one given by generator GP1

β (1λ, n). �

A.2.3 Proof of Lemma 5

Lemma 5. For any adversary B, there exists a probabilistic machine E, whose running
time is essentially the same as that of B, such that for any security parameter λ, AdvP2

B (λ) ≤
AdvDLIN

E (λ) + 5/q.

Proof. Similarly to Lemma 4, we employ the fact that L(4, n,Fq) is a subgroup of GL(4n,Fq)
(Lemma 2) in the proof. For the proof of Lemma 5, we give an intermediate problem, Basic
Problem 2 below (Definition 12). From Lemmas 16, 19 and 20, we obtain Lemma 5. �

Based on Remark 4, hereafter, we consider the output of GP2
β (1λ, n) is expressed as (paramn,

B̂0,B
∗
0,h

∗
β,0, e0, B̂1,B

∗
1, {h∗

β,1,i, e1,i}i=1,...,n) and also we give the output of Basic Problem 2 as
such a vector form over bases {Bt,B∗

t }t=0,1.

36



Definition 12 (Basic Problem 2) Basic Problem 2 is to guess β ∈ {0, 1}, given (paramn,

{B̂t,B∗
t }t=0,1,y

∗
β,0,f0, {y∗

β,1,i,f1,i}i=1,..,n)
R← GBP2

β (1λ, n), where

GBP2
β (1λ, n) : (paramn, {Bt,B∗

t }t=0,1)
R← GNIPE,CT

ob (1λ, 4, n),

B̂0 := (b0,1, b0,3, . . . , b0,5), B̂1 := (b1,1, . . . , b1,n, b1,2n+1, . . . , b1,4n),

δ, δ0, ω
U← Fq, ρ, τ

U← F
×
q ,

y∗
0,0 := (δ, 0, 0, δ0, 0)B∗

0
, y∗

1,0 := (δ, ρ, 0, δ0, 0)B∗
0
, f0 := (ω, τ, 0, 0, 0)B0 ,

for i = 1, . . . , n;
�ei := (0i−1, 1, 0n−i) ∈ F

n
q ,

n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
y∗

0,1,i := ( δ�ei, 0n, δ0�ei, 0n )B∗
1

y∗
1,1,i := ( δ�ei, ρ�ei, δ0�ei, 0n )B∗

1

f1,i := ( ω�ei, τ�ei, 0n, 0n )B1 ,

return (paramn, {B̂t,B∗
t }t=0,1,y

∗
β,0,f0, {y∗

β,1,i,f1,i}i=1,..,n).

for β U← {0, 1}. For a probabilistic machine C, we define the advantage of C for Basic Problem
2, AdvBP2

C (λ), as in Definition 8.

Lemma 19 For any adversary C, there is a probabilistic machine D, whose running time is es-
sentially the same as that of C, such that for any security parameter λ, AdvBP2

C (λ) ≤ AdvBP0
D (λ).

Proof. D is given a Basic Problem 0 instance

(paramBP0, B̂,B
∗,y∗

β ,f , κG, ξG).

By using paramG := (q,G,GT , G, e) underlying paramBP0, D calculates

param0 := (q,V0,GT ,A0, e) := Gdpvs(1λ, 5, paramG),
param1 := (q,V1,GT ,At, e) := Gdpvs(1λ, 4n, paramG),
paramn := ({paramt}t=0,1, gT ),

where gT is contained in paramBP0.
D generates random linear transformations defined by matrices W0

U← GL(5,Fq) on V0 and

W1
U← P(4, n,Fq) on V1 as in Remark 15, where P(4, n,Fq) is given in Eq. (14). Then D sets

d0,ι := W0(bι, 0, 0) for ι = 1, 2, d0,3 := W0(0, 0, 0, κG, 0),
d0,4 := W0(b3, 0, 0), d0,5 := W0(0, 0, 0, 0, κG),
d∗

0,ι := (W−1
0 )T(b∗ι , 0, 0) for ι = 1, 2, d∗

0,3 := (W−1
0 )T(0, 0, 0, ξG, 0),

d∗
0,4 := (W−1

0 )T(b∗3, 0, 0) d∗
0,5 := (W−1

0 )T(0, 0, 0, 0, ξG),

q∗
β,0 := (W−1

0 )T(y∗
β , 0, 0), g0 := W0(f , 0, 0),

for i = 1, . . . , n,
p1,4(i−1)+ι := W1(04(i−1), bι, 0, 04(n−i)) for ι = 1, 2, 3,

p1,4i := Wt(04(i−1), 03, κG, 04(n−i)),

p∗
1,4(i−1)+ι := (W−1

1 )T(04(i−1), b∗ι , 0, 0
4(n−i)) for ι = 1, 2, 3,

p∗
1,4i := (W−1

1 )T(04(i−1), 03, ξG, 04(n−i)),

37



q∗
β,1,i := (W−1

1 )T(04(i−1),y∗
β , 0, 0

4(n−i)) +
∑n

j=1 ηi,jp
∗
1,4(j−1)+3

where �ηi := (ηi,1, . . . , ηi,n)
U← F

n
q ,

g1,i := W1(04(i−1),f , 0, 04(n−i))

where (04(i−1),v, 0, 04(n−i)) := (04(i−1), G̃1, G̃2, G̃3, 0, 04(n−i)) for any v := (G̃1, G̃2, G̃3) ∈ V =
G

3. Then, D0 := (d0,i)i=1,...,5 and D
∗
0 := (d∗

0,i)i=1,...,5, P1 := (p1,i)i=1,...,4n and P
∗
1 := (p∗

1,i)i=1,...,4n

are dual orthonormal bases.
Moreover, we see that the distribution of P1 is equivalent to that of bases generated by using

random special type matrix Y U← P(4, n,Fq). For the permutation π given in Eq. (13) and the
associated matrix Π, the left multiplication by Π gives the permutation π of the basis vectors
{p1,i}i=1,...,4n and the right multiplication by Π−1 gives the permutation π of the coordinates
of vectors in G

4n. Therefore, by the conjugate action of the matrix Π, we obtain a basis
D1 := (d1,ι)ι=1....,4n, whose distribution is equivalent to that of bases generated by using random

special type matrix X U← L(4, n,Fq) = Π−1 · P(4, n,Fq) ·Π, and its dual D
∗
1 := (d∗

1,ι)ι=1....,4n.
D can compute D̂0 := (d0,1,d0,3, . . . ,d0,5), D̂1 := (d1,1, . . . ,d1,n,d1,2n+1, . . . ,d1,4n), D

∗
0,D

∗
1

from B̂ := (b1, b3), B
∗, κG, and ξG. D then gives (paramn, {D̂t,D

∗
t }t=0,1, q

∗
β,0, g0, {q∗

β,1,i, g1,i}i=1,...,n)
to C, and outputs β′ ∈ {0, 1} if C outputs β′.

q∗
β,0, g0 are expressed over bases (D0,D

∗
0) as

q∗
0,0 = (W−1

0 )T(y∗
0, 0, 0) = (δ, 0, 0, σ, 0)D∗

0
, q∗

1,0 = (W−1
0 )T(y∗

1 , 0, 0) = (δ, ρ, 0, σ, 0)D∗
0
,

g0 = W0(f , 0, 0) = (ω, τ, 0, 0, 0)D0 ,

and q∗
β,1,i, g1,i (i = 1, . . . , n) are expressed over bases (P1,P

∗
1) and (D1,D

∗
1) as

q∗
0,1,i = (W−1

1 )T(04(i−1),y∗
0, 0, 0

4(n−i)) +
∑n

j=1 ηi,jp
∗
1,4(j−1)+3

= (04(i−1), δ, 0, σ, 0, 04(n−i))P∗
1

+
∑n

j=1 ηi,jp
∗
1,4(j−1)+3 = (

n︷︸︸︷
δ�ei ,

n︷︸︸︷
0n ,

n︷︸︸︷
�ϕi ,

n︷︸︸︷
0n )D∗

1
,

q∗
1,1,i = (W−1

1 )T(04(i−1),y∗
1, 0, 0

4(n−i)) +
∑n

j=1 ηi,jp
∗
1,4(j−1)+3

= (04(i−1), δ, ρ, σ, 0, 04(n−i))P∗
1
+
∑n

j=1 ηi,jp
∗
1,4(j−1)+3 = (

n︷︸︸︷
δ�ei ,

n︷︸︸︷
ρ�ei ,

n︷︸︸︷
�ϕi ,

n︷︸︸︷
0n )D∗

1
,

g1,i = W1(04(i−1),f , 0, 04(n−i)) = (04(i−1), ω, τ, 0, 0, 04(n−i))P1 = (

n︷︸︸︷
ω�ei ,

n︷︸︸︷
τ�ei ,

n︷︸︸︷
0n ,

n︷︸︸︷
0n )D1 ,

where �ϕi := σ�ei + �ηi, and δ, ρ, σ, ω, τ ∈ Fq, and �ϕi ∈ F
n
q are uniformly and independently

distributed. Therefore, the distribution of (paramn, {D̂t,D
∗
t }t=0,1, q

∗
β,0, g0, {q∗

β,1,i, g1,i}i=1,...,n) is

exactly the same as
{
�
∣∣∣ � R← GBP2

β (1λ, n)
}

. �

Lemma 20 For any adversary B, there is a probabilistic machine C, whose running time is
essentially the same as that of B, such that for any security parameter λ, AdvP2

B (λ) = AdvBP2
C (λ).

Proof. Given a Basic Problem 2 instance

(paramn, {B̂t,B∗
t }t=0,1,y

∗
β,0,f0, {y∗

β,1,i,f1,i}i=1,..,n),

38



C generates u, u′n
U← F

×
q , u

′
1, . . . , u

′
n−1

U← Fq and

U :=

⎛
⎜⎜⎜⎝

u u′1
. . .

...
u u′n−1

u′n

⎞
⎟⎟⎟⎠ , Z := (U−1)T :=

⎛
⎜⎜⎜⎝

u−1

. . .
u−1

−(u′n)−1u′1 . . . −(u′n)−1u′n−1 u′−1
n

⎞
⎟⎟⎟⎠ ,

(d1,n+1, . . . ,d1,2n)T := Z ·(b1,n+1, . . . , b1,2n)T and (d∗
1,n+1, . . . ,d

∗
1,2n)

T := U ·(b∗1,n+1, . . . , b
∗
1,2n)

T.
We set

D1 := (b1,1, . . . , b1,n,d1,n+1, . . . ,d1,2n, b1,2n+1, . . . , b1,4n),
D
∗
1 := (b∗1,1, . . . , b

∗
1,n,d

∗
1,n+1, . . . ,d

∗
1,2n, b

∗
1,2n+1, . . . , b

∗
1,4n).

We then easily verify that D1 and D
∗
1 are dual orthonormal, and are distributed the same as the

original bases, B1 and B
∗
1. We note that C cannot calculate above d1,i for i = n+1, . . . , 2n (from

B̂1) and D1 is consistent with B̂1. C gives (paramn, B̂0,B
∗
0, B̂1,D

∗
1,y

∗
β,0,f0, {y∗

β,1,i,f1,i}i=1,..,n) to
B, and outputs β′ ∈ {0, 1} if B outputs β′.

Then, with respect to D1,D
∗
1 (instead of B1,B

∗
1), the above answer to B has the same

distribution as the Problem 2 instance, i.e., the above instance has the same distribution as the
one given by generator GP2

β (1λ, n). �
Next is a key lemma for applying the proof techniques in [18] to our NIPE (and ZIPE)

schemes, where limited randomness is used in public parameter, e.g., {Bi,j , B′
i,j,l}i=1,4;j=1,..,4;l=1,..,n,

in the NIPE scheme in Section 6.

A.2.4 Proof of Lemma 6

Lemma 6. Let �en := (0, . . . , 0, 1) ∈ F
n
q . For all �x ∈ F

n
q \ span〈�en〉 and π ∈ Fq, let W�x,π :=

{(�r, �w) ∈ (span〈�x,�en〉 \ span〈�en〉)× (Fn
q \ span〈�en〉⊥) | �r · �w = π}.

For all (�x,�v) ∈ (Fn
q \ span〈�en〉

) × (Fn
q \ span〈�en〉⊥

)
, for all (�r, �w) ∈ W�x,(�x·�v), Pr [ �xU = �r∧

�vZ = �w ] = 1
/
�W�x,(�x·�v), where U U← H(n,Fq) ∩GL(n,Fq) and Z := (U−1)T.

Proof. Let

⎛
⎜⎜⎜⎝

u u′1
. . .

...
u u′n−1

u′n

⎞
⎟⎟⎟⎠ := U,

⎛
⎜⎜⎜⎝

u−1

. . .
u−1

−(uu′n)−1u′1 . . . −(uu′n)−1u′n−1 (u′n)−1

⎞
⎟⎟⎟⎠ :=

(U−1)T := Z, and �u′ := (u′1, . . . , u′n). For �x := (x1, . . . , xn) and �v := (v1, . . . , vn) with vn �= 0,
let

�r := �xU = (ux1, . . . , uxn−1, �x · �u′) = (ux1, . . . , uxn−1, p), and
�w := �vZ = (u−1v1 − u′1(uu′n)−1vn, . . . , u

−1vn−1 − u′n−1(uu
′
n)

−1vn, (u′n)
−1vn)

= (u′n)
−1vn ·

(
u−1

(
u′n(v1v

−1
n )− u′1

)
, . . . , u−1

(
u′n(vn−1v

−1
n )− u′n−1

)
, 1
)

= (u′n)
−1vn · (ũ1, . . . , ũn−1, 1),

where ũj := u−1
(
u′n(vjv−1

n )− u′j
)

for j = 1, . . . , n− 1 and p := �x · �u′. Then,

�x · �v = (u′n)
−1 vn

(∑n−1
j=1 (uxj)ũj + p

)
= �r · �w. (15)

Case that �x · �v �= 0 : Since �x · �v �= 0, u and �u′ can be generated as: (u, ũ1, . . . , ũn−1, p)
U←

{(u, (ũj)j=1,...,n−1, p) ∈ F
×
q × F

n
q |

∑n−1
j=1 (uxj)ũj + p �= 0}, u′n := vn(

∑n−1
j=1 (uxj)ũj + p)/(�x · �v),

39



and u′j := u′n(vjv−1
n )−uũj for j = 1, . . . , n−1. We note that the condition

∑n−1
j=1 (uxj)ũj+p �= 0

among u, ũj (j = 1, . . . , n− 1) and p is equivalent to the condition u′n �= 0.

Since (u, ũ1, . . . , ũn−1, p)
U← {(u, (ũj)j=1,...,n−1, p) ∈ F

×
q × F

n
q |

∑n−1
j=1 (uxj)ũj + p �= 0} and

u′n := vn(
∑n−1

j=1 (uxj)ũj + p)/(�x · �v), the pair of �r := (ux1, . . . , uxn−1, p) and �w := (u′n)
−1 vn ·

(ũ1, . . . , ũn−1, 1) is uniformly distributed in W�x,(�x·�v).
Case that �x · �v = 0 : Since �x · �v = 0, Eq. (15) is given as

∑n−1
j=1 (uxj)ũj + p = 0. Since

�x �∈ span〈�en〉, there exists an index j0 ∈ {1, . . . , n − 1} such that xj0 �= 0. Using the index

j0, u and �u′ can be generated as: u
U← F

×
q , ũj

U← Fq (j = 1, . . . , j0 − 1, j0 + 1, . . . , n − 1),

p
U← Fq, u′j0 := (−∑j=1,...,j0−1,j0+1,n−1 xju

′
j − u−1p)/xj0 , u

′
n

U← F
×
q and u′j := u′n(vjv−1

n )− uũj
for j = 1, . . . , n− 1.

Since (u, ũ1, . . . , ũn−1, p)
U← {(u, (ũj)j=1,...,n−1, p) ∈ F

×
q × F

n
q |

∑n−1
j=1 (uxj)ũj + p = 0} and

u′n
U← F

×
q , the pair of �r := (ux1, . . . , uxn−1, p) and �w := (u′n)

−1 vn · (ũ1, . . . , ũn−1, 1) is uniformly
distributed in W�x,0. �

A.2.5 Proof of Lemma 7

Lemma 7. For any adversary A, there exists a probabilistic machine B1, whose running
time is essentially the same as that of A, such that for any security parameter λ, |Adv

(0)
A (λ)−

Adv
(1)
A (λ)| ≤ AdvP1

B1
(λ).

Proof. Lemma 7 is proven by the same manner as the proof of Lemma 4 in [18].
In order to prove Lemma 7, we construct a probabilistic machine B1 against Problem 1 using

an adversary A in a security game (Game 0 or 1) as a black box as follows:

1. B1 is given a Problem 1 instance, (paramn,B0, B̂
∗
0, eβ,0, {Bi,j , B′

i,j,l}i,j=1,...,4;l=1,...,n, B̂
∗
1, {Eβ,j ,

E′
β,j,l}j=1,...,4;l=1,...,n), which is identified with (paramn,B0, B̂

∗
0, eβ,0,B1, B̂

∗
1, {eβ,1,l}l=1,...,n)

(Remark 3).

2. B1 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B1 provides A a public key pk := (1λ, paramn, {B̂t}t=0,1) of
Game 0 (and 1), where B̂0 := (b0,1, b0,3, b0,5) and B̂1 := (b1,1, .., b1,n, b1,3n+1, . . . , b1,4n),
which are obtained from the Problem 1 instance.

4. When a key query is issued for vector �v, B1 answers normal key (k∗
0,k

∗
1) with Eq. (7),

which is computed using {B̂∗
t }t=0,1 of the Problem 1 instance.

5. When B1 receives an encryption query with challenge plaintexts (m(0),m(1)) and vector
�x := (x1, . . . , xn) from A, B1 computes the challenge ciphertext (�x, c0, {C1,j , C2,j}j=1,...,4,
c3) which is identified with (�x, c0, c1, c3) in Remark 2 such that c0 := −eβ,0 + ζb0,3, c1 :=∑n

l=1 xleβ,1,l, c3 := gζTm
(b), where b U← {0, 1}, ζ U← Fq, and (eβ,0, b0,3, {eβ,1,l}l=1,...,n) is a

part of the Problem 1 instance.

6. When a key query is issued by A after the encryption query, B1 executes the same proce-
dure as that of step 4.

7. A finally outputs bit b′. If b = b′, B1 outputs β′ := 1. Otherwise, B1 outputs β′ := 0.

Claim 2 The distribution of the view of adversary A in the above-mentioned game simulated
by B1 given a Problem 1 instance with β ∈ {0, 1} is the same as that in Game 0 (resp. Game
1) if β = 0 (resp. β = 1).

40



Proof. Since the public key pk and secret keys sk�v answered by A are distributed as in Game
0 and 1, we consider the distribution of challenge ciphertext ct�x := (�x, c0, {C1,j , C2,j}j=1,...,4, c3)
which is equivalent to (�x, c0, c1, c3) under the identification Eq. (6).

When β = 0, ciphertext ct�x generated in step 5 is

c0 = −e0,0 + ζb0,3 = (−ω, 0, ζ, 0, −η0)B0 , c3 := gζTm
(b),

c1 =
∑n

l=1 xle0,1,l = (ω�x, 0n, 0n, η1�x)B1 ,

where variables ω, ζ, η0, η1 ∈ Fq are uniformly and independently distributed. Therefore, gen-
erated ct�x and sk�v have the same distribution as in Game 0.

When β = 1, ciphertext ct�x generated in step 5 is

c0 = −e1,0 + ζb0,3 = (−ω, −τ, ζ, 0, −η0)B0 , c3 := gζTm
(b),

c1 =
∑n

l=1 xle1,1,l = (ω�x, τ�x, 0n, η1�x)B1 ,

where variables ω, τ, ζ, η0, η1 ∈ Fq are uniformly and independently distributed. Therefore,
generated ct�x and sk�v have the same distribution as in Game 1. �
This completes the proof of Lemma 7. �

A.2.6 Proof of Lemma 8

Lemma 8. For any adversary A, there exists a probabilistic machine B2-1, whose running time
is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-(h−1)-3)
A (λ)−

Adv
(2-h-1)
A (λ)| ≤ AdvP2

B2-h-1
(λ), where B2-h-1(·) := B2-1(h, ·).

Proof. Lemma 8 is proven by the same manner as the proof of Lemma 5 in [18].
In order to prove Lemma 8, we construct a probabilistic machine B2-1 against Problem 2

using an adversary A in a security game (Game 2-(h− 1)-3 or 2-h-1) as a black box as follows:

1. B2-1 is given an integer h and a Problem 2 instance, (paramn, B̂0,B
∗
0,h

∗
β,0, e0,

{Bi,j , B′
i,j,l}i=1,3,4;j=1,...,4;l=1,...,n,B

∗
1, {h∗

β,1,l, Ej , E
′
j,l}j=1,...,4;l=1,...,n), which is identified with

(paramn, B̂0,B
∗
0,h

∗
β,0, e0, B̂1,B

∗
1, {h∗

β,1,l, e1,l}l=1,...,n) (Remark 4).

2. B2-1 plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B2-1 provides A a public key pk := (1λ, paramn, {B̂′
t}t=0,1) of

Game 2-(h−1)-3 (and 2-h-1), where B̂
′
0 := (b0,1, b0,3, b0,5) and B̂

′
1 := (b1,1, . . . , b1,n, b1,3n+1,

. . . , b1,4n).

4. When the ι-th key query is issued for �v := (v1, . . . , vn), B2-1 answers as follows:

(a) When 1 ≤ ι ≤ h − 1, B2-1 answers semi-functional keys of the form Eq. (12), which
is computed using (B∗

0,B
∗
1) of the Problem 2 instance.

(b) When ι = h, B2-1 calculates (k∗
0,k

∗
1) using (h∗

β,0, {h∗
β,1,l}l=1,...,n) of the Problem 2 in-

stance as follows: k∗
0 := h∗

β,0+b∗0,3, k∗
1 :=

∑n
l=1 vlh

∗
β,1,l, where (h∗

β,0, b
∗
0,3, {h∗

β,1,l}l=1,...,n)
is a part of the Problem 2 instance.

(c) When ι ≥ h + 1, B2-1 answers normal keys of the form Eq. (7), which is computed
using (B∗

0,B
∗
1) of the Problem 2 instance.

41



5. When B2-1 receives an encryption query with challenge plaintexts (m(0),m(1)) and vector
�x := (x1, . . . , xn) from A, B1 computes the challenge ciphertext (�x, c0, {C1,j , C2,j}j=1,...,4,
c3) which is identified with (�x, c0, c1, c3) in Remark 2 such that c0 := −e0 + ζb0,3 +

η0b0,5, c1 :=
∑n

l=1 xl(e1,l+η1b1,3n+l), c3 := gζTm
(b), where b U← {0, 1}, ζ, η0, η1

U← Fq, and
(e0, b0,3, b0,5, {e1,l, b1,3n+l}l=1,...,n) is a part of the Problem 2 instance.

6. When a key query is issued by A after the encryption query, B2-1 executes the same
procedure as that of step 4.

7. A finally outputs bit b′. If b = b′, B2-1 outputs β′ := 1. Otherwise, B2-1 outputs β′ := 0.

Claim 3 The distribution of the view of adversary A in the above-mentioned game simulated
by B2-1 given a Problem 2 instance with β ∈ {0, 1} is the same as that in Game 2-(h − 1)-3
(resp. Game 2-h-1) if β = 0 (resp. β = 1).

Proof. We consider the joint distribution of ct�x and sk�v. We see that the distribution of
challenge ciphertext ct�x := (�x, c0, {C1,j , C2,j}j=1,...,4, c3) is the same as that in Game 2-(h−1)-3
(and Game 2-h-1) similarly to the proof of Claim 2 for the case with β = 1.

When β = 0, the h-th secret key sk�v := (�v,k∗
0,k

∗
1) generated in case (b) of step 4 or 6 is

k∗
0 = h∗

0,0 + b∗0,3 = (δ, 0, 1, ϕ0, 0)B∗
0
, k∗

1 =
∑n

l=1 vlh
∗
0,1,l = ( δ�v, 0n, �ϕ′

1, 0n )B∗
1
, where, variables

δ, ϕ0 ∈ Fq, �ϕ
′
1 :=

∑n
l=1 vl�ϕl ∈ F

n
q are uniformly and independently distributed. Therefore,

generated ct�x and sk�v have the same joint distribution as in Game 2-(h− 1)-3.
When β = 1, the h-th secret key sk�v := (�v,k∗

0,k
∗
1) generated in case (b) of step 4 or 6

is k∗
0 = h∗

1,0 + b∗0,3 = (δ, ρ, 1, ϕ0, 0)B∗
0
, k∗

1 =
∑n

l=1 vlh
∗
1,1,l = ( δ�v, ρ�vZ, �ϕ′

1, 0n )B∗
1
, where,

Z :=

⎛
⎜⎜⎜⎝

z
. . .

z
z′1 . . . z′n−1 z′n

⎞
⎟⎟⎟⎠ :=

⎛
⎜⎜⎜⎝

u−1

. . .
u−1

−(uu′n)−1u′1 . . . −(uu′n)−1u′n−1 (u′n)−1

⎞
⎟⎟⎟⎠ := (U−1)T

for U U← H(n,Fq) ∩ GL(n,Fq) used for challenge ciphertext ct�x, variables δ, ϕ0 ∈ Fq, �ϕ
′
1 :=∑n

l=1 vl�ϕl ∈ F
n
q are uniformly and independently distributed. Therefore, generated ct�x and sk�v

have the same joint distribution as in Game 2-h-1. �
This completes the proof of Lemma 8. �

A.2.7 Proof of Lemma 9

Lemma 9. For any adversary A, for any security parameter λ, |Adv
(2-h-1)
A (λ)−Adv

(2-h-2)
A (λ)| ≤

1/q.

Proof. We consider joint distribution of the h-th answered key (�v,k∗
0,k

∗
1) and the challenge

ciphertext (�x, c0, c1) in Game 2-h-1.

k∗
0 := ( δ, ρ, 1, ϕ0, 0 )B∗

0
, k∗

1 := ( δ�v, ρ�vZ, �ϕ1, 0n )B∗
1
,

c0 := ( −ω, −τ, ζ, 0, η0 )B0 , c1 := ( ω�x, τ�xU, 0n, η1�x )B1 ,

where δ, ρ, ϕ0, ω, τ, ζ, η0, η1
U← Fq, �ϕ1

U← F
n
q , U U← H(n,Fq) ∩GL(n,Fq) and Z := (U−1)T.

By the security definition, it holds that �x · �v = 0. From Lemma 6, (τ�xU, ρ�vZ) is uniformly
distributed in Wτ�x,0. In particular, if τ �= 0, it is uniformly distributed in W�x,0. That is, coeffi-
cient −τ in k∗

0 is independent from all the other variables except with negligible probability 1/q,
and the joint distribution is equivalent to that in Game 2-h-2 except with negligible probability
1/q. �

42



A.2.8 Proof of Lemma 10

Lemma 10. For any adversary A, there exists a probabilistic machine B2-2, whose running
time is essentially the same as that of A, such that for any security parameter λ, |Adv

(2-h-2)
A (λ)−

Adv
(2-h-3)
A (λ)| ≤ AdvP2

B2-h-2
(λ), where B2-h-2(·) := B2-2(h, ·).

Proof. Lemma 10 is proven by the similar manner to the proof of Lemma 8. �

A.2.9 Proof of Lemma 11

Lemma 11. For any adversary A, for any security parameter λ, |Adv
(2-ν-3)
A (λ)−Adv

(3)
A (λ)| ≤

1/q.

Proof. Lemma 11 is proven by the same manner as the proof of Lemma 7 in [18]. �

A.2.10 Proof of Lemma 12

Lemma 12. For any adversary A, for any security parameter λ, Adv
(3)
A (λ) = 0.

Proof. The value of b is independent from the adversary’s view in Game 3. Hence, Adv
(3)
A (λ) =

0. �

A.3 Proof of Lemma 13 in Section 8

Lemma 13. For any adversary A, for any security parameter λ, |Adv
(2-ν)
A (λ) − Adv

(3)
A (λ)| ≤

1/q.

Proof. To prove Lemma 13, we will show distribution (paramV, B̂, {k(j)∗}j=1,...,ν , c, c3) in Game
2-ν and that in Game 3 are equivalent (see Remark 8). For that purpose, we define new bases
D of V and D

∗ of V
∗ as follows:

We generate random θ
U← Fq, and set

d2n := b2n − θb0, d∗
0 := b∗0 + θb∗2n,

D := (b0, . . . , b2n−1,d2n, b2n+1, . . . , b4n), D
∗ := (d∗

0, b
∗
1, . . . , b

∗
4n).

We then easily verify that D and D
∗ are dual orthonormal, and are distributed the same as the

original bases, B and B
∗.

Keys and challenge ciphertext ({k(j)∗}j=1,...,ν , c, c3) in Game 2-ν are expressed over bases
(B,B∗) and (D,D∗) as

k(j)∗ = ( 1, δ(j)�v(j), �w(j), ϕ(j)�v(j), 0n )B∗ = ( 1, δ(j)�v(j), �γ(j), ϕ(j)�v(j), 0n )D∗

c = ( ζ, ω�x, �r, 0n, �η )B = ( ζ ′, ω�x, �r, 0n, �η )B

c3 := gζTm
(b).

where

�r := p0�x+ p1�en with p0, p1
U← Fq, �γ(j) := �w(j) − θ�en, ζ ′ := ζ + p1θ.

�γ(j) and ζ ′ are uniformly, independently distributed since �w(j) U← F
n
q and θ U← Fq, except for the

case p1 = 0, i.e., except with the probability 1/q.
In the light of the adversary’s view, both (B,B∗) and (D,D∗) are consistent with public

key pk := (1λ, paramV, B̂). Therefore, {k(j)∗}j=1,...,ν and c above can be expressed as keys and
ciphertext in two ways, in Game 2-ν over bases (B,B∗) and in Game 3 over bases (D,D∗). Thus,
Game 2-ν can be conceptually changed to Game 3. �

43



A.4 Proof of Lemma 14 in Section 9

Lemma 14. For any adversary A, for any security parameter λ, |Adv
(2-ν)
A (λ) − Adv

(3)
A (λ)| ≤

1/q.

Proof. To prove Lemma 14, we will show distribution (paramV, B̂, {k(j)∗}j=1,...,ν , c, c3) in Game
2-ν and that in Game 3 are equivalent. For that purpose, we define new bases D of V and D

∗

of V
∗ as follows:

We generate F :=

⎛
⎜⎜⎜⎝

u u′1
. . .

...
u u′n−1

u′n

⎞
⎟⎟⎟⎠ U← H(n,Fq), θ

U← Fq, and set

dn+i := bn+i − ubi for i = 1, . . . , n− 1, d2n := b2n − θb0 −
∑n

ι=1 u
′
ιbι

d∗
0 := b∗0 + θb∗2n, d∗

i := b∗i + ub∗n+i + u′ib
∗
2n for i = 1, . . . , n− 1, d∗

n := b∗n + u′nb∗2n

Let

�b1 := (b1, . . . , bn)T, �b2 := (bn+1, . . . , b2n)T, �b∗1 := (b∗1, . . . , b
∗
n)

T, �b∗2 := (b∗n+1, . . . , b
∗
2n)

T,

�d2 := (dn+1, . . . ,d2n)T, �d∗
1 := (d∗

1, . . . ,d
∗
n)

T, �θ := (0, . . . , 0, θ) ∈ F
n
q .

That is, ⎛
⎝ b0

�b1

�d2

⎞
⎠ :=

⎛
⎝ 1 0 0

0 In 0n
−�θT −FT In

⎞
⎠
⎛
⎝ b0

�b1

�b2

⎞
⎠ ,

⎛
⎝ d∗

0
�d∗
1
�b∗2

⎞
⎠ :=

⎛
⎝ 1 0 �θ

0 In F
0 0n In

⎞
⎠
⎛
⎝ b∗0
�b∗1
�b∗2

⎞
⎠ .

We set

D := (b0, . . . , bn,dn+1, . . . ,d2n, b2n+1, . . . , b4n), D
∗ := (d∗

0, . . . ,d
∗
n, b

∗
n+1, . . . , b

∗
4n).

We then easily verify that D and D
∗ are dual orthonormal, and are distributed the same as the

original bases, B and B
∗.

Keys and challenge ciphertext ({k(j)∗}j=1,...,ν , c, c3) in Game 2-ν are expressed over bases B

and B
∗ as

k(j)∗ = ( 1, δ(j)�v(j), �w(j), ϕ(j)�v(j), 0n )B∗ = ( 1, δ(j)�v(j), �γ(j), ϕ(j)�v(j), 0n )D∗ ,

c = ( ζ, ω�x, �r, 0n, �η )B = ( ζ ′, �x′, �r, 0n, �η )D

c3 := gζTm
(b),

where

�γ(j) := �w(j) − (θ − uδ(j)v(j)
n + δ(j)

∑n
ι=1 v

(j)
ι u′ι)�en − uδ(j)�v(j)

ζ ′ := ζ + θrn, �x′ := ω�x+ rn�u
′ + u�r.

�γ(j) ∈ span〈�v(j), �en〉, ζ ′ ∈ Fq, �x
′ ∈ F

n
q are uniformly, independently distributed since �w(j) U←

span〈�v(j), �en〉, θ U← Fq, �u
′ := (u′1, . . . , u′n)

U← F
n
q except for the case rn = 0, i.e., except with the

probability 1/q.

44



In the light of the adversary’s view, both (B,B∗) and (D,D∗) are consistent with public
key pk := (1λ, paramV, B̂). Therefore, {k(j)∗}j=1,...,ν and c above can be expressed as keys and
ciphertext in two ways, in Game 2-ν over bases (B,B∗) and in Game 3 over bases (D,D∗). Thus,
Game 2-ν can be conceptually changed to Game 3. �

45


