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GF (2n) redundant representation

using matrix embedding

Yongjia Wang and Haining Fan

Abstract

By embedding a Toeplitz matrix-vector product (MVP) of dimension n into a circulant MVP of

dimension N = 2n+δ−1, where δ can be any nonnegative integer, we present a GF (2n) multiplication

algorithm. This algorithm leads to a new redundant representation, and it has two merits: 1. The flexible

choices of δ make it possible to select a proper N such that the multiplication operation in ring

GF (2)[x]/(xN +1) can be performed using some asymptotically faster algorithms, e.g. the Fast Fourier

Transformation (FFT)-based multiplication algorithm; 2. The redundant degrees, which are defined as

N/n, are smaller than those of most previous GF (2n) redundant representations, and in fact they are

approximately equal to 2 for all applicable cases.

Index Terms

Finite fields, redundant representation, matrix-vector product, shifted polynomial basis, FFT.

I. INTRODUCTION

When GF (2n) is viewed as an n-dimensional vector space, field elements can be represented

as n-bit vectors in a basis of GF (2n) over GF (2). Types of bases are various, for example,

polynomial bases, normal bases, dual bases and shifted polynomial bases (SPB) and so on.

Besides these representations, redundant representations become attractive when the value of n

is large.
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Most previous works on redundant representations follow the polynomial approach, namely,

they embed GF (2n) into a finite quotient ring GF (2)[x]/(xN +1), and therefore map a GF (2n)

multiplication operation into a GF (2)[x]/(xN + 1) multiplication. The later can be performed

using some asymptotically faster multiplication algorithm, for example, the Fast Fourier Trans-

formation (FFT)-based multiplication algorithm [1].

Redundant representations first appeared in finite field GF (2n) := GF (2)[x]/(f(x)) generated

by all-one-polynomial f(x) =
∑n

i=0 xi. In 1984, Itoh and Tsujii applied the simplicity of multi-

plication in quotient ring GF (2)[x]/(xN + 1) (where N = n + 1) to the GF (2n) multiplication

[2]. In this case, the n-bit vector of a GF (2n) element is mapped to the (n + 1)-bit vector of

a GF (2)[x]/(xN + 1) element. Therefore, the redundant degree, which is defined as N/n, is

(n + 1)/n ≈ 1 for these special GF (2n)s. Besides multiplication, Silverman also analysed other

operations in these fields [3]. Combining Karatsuba’s algorithm and redundant representation,

Chang, Hong and Cho presented a low complexity bit-parallel multiplier in 2005 [4]. In 2008,

Namin, Wu and Ahmadi designed a novel serial-in parallel-out multiplier in these fields [5].

In 1998, Drolet generalized this idea and introduced GF (2n) redundant representations sys-

tematically [6]. His results were corrected and improved later by Geiselmann, Muller-Quade

and Steinwandt [7]. Similarly, Wu, Hasan, Blake and Gao presented simple and highly regular

architectures for finite field multipliers using a redundant representation, and their architec-

tures can provide area-time trade-offs [8] [9]. In 2001, Geiselmann and Lukhaub showed that

GF (2n) arithmetic, especially exponentiation, in redundant representation is perfectly suited for

low power computing [10]. In 2003, Katti and Brennan generalized the idea of quotient ring

GF (2)[x]/(xN +1) to quotient rings GF (2)[x]/(xN +xk +1) and GF (2)[x]/(xN +xk1 +xk2 +1)

[11], and in the same year, Geiselmann and Steinwandt generalized redundant representations

to finite fields of arbitrary characteristic [12].

The major disadvantage of the above redundant representations is that redundant degrees are

often large, for example, the average redundant degree for 151 ≤ n ≤ 250 is about 4.58 [9].

Recently, Akleylek and Ozbudak presented a modified redundant representation [13]. Their results

improved some of the previous complexity values significantly, or more precisely, redundant

degrees are decreased to about 1 or 2 for some GF (2n)s. But for some other values of n’s, no

improvement on redundant degrees is reported in their paper, for example, cases that n’s are

prime.
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Besides the disadvantage of large redundant degree, all these polynomial-based methods suffer

another disadvantage: for a fixed GF (2n), there is only one choice of a smaller N . Because of

this limitation, it might be hard to select a proper fast algorithm to perform multiplication in

GF (2)[x]/(xN + 1), for example, FFT does not help when N is a prime [3].

In this article, a different embedding method is used to overcome the above two disadvantages.

Instead of following the polynomial approach, we apply the matrix form to perform the embed-

ding step. We map a GF (2n) multiplication operation into a multiplication in the quotient ring

GF (2)[x]/(xN + 1), where N = 2n + δ− 1 and δ can be any non-negative integer. The flexible

choices of δ make it possible to select a proper N such that the multiplication operation in ring

GF (2)[x]/(xN +1) can be performed using proper asymptotically fast algorithms. Furthermore,

our redundant degrees (N/n ≈ 2) are smaller than those of most previous GF (2n) redundant

representations for all applicable values of n’s. As a comparison, Reference [13] provided only 54

composite values of n’s such that 15 ≤ n ≤ 1956 and their redundant degrees are approximately

equal to 1 or 2. But for over 50% (composite and prime) values of n’s in this range, or even

a larger range 1 ≤ n ≤ 10, 001, redundant degrees of our method are approximately equal to 2

[14]. Even though, we must note that among these 54 values of n’s in [13], there are 34 values

of n’s such that their redundant degrees are slightly greater than 1.

This paper is organized as follows: The equivalence between circulant matrix-vector product

(MVP) and GF (2)[x]/(xN + 1) multiplication is introduced in Section 2. In Section 3, the

new 4-step GF (2n) SPB multiplication algorithm is described. Explicit formulae of the new

SPB redundant representation are given in Section 4, and an example is presented in Section 5.

Finally, a few concluding remarks are made in Section 6.

II. EQUIVALENCE BETWEEN CIRCULANT MVP AND GF (2)[x]/(xN + 1) MULTIPLICATION

Given two GF (2)[x]/(xN + 1) elements p =
∑N−1

i=0 pix
i and q =

∑N−1
i=0 qix

i, let P =

(p0, p1, · · · , pN−1)
T be the coordinate column vector of p, and Q is defined similarly. The product

r = pq =
∑N−1

i=0 rix
i in ring GF (2)[x]/(xN + 1) can be computed in three steps.

We first compute the conventional polynomial product of p and q:

r = pq =
2N−2∑
i=0

rtx
t = l + l+,
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where l =
N −1∑
t=0

rtx
t, l+ =

2N−2∑
t=N

rtx
t and

rt =
∑

i+j=t
0≤i,j<N

piqj =


t∑

i=0

piqt−i 0 ≤ t ≤ N − 1;

N−1∑
i=t+1−N

piqt−i N ≤ t ≤ 2N − 2.

Then we reduce l+ using formula xi = xi−N , where N ≤ i ≤ 2N − 2, and obtain

l+ mod (xN + 1) =
2N−2∑
t=N

rtx
t mod (xN + 1) =

N−2∑
t=0

rt+Nxt.

Finally, we get the product r of p and q in GF (2)[x]/(xN + 1):

r =
N−1∑
i=0

rix
i = (l + l+) mod (xN + 1)

=
N−1∑
t=0

rtx
t +

N−2∑
t=0

rt+Nxt

=
N−2∑
t=0

(
t∑

i=0

piqt−i +
N−1∑
i=t+1

piqt+N−i

)
xt +

(
N−1∑
i=0

piqN−1−i

)
xN−1

= (1, x, x2, · · · , xN−1)



q0 qN−1 qN−2 · · · q1

q1 q0 qN−1 · · · q2

q2 q1 q0 · · · q3

...
...

... . . . ...

qN−1 qN−2 qN−3 · · · q0





p0

p1

p2

...

pN−1


= (1, x, x2, · · · , xN−1)TP.

Clearly, the N ×N matrix T in the above formula is a circulant matrix and the result of the

circulant MVP TP is just the coordinate column vector R = (r0, r1, · · · , rN−1)
T of r. Especially,

the first row of T is

T (1) = (q0, qN−1, qN−2, · · · , q1). (1)

In the next section, we will use this well-known fact to derive new redundant representations.
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III. NEW GF (2n) SPB MULTIPLICATION ALGORITHM

In this part we introduce the main idea of our multiplication algorithm using the shifted

polynomial basis (SPB) of GF (2n) over GF (2). We first introduce the definition of the SPB.

If f(x) = xn + xk + 1 (n > 2) is an irreducible trinomial over GF (2), then all elements of

GF (2n) can be represented using a polynomial basis W = {xi|0 ≤ i ≤ n − 1}. Let v be an

integer, the ordered set x−vW = {xi−v| 0 ≤ i ≤ n − 1} is called the SPB of GF (2n) over

GF (2) with respect to W . It was shown that the best values of v are k or k − 1 when the SPB

is used to design parallel multipliers [15]. In this article, we select v = k.

Given two GF (2n) elements a = x−v
∑n−1

i=0 aix
i and b = x−v

∑n−1
i=0 bix

i represented in the

above SPB, the proposed algorithm can be divided into four steps. The first two steps also appear

in designing Toeplitz MVP-based subquadratic GF (2n) multipliers, and detailed descriptions can

be found in [16]. The following part presents these results briefly.

Step 1: Representing the product of a and b as a Mastrovito MVP.

The SPB Mastrovito multiplier was introduced in [15]. Let A = (a0, a1, · · · , an−1)
T be the

coordinate column vector of the field element a = x−v
∑n−1

i=0 aix
i , B and C are defined similarly.

The coordinate column vector C of c = ab can be represented as C = ZA in the following

equation:

c = x−v

n−1∑
i=0

cix
i = ab =

(
n−1∑
i=0

aix
i−v

)
b

= (x−vb, x−v+1b, · · · , x−1b, b, · · · , xn−v−1b)A

= (x−v, x−v+1, · · · , xn−v−1)ZA.

The n × n matrix Z = (zi,j)0≤i,j≤n−1, which depends on only B and f(x), is called the

Mastrovito matrix, and C = ZA is the Mastrovito MVP formula to compute the product of a

and b in GF (2n).

Step 2: Transforming the Mastrovito MVP C = ZA into a Toeplitz MVP.

Using the transformation matrix U of [16] , the above Mastrovito MVP C = ZA can be

transformed into Toeplitz MVP D = TA, where T is a Toeplitz matrix, or more precisely,

C = ZA = U−1UZA = U−1TA = U−1D, (2)
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where U =

 0 I(n−v)×(n−v)

Iv×v 0

, Iv∗v is the v × v identity matrix and T = UZ is an n× n

Toeplitz matrix.

Step 3: Embedding the Toeplitz MVP D = TA into a circulant MVP.

We give a small example to illustrate the idea of this embedding. The following Toeplitz MVP

of dimension 3 
c0

c1

c2

 =


t0 t−1 t−2

t1 t0 t−1

t2 t1 t0




a0

a1

a2


can be embedded into either the following circulant MVP of dimension 6

c0

c1

c2

r3

r4

r5


=



t0 t−1 t−2 0 t2 t1

t1 t0 t−1 t−2 0 t2

t2 t1 t0 t−1 t−2 0

0 t2 t1 t0 t−1 t−2

t−2 0 t2 t1 t0 t−1

t−1 t−2 0 t2 t1 t0





a0

a1

a2

0

0

0


or the following circulant MVP of dimension 5

c0

c1

c2

r‘
3

r‘
4


=



t0 t−1 t−2 t2 t1

t1 t0 t−1 t−2 t2

t2 t1 t0 t−1 t−2

t−2 t2 t1 t0 t−1

t−1 t−2 t2 t1 t0





a0

a1

a2

0

0


.

Generally, given an n× n Toeplitz matrix

T =



t0 t−1 t−2 · · · t−(n−1)

t1 t0 t−1 · · · t−(n−2)

t2 t1 t0 · · · t−(n−3)

...
...

... . . . ...

tn−1 tn−2 tn−3 · · · t0


,

T can be embedded into a (2n−1+δ)×(2n−1+δ) circulant matrix T (see, for example, [17]),

where δ is an arbitrary nonnegative integer. As a circulant matrix, T can be uniquely determined

by its first row T (1):
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T (1) = (t0, t−1, t−2, · · · , t−(n−2), t−(n−1), 0, · · · , 0︸ ︷︷ ︸
δ

, tn−1, tn−2, · · · , t2, t1).

The rest rows of T are the cyclic right shift by one bit of the previous one. To simplify the

explanation, we let δ = 0 in this article, i.e.,

T (1) = (t0, t−1, t−2, · · · , t−(n−2), t−(n−1), tn−1, tn−2, · · · , t2, t1). (3)

In order to embed the Toeplitz MVP D = TA into a circulant MVP of dimension N = 2n−1,

which is denoted by R, the n-bit column vector A should also be extended to an N -bit column

vector P by adding (N − n) = (n− 1) extra 0’s to A:

P = (p0, p1, · · · , p2n−1)
T = (a0, a1, · · · , an−1, 0, · · · , 0︸ ︷︷ ︸

n−1

)T . (4)

Due to the property of the above embedding and the definition of P in formula (4), it is clear

that the first n bits of the resulting circulant MVP R = (r0, r1, · · · , r2n−2)
T = TP are just the

n-bit Toeplitz MVP D = TA = (cv, cv+1, · · · , cn−1, c0, c1, · · · , cv−1). Therefore, we have

R = (r0, r1, · · · , r2n−2)
T = (cv, cv+1, · · · , cn−1, c0, c1, · · · , cv−1, rn, rn+1, · · · , r2n−2︸ ︷︷ ︸

n−1

)T . (5)

After this step, we have embedded a Toeplitz MVP of dimension n, which corresponds to a

GF (2n) multiplication operation, into a circulant MVP of dimension N = 2n − 1. Because of

the equivalence between the circulant MVP of dimension N and the multiplication operation

in quotient ring GF (2)[x]/(xN + 1), we can also rewrite the circulant MVP R = TP as a

multiplication in the quotient ring GF (2)[x]/(xN + 1). After obtaining the N -bit product vector

R in formula (5) using some asymptotically faster multiplication algorithm, we reach the final

step.

Step 4: Inversive coordinate transformation from D to C.

We have shown that the first n bits of the circulant MVP R in formula (5) are just the n-

bit Toeplitz MVP D = TA = (cv, cv+1, · · · , cn−1, c0, c1, · · · , cv−1)
T . Therefore, the coordinate

column vector C of c = ab in formula (2) can be obtained by first extracting the first n bits of
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R, i.e., the n-bit vector D, and then applying the following inversive coordinate transformation

to D :

C = U−1D = U−1(cv, cv+1, · · · , cn−1, c0, c1, · · · , cv−1)
T = (c0, c1, · · · , cn−2, cn−1)

T .

Compared to previous polynomial-based embedding methods, the proposed method is much

more flexible since parameter δ in N = 2n−1+ δ can be any nonnegative integer. Furthermore,

the redundant degree N/n is approximately equal to 2 for all cases if δ is small.

In this section, we have introduced the proposed idea at matrix level. In order to apply this

idea to practical implementations, we need explicit formulae of elements in matrix T and vector

P . So, we present a detailed description of step 2 and 3 in the next section.

IV. EXPLICIT FORMULAE OF SPB REDUNDANT REPRESENTATIONS FOR IRREDUCIBLE

TRINOMIALS

The key point of the redundant representation is to perform a GF (2n) multiplication operation

using a GF (2)[x]/(xN + 1) multiplication module. Therefore, we must map the two GF (2n)

input elements a and b into two GF (2)[x]/(xN +1) elements p and q first (or map the two n-bit

coordinate column vector A and B to two N -bit coordinate column vector P and Q respectively).

The mapping from a to p is simple: adding (N − n) = (n− 1) extra 0’s to the n-bit vector A,

and it is given in formula (4). We now derive the explicit formula that maps b to q (or B to Q).

In step 1, we have introduced the Mastrovito MVP formula C = ZA, where the n×n matrix

Z = (zi,j)0≤i,j≤n−1 depends on only B and f . Since explicit expressions of zi,j are different

according to the form of the trinomial xn + xv + 1, we only discuss the case “n + 1 ≤ 2v and

v ≤ n− 2” in this work. In this case, the following explicit expressions of zi,j can be found in

[15]:

zv+t,i =


b2v−n+t−i 0 ≤ i ≤ 2v − n + t,

b2v+t−i 2v − n + t + 1 ≤ i ≤ v + t,

bv+n+t−i + b2v+t−i v + t + 1 ≤ i ≤ n− 1,

where 0 ≤ t ≤ n− v − 2.

After step 2 (transforming the Mastrovito MVP C = ZA into the Toeplitz MVP D = TA),

row v of matrix Z, i.e., Z(v), will become the first row of T , i.e., T(1). By the above formula,
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we get explicit expressions of this row:

Z(v) = T(1) = (b2v−n, b2v−n−1, · · · , b0︸ ︷︷ ︸
2v−n+1

, bn−1, bn−2, · · · , bv︸ ︷︷ ︸
n−v

,

bn−1 + bv−1, bn−2 + bv−2, · · · , bv+1 + b2v−n+1︸ ︷︷ ︸
n−v−1

).

In step 3, we want to embed the Toeplitz MVP D = TA into the circulant MVP R = TP .

Therefore, we also need explicit expressions of the first column of T to form the right half of

the first row of T (see formula (3)). These explicit expressions can be obtained from the first

column of Z, which are also listed in [15]:

Z(1) = (b0 + bv, b1 + bv+1, · · · , bn−v−1 + bn−1︸ ︷︷ ︸
n−v

,

b0 + bn−v, b1 + bn−v+1, · · · , b2v−n−1 + bv−1︸ ︷︷ ︸
2v−n

, b2v−n, b2v−n+1, · · · , bv−1︸ ︷︷ ︸
n−v

)T .

After multiplying U to Z in step 2, we obtain the first column of T :

T (1) = (b2v−n, b2v−n+1, · · · , bv−1︸ ︷︷ ︸
n−v

, b0 + bv, b1 + bv+1, · · · , bn−v−1 + bn−1︸ ︷︷ ︸
n−v

,

b0 + bn−v, b1 + bn−v+1, · · · , b2v−n−1 + bv−1︸ ︷︷ ︸
2v−n

)T .

Now we can form the first row of the N×N circulant matrix T from the first row and column

of T :

T (1) = (b2v−n, b2v−n−1, · · · , b0︸ ︷︷ ︸
2v−n+1

, bn−1, bn−2, · · · , bv︸ ︷︷ ︸
n−v

,

bn−1 + bv−1, bn−2 + bv−2, · · · , bv+1 + b2v−n+1︸ ︷︷ ︸
n−v−1

,

b2v−n−1 + bv−1, b2v−n−2 + bv−2, · · · , b0 + bn−v︸ ︷︷ ︸
2v−n

,

bn−v−1 + bn−1, bn−v−2 + bn−2, · · · , b0 + bv︸ ︷︷ ︸
n−v

, bv−1, · · · , b2v−n+1︸ ︷︷ ︸
n−v−1

). (6)

Formula (1), namely,

T (1) = (q0, qN−1, qN−2, · · · , q1)

reveals the relationship between GF (2)[x]/(xN +1) element q =
∑N

i=0 qix
i and the first row T (1)

of circulant matrix T . Therefore, by comparing formula (1) with (6), we obtain the following
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mapping relationship between Q = (q0, q1, · · · , qN−1)
T and B = (b0, b1, · · · , bn−1)

T :

qt =



bt+2v−n 0 ≤ t ≤ n− v − 1,

bt+v−n + bt+2v−n n− v ≤ t ≤ 2n− 2v − 1,

bt+v−n + bt+2v−2n 2n− 2v ≤ t ≤ n− 1,

bt+v−n+1 + bt+2v−2n+1 n ≤ t ≤ 2n− v − 2,

bt+2v−2n+1 2n− v − 1 ≤ t ≤ 3n− 2v − 2,

bt+2v−3n+1 3n− 2v − 1 ≤ t ≤ 2n− 2.

(7)

V. AN EXAMPLE

We now present an example to illustrate the proposed multiplication algorithm. Let {xi−3|0 ≤

i ≤ 4} be the SPB of GF (25) generated by f(x) = x5 + x3 + 1. Given two GF (25) elements

a = x−3
∑4

i=0 aix
i and b = x−3

∑4
i=0 bix

i, the coordinate column vector C = (c0, c1, c2, c3, c4)
T

of c = ab can be represented by the following Mastrovito MVP:

C = ZA =



b0 + b3 b2 b1 b0 b4

b1 + b4 b0 + b3 b2 b1 b0

b0 + b2 b1 + b4 b0 + b3 b2 b1

b1 b0 b4 b3 b4 + b2

b2 b1 b0 b4 b3





a0

a1

a2

a3

a4


.

It is easy to see that

c0 = (b0 + b3)a0 + b2a1 + b1a2 + b0a3 + b4a4,

c1 = (b1 + b4)a0 + (b0 + b3)a1 + b2a2 + b1a3 + b0a4,

c2 = (b0 + b2)a0 + (b1 + b4)a1 + (b0 + b3)a2 + b2a3 + b1a4,

c3 = b1a0 + b0a1 + b4a2 + b3a3 + (b4 + b2)a4,

c4 = b2a0 + b1a1 + b0a2 + b4a3 + b3a4.

(8)

Now we compute C = (c0, c1, c2, c3, c4)
T using the proposed method. After multiplying

U =

 0 I2×2

I3×3 0
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to Z, Mastrovito matrix Z is transformed to the following Toeplitz matrix

T = UZ =



b1 b0 b4 b3 b4 + b2

b2 b1 b0 b4 b3

b0 + b3 b2 b1 b0 b4

b1 + b4 b0 + b3 b2 b1 b0

b0 + b2 b1 + b4 b0 + b3 b2 b1


.

Then Toeplitz matrix T is embedded into the 9× 9 circulant matrix T whose first row is

T (1) = (b1, b0, b4, b3, b2 + b4, b0 + b2, b1 + b4, b0 + b3, b2),

and we obtain the circulant MVP R = (c3, c4, c0, c1, c2, r5, r6, r7, r8) = TP , where P is defined

as

P = (a0, a1, a2, a3, a4, 0, 0, 0, 0)T (9)

The circulant MVP R = TP is equivalent to the product of p and q in quotient ring

GF (2)[x]/(x9 + 1). The coordinate column vector P of p = (1, x, x2, · · · , x8)P is given by

formula (9), and the coordinate column vector Q of q = (1, x, x2, · · · , x8)Q can be determined

by formula (7) as follows:

Q = (b1, b2, b0 + b3, b1 + b4, b0 + b2, b2 + b4, b3, b4, b0)
T . (10)

After multiplying p and q in GF (2)[x]/(x9 + 1), we get

r = pq mod (x9 + 1)

= b1a0 + b0a1 + b4a2 + b3a3 + (b4 + b2)a4

+[b2a0 + b1a1 + b0a2 + b4a3 + b3a4]x

+[(b0 + b3)a0 + b2a1 + b1a2 + b0a3 + b4a4]x
2

+[(b1 + b4)a0 + (b0 + b3)a1 + b2a2 + b1a3 + b0a4]x
3

+[(b0 + b2)a0 + (b1 + b4)a1 + (b0 + b3)a2 + b2a3 + b1a4]x
4

+r5x
5 + r6x

6 + r7x
7 + r8x

8.

Finally, we apply the inverse coordinate transformation on the first five bits of R, i.e., coef-

ficients of 1, x, x2, x3 and x4 in the above formula, and get the coordinate column vector C of

c = ab in GF (2n). It is easy to check that coordinates of C obtained using this new method are

equal to those given in (8).
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VI. CONCLUSIONS

We have presented a new redundant representation to perform GF (2n) multiplication. Com-

pared to previous methods, it has low redundant degree and flexible choice of N .

One important step in this method is that the GF (2n) product formula must be rewritten as a

Toeplitz MVP. In this work, we focus on SPB and only discuss the irreducible trinomial case,

i.e., GF (2n) is generated by xn + xk + 1. When finite field GF (2n)s are generated by some

special types of pentanomials, for example, xn +xv+1+xv +xv−1+1 and x4s +x3s +x2s +xs +1,

their product formulae can also be rewritten as Toeplitz MVPs. Detailed description of these

coordinate transformation matrixes can be found in [16]. Therefore, the proposed method is also

applicable to these fields.

Furthermore, reference [16] indicated that GF (2n) polynomial basis multiplication operation

can also be rewritten as a Toeplitz MVP, and multiplication operations of dual, weakly dual, and

triangular bases can be rewritten as Hankel MVPs. Therefore, the proposed method works for

these bases too.

REFERENCES

[1] S. Gao, J. von zur Gathen, D. Panario, and V. Shoup, “Algorithms for Exponentiation in Finite Fields,” J. Symbolic

Computation, vol. 29, pp. 879-889, 2000.

[2] T. Itoh and S. Tsujii, “Structure of Parallel Multipliers for a Class of Field GF (2m),” IEEE Transactions on Computers,

vol. 33, no. 4, pp. 357-360, Apr. 1984.

[3] J.H. Silverman, “Fast multiplication in finite fields GF (2N ),” Proc. Cryptographic Hardware and Embedded Systems,

LNCS 1717, First Int’l Workshop, C.K. Koc and C. Paar, eds., pp. 122-134, Springer-Verlag, 1999.

[4] K. Chang, D. Hong and H. Cho, “Low Complexity Bit-Parallel Multiplier for GF (2m) Defined by All-One Polynomials

Using Redundant Representation ,” IEEE Transactions on Computers, vol. 54, no. 12, pp. 1628-1630, 2005.

[5] A.H. Namin, H. Wu and M. Ahmadi, “A New Finite-Field Multiplier Using Redundant Representation,” IEEE Transactions

on Computers, vol. 57, no. 5, pp. 716-720, 2008.

[6] G. Drolet, “A New Representation of Elements of Finite Fields GF (2m) Yielding Small Complexity Arithmetic Circuits,”

IEEE Transactions on Computers, vol. 47, no. 9, pp. 938-946, Sep. 1998.

[7] W. Geiselmann, J. Muller-Quade and R. Steinwandt, “On “A New Representation of Elements of Finite Fields GF (2m)

Yielding Small Complexity Arithmetic Circuits”,” IEEE Transactions on Computers, vol. 51, no. 12, pp. 1460-1461, Dec.

2002.

[8] H. Wu, M.A. Hasan and I.F. Blake, “Highly Regular Architectures for Finite Field Computation Using Redundant Basis,”

Proc. Cryptographic Hardware and Embedded Systems, LNCS 1717, First Int’l Workshop, C.K. Koc and C. Paar, eds.,

pp. 269-279, Springer-Verlag, 1999.



13

[9] H. Wu, M.A. Hasan, I.F. Blake and S. Gao, “Finite Field Multiplier Using Redundant Representation,” IEEE Transactions

on Computers, vol. 51, no. 11, pp. 1306-1316, Nov. 2002.

[10] W. Geiselmann and H. Lukhaub, “Redundant Representation of Finite Fields,” Proceedings of the 4th International

Workshop: Practice and Theory in Public Key Cryptography, PKC 2001, LNCS 1992, pp. 339-352, Springer-Verlag,

2001.

[11] R. Katti and J. Brennan, “Low Complexity Multiplication in a Finite Field Using Ring Representation,” IEEE Transactions

on Computers, vol. 52, no. 4, pp. 418-427, Apr. 2003.

[12] W. Geiselmann and R. Steinwandt, “A Redundant Representation of GF (qn) For Designing Arithmetic Circuits,” IEEE

Transactions on Computers, vol. 52, no. 7, pp. 848-853, July 2003.

[13] S. Akleylek and F. Ozbudak, “Modified Redundant Representation for Designing Arithmetic Circuits with Small

Complexity,” IEEE Transactions on Computers, accepted, 2011.

[14] G. Seroussi, “Table of Low-Weight Binary Irreducible Polynomials,” Hewlett-Packard Laboratories Technical Report HPL-

98-135, http://www.hpl.hp.com/techreports/98/HPL-98-135.html., Aug. 1998,

[15] H. Fan and Y. Dai, “Fast Bit-Parallel GF (2n) Multiplier for All Trinomials,” IEEE Transactions on Computers, vol.54,

no. 4, Apr. 2005.

[16] H. Fan and M.A. Hasan, “A New Approach to Subquadratic Space Complexity Parallel Multiplier for Extended Binary

Fields,” IEEE Transactions on Computers, vol. 56, no. 1, pp. 224-233, Feb. 2007.

[17] R. Kumar, “A Fast Algorithm for Solving a Toeplitz System of Equations,” IEEE Transactions on Acoustics, Speech, and

Signal Processing, vol. 33, no. 1, pp. 254-267, Feb. 1985.


