
Non-Interactive Time-Stamping and

Proofs of Work in the Random Oracle Model

Mohammad Mahmoody∗ Salil Vadhan† Tal Moran‡

October 6, 2011

Abstract

We construct a non-interactive scheme for proving computational work in the Random Oracle

Model. Given a uniformly random “puzzle” P $←{0, 1}n (where n is the security parameter), a
corresponding “solution” can be generated using N oracle queries (for any parameter n ≤ N ≤
2o(n)), and any adversarial strategy for generating valid solutions must make Ω(N) adaptive
rounds of oracle queries after receiving P. Thus, valid solutions constitute a “proof” that Ω(N)
parallel time elapsed since P was received. Solutions can be publicly and efficiently verified (in
time poly(n)). Applications of these “time-lock puzzles” include non-interactive time-stamping
of documents and universally verifiable CPU benchmarks.

Our construction makes a novel use of “depth-robust” directed acyclic graphs — ones whose
depth remains large even after removing a constant fraction of vertices — which were previously
studied for the purpose of complexity lower-bounds. The construction bypasses a recent lower-
bound of Mahmoody, Moran, and Vadhan (CRYPTO ‘11), which showed that it is impossible
to have time-lock puzzles like ours in the random oracle model if the puzzle generator also
computes a solution together with the puzzle.

1 Introduction

A time-stamping scheme is a mechanism for proving that a document was created before a certain
time in the past. They have variety of applications, including the resolution of intellectual property
disputes (e.g., an inventor may time-stamp her invention to prevent future patent challenges) and
providing evidence of predictive powers (e.g., a stock analyst could prove that she correctly predicted
stock price changes before they occurred).

We say a time-stamping scheme is non-interactive if generating a time-stamp does not require
communication with a third party. This is a desirable property, both because it makes time-
stamping easily scalable (multiple parties generating time-stamps do not interfere with each other)
and because it allows parties to hide the fact that are generating a time-stamp (e.g., an inventor
may not wish to reveal the fact that she has a new invention).

A natural cryptographic approach to time-stamping is via proofs of work — use computational
effort invested as a measure of time elapsed. For example, if a party wants to be able to issue future

∗Cornell, mohammad@cs.cornell.edu. Research supported in part by NSF Award CCF-0746990, AFOSR Award
FA9550-10-1-0093, and DARPA and AFRL under contract FA8750-11-2- 0211.
†Harvard, salil@seas.harvard.edu.
‡Herzliya Interdisciplinary Center, talm@seas.harvard.edu.

1

proofs that she knows a document D at time t0, then starting at time t0, she starts to evaluate a
“moderately hard” function g on document D. If we know that g takes time ≈ T to evaluate, then
the value g(D) can be considered a “proof” that D was known T time units in the past.

Note that here we need both an upper-bound and lower-bound on the complexity of computing
g — an adversary should not be able to evaluate g on D much more quickly than an honest party
following the specified algorithm for g. In addition, we would like verifying y = g(D) (given D and
y) to be much more efficient than evaluating g on D from scratch.

These (initial) goals can be achieved by taking g = f−1 for a very strong one-way permutation
f : {0, 1}n → {0, 1}n, where we take the security parameter to be n = log T . Given a document
D ∈ {0, 1}n, the proof of work f−1(D) can be computed by brute force in time approximately
2n = T . Such a proof can be verified very quickly (e.g. in time poly(n) = poly(log T)). Moreover,
it is a plausible assumption that any strategy for inverting f will require time Ω(2n) = Ω(T), at

least on a uniformly random document D
$←{0, 1}n. (If D is not uniform, then we can heuristically

apply this construction to a hash of D.)
One deficiency of the aforementioned construction is that while it certifies that T units of

computational effort were invested after receivingD, this need not correspond to clock time, because
an adversary could parallelize its computational efforts (e.g. by using a bot-net to try many
preimages at once). Thus, we would like to have proofs of work that are inherently sequential,
i.e. even a massively parallel effort to evaluate g(D) would still take time close to T . (Of course,
“time” is still relative to single-core CPU speed, which may differ between the honest party and
the adversary, but this gap should be easier to gauge and control than what can be achieved by
massive parallelism.)

Jerschow and Mauve [19] proposed a time-stamping scheme of this form, where g(D) = 22D

(mod N), for an RSA integer N whose factors are kept secret. A verifier that knows the secret

factorization of N can check the computation efficiently using the “shortcut” 22D ≡ 2(2D mod ϕ(N))

(mod N); if |N | ≈ |D|, this shortcut gives an exponential speed-up. Jerschow and Mauve base the
security of their scheme on the conjecture that modular exponentiation is an inherently serial task.

Connection to Time-Lock Puzzles. The idea of using modular exponentiation as a proof
of sequential work was first proposed by Cai, Lipton, Sedgewick and Yao [12], in the context of
benchmarks, and by Rivest, Shamir and Wagner [23] in the context of time-lock puzzles. One can
think of a time-lock puzzle as an interactive proof of sequential work: solving a time-lock puzzle
should take approximately T time (even for a massively parallel solver), while generating the puzzle
and verifying the solution should take considerably less. Thus, we can view a solution to the puzzle
as a proof that at least roughly T time units has elapsed since the prover has received the puzzle.

When used as a time-stamping scheme, however, modular exponentiation has a serious drawback
that the verifier must keep secret information: the factorization of the modulus. To convert a time-
lock puzzle into a non-interactive time-stamping scheme that can be publicly verified, we need the
time-lock puzzle to be public coin. That is, the puzzle P should simply be a uniformly random
string, say from {0, 1}n. To time-stamp a document D, we solve the puzzle P = H(D), where H is
a cryptographic hash function. (This can be proven secure when we model H as a random oracle.
As before, if D is already uniformly random, then we can just take P = D.)

To the best of our knowledge, only two constructions of time-lock puzzles have been proposed
in the literature: the one based on modular exponentiation by Rivest et al. [23], and a construction
in the random oracle model by Mahmoody, Moran and Vadhan [20], that has only a linear time-

2

gap between puzzle generation and solution (as opposed to the exponential gap of the modular
exponentiation-based construction). Neither construction has the public-coin property.

1.1 Our Results

In this paper, following Mahmoody et. al [20], we study proofs of work (in the spirit of Dwork, Naor
and Wee [14, 15]) and non-interactive time-stamping in the random oracle model (ROM), where
we assume that all parties have oracle access to a public random function O : {0, 1}∗ → {0, 1}n
(where n is the security parameter). The ROM provides us with a clean and convenient way of
lower-bounding both the total work invested by a party (namely the number of oracle queries) and
the parallel time invested (the number of rounds of adaptivity in oracle queries).

Although random oracles do not exist in the real world, a common heuristic for instantiating
protocols in the random oracle model is to replace the oracle with a cryptographic hash function
(e.g., SHA-256) [4,17]. A proof of security in the random oracle model does not guarantee that the
instantiated real-world scheme is secure (in fact, there are examples of schemes that are provably
insecure for any instantiation of the oracle by a concrete hash function [2, 13]), but most natural
protocols analyzed using this heuristic do appear to be secure in practice. Moreover, constructions
in the ROM can be viewed as first steps towards constructions in the “standard model,” e.g. as
occurred for identity-based encryption [7, 8].

Time-Lock Puzzles and Non-interactive Time-Stamping. Our main result is the first con-
struction of a time-lock puzzle (secure against parallel attack) with a public-coin puzzle generator.
As described above, this immediately implies a non-interactive time-stamping scheme. (The se-
curity proof for both is in the Random Oracle Model.) The verification time for the time-lock
puzzle (and the corresponding time-stamping scheme) can be poly-logarithmic in the time it takes
to solve the puzzle, and the time-gap ratio between the honest and adversarial solvers is bounded
by a constant. That is, our honest solver makes T oracle queries (with computation time Õ(T)),
and any adversary who solves the puzzle must have made Ω(T) adaptive rounds of oracle queries
(even if making many more than T queries in each round).

Universally Verifiable Benchmarks. Cai, Lipton, Sedgewick and Yao suggested using proofs
of work for running “uncheatable” benchmarks [12]. Their idea is that a vendor can prove a
supercomputer’s performance by having it run a proof-of-work that is timed by the verifier. The
soundness of the proof of work protocol would guarantee that vendors couldn’t cheat by optimizing
their code or modifying it in some other way. Cai et al. proposed using exponentiation modulo an
RSA integer as the candidate function. This has the drawback, however, of being verifier-specific
(since only the verifier who generated the modulus and knows the factorization was kept secret can
trust the results). Using our time-lock puzzle construction, combined with a public randomness
beacon, this benchmark can be made “universally verifiable”: the randomness beacon would be
used as the puzzle generator (the assumption about the beacon is that its output in the next time
period cannot be predicted by the vendor), and the vendor would publish the solution. Since there
is no secret information, anyone can verify the results of the benchmark.

Combinatorial Tools. Our construction involves a novel use of depth-robust graphs: these are
directed acyclic graphs on N vertices with low degree (e.g. O(logN)) whose depth remains Ω(N)

3

even after removing any constant fraction of vertices. To prove that it has done a lot of compu-
tational work, our prover constructs a labeling of the vertices of a depth-robust graph G where
each vertex v should be labeled with uv = O(P, uv1 , . . . , uvd), where v1, . . . , vd are all vertices that
have edges pointing to v, P is the puzzle, and O is the random oracle. (This is well-defined and
can be computed with O(N) oracle queries due to the acyclicity of G.) It then sends the verifier
a short commitment to this labeling (using a Merkle tree). The prover is then asked to reveal the
labels of a few randomly chosen vertices v along with their in-neighbors, and the verifier checks
that uv = O(P, uv1 , . . . , uvd) for each such vertex v. Intuitively, if the prover can pass this check
for a large fraction of vertices v, then by depth-robustness of G, the labeling constructed by the
prover must have a hash chain of length Ω(N), and the prover must have made Ω(N) rounds of
adaptive oracle queries.

Depth-robust graphs were investigated in the 70’s and 80’s, motivated by efforts to prove lower-
bounds on circuit complexity and Turing machine time [16, 22, 24–26]. We use a construction of
Erdős, Graham and Szemerédi [16], which involves a recursive use of constant-degree expander
graphs. For different settings of parameters, depth-robust graphs are related to matrix rigidity and
the “grate” property of graphs, defined by Valiant [26]. As far as we know, our work is the first
“positive” use of depth-robust graphs.

Bypassing a Lower-Bound. Mahmoody, Moran and Vadhan considered time-lock puzzles in
the random oracle model [20] and proved that for a large class of time-lock puzzles (all puzzles
in which the verifier does not query the oracle—which includes all puzzles in which the generator
produces a solution together with the puzzle), time-lock puzzles with a large gap between genera-
tion/verification and solution time are not possible. They do this by showing that any puzzle that
requires t queries to generate can be solved in t adaptive rounds of queries (with only a polynomial
overhead in the total number of queries compared to the honest solver). We bypass this lower-
bound by constructing a verifier that does query the oracle, and in fact our construction gives a
time-lock puzzle with a super-polynomial gap between solution and verification times!

1.2 Related Work

Time Stamping. While physical time-stamps have been in use for many years (e.g., having
a notary public physically stamp a document) their introduction to the digital realm, by Haber
and Stornetta [18] was more recent. Haber and Stornetta’s main idea relies on a Time-Stamping
Service (TSS): a trusted third party that is responsible for generating and managing the time-
stamps. Further work in this direction has improved communication and computational complexity,
and allowed the use of an untrusted TSS (for examples, see [1, 3, 5, 6, 9–11]). The state-of-the-art
schemes using third-party Time-Stamping Services are efficient, can give very precise time-stamps
and even hide the contents of document that is stamped, but necessarily reveal the fact that a
party is stamping some document.

The first construction of a non-interactive time-stamping scheme was given by Moran, Shaltiel
and Ta-Shma [21], in the Bounded Storage Model (BSM). In the BSM, parties have limited storage
space, and there exists a source that periodically broadcasts huge random strings to all parties (the
strings are large enough that no party can store more than a constant fraction of a string). To
generate a time-stamp on a document at time t, the stamper uses the document to select a subset
of a string at time t and stores that subset. At every time period, verifiers store a small random
subset of the string. To prove that a time-stamp is valid, the stamper proves that her stored subset

4

is consistent with the values stored by the verifier.

Proofs of Work. Dwork and Naor [14] originally suggested using proofs-of-work as a “pricing
mechanism” to fight SPAM and other denial-of-service attacks (they proposed that a sender of an
email-message would provide a proof of work related to the message, making mass emailing more
expensive in terms of resources expended). For this purpose, requiring the proof of work to be
sequential is pointless: an attacker who is trying to generate multiple messages can generate the
proofs for each message in parallel. On the other hand, they do care about preventing amortization
attacks: computing the proof for n messages in a batch should require approximately n times the
work as computing the proof for a single message. Dwork, Naor and Wee [15] later considered
a proof-of-work that is memory-bound rather than CPU-bound; this is preferable as the variance
between CPU speeds is much larger than the variance between memory access times.

2 Time-Lock Puzzles and Applications

Definition 2.1 (Time-Lock Puzzles—Informal). A time-lock puzzle is a game between three parties
(Gen,Sol,Ver) as follows.

1. The puzzle generator Gen generates a “puzzle” P.

2. The puzzle solver Sol receives the puzzle P and outputs some “solution” S.

3. The verifier Ver receives the puzzle P and a solution S and either accepts or rejects.

We require the following properties. (The exact definition of the running time function Time(·)
below for each party depends on the computational model in which the game is performed.)

• Completeness. When parties execute the game honestly Ver accepts with probability ≈ 1.

• Time-Gap. We would like to have Time(Gen) + Time(Ver)� Time(Sol).

• Soundness. Let Ŝol be a solver who acts in two steps Ŝol = (Ŝol1, Ŝol2) as follows.

1. Before receiving the puzzle P, Ŝol1 runs in a possibly long time Time(Ŝol1) (which could
be much larger than Time(Sol) but still should be at most exponential in the security

parameter), and outputs some internal state information St. Namely, Ŝol is allowed to
do some expensive preprocessing.

2. After getting the puzzle P, the solver Ŝol2(P, St) runs in some time which is slightly

smaller than the time of the honest solver: Time(Ŝol2) < Time(Sol) and outputs some
candidate solution Ŝ.

The soundness property asserts that any such Ŝol = (Ŝol1, Ŝol2) should be able to generate
an accepting solution Ŝ only with negligible probability. Intuitively, this guarantees that a
successful Ŝol after receiving the puzzle must have invested almost as much computational
effort as the honest solver Sol does.

5

• Parallel Soundness. The stronger notion of parallel soundness is defined similar to the
definition of soundless above with the difference that we only restrict the adversary to
ParTime(Ŝol2) < Time(Sol) where ParTime(Ŝol2) is the parallel running time of the adver-

sary (after receiving the puzzle). We allow the total work Time(Ŝol2) to be much larger than

Time(Sol) (but similar to Time(Ŝol1) it is at most exponential in the security parameter).

Variants of Definition 2.1. One can think of a more general definition in which the puzzle
generation and verification are both interactive, however since we present a construction of the form
above with a minimal interaction, we will work with the simpler definition above. One can also
think of a verification process in which the secret randomness of the puzzle generator is also given
to the verifier, but since our construction has the feature that its puzzles are “publicly verifiable”
(i.e., the puzzle description is simply a random string and the verification does not require any
secret information), again Definition 2.1 suffices for our purposes.

Time Complexity in the Random Oracle Model. In the random oracle model we model
Time(·) as the number of oracle queries and ParTime(·) as the number of rounds of oracle queries.
Our goal is to achieve time-lock puzzles in this model with the following features.

• We use two input parameters n and N where n is the security parameter and N � n is a
parameter specifying the Time-Gap.

• Gen and Ver run in some small poly(n) time (e.g., O(n) or O(n2)).

• Sol runs in time ≈ N where we think of N as some large polynomial n10 or even sub-
exponential 2n

1/10
.

• The malicious solver Ŝol is bound to parallel time ParTime(Ŝol2) = o(N). This is because
we want to have a true time-gap even for adversaries that employ a large amount of parallel
resources. Since we are in the random oracle model, we do not restrict the computational
power of the adversary Ŝol, but we do restrict ParTime(Ŝol2) = o(N) and Time(Ŝol) = 2o(n).

The restriction Time(Ŝol) = 2o(n) is because otherwise the adversary can query the entire
(relevant part of the) oracle in one round.

A Barrier. Mahmoody, Moran, and Vadhan [20] showed that in the random oracle model if
Time(Gen) = n and Time(Sol) = N , and that Ver does not ask any oracle queries during the final

verification, then there always exists a malicious solver Ŝol who asks a total of poly(n,N) oracle

queries in only n rounds (i.e., ParTime(Ŝol2) = n � N and Time(Ŝol) = poly(n,N) = 2o(n))
and solves the puzzle almost as well as the honest solver. This impossibility result rules out any
time-lock puzzles in the random oracle model in which the puzzle generator knows the solution
“ahead of time”.1 Thus, for such natural settings it is not possible to achieve both the Time-Gap
and Parallel Soundness properties for the time-lock puzzle at the same time. In this work we show
that by relaxing the definition of a time-lock puzzle and allowing the verifier to access the oracle,
we can achieve all the properties of Definition 2.1 simultaneously.

1If the verifier receives the “solution” S directly from the puzzle generator, it only needs to compare the solution
coming from Sol to S. We note that the impossibility of [20] extends even to the setting that the verifier receives a
secret message from Gen.

6

Theorem 2.2 (Main Result). There exists a time-lock puzzle in the random oracle model with two
input parameters n,N such that n ≤ N ≤ 2o(n) and the following holds.

• The puzzle generator Gen asks no oracle queries and simply outputs P $←{0, 1}n.

• The honest solver Sol runs in time poly(n) ·N and asks O(N) oracle queries.

• The puzzle verifier Ver runs in time poly(n) (and so asks ≤ poly(n) oracle queries).

• Completeness. The solution S generated by Sol is accepted with probability one.

• Parallel Soundness. Any malicious solver Ŝol who asks 2o(n) many oracle queries totally
and asks o(N) rounds of oracle queries after receiving the puzzle P is able to make Ver accept
only with probability at most 2−Ω(n).

Time-Stamping Documents Using Time-Lock Puzzles. Let D be a distribution over some
“documents” and for simplicity suppose that D is a uniform distribution over {0, 1}n. A party Bob

who has access to some D
$←D can generate a “time-stamp” S proving that he has had access to this

document at least Ω(N) time units before the current moment. All Bob has to do is to use D as the
description of a puzzle in the time-lock puzzle of Theorem 2.2 and generate a solution S based on
that. The soundness of this time-lock puzzle guarantees that if Bob is malicious and (as opposed to
his claim) has received D only in o(N) time units before the current moment, he is able to provide
an accepting solution Ŝ only with probability 2−Ω(n). To time-stamp larger documents which come
from a distribution D of min-entropy H∞(D) ≥ Ω(n), one can simply apply the random oracle O(·)
to the received document D

$←D and take the output bits of the answer as the description of the
puzzle. As we will see in the next section, the soundness of the puzzle of Theorem 2.2 only relies
on the fact that the adversary is not able to predict the puzzle with probability more than 2−Ω(n),
and it easy to see that by hashing a random variable D of min-entropy Ω(n) into n bits using the
random oracle this requirement is satisfied.

3 Constructing Time-Lock Puzzles

In this section we prove Theorem 2.2.

Intuition. The high-level idea is to force the solver to commit to a labeling of a DAG G as a
“hash-graph” in which each node is labeled with the hash of its in-neighbors’ labels. We call these
labels also “hash labels”. The verifier will then challenge the solver by choosing a small subset of
nodes at random. For each of the selected nodes, the solver will open the commitment to the hash
labels of the selected node itself and also those of its in-neighbors. The verifier will accept if all the
commitments are opened correctly and the label of each selected node is equal to the hash of the
labels of its in-neighbors. Intuitively, due to this randomized verification, the adversary is forced to
compute the hash labels honestly for “many” of the nodes of the hash-graph he is committing to.
So what we need to guarantee the soundness is to ensure that any large subset of the nodes of the
hash-graph (which correspond to the nodes whose labels are indeed the hash of their in-neighbors’
labels) there is a “large” path. That path would correspond to a large sequence of adaptive queries
asked by the solver. A combinatorial property to guarantee the existence of such long paths in

7

any large subgraph of the underlying hash-graph is formalized as the notion of depth-robustness
of DAGs (see Definition 3.5). We use depth-robust DAGs constructed by Erdős, Graham, and
Szemerédi [16].

Formally, we first describe the construction and then prove its properties. We describe our
construction using an interactive verifier in a hybrid model in which an ideal commitment func-
tionality with selective opening exists. As a final step we will use the random oracle and a Merkle
tree to implement the commitment functionality (see Section A) and apply the Fiat-Shamir trans-
formation to make the verification non-interactive (see Section B). Algorithm 1 describes the honest
(interactive) solver and Algorithm 2 describes the corresponding (interactive) verifier.

Definition 3.1 (Directed Acyclic Graphs). A directed acyclic graph (or DAG for short) G =
(VG, EG) is a directed graph whose vertices VG can be renamed as VG = {1, . . . , N} such that for
every edge (i, j) ∈ EG connecting the vertex i to the vertex j it holds that i < j. The ordering
{1, . . . , N} is called the topological order of the vertices and we always assume that our DAGs are
given in topological order. For any vertex j ∈ [N] we call IN(j) = {i | (i, j) ∈ EG} the in-neighbors
of the node j and call din(j) = |IN(j)| the in-degree of the vertex j. We say G is of in-degree d if
din(j) ≤ d for all j ∈ VG. By depth(G) we denote the length of the longest path in G. We call a
family {GN} of DAGs where GN has N vertices and in-degree dN explicit if for any given i ∈ [N]
and j ∈ [dN] one can compute in time polylog(N) the index of the j-th in-neighbor of the node i.

Remark 3.2. For simplicity we always assume that there is an extra redundant node 0 (not counted
in the number of vertices) such that for every j ∈ [N] there are d− din(j) multiple edges from the
node 0 to the node j to make the in-degrees of every j ∈ [N] exactly equal to d.

Notation. For a random variable x, by x
$← x we mean that x is sampled according to the

distribution of x. For a set S, x
$← S we mean that x is sampled uniformly at random from S. By

[n] we denote the set {1, 2, . . . , n}. All the logarithms in this paper are in base 2 unless specified
otherwise (e.g., logλN = logN/ log λ).

Getting a “Hash Oracle” H(·). For puzzles of size |P| = n we use a random oracle of the
same security parameter O : {0, 1}∗ 7→ {0, 1}n. Given the puzzle P we define the hash oracle H(·)
as follows: H(x) = O(P, x). One can think of H(·) as family of hash functions and the puzzle P
as an index determining the hash function.

Construction 3.3 (Time-Lock Puzzle). Given parameters n and N ≤ 2o(n) and a DAG G (implic-
itly known the the parties) of N vertices and in-degree d, the components of the time-lock puzzle
construction Πn,N work as follows.

• The puzzle generator Gen outputs P $←{0, 1}n.

• The puzzle solver Sol and the puzzle-verifier Ver follow, in order, Algorithm 1 and Algorithm 2
with the following modifications:

– By using Algorithms 4, 5, and 6 (and using the hash oracle H(·)) a Merkle commitment
scheme is employed instead of an ideal commitment with selective opening.

– The Fiat-Shamir transformation of Lemma B.1 is applied to remove the challenge mes-
sage of the verifier and make the verification non-interactive.

8

Algorithm 1 Honest solver Sol on input puzzle P and hash oracle H with output length n = |P|,
using a DAG G of in-degree d and N vertices given in the topological order.

1: Initially assign the hash label u0 = 0n to the extra redundant node that is used to make the
in-degrees equal to d (see Remark 3.2).

2: for v ∈ {1, . . . , N} do {Compute the hash-labels corresponding to the nodes of G}
3: Suppose uv1 , uv2 , . . . , uvd are the hash labels of the d in-neighbors of v.

Set uv = H(P, uv1 , . . . , uvd).
4: Send a commitment c to (u1, u2, . . . , uN) to the verifier with the selective opening feature so

that the verifier can ask to open the block uj for every j ∈ [N].
5: Receive a set of challenge nodes {v1, . . . , vk} from the verifier.
6: for i ∈ {1, . . . , k} do
7: Open the commitments to uvi and uv for all v ∈ IN(vi).

Algorithm 2 Verifier of a solution for the puzzle P using oracle H and the DAG G of N vertices
in topological order and in-degree d.

1: Receive the commitment c (supposedly to the hash labels (u1, u2, . . . , uN)) from the solver.
2: Randomly choose k nodes v1, . . . , vk from [N] = VG and send them to the solver.
3: for i ∈ {1, . . . , k} do
4: Verify the commitment openings of uvi and uv for all v ∈ IN(vi).
5: Verify that uvi = H(P, uv(1,i) , . . . , uv(d,i)) where v(1,i) ≤ · · · ≤ v(d,i) are the in-neighbors of vi.

3.1 Properties of Construction 3.3

Now we analyze the properties of Construction 3.3.

Completeness. Clearly if the puzzle solver and the verifier follow (the interactive or non-interactive
versions of) Algorithms 1 and 2 then the verifier accepts with probability one.

Running Times and the Time-Gap. Now we analyze the running time of the honest parties.

Lemma 3.4. The running time of the parties in Construction 3.3 is as follows.

• The puzzle generator Gen asks no oracle queries and simply outputs a string.

• The solver Sol asks O(N) oracle queries and runs in time poly(n) · (kdN) (where k is the
number of challenge nodes asked to the solver and d is the in-degree of the graph G). Note
that poly(n) · (kdN) ≤ poly(n) ·N assuming that k, d ≤ poly(n).

• The verifier runs in time poly(n) · kd which is at most poly(n) assuming that k, d ≤ poly(n).

Proof. The solver Sol asks N oracle queries to computes the hash labels. Using a Merkle tree to
commit to the N hash labels requires O(N) + O(N/2) + O(N/4) · · · ≤ O(N) more queries to the
oracle H(·). Thus the total number of oracle queries are O(N). In order to bound the actual
running time (not just its number of oracle queries) of the honest solver, we note that the length
of the oracle queries asked to H(·) are at most (d + 1) · |P| = O(dn). We shall also include the
time it takes to reveal the commitments values. To open the commitment to every hash label uv

9

the prover needs to reveal O(logN) = o(n) blocks of length n. The number of such reveals is at
most (d+ 1) · k. Therefore the running time of Sol is at most poly(n) · (kdN).

The verifier Ver needs to verify the commitment to the hash labels of at most k · (d + 1)
many vertices. For each of these verifications she needs to ask O(logN) = o(n) queries to H(·)
(according to Algorithm 6) to ensure the correctness of the computation of the corresponding path
of the Merkle tree. Therefore the total number of oracle queries of Ver and its running time are
both at most k · (1 + d) ·O(logN)) · poly(n) ≤ poly(n) · kd.

3.1.1 Parallel Soundness of Construction 3.3

Proving the soundness of the Construction 3.3 requires the underlying DAG G to have some combi-
natorial properties. For this purpose we first define the notion of depth-robustness of DAGs which
was previously studied for the purpose of complexity lower-bounds (see Section 1).

Definition 3.5 (Depth Robustness). For α ∈ [0, 1] and β ∈ [0, α], we call a DAG G = (VG, EG) an
(α, β)-depth-robust graph iff every induced subgraph H of G whose number of vertices is at least
|VH | ≥ α · |VG| includes a path with at least β · |VG| many vertices.

Lemma 3.6 (Parallel Soundness of Construction 3.3). Suppose the DAG G used in Construction 3.3

is (α, β)-depth-robust and αk = 2−Ω(n). Then any malicious solver Ŝol who asks 2o(n) oracle queries
to the random oracle O in at most β ·N − 3 rounds of adaptive queries after getting the puzzle P,
is able to make the verifier accept only with probability at most 2−Ω(n) .

We use a construction of Erdős, Graham and Szemerédi [16] which is based on a recursive use
of constant-degree expanders and can be made explicit using any explicit family of such expanders.

Theorem 3.7 ([16]). There exists an explicit family {GN} of DAGs with N vertices and in-degree
d = O(logN) that is (α, β)-depth-robust for some constants 0 < β < α < 1.

Concluding Theorem 2.2. By using k = n in Construction 3.3, Theorem 2.2 follows as a
corollary from Lemmas 3.4 and 3.6 and Theorem 3.7, because (1) it holds that d = O(log(N)) =
o(n) ≤ poly(n), (2) for k = n and α = 1−Ω(1) it holds that αk = 2−Ω(n), and (3) for β = Ω(1) it
holds that (β ·N − 3) = Ω(N). In the rest of this section we prove Lemma 3.6.

Intuition. First recall that due to the properties of the Fiat-Shamir transformation (Lemma B.1)
we only need to prove Lemma 3.6 for the case of the interactive solver and verifier as specified in
Algorithms 1 and 2. Since H(·) is a random oracle with n output bits, any 2o(n)-query adversary
is able to find collisions for H(·) only with 2−Ω(n) probability. Therefore by Lemma A.1 we can
conclude that the Merkle-tree based commitment used instead of the ideal commitment has binding
error at most 2−Ω(n). In other words, informally speaking, after the solver sends some commitment
c as the root of the Merkle tree, we can assume (up to some error 2−Ω(n)) that there is a unique
sequence of hash labels u1, . . . , uN assigned to the nodes of the graph G. For the committed labeling
u1, . . . , uN call a node i ∈ [N] a good node if its hash label is indeed equal to the hash of the labels
of its in-neighbors. If the number of good nodes is at most α · N , then the probability that the
adversary can convince the verifier is at most αk ≤ 2−Ω(n). On the other hand, if the number of
good nodes are more than α ·N then there should be path consisting of at least β ·N many good
nodes. The latter path, however, corresponds to a sequence of adaptive queries by the adversary!

10

For a formal proof, we first note that since Ŝol asks at most 2o(n) number of oracle queries
and that P is chosen at random from {0, 1}n, when the solver receives P, with probability at least

1− 2−Ω(n) over the choice of P none of the queries asked by Ŝol so far has the prefix P. Therefore,
the oracle H(·) defined above can be thought as a fresh random oracle with output length n whose

randomness is completely unknown to Ŝol when receiving P. First we prove that any such adversary
is not able to find a “chain” of length more than β ·N as defined below.

Definition 3.8. A chain of length r relative to the oracle H(·) is a sequence of strings w0, w1 . . . , wr
such that H(wi+1) is a (contiguous) substring of wi for all i ∈ [r].

Lemma 3.9. Suppose H(·) is a random oracle from {0, 1}∗ to {0, 1}n and suppose A is an oracle
algorithm who asks 2o(n) queries of length at most 2o(n) to H(·) in r − 1 adaptive rounds. The
probability that A queries a chain of length r is at most 2−Ω(n).

Proof. W.l.o.g. Suppose A has asked the queries x1, . . . , x` so far and is about to ask a new round
of queries y1 . . . , yq. We claim that with probability 1− 2−Ω(n) the new queries y1, . . . , yq can only
be the last nodes in any chain in the view of A. Since the total number of queries of A is 2o(n)

we only need to prove the latter claim for one of the new queries, yi ∈ {y1, . . . , yq} and the claim
follows by a union bound. Let X = {x1, . . . , x`, y1, . . . , yi−1, yi+1, . . . , yq} be all the queries of A
asked (or about to be asked) so far other than yi. The total number of (contiguous) substrings of
length n among all the elements of X is at most 2o(n) ·2o(n) ≤ 2o(n) (because all those queries are of
length 2o(n) any substring is determined by choosing two points in the string). Since the answer to
H(yi) is a random string of length n, this answer will be different from all the contiguous substrings
of the elements of X with probability at least 1− 2−n2o(n) = 1− 2−Ω(n).

Therefore, with probability at least 1− 2−Ω(n) the length of the longest chain in the view of A
can increase in each rounds of adaptive queries of A only by one (up to the error 2−Ω(n)). Thus
(by induction) the probability that A can output a chain of length r in r − 1 rounds of queries is
at most 2o(n) · 2−Ω(n) = 2−Ω(n).

In the following we start by assuming (for sake of contradiction) that there is an adversary
Adv1 who breaks the parallel-soundness of Construction 3.3 with probability at least ε1 ≥ 2−o(n)

(when fed with the depth-robust graph of Theorem 3.7) by asking at most q1 ≤ 2o(n) oracle queries
and r1 ≤ β ·N − 3 rounds of adaptive queries after receiving the puzzle P. Then we will show how
to turn this adversary into another adversary that violates Lemma 3.9, deriving a contradiction.

Removing the Fiat-Shamir Transformation. By Lemma B.1 we can conclude that there is
another adversary Adv2 who breaks the parallel soundness of the interactive version of Construc-
tion 3.3 (using Algorithms 1 and 2) with probability at least ε2 > ε1/q2 ≥ 2−o(n) by asking at
most q2 ≤ poly(n)q1 ≤ 2o(n) oracle queries and r2 = r1 + 1 ≤ β ·N − 2 rounds of adaptive queries
after receiving the puzzle P. To refute the possibility of such adversary Adv2, it suffices to prove
the following lemma (which is phrased in a slightly more general form than Lemma 3.6 because it
applies even when αk = 2−o(n)).

Lemma 3.10 (Soundness of the interactive version of Construction 3.3). Suppose the DAG G used

in Algorithms 1 and 2 is (α, β)-depth-robust. Then any malicious solver Ŝol who asks 2o(n) oracle
queries to the random oracle O in at most β · N − 2 rounds of adaptive queries after getting the
puzzle P is able to make the verifier of Algorithm 2 accept only with probability at most αk+2−Ω(n).

11

Suppose there is some Adv2 who violates the claim of Lemma 3.10. Namely Adv2 asks q2 ≤
2o(n) oracle queries, has r2 ≤ β ·N − 2 rounds of adaptivity after getting the puzzle, and convinces
the verifier of Algorithm 2 with probability at least αk+ε2 for ε2 ≥ 2−o(n). Algorithm 3 below shows
how to use Adv2 and turn it into another adversary Adv3 that violates the claim of Lemma 3.9.

Algorithm 3 For Adv2, q2 = 2o(n), ε2 ≥ 2−o(n), and r2 as described above, the adversary Adv3

(who “extracts” a chain from Adv2) works as follows.

1: Run Adv2 over a random puzzle P $← {0, 1}n and a random seed rand2 and receive some
commitment c ∈ {0, 1}n. At this moment save the state of the adversary Adv2 since we
are going to execute Adv2 in many “different branches” in parallel by feeding many different
challenge messages to Adv2 and asking it to open those commitments. We cannot afford to
use standard “rewinding” since we want to keep the adaptivity of Adv3 close to that of Adv2.

2: Let δ = ε2/(2N) and ` = n/δ.
3: For all j ∈ [`] choose a random subsets Sj ⊂ [N] of size |Sj | = k.
4: for all j ∈ [`] in parallel do
5: Ask Adv2 to open the nodes in the challenge set Sj with respect to the commitment c.
6: After receiving all the decommitments for (d + 1) · k · ` many (perhaps multiple choices of)

nodes in [N], ask all oracle queries required to verify them in one round (see Remark A.2).

Claim 3.11 below shows that assuming Adv2 with the properties mentioned above exists, the
adversary Adv3 of Algorithm 3 would contradict the statement of Lemma 3.9 which (is a contra-
diction and) finishes the proof of Lemmas 3.10 and 3.6.

Claim 3.11. The adversary Adv3 of Algorithm 3 asks at most 2o(n) oracle queries in r3 = r2 +1 ≤
β ·N − 1 rounds and finds a chain of length at least β ·N with probability at least ε3 ≥ ε2/3.

Proof. Even though Adv3 runs Adv2 over many different challenges, since all of these executions
are done in parallel, the adaptivity of Adv3 is only one round more than Adv2 due to the final
round of verifications. Also, the number of queries of Adv3 is at most q3 ≤ O(Nnq2/ε2) = 2o(n).
So we only need to prove the existence of the long chain in the view of Adv3.

Since Adv2 succeeds in convincing the verifier with probability at least ε2, by an average
argument, with probability at least ε2/2 over the choices of the puzzle P and the randomness of
Adv2 (i.e., rand2), Adv2 will have at least a chance of ε2/2 (over the randomness of the oracle
H(·) and the challenge message) to convince the verifier. In the following we assume that the
sampled P and rand2 in Step 1 of Algorithm 3 have this property. We will show that in this case,
Adv3 succeeds in finding a (long enough) chain with probability at least 9/10, leading to a total
probability of success at least (ε2/2) · (9/10) > ε2/3.

Suppose W is the event that Adv2 succeeds answering a random challenge set S of k nodes.
Call a node i ∈ [N] a heavy node if Pr[i ∈ S and W] ≥ δ = ε2/(2N) for a random challenge set S
of size k. Call a node i ∈ [N] light if it is not heavy. Let HV be the set of heavy nodes and LT
be the set of light nodes. We claim that the number of heavy nodes is at least α · N . Otherwise
Adv2 is able answer a random challenge S ⊂ [N] of k nodes correctly only with probability:

Pr
S

[W] ≤ Pr
S

[Wand S ⊂ HV] + Pr
S

[Wand S ∩ LT 6= ∅] < αk +
∑
i∈LT

Pr[Wand i ∈ S] ≤ αk +N · δ

12

which is at most αk + ε2/2 as opposed to our assumption. On the other hand, since Adv3 chooses
` random challenge sets Sj of size k, for every heavy node i ∈ [N], the probability that for some
j ∈ [`] Adv2 can successfully decommit to all of the nodes in Sj while it includes i ∈ Sj is at
least 1 − (1 − δ)` > 1 − e−n > 1 − 2−n. Therefore, by a union bound, with probability at least
1 − 2−n · N > 1 − 2−Ω(n) for every heavy node v, the adversary will decommit successfully (at
some point) into some hash label for v and also some hash labels for the in-neighbors of v. When
the latter holds we call v a good node, and call the (successfully opened) hash labels of v and
its in-neighbors some extracted hash labels (note that potentially we might extract different hash
labels for v in different branches of executing Adv2 over some challenge set S).

We claim that for all i ∈ [N] with probability 1 − 2−Ω(n) all the extracted hash labels for the
same node i ∈ [N] (either extracted as the label of a sampled node in a challenge set, or as the
label of an in-neighbor of a sampled node) are identical. The reason is that otherwise we get a
2o(n)-query adversary who is able to violate the binding of the Merkle commitment of Section A
with probability at least 2−o(n). By Lemma A.1 the latter, in turn, would imply an 2o(n)-query
adversary who is able to find a collision in H(·) with probability 2−o(n) which is not possible (due
to the long enough n-bit output length of H(·).

Therefore with probability at least 1 − 2−Ω(n), we get at least α · N good nodes (with some
extracted hash label for them and also for their in-neighbors) and also it holds that all the extracted
hash labels are consistent (i.e., equal for the same node). By the (α, β)-depth-robustness of G, the

set of good nodes will have an induced path
−→
PT of size at least β ·N . For every node v ∈

−→
PT, let

wv be equal to the string (P, uv1 , . . . , uvd) where v1 ≤ · · · ≤ vd are the in-neighbors of v. Since
−→
PT

includes only good nodes that have passed the verification of the verifier, it holds that H(wv) = uv
where uv is the extracted hash label of v. Since the query H(wv) is already asked by Adv3 during
the verifications, the sequence (wv)v∈

−→
PT

makes a chain of size β · N . Thus, conditioned on the

quality of the sampled (P, rand2) as discussed above, with probability (1 − 2−Ω(n)) > 9/10 the
adversary Adv3 gets a chain of size at least β ·N .

Acknowledgement. We thank the anonymous CRYPTO 2011 reviewers of our previous
paper [20], whose comments led us to investigate the topics in this paper. We also thank Moni
Naor and Avi Wigderson for pointers to relevant work.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US government.

References

[1] A. Ansper, A. Buldas, M. Saarepera, and J. Willemson. Improving the availability of time-
stamping services. In Information Security and Privacy, 6th Australasian Conference, ACISP,
pages 360–375, 2001. 4

[2] B. Barak. How to go beyond the black-box simulation barrier. In FOCS, pages 106–115, 2001.
3

13

[3] D. Bayer, S. Haber, and W. S. Stornetta. Improving the efficiency and reliability of digital
time-stamping. In R. M. Capocelli et al., editor, Sequences II: Methods in Communication,
Security and Computer Science, pages 329–334. Springer-Verlag, 1992. 4

[4] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient
protocols. In CCS, CCS ’93, pages 62–73, New York, NY, USA, 1993. ACM. 3

[5] J. Benaloh and M. de Mare. Efficient broadcast time-stamping. Technical Report 1, Clarkson
University Department of Mathematics and Computer Science, August 1991. 4

[6] J. C. Benaloh and M. de Mare. One-way accumulators: A decentralized alternative to digital
sinatures (extended abstract). In EUROCRYPT, pages 274–285, 1993. 4

[7] D. Boneh and X. Boyen. Secure identity based encryption without random oracles. In M. K.
Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in Computer Science, pages 443–459.
Springer, 2004. 3

[8] D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. SIAM J.
Comput., 32(3):586–615, 2003. 3

[9] A. Buldas and P. Laud. New linking schemes for digital time-stamping. In Information Security
and Cryptology, pages 3–13, 1998. 4

[10] A. Buldas, P. Laud, H. Lipmaa, and J. Villemson. Time-stamping with binary linking schemes.
In CRYPTO, pages 486–501, 1998. 4

[11] A. Buldas, H. Lipmaa, and B. Schoenmakers. Optimally efficient accountable time-stamping.
In Public Key Cryptography, pages 293–305, 2000. 4

[12] J. Cai, R. J. Lipton, R. Sedgewick, and A. C.-C. Yao. Towards uncheatable benchmarks. In
Structure in Complexity Theory Conference, pages 2–11, 1993. 2, 3

[13] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. J. ACM,
51(4):557–594, 2004. 3

[14] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In E. F. Brickell,
editor, CRYPTO, volume 740 of Lecture Notes in Computer Science, pages 139–147. Springer,
1992. 3, 5

[15] C. Dwork, M. Naor, and H. Wee. Pebbling and proofs of work. In V. Shoup, editor, CRYPTO,
volume 3621 of Lecture Notes in Computer Science, pages 37–54. Springer, 2005. 3, 5

[16] P. Erdős, R. L. Graham, and E. Szemerédi. On sparse graphs with dense long paths. Computers
& Mathematics with Applications, 1:365–369, 1975. 4, 8, 10

[17] Fiat and Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In CRYPTO: Proceedings of Crypto, 1986. 3, 16

[18] S. Haber and W. S. Stornetta. How to time-stamp a digital document. J. Cryptology, 3(2):99–
111, 1991. 4

14

[19] Y. Jerschow and M. Mauve. Offline submission with rsa time-lock puzzles. In Computer and
Information Technology (CIT), 2010 IEEE 10th International Conference on, pages 1058–1064,
29 2010-july 1 2010. 2

[20] M. Mahmoody, T. Moran, and S. P. Vadhan. Time-lock puzzles in the random oracle model.
In P. Rogaway, editor, CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages
39–50. Springer, 2011. 2, 3, 4, 6, 13

[21] T. Moran, R. Shaltiel, and A. Ta-Shma. Non-interactive timestamping in the bounded storage
model. J. Cryptology, 22(2):189–226, 2009. 4

[22] W. J. Paul and R. Reischuk. On alternation ii. a graph theoretic approach to determinism
versus nondeterminism. Acta Inf., 14:391–403, 1980. 4

[23] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto.
Technical Report MIT/LCS/TR-684, MIT, February 1996. 2

[24] G. Schnitger. A family of graphs with expensive depth reduction. Theor. Comput. Sci., 18:89–
93, 1982. 4

[25] G. Schnitger. On depth-reduction and grates. In FOCS, pages 323–328. IEEE, 1983. 4

[26] L. G. Valiant. Graph-theoretic arguments in low-level complexity. In J. Gruska, editor, MFCS,
volume 53 of Lecture Notes in Computer Science, pages 162–176. Springer, 1977. 4

A Commitment Using Merkle Trees

Algorithm 4 shows how a Merkle tree is computed as a commitment to a set of strings with the
possibility of opening the commitment to each string separately. Algorithm 5 describes how the
opening is performed. To verify the decommitment of Algorithm 5 the receiver simply verifies the
corresponding hash evaluations according to Algorithm 6. For simplicity, in this section we assume
that the N strings being committed to are indexed by {0, 1, . . . , N − 1} (rather than [N]), but
when we use the Merkle commitment we might choose to index the strings with [N].

Algorithm 4 For a hash function H : {0, 1}2n 7→ {0, 1}n and N strings u0, . . . , uN−1 from ui ∈
{0, 1}n the Merkle tree of u1, . . . , uN is computed as follows.

1: Let t = dlogNe, and define ui = 0n for N ≤ i < 2t.
2: for i ∈

{
0, . . . , 2t − 1

}
do

3: set cti = ui.
4: for j ∈ {t, t− 1, . . . 1} do
5: for i ∈

{
0, 1, . . . , 2j−1 − 1

}
do {compute (j − 1)-th “layer” of the Merkle tree}

6: Let cj−1
i = H(cj2i, c

j
2i+1)

7: Output c = c0
0 as the commitment string.

The following lemma asserts that if H(·) is collision resistant (H(·) might be “sampled” from
a family of functions for that purpose), then the commitment scheme based on the Merkle tree is
binding. It can be shown that the commitment using Merkle trees has some strong hiding properties
as well, but here we are only concerned with the binding property of such efficient commitments.

15

Algorithm 5 For a hash function H : {0, 1}2n 7→ {0, 1}n and an output c ∈ {0, 1}n as the Merkle
commitment to N = 2t strings of length n, the opening algorithm is as follows.

1: Receive some index i ∈
{

0, . . . , 2t − 1
}

as the index of the string to be opened.
2: Output ui as the decommitment value.
3: To help the verifier verify the decommitment ui, let i = (bt, . . . , b1) be the binary representation

of i (i.e., i =
∑

j∈[t] bj2
j−1) and do the following.

4: for j ∈ {t, . . . , 1} do
5: Output the two strings cj0 = cj(bt,...bt−j+2,0) and cj1 = cj(bt,...bt−j+2,1) (from the j-th layer).

(Note that one of ct(bt,...,b2,0) and ct(bt,...,b2,1) is simply equal the decommitted value ui.)

Algorithm 6 For a hash function H : {0, 1}2n 7→ {0, 1}n and a received c ∈ {0, 1}n as the Merkle
commitment of N = 2t strings of length n, the verifying algorithm is as follows.

1: Send the index i ∈
{

0, . . . , 2t − 1
}

(i.e., the index of the string desired to be decommitted) to
the opener of Algorithm 5 and let i = (bt, . . . , b1) be the binary representation of i.

2: Receive ui as the decommitment value, and also receive the strings cj0 and cj1 for all j ∈ [t].
3: Verify that ui = ctb1 .
4: Define bt+1 = 0 and c0

0 = c (where c is the commitment string received before).
5: for j ∈ {t, . . . , 1} do
6: Verify that H(cj0, c

j
1) = cj−1

bt−j+2

Lemma A.1. For a Merkle-commitment string c ∈ {0, 1}n sent to the receiver, let Adv be an
adversary who is able to output some i ∈ [N] and Merkle-decommit successfully into two different
values ui 6= u′i (as the i-th string). Then there is an adversary Adv′ who executes Adv as a black-
box, asks O(logN) more queries to H(·), and finds a pair of colliding inputs: x 6= x′, H(x) = H(x′).

Proof. Let t = dlogNe. Suppose Adv is able to decommitment successfully into two different
strings ui 6= u′i as the i-th string with respect to the same commitment string c. For j ∈ [t] let cj0
and cj1 be the pair of strings provided by Adv as the two needed strings from the j-th layer of the

Merkle tree when decommitting to ui, and similarly let c′
j
0 and c′

j
1 be the corresponding strings for

u′i. Define c0
0 := c and c′

0
0 := c. Since ctb1 = ui 6= u′i = c′

t
b1 , if we take j to be the smallest element

in [t] that cjbt−j+1
6= c′

j
bt−j+1

, it holds that H(x) = cj−1
bt−j+2

= H(x′) for x = (cj0, c
j
1) 6= (c′

j
0, c
′j
1) = x′.

Adv′ is able to find such colliding pair by computing the relevant 2t hash labels H(·). (These
queries can be asked even in one round; see Remark A.2 below).

Remark A.2 (Nonadaptive Verification). We note that even though we stated the verification of
Algorithm 6 in an adaptive way, the verification can be performed in only one round of adaptivity
since all the queries to be asked are known from the beginning.

B Fiat-Shamir Transformation

The following lemma is due to Fiat and Shamir [17] and shows how to remove interaction from
public-coin protocols in the random oracle model. Here we prove a special case in which there is

16

only four messages exchanged, we deal with exponential security, and we are interested in (almost)
preserving the adaptivity of the adversary.

Lemma B.1 (Fiat-Shamir Transformation). Suppose (P, V) is two party protocol using a random
oracle O of output length n as follows.

• The protocol has only 4 messages: v1, p1, v2, p2 where v1 and v2 are public coins and the
verifier does not use any private randomness to make her final decision.

• We have |v1| = n and |v2| = ` ·n for some ` = poly(n). (If only the inequality holds |v2| ≤ ` ·n
we can always pad v2 to make it equal.)

• The verifier rejects its interaction with probability 1− 2−Ω(n) against any prover P̂ who:

1. P̂ asks a total of 2o(n) queries to the random oracle O.

2. P̂ has at most r rounds of adaptivity in its queries after receiving v1.

Suppose (P ′, V ′) is a two-message protocol defined based on (P, V) as follows: The second message
v2 of V is removed from the protocol and instead the oracle answers to the following queries are
used O(v1, p1, 1),O(v1, p1, 2), . . . ,O(v1, p1, `). (Note that the number of obtained random bits this
way will be exactly n · ` = |v2|.) This randomness is used by the parties and the two messages of

the prover (p1, p2) are sent together. Then it holds that any adversary P̂ ′ who interacts with V ′ and
asks 2o(n) number of queries to O and has at most r − 1 rounds of adaptivity after receiving v1 is
able to convince V ′ with probability at most 2−Ω(n).

Proof. For sake of contradiction suppose P̂ ′ is an adversary who interacts with V ′, asks at most
q = 2o(n) queries to O, has at most r − 1 rounds of adaptivity after receiving v1, and is able to
convince V ′ with probability ε > 2−o(n). We show how to get an adversary P̂ who interacts with
V , asks at most q · ` = 2o(n) oracle queries, has at most r rounds of adaptivity after receiving v1

and is able to make V accept with probability at least ε/(q`) (which is also 2−o(n)).

First we modify P̂ ′ as follows.

• P̂ ′ never asks any query twice.

• P̂ ′ always asks the queries O(v1, p1, 1),O(v1, p1, 2), . . . ,O(v1, p1, `) before sending (p1, p2) in
one round of adaptivity, if not asked already.

• If P̂ ′ makes any query of the form O(v′1, p
′
1, j) for any p′1 and j ∈ [`], it also asks all the

other queries {O(v′1, p
′
1, i) | i ∈ [`], i 6= j} in the same round of adaptivity if not asked already.

(Note that O(v′1, p
′
1, j) might be asked when v1 is not known or p1 is not decided yet).

The above changes might increase the total queries of P̂ ′ by a factor of ` = poly(n) and might

add one round of adaptive queries to P̂ ′. Since the first message v1 of the verifier is of length n
and since P̂ ′ asks only 2o(n) number of queries, the probability that P̂ ′ can ask any query with the
prefix v1 before receiving v1 is only 2−Ω(n), and therefore in the following we safely assume that P̂ ′

makes the special queries O(v1, p1, j) after receiving v1. The adversary P̂ works as follows:

1. Emulate the execution of P̂ ′ before receiving v1.

2. When P̂ ′ asks v1, receive v1 and forward it to P̂ ′.

17

3. Choose i
$← [q′] at random where q′ ≤ ` · q is the number of the remaining queries of P̂ ′.

4. Continue emulating the execution of P̂ ′ by preserving the adaptivity of the queries as follows.

(a) When P̂ ′ asks its i-th query O(y), if y is not of the form (v1, p
′
1, j) for some (p′1, j ∈ [`])

then abort. Otherwise do the following:

i. Send p′1 back to V as the first message of the prover and receive v2.

ii. Use v2 to answer the query O(y) as well as all of {O(v′1, p
′
1, i) | i ∈ [`], i 6= j} that

are going to be asked in the same round of adaptivity.

(b) When the emulation of P̂ ′ is finished, suppose (p1, p2) is the generated message. If p1 is
different from p′1 (which was part of y) abort, otherwise send p2 to V .

We claim that with probability 1/q′ ≥ 1/(q`) the game above is a perfect emulation of the game

in which P̂ ′ interacts with V ′. The reason is that with probability 1/q′ the emulating adversary P̂

guesses the actual query O(v1, p1, 1) of P̂ ′ correctly, in which case since v2 is completely random,

we a get a perfect emulation of the game of interaction between P̂ ′ and V ′ in the random oracle
model (where a particular oracle query is answered using fresh randomness). Thus the emulation
above leads to the accept of V with probability at least ε · 1/(q`), while the number of rounds of
oracle queries asked by P̂ is at most r.

18

	Introduction
	Our Results
	Related Work

	Time-Lock Puzzles and Applications
	Constructing Time-Lock Puzzles
	Properties of Construction 3.3
	Parallel Soundness of Construction 3.3

	Commitment Using Merkle Trees
	Fiat-Shamir Transformation

