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Abstract. Estimating immunity against differential and linear crypt-
analysis is essential in designing secure block ciphers. A practical mea-
sure to achieve it is to find the minimal number of active S-boxes, or a
lower bound for this minimal number. In this paper, we provide a gen-
eral algorithm using integer programming, which not only can estimate
a good lower bound of the minimal differential active S-boxes for various
block cipher structures, but also provides an efficient way to select new
structures with good properties against differential cryptanalysis. Exper-
imental results for the Feistel, CAST256, SMS4, CLEFIA and General-
ized Feistel structures indicate that bounds obtained by our algorithm
are the tightest except for a few rounds of the SMS4 structure. Then, for
the first time, bounds of the differential active S-boxes number for the
MISTY1, Skipjack, MARS and Four-cell structures are illustrated with
the application of our algorithm. Finally, our algorithm is used to find
four new structures with good properties against differential cryptanaly-
sis. Security evaluation against liner cryptanalysis can be processed with
our algorithm similarly by considering dual structures.

Key words: block cipher structures, active S-boxes, integer program-
ming, differential cryptanalysis.

1 Introduction

An essential assignment of designing a block cipher is to ensure its security
against known attacks, especially the two most important cryptanalysis ap-
proaches — differential cryptanalysis [2] and linear cryptanalysis [8]. A practical
method to achieve it is to estimate the upper bounds of the maximum differential
characteristic and linear trail probabilities.

In recent years, F-functions (See Fig.1) of many well-known block ciphers
are designed with the same strategy named SP-type network that employs small
nonlinear bijective functions (S-box) and a linear diffusion layer, such as Camellia
[1], AES [5], CLEFIA [13] and SMS4 [6]. Since the only nonlinear part in a
block cipher with SP-type F-function is S-box, evaluating the upper bounds of
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the maximum differential characteristic (linear trail) probability is equivalent
to counting the minimal number of differential (linear) active S-boxes in some
consecutive rounds, or a lower bound for this minimal number.

There are two classes of methods to count the minimal number of differential
(linear) active S-boxes for a block cipher structure with SP-type F-function. One
shows it with proofs, which usually enumerate many possible cases artificially to
obtain a lower bound. Proof results are useful to indicate the strength of block
cipher structures, but sometimes valid for only restricted numbers of rounds.
Kanda [7] got the first result for the security of Feistel structure, which then
improved by Wang et.al [15]. Wu el.al [16] analyzed the CAST256 structure
and obtained the lower bounds of active S-boxes for 8 and 16 round. The lower
bounds of active S-boxes number for the CLEFIA and SMS4 structure were
concerned by Shibutani [17] and Wang et.al [18] respectively.

Fig. 1. Some well-known block cipher structures, SP-type F-function and several new
structures with good properties against differential cryptanalysis.

Other approaches compute the number of active S-boxes with search algo-
rithms. By modifying Matsui’s algorithm in [9], Aoki et al. [1] showed an efficient
algorithm to output lower bounds of the minimal number of active S-boxes for
the Feistel structure. Shirai et al. [11, 12, 14] proposed some efficient search algo-
rithms to estimate the security of the Feistel , CAST256, CLEFIA and general-
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ized Feistel structures(GFS). A search algorithm is also proposed by Shibutani
[17] to dispose the CLEFIA structure.

However, so far, known results are only limited in several structures. Security
evaluation for many well-known structures with SP-type F-functions is uncon-
scious, such as the MISTY, Skipjack, MARS and Four-cell structures. What’s
more, every known proof method or search algorithm is designed based on the
specific observations of the target structure. There is not a general method to
deal with many block cipher structures simultaneously.

In this work, we focus on counting the minimal number of differential active
S-boxes for block cipher structures with SP-type F-functions. We provide a gen-
eral algorithm using integer programming, which not only can estimate a good
lower bound of the minimal differential active S-boxes for various block cipher
structures, but also provides an efficient approach to find new structures with
good properties against differential cryptanalysis. Because of the duality between
differential characteristic and linear trail [3, 4], our algorithm can be easily ex-
tended to the linear cryptanalysis by considering its dual structure. Comparing
with the best known results (theoretical or experimental results if they exist)
for the Feistel, CAST256, SMS4, CLEFIA and Generalized Feistel structures,
the lower bounds obtained by our algorithm are the tightest except for a few
rounds of the SMS4 structure. Then, our algorithm is applied to the MISTY1,
Skipjack, MARS and Four-cell structures. We get the lower bound of differential
active S-boxes for these structures for the first time. Finally, our algorithm is
used to find new structures with good properties against differential and linear
cryptanalysis. We list four of them in Fig.1, which named as New-Structure I,
II, III and IV respectively.

This paper is organized as follows. Section 2 introduces some preliminaries.
The algorithm for computing the minimum number of active S-boxes is presented
in Section 3. Experimental results of the well-known structures and the new
structures are reported in Section 4. Finally, we conclude this paper in Section
5.

2 Preliminaries

2.1 Block Cipher Model

In this subsection, we describe structures in Fig.1 with a general model. The
operation between data blocks and in the key addition layer is exclusive-OR.

Definition 1. A (b, ns, r) SP-type block cipher is a block cipher with b data
branches, r rounds and ns SP-type F-functions in a round, where all F-functions
in this r-round block cipher are same.

Let xk,i be the input data of i-th branch, Ik,j , Ok,j be the input data and
output data of the j-th F-function (from right to left) in round k respectively
(i = 1, 2, . . . , b, j = 1, 2, . . . , ns). The k-th round relations of a (b, ns, r) SP-type
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block cipher can be represented generally as the following model:

Ik,j = fj(xk,1, xk,2, . . . , xk,b) =
bM

p=1

αj,p · xk,p, (j = 1, 2, . . . , ns)

xk+1,i = gi(xk,1, xk,2, . . . , xk,b, Ok,1, Ok,2, . . . , Ok,ns)

=
bM

p=1

ζi,p · xk,p ⊕
nsM
q=1

ηi,q ·Ok,q, (i = 1, 2, . . . , b)

where αj,p, βj,q, ζi,p, ηi,q ∈ {0, 1}. For the convenience of discussions, the nota-
tions xk,i, Ik,j andOk,j will be renamed as xb·(k−1)+i, Ins·(k−1)+j andOns·(k−1)+j

respectively in the subsequent discussions.

For example, the Feistel structure with SP-type F-function is a (2, 1, r) SP-
type block cipher. Its k-th round relations are:

Ik = x2·(k−1)+2; x2·k+1 = x2·(k−1)+2; x2·k+2 = x2·(k−1)+1 ⊕Ok.

Moreover, the MISTY1, Skipjack, CAST256, SMS4, MARS, Four-cell, CLE-
FIA and GFS structures with SP-type F-function are in the block cipher model.
Of course, many structures that don’t list in Fig.1 are included in this model.
Note that, equations in the block cipher model above are also hold when each
data is substituted to its difference. Such equations are called difference-based
relations of a block cipher structure.

2.2 Solve Linear Systems and Integer Programming

Gauss-Jordan elimination [20] can be adopted to solve a linear system, which
gets the solution by reducing the augmented matrix of this system to reduced
row echelon form using elementary row operations.

Sometimes, we must consider the optimization problem:

min
NX
j=1

cjxj , subject to (1)

8
<
:

NP
j=1

aijxj ≥ di (i = 1, 2, . . . ,M)

xj integer (for some or all j = 1, 2, . . . N)

(2)

This problem is called the (linear) integer programming problem [21]. It is
named a pure integer programming when all decision variables must be integers.

Magma [19] is a mathematical software package suitable for solving linear
systems and integer programming problems. What should be stressed here is
that we must avoid integer programming problems with many variables and
constraint conditions since integer programming is NP-hard.
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2.3 Definitions

Let ∆I denotes the difference of I. Then, the following definitions are used in
this paper.

Definition 2. Let λ = (λ1, . . . , λn) ∈ Fmn
2 , where λj ∈ Fm

2 (1 ≤ j ≤ n). The
hamming weight wt of λ is denoted as the number of nonzero components in λ,
that is, wt(λ) = #{λj | λj ̸= 0, 1 ≤ j ≤ n}.

Definition 3. Let a (b, ns, r) SP-type block cipher be given. A differential input
pattern is a vector v ∈ {0, 1}ns·r, where the i-th element of v is ′0′ represents
that ∆Ii = 0, ′1′ represents that ∆Ii ̸= 0.

Definition 4. The differential branch number of a linear diffusion layer P in
the F-function is defined as Bd = min∆λ̸=0{wt(∆λ)+wt(P (∆λ))}, where ∆λ is
the input difference of P .

Since the key addition layer, S-boxes and linear diffusion layer P are bijective
in an SP-type F-function, we have (1) ∆O = 0 if and only if ∆I = 0 and ∆O ̸= 0
if and only if ∆I ̸= 0; (2) Bd = min∆I ̸=0{wt(∆I) + wt(∆O)}.

3 Algorithm

In this section, we present a united algorithm to compute a lower bound of the
minimal number of differential active S-boxes for any r-round structure included
in the (b, ns, r) model.

3.1 Idea of the Algorithm

For a given (b, ns, r) block cipher structure, all r round difference-based relations
concerning with the structure can be viewed as a homogeneous linear system Φr

with variables (∆x1, ∆x2, . . . , ∆xb·(r+1),∆I1, . . . , ∆Ir·ns ,∆O1, . . . ,∆Or·ns). Φr

has at least one solution, known as the zero solution. But it’s a trivial solution
when we consider differential cryptanalysis.

To compute the minimal number of differential active S-boxes Dr, we need to
solve linear system Φr and compute the number of active S-boxes involved in each
nontrivial solution. But it’s difficult to do this. For one thing, the specification of
F-functions is unknown, which results in the impossibility of checking whether
every solution is correct; For another, the computational ability might be another
problem to obtain all concrete solutions.

To conquer these difficulties, we try to find a lower bound of Dr in our
algorithm. Firstly, the limitation of F-functions is relaxed. For a given input
difference ∆I ̸= 0, the output difference ∆O can be any nonzero difference. This
relaxation may increase the solutions of Φr, which leads our algorithm to find
only a lower bound of Dr. Then, linear system Φr is divided into 2ns·r restricted
linear systems Φv

r according to the 2ns·r possible differential input patterns v of
(∆I1, . . . , ∆Ir·ns). For a given v, Φv

r is constructed by adding linear equations
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∆Ii = 0 and ∆Oi = 0 to Φr for all vi = 0. Finally, for each restricted linear sys-
tem Φv

r , we solve it and exhaust all nontrivial solutions to deduce a lower bound of
Dv

r , where D
v
r = min{

Pns·r
i=1 wt(∆Ii) : for all nontrivial solutions satisfying Φv

r}.
The final lower bound of Dr = min{lower bound of Dv

r : for each v that makes
Φv
r have nontrivial solutions}.
However, two questions arise in the final step. (Q1) For a given differential

input pattern v, is there a nontrivial solution satisfying Φv
r? (Q2) How to evaluate

a tight lower bound of Dv
r when Φv

r has at least a nontrivial solution?

Let Mv
r be the coefficient matrix of Φv

r with column ordering (∆x1,∆x2, . . . ,
∆xb·(r+1),∆I1, . . . ,∆Ir·ns

, ∆O1, . . . , ∆Or·ns
). And let Mv

r be the reduced row

echelon form of Mv
r (See Fig.2). Expressions corresponding to Mv

r can be par-
titioned into Part I and Part II. Part I consists of expressions involving ∆Iis,
∆Ois and at least one of ∆xis as variables; Part II consists of expressions only
containing ∆Iis and ∆Ojs as variables.

Fig. 2. A possible form of Mv
r , where all nonzero elements lie above the echelon line.

Now, question Q1 can be solved by observing Mv
r . On the one hand, there is

only a zero (trivial) solution if the rank of Mv
r is equal to the number of columns;

On the other hand, there is not any solution when we observe a contradiction in
Mv

r , which happens in such a manner: an equation ∆Ii = 0 or ∆Oi = 0 is found
in Part II of Mv

r but vi is 1 in the differential input pattern v.

Then, we consider question Q2 for each differential input pattern v that
passes through questionQ1. According toDv

r , the only useful part in a nontrivial
solution for counting the number of active S-boxes is the value of (∆I1, . . . , ∆Ins·r).
And every solution satisfying Part II of Mv

r can be extended to at least a so-
lution satisfying all expressions in Mv

r with same active S-boxes. So, we only
concern solutions satisfying expressions in Part II of Mv

r . Although we still can’t
exhaust all of them, some useful rules may help us to estimate the number of
active S-boxes wt(∆Ii). For example, wt(∆Ii) = 0 if ∆Ii = 0, and wt(∆Ii) ≥ 1,
wt(∆Ii) + wt(∆Oi) ≥ Bd if ∆Ii ̸= 0. For a further step, we have some more
observations:
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Proposition 1. Let an input-output expression be given:

∆Iu1 ⊕∆Iu2 ⊕ · · · ⊕∆Iup = ∆Ow1 ⊕∆Ow2 ⊕ · · · ⊕∆Owq

where ui, wj ∈ {1, 2, . . . , ns · r}, p + q ≥ 2, and ∆Iui ̸= 0,∆Owj ̸= 0 for all
i = 1, . . . , p, j = 1, . . . , q. Then we have

1) If (p = 1 or q = 1) and ui ̸= wj for all i = 1, . . . , p and j = 1, . . . , q, then

pX
i=1

wt(∆Iui) +

qX
j=1

wt(∆Iwj ) ≥ Bd, (3)

2) If p = 1 and there exists a j0 ∈ {1, 2, . . . , q} subjecting to u1 = wj0 , then

2wt(∆Iu1) +
X

j∈{1,...,q}\{j0}

wt(∆Iwj ) ≥ Bd, (4)

3) If q = 1 and there exists an i0 ∈ {1, . . . , p} subjecting to ui0 = w1, then

2wt(∆Iw1
) +

X
i∈{1,...,p}\{i0}

wt(∆Iui
) ≥ Bd, (5)

4) If (p = 2 and q = 0) or (p = 0 and q = 2), then

wt(∆Iu1) = wt(∆Iu2) or wt(∆Iw1) = wt(∆Iw2), (6)

5) Else, wt(∆Iui) ≥ 1,wt(∆Iwj ) ≥ 1, i = 1, . . . , p, j = 1, . . . , q.

Proof. Clearly, wt(∆Ii) = wt(∆P−1(Oi)).

1) If q = 1, then
pP

i=1

wt(∆Iui) + wt(∆Iw1) ≥ wt(
pL

i=1

∆Iui) + wt(∆Iw1) =

wt(∆Ow1
) + wt(∆Iw1

) ≥ Bd.

If p = 1, then∆Iu1 =
qL

j=1

∆Owj = P (
qL

j=1

∆P−1(Owj )) = P (∆
qL

j=1

P−1(Owj )).

Hence wt(∆Iu1) +
qP

j=1

wt(∆Iwj ) = wt(∆Iu1) +
qP

j=1

wt(∆P−1(Owj ))

≥ wt(P (∆
qL

j=1

P−1(Owj ))) + wt(∆
qL

j=1

P−1(Owj )) ≥ Bd.

2) Without loss of generality, let j0 = 1. Using the same reasons as in 1), we

have 2wt(∆Iu1) +
qP

j=2

wt(∆Iwj ) = wt(∆Iu1) +
qP

j=1

wt(∆P−1(Owj )) ≥ Bd.

3) Without loss of generality, let i0 = 1. Then, 2wt(∆Iw1) +
pP

i=2

wt(∆Iui) ≥

wt(
pL

i=1

∆Iui) + wt(∆Iw1) = wt(∆Ow1) + wt(∆Iw1) ≥ Bd.
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4) Obviously, when p = 2 and q = 0, we have wt(∆Iu1
) = wt(∆Iu2

). If p = 0
and q = 2, then ∆Ow1 = ∆Ow2 . Hence ∆P−1(Ow1) = ∆P−1(Ow2). So,
wt(∆Iw1

) = wt(∆P−1(Ow1
)) = wt(∆P−1(Ow2

)) = wt(∆Iw2
).

5) In this case, no obvious relations between ∆Iui (i = 1, . . . , p) or ∆Owj

(j = 1, . . . , q) can be found. So, we only know that wt(∆Iui) ≥ 1, and
wt(∆Iwj ) ≥ 1 for i = 1, . . . , p, j = 1, . . . , q.

Let Λv
r be the expressions in Part II of Mv

r except all ∆Ii = 0 and ∆Oi = 0,
Sv
r be the linear space generated by the expressions in Λv

r over F2.
1 Then,

all input-output expressions which fulfill the requirements in proposition 1 are
contained in Sv

r \{0}. Now, the second question Q2 for a given differential input
pattern v is reduced to solve the following pure integer programming problem:

min

r·nsX
i=1

wt(∆Ii), subject to (7)

8
<
:

Inequalities and equations deduced from Sv
r \{0} by proposition 1

wt(∆Ii) = 0 if vi = 0
wt(∆Ii) ≥ 1 if vi = 1

(8)

3.2 An Algorithm

By the analysis of subsection above, the pseudo-code of a basic algorithm for
estimating a lower bound of Dr is described as follows.

Input: The k-th round difference-based relations of a given structure.
Output: A lower bound of Dr.

Dr ←∞;
Generate the linear system Φr;
for every differential input pattern v do1

Generate the restricted linear system Φv
r and adopt Gauss-Jordan2

elimination to obtain the reduced row echelon form matrix Mv
r ;

if v is a pattern which passes through the question Q1 then3

Obtain the linear space Sv
r ;4

if Sv
r \{0} = ∅ then5

Dv
r = wt(v);6

else
Use proposition 1 to select all useful constraint conditions supplied7

by expressions in Sv
r \{0} and solve the integer programming8

problem (7) to obtain a lower bound Dv
r ;

If Dv
r < Dr, then Dr ← Dv

r ;

return Dr.

Algorithm 1: Pseudo-code of a basic algorithm for computing Dr

1 Sv
r is denoted as {0} if Λv

r is an empty set.
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Algorithm Complexity. The time complexity of this algorithm is domi-
nated by step 1, 7 and 8 in Algorithm 1. However, it’s hard to achieve the
accurate time complexity because the elimination of differential input patterns
in step 3 and the number of constraint conditions obtained in step 7 vary from
structure to structure. The worst size of constraint conditions for a given r-round
block cipher structure is 2r·ns − 1. So, the worst case of this algorithm should
solve 2r·ns integer programming problems with r · ns variables and 2r·ns − 1
constraint conditions.

3.3 An Improved Algorithm

In general, Algorithm 1 may be inefficient because Sv
r contains all linear rela-

tions derived from Λv
r . In this subsection, we present an improved algorithm. We

try to improve the dominating steps 1, 7 and 8 of Algorithm 1 in two aspects.
For one thing, using the results of smaller rounds to reduce the times of solving
integer programming problems. This idea is proposed by Matsui [9] and used in
[14]; For another, reducing the number of input-output expressions involved in
step 4 can reduce the size of integer programming problems. That is, we only
consider a subset Sv

r,e ⊆ Sv
r \{0} in the improved algorithm.

How to choose a suitable subset Sv
r,e of input-output expressions is a chal-

lenging problem. On the one hand, a large Sv
r,e may generate many reduplicate

constraint conditions that affect the efficiency of the algorithm; On the other
hand, a small Sv

r,e may miss some useful constraint conditions that influence the
tightness of results.

By comparing many experimental results, we suggest a manner here. LetMv
r,e

be the coefficient matrix of Φv
r with column ordering (∆x1,∆x2, . . . , ∆xb·(r+1),

∆O1, . . . ,∆Or·ns ,∆I1, . . . ,∆Ir·ns). That is, in the matrix Mv
r , we exchange its

(b·(r+1)+j)-th column with (b·(r+1)+r·ns+j)-th column for all j = 1, . . . , r·ns.
Similarly, we have a corresponding matrix Mv

r,e and an expression set Λv
r,e here.

Now Sv
r,e consists of four parts: i) Expressions in Λv

r ; ii) Expressions in Λv
r,e ; iii)

The sum of every two distinct expressions in Λv
r over F2; iv) The sum of every

two distinct expressions in Λv
r,e over F2.

Instead of considering all 2l − 1 input-output expressions in Sv
r \{0}, the size

of Sv
r,e is reduced to l · (l + 1) now, where l is the number of expressions in Λv

r .
In the improved algorithm Algorithm 2, we use Di to store the minimal

number of active S-boxes for i-round block cipher. Set is used to store the
information of foregoing rounds. Every element E in Set has four components:
E[1] is a differential input pattern which belongs to {0, 1}ns·(i−1), where i is
the number of current round; E[2] represent the round number of E[1], that is,

E[2] = i − 1; E[3] is a lower bound of D
E[1]
i−1 ; E[4] indicates the corresponding

round number of E[3]. Binary(j, ns) converts the integer j into a binary vector
with length ns. a||b combines vector a and b to a new vector. For example,
[0, 1]||Binary(1, 2) = [0, 1]||[0, 1] = [0, 1, 0, 1].

Remark 1. In step 1 of Algorithm 2, E[3]+DE[2]−E[4] ≥ DE[2] means that the
lower bound of this differential input pattern is not less than current DE[2]. So,
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the value of DE[2] will not be renewed in this case, which means that we don’t
need to solve the integer programming problem here.

Input: The k-th round difference-based relations of a given structure.
Output: Lower bounds of Di for 0 ≤ i ≤ r.

D0 ← 0, Di ←∞(i = 1 . . . r) and Set← {[[], 0, 0, 0]};
for i← 1 to r do

Generate the linear system Φi;
[Set, Di] = SubFun(Set,Φi);

return Di(i = 1, . . . , r);

SubFun(Set,Φi)
tempSet← ∅;
while Set ̸= ∅ do

E ← Random(Set); /* Select a random element in Set. */
for j ← 0 to 2ns − 1 do

v ← E[1]||Binary(j, ns), E[2]← E[2] + 1;
Obtain the restricted linear system Φv

E[2] and adopt Gauss-Jordan

elimination to obtain the matrix Mv
E[2]

;

if v is a pattern which passes through the question Q1 then
if E[3] +DE[2]−E[4] < DE[2] then1

Compute Dv
E[2] by using the step 4 to 8 of Algorithm 1. Of

course, Sv
E[2]\{0} is replaced by Sv

E[2],e here;
tempSet← tempSet ∪ {[v,E[2], Dv

E[2], E[2]]};
If Dv

E[2] < DE[2], then DE[2] ← Dv
E[2];

else
tempSet← tempSet ∪ {[v,E[2], E[3], E[4]]};

Set← Set \ {E};
Set← tempSet;
return [Set, Di];

Algorithm 2: Pseudo-code of an improved algorithm for computing Dr

Algorithm Complexity. The worst time complexity of this algorithm for
the final round should solve 2r·ns integer programming problems with r · ns

variables and O(r2 ·n2
s) constraint conditions. And it costs 4 ·(r−1) ·ns ·2(r−1)·ns

bits at most to store the temporary Set, where 4 is the number of components
in every element E and (r − 1) · ns is the binary length of E[1] which is the
dominating component in E for storage.

4 Experimental Results

In this section, we compute lower bounds ofDr for various block cipher structures
(See Fig.1) with SP-type F-function by running Algorithm 2 on Magma. We
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directly use the function ”MinimalIntegerSolution” provided in Magma to solve
integer programming problems. The function returns a vector which represents
an optimal solution of the problem. What we are interested is the minimal sum
of the optimal solutions for some consecutive rounds of a structure.

We choose Bd = 5 to illustrate experimental results since it is a widely
used branch number in many well-known block ciphers, such as AES, Camellia,
CLEFIA and SMS4. And all results for a structure list in Table 1 can be got
in hours on a 2.66 Ghz processor. We record results up to 25 or 26 F-functions
(⌈ 25

ns
⌉ rounds) for all structures illustrated in Fig.1 except for the SMS4 and

MARS structures, whose results are only up to 21 rounds.

Table 1. Lower bounds of Dr for some block cipher structures

Comparison Results First Results New Structures

fei cas cle gfs sms mis ski mar fou I II III IV

r [15] itp [14] itp [14] itp [14] itp [18] itp itp itp itp itp itp itp itp itp

1 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0
2 1 1 0 0 1 1 0 0 - 0 1 0 0 0 0 0 0 0
3 2 2 0 0 2 2 1 1 - 0 2 0 0 0 0 0 0 0
4 5 5 1 1 6 6 2 2 - 1 5 1 1 1 1 1 1 1
5 6 6 1 1 8 8 5 5 - 2 6 1 2 2 1 1 1 1
6 7 7 1 1 12 12 6 6 - 2 7 1 2 2 2 2 1 2
7 8 8 2 2 12 12 7 7 5 5 10 2 5 2 3 6 4 3
8 11 11 6 6 13 13 8 8 6 6 11 6 6 5 6 6 6 6
9 12 12 6 6 14 14 9 9 7 7 12 6 7 6 6 6 6 6
10 13 13 7 7 18 18 10 10 8 8 14 7 8 9 6 8 7 8
11 14 14 7 7 20 20 11 11 9 8 16 7 8 10 7 9 8 9
12 17 17 8 8 24 24 12 12 10 10 17 8 10 10 9 11 9 11
13 18 18 9 9 24 24 13 13 11 10 19 9 10 10 10 12 10 11
14 19 19 13 13 - - - - 11 10 21 13 10 11 10 13 13 12
15 20 20 14 14 - - - - 12 12 22 13 12 12 13 14 14 15
16 23 23 16 16 - - - - 13 13 24 16 13 12 15 15 17 15
17 24 24 17 17 - - - - 14 15 26 17 15 12 15 16 18 15
18 25 25 17 17 - - - - 15 15 27 17 15 15 15 18 19 16
19 26 26 18 18 - - - - 16 16 29 18 16 16 16 18 21 17
20 29 29 18 18 - - - - 16 18 31 20 18 19 17 20 21 17
21 30 30 19 19 - - - - 17 18 32 20 18 20 18 21 23 18
22 31 31 19 19 - - - - 18 - 34 21 - 20 20 22 24 21
23 32 32 20 20 - - - - 19 - 36 22 - 20 21 22 25 21
24 35 35 24 24 - - - - 20 - 37 25 - 21 21 24 26 23
25 36 36 24 24 - - - - 21 - 39 26 - 22 22 25 27 24

* We use the first three ordinary letters of a structure’s name to indicate it.
* ’itp’ means the results obtained by our algorithms in this paper.
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4.1 Compare with Known Results

Results obtained by our algorithms in this paper for the Feistel, CAST256, CLE-
FIA, GFS with 2 F-functions and SMS4 structures are shown in the first big
column of Table 1. For comparison, the best previous results (theoretical or ex-
perimental results if they exist) are also illustrated. From the result table 1, we
observe that lower bounds of Dr obtained by our algorithms are the tightest
except for only a few rounds of the SMS4 structures, which are round 11,13 and
14. Comparison results demonstrate that our algorithms is correct and acquire
tight bounds.

4.2 Apply to Other Well-known Structures

With the application of our algorithm, we give the first security evaluation for
the MISTY, Skipjack, MARS and Four-cell structures against differential crypt-
analysis in the second big column of Table 1.

In [10], the conclusion shows that the MISTY1 structure is structurally
stronger than the Feistel structure with both differential and linear cryptanalysis
under the condition that all S-boxes are bijective. The result of our algorithm
confirms this again when they have the same SP-type F-function.

For r ≤ 21 rounds, we observe that the lower bounds of Dr for the MARS
structure are same to that of the SMS4 structure when they have same Bd. In
fact, it’s the dual structure of the SMS4 structure, which indicates that the SMS4
structure has same immunity against differential and linear cryptanalysis.

4.3 Find New Structures

Although many structures have been adopted in designing block ciphers, the
number of them is negligible in comparison with that included in the general
(b, ns, r) model. Some structures with good immunity against differential and
linear cryptanalysis may hide in this model. Our algorithms provide a way to
select them out. In Fig.1, we display four of them, which are named as New-
Structure I, II, III and IV respectively.

SMS4 is a concrete 128-bit block cipher in the (4, 1, r) SP-type block cipher
model with Bd = 5. Since the maximum differential probability ps for an active
S-box in SMS4 is ps = 2−6, we need at least 22 active S-boxes to guarantee its
immunity against differential cryptanalysis. Look up lower bounds in Table 1
and [18], 26 round 2 of SMS4 is requested to provide 22 active S-boxes.

If we replace the underlying structure of SMS4 with other structures in the
(4, 1, r) block cipher model in Fig.1, we conclude that other structures require
less rounds (See Table 2) for immunity against differential cryptanalysis than
the SMS4 structure except the MARS structure.

Results in Table 2 indicate that we indeed find some new structures with good
properties against differential cryptanalysis. Especially for the New-Structure II

2 Although we don’t get this bound by our algorithm directly, we can harness the
lower bounds of 9 round and 17 round to achieve it.
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Table 2. Rounds needed for providing 22 active S-boxes

Name SMS4 MARS CAST256 Skipjack Four-cell New I New II New III New IV

Round 26 26 24 23 25 25 22 21 24

and III, they are better than any other well-known structures involved in Table
2.

5 Conclusions

In this paper, a unified algorithm is proposed to evaluate the lower bounds of
the minimal number of differential active S-boxes for block cipher structures
contained in the general model, which includes the Feistel, MISTY1, CAST256,
Skipjack, SMS4, CLEFIA, MARS, Four-cell and GFS structures as instances.
Although it’s a general algorithm, our experimental results have indicated its
exactness and efficiency.

Thanks to the symmetrical role of ∆Iui and ∆Owj in Proposition 1, our
algorithm can be directly used in linear cryptanalysis to count the minimal
number of linear active S-boxes by considering the dual structures.

Moreover, our algorithms provide an approach to find new structures with
good properties against differential cryptanalysis in the block cipher model of
section 2. Some new structures are displayed in Fig.1. We believe that more
useful structures can be found with the help of our algorithm.
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