
Sign Modules in Secure Arithmetic Circuits

Ching-Hua Yu

Chinghua.yu@gmail.com

Abstract

In this paper, we study the complexity of secure multiparty computation using only the secure
arithmetic black-box of a finite field, counting the cost by the number of secure multiplications.
We observe that a specific type of quadratic patterns exists in all finite fields, and the existence
of these patterns can be utilized to improve the efficiency of secure computation to a remarkable
extent.

We define sign modules as partial functions that simulate integer signs in an effective range
using a polynomial number of arithmetic operations on a finite field. Let ` denote the bit-
length of a finite field size. We show the existence of b`/5c-“effective” sign modules in any finite
field that has a sufficiently large characteristic. When ` is decided first, we further show the
existence of prime fields that contain an Ω(` log `)-“effective” sign module and we propose an
efficient probabilistic algorithm that finds concrete instances of sign modules.

Let Zp be any odd prime field. Then, based on the existence of effective sign modules and
providing a binary-expressed random number in Zp, prepared in the offline phase, we show that
the computation of bitwise less-than can be improved from the best known result of O(`) to

O(
√

`
log `) (with O(1) rounds) in the online phase using only the Zp-arithmetic black-box. Ac-

companied by several related improvements, secure computation involving integer comparisons
and modulo reductions can be improved from the best known result O(`) to O(

√
`

log `) (with
O(1) rounds), and a (deterministic) zero test can be improved from O(`) to O(1) in the online
phase. Additionally, a tight-bound complexity of bit-decomposition is also obtained.

Keywords: Secure Multi-party Computation, Arithmetic Black-Box, Unconditionally Se-
cure Protocol, Bit-Decomposition, Integer Comparison, Modulo Reduction, Zero Test.

Contents

1 Introduction 1
1.1 Our Results . 2

2 Preliminaries 3
2.1 Notations . 3
2.2 Model of Secure Arithmetic Black-Box . 3
2.3 Secret Random Elements . 5

3 Existence of d-Effective Sign Modules of Finite Fields 5
3.1 Proof of Lemma 3.2 . 7

4 Concrete Sign Modules of Prime Fields 8
4.1 ±d-CQRN Scheme . 8
4.2 ±d-CQRN is Statistically Optimal . 10
4.3 Finding Concrete Sign Modules . 11

5 Supplementary Proofs for Section 4.1 12
5.1 Proof of Lemma 4.4 . 13
5.2 Proof of Lemma 4.5 . 13

6 Secure Protocols 16
6.1 Small Range Comparison . 18
6.2 Useful Boolean Functionalities . 21
6.3 Elementary Bit/Digit-wise Less-Than . 21
6.4 Partial Bit/Digit-Decomposition . 23
6.5 Bitwise Less-Than . 27
6.6 Applications . 29

7 Related Works and Comparison 29
7.1 Cost Estimation and Comparison . 31

8 Discussion and Open Issue 32
8.1 Sign Modules of Modular Rings . 32
8.2 Random Elements . 32
8.3 Extended Applications . 33
8.4 Fully Homomorphic Encryption-Based Computation 33

A Numerical Data 36

1 Introduction

Secure multiparty computation (MPC) allows a number of parties to jointly evaluate a function with
private inputs. A standard setting assumes that the inputs and outputs of the evaluated function
are all shared secret values that use a linear secret sharing scheme, e.g., Shamir’s polynomial sharing
scheme, and a protocol is secure if the parties learn nothing about the real values of the inputs and
the outputs.

General solutions can be based on a secure evaluation of Boolean circuits with secret binary
inputs. However, for computation that involves a large number of additions and multiplications,
such binary expression is inefficient.1 Another type of solution is to choose a prime p that is greater
than the predefined upper-bound of the computation, to express the inputs as elements of Zp, and
to use Zp-arithmetic to simulate the task. Specifically, for arithmetic applications such as financial
computation, auctions, data mining, statistical learning [8, 24, 9, 25] and the distributed generation
of cryptographic keys [14], the second type of solution is usually considered more practical with
respect to efficiency.

Aside from additions and multiplications, several non-arithmetic functions, involving integer
comparison, zero test and modulo reduction, also play important roles in many arithmetic applica-
tions. Because these functions are much more expensive than a multiplication, efficient solutions for
these functions can have strong influence on the overall efficiency. From existing results, we can use
bit-decomposition, which converts a secret number into a secret binary set [13, 34, 26], as a generic
solution to compute non-arithmetic functions in a bit-oriented way, or we can use more efficient
solutions for specific problems such as zero test, integer comparison [27] and modulo reduction
[26, 20]. Nevertheless, the known solutions to these problems require O(`) secure multiplications,
where ` = log2 p is the bit-length of the inputs, in both the online phase and the offline phase.

We observe that although these solutions are built in various ways, they all involve a fundamental
part - using or emulating the computation of a bitwise less-than. However, because the computation
is processed on Zp-arithmetic, a natural question is whether it is necessary to purely simulate
binary computation with a bitwise approach or whether it is possible to simulate some small (but
not constant-size) Boolean circuits using O(1) secure multiplications.

Motivated by this possibility, this study begins with two observations. 1) The quadratic char-
acter of a finite field ZP can be efficiently evaluated using O(1) secure multiplications. 2) The
distribution of quadratic residues/non-residues shares some similarity with a random distribution
such that short regular patterns can be found in an arbitrary field. More specifically, we focus
on integer signs and comparison-related problems, and define sign modules of ZP by some specific
character patterns of ZP . We defer a formal and generalized definition to Section 3, but intuitively,
a sign module of ZP serves as a partial function to simulate an integer sign in a limited range
using polynomial number of ZP operations. Then several questions arise: 1) To what extent can
we simulate integer signs using a sign module of Zp? 2) How can we find a concrete instance of sign
module? 3) Because of the existence of sign modules, what new results can be obtained regarding
the complexity of secure computation of integer sign-related problems?

1Note that computation on ciphertexts, e.g., secret shares, is different from that on plaintexts. Hence the problem
here is different from the computation on local machines, where we usually use binary expressions and operations.

1

1.1 Our Results

Let FN be any finite field of an odd characteristic p. We show that several non-arithmetic functions
can be computed much more efficient than known complexity in the FN -arithmetic black-box (FN -
ABB) model with unconditional security. (See [15] or Section 2.2 for a definition) The results are
ascribed to some good property of FN . The study of this paper can then be divided into two
parts: 1) the good property of FN and some more discussion regarding prime fields and 2) new
constructions of secure protocols for lower complexity using this property.

In the first part, we define the sign function SignG over a finite group G that has a subnormal
group G+ such that |G/G+| = 2. We show that SignF∗N (which is the quadratic character of F∗N), an
instance of such a function, can be computed securely and efficiently in the FN -ABB model. Then,
the evaluation of SignF∗N over a subset of F∗N forms a d-effective sign module of FN if the subset has
a polynomial (especially linear in practice) mapping relationship with an ordered set {−d, ..., d}.
Such an evaluation can then serve as a simulation of an integer sign in a limited range −d to d. We
show, through a deterministic demonstration, that FN always contains a d-effective sign module
with d = min(blog2 N/5c , (p−3)/2), which is the good property mentioned above. Next, we discuss
a slightly different question regarding the sign modules of prime fields with the goal of finding more
effective sign modules. We show that for all `, there always exists a prime p ∈ {2`−1, 2`} such that
Zp contains an Ω(` log `)-effective sign module. In addition, some numerical data are also examined
for practically applicable corollaries such as the existence of a (2` + 1)-effective sign module in this
setting when ` ≥ 24. Finally, we provide a probabilistic polynomial-time algorithm to sample a
prime p of bit-length ` that is accompanied by an Ω(`)-effective sign module of Zp.

In the second part, using only the arithmetic black-box construction of ZP circuits and count-
ing the cost by the number of secure multiplication gates (MULTs), we break the known linear
complexity of several problems in the online phase based on the existence of effective sign mod-
ules. Our solutions rely on several improvements of sub-protocols. Nevertheless, there are three
elementary constructions behind these solutions. Let ` = dlog2 pe be the input length. First, the
existence of Ω(log p)-effective sign modules implies that small range (Ω(log p)) integer comparison
can be evaluated using O(1) MULTs. Second, symmetric Boolean functions such as

∨log2 p−1
i=0 [bi]p

and
∧log2 p−1

i=0 [bi]p can now be implemented by O(1) MULTs. Third, some O(`)-bits functions can be
expressed as O(`/log`)-digit functions and have an Ω(log`) improvement factor. In the following,
we enumerate our main results. The detailed cost estimation can be found in Section 6 and a
comparison of works is shown in Table 1. All of the protocols run in constant rounds and have
unconditional security.

• Given a binary-expressed random secret that is uniformly sampled from ZP and prepared in
the offline phase, we show that bitwise less-than can be evaluated using O(

√
`/log`) MULTs.

This result is an improvement to the known complexity of O(`) [13].

• Given a binary-expressed random secret that is uniformly sampled from ZP and prepared in
the offline phase, we show that a (deterministic) zero test can be evaluated using O(1) MULTs
in the online phase, which is an improvement to the known complexity of O(`) [27].

• A tight bound complexity, O(`), of bit-decomposition is also obtained in this setting (using
constant-rounds, black-box construction and with unconditional security).

2

• Using bitwise less-than, our protocols of integer comparison and modulo reduction can be eval-
uated using O(

√
`/log`) MULTs in the online phase, which is an improvement to the known

result of O(`) [26, 20]. In addition, using our bitwise less-than solution, the computation of
the offline phase is improved and then dominated by generating a few set of ` independent
random bits, which suffers from an Ω(`) lower bound. (Nevertheless, some potential improve-
ments that arise from releasing the condition of independence with a non-black-box approach
are discussed in Section 8).

2 Preliminaries

2.1 Notations

Let FN denote a finite field. When a secret is stored using a secret sharing scheme over FN (e.g.,
Shamir’s polynomial sharing [33]), it is denoted as [x]FN

. Let Zp denote a field of congruence
classes, where p is a prime with length ` = dlog2 pe. When a secret value x is stored in a secret
sharing form over Zp, it is denoted as [x]p. We use [x]m to denote an m-dimensional secret vector
([xm−1]p, ..., [x0]p), where xi ∈ Zp, ∀i. [x]mD(d) is similar to [x]m, but each [xi]p is constrained by
xi ∈ {0, ..., d − 1}. Specifically, when we write [x]mD(d), rather than [x]m, x is meaningful, and its

value is
∑m−1

i=0 xid
i. We assume that the m in [x]mD(d) is at most dlogd pe. In other words, only

x ∈ {0, ..., p − 1} is concerned. For d=2, we write [x]mB shortly for [x]mD(2). When m = dlogd pe,
[x]mD(d) is abbreviated to [x]D(d) because the vector is a full base-d digit decomposition of x, and
similarly, [x]B is abbreviated from [x]`B. We use the same symbol of multiplication for the inner
product, [x]B · [y]B. Because the operands are vectors now, it is clear to distinguish the two
cases. We abuse the notation of comparison operators for Zp elements. For example, x ≤ p/2
means x ∈ {0, ..., bp/2c}. Moreover, because p− a(mod p) ≡ −a(mod p), without confusion, we
also write −a for short.We write [r]FN

∈R G when r is a random value which is uniformly and
independently sampled from G.

We denote the set of quadratic residues and the set of quadratic non-residues in Zp by QRp and
NRp respectively, and QR∗

p = {x2|x ∈ Z∗p}. In addition, pk denotes the kth prime. π(x) denotes
the prime counting function, which counts the number of primes that are less than or equal to x.
π(x; a, b) = #{prime p | p ≡ b mod a, 0 < p ≤ x}. pk] denotes the product of the first k primes,
which is known as primorial.

2.2 Model of Secure Arithmetic Black-Box

In this paper, we study the computation of several non-arithmetic functions, involving comparison
and modulo reduction, using only secure arithmetic circuits. The construction of our protocols
is purely based on the (secure) arithmetic black-box (ABB)2. ABB can be seen as an abstract
computer. That is, assuming the underlying primitives are secure, we describe protocols by us-
ing secure arithmetic of a predefined and fixed field (or ring). Additionally, we do not describe
individual actions of a party or a set of parties, but see all of the parties as an entity.

An FN -ABB scheme provides three operations for a number of parties: 1) securely storing
an element x in FN using a secret sharing form (e.g., Shamir’s polynomial sharing [33], which is

2The term ABB is from [15], and the concept is implicit in many studies in the MPC literature.

3

denoted as [x]FN
. 2) fairly revealing a secret value, denoted as c ← [x]FN

, and 3)securely performing
the FN operations +,× for secret values. Note that, while an FN -ABB scheme only provides secure
FN operations for shared secret values, parties can perform any (polynomial-time) computation of
revealed plaintexts. Moreover, we require that the ABB scheme guarantees two things for a finite
field FN . 1) The secret sharing form is additively homomorphic such that linear combinations like∑

i ai[xi]FN
are costless in communication; and 2) The implementation of the secure multiplication,

i.e., [z]FN
← [x]FN

· [y]FN
, satisfies universal composability (UC). Protocols remain secure in the

UC framework [10] even when their multiple instances are arbitrarily composed with each other.
We note that most updated ABB schemes have these two properties. A concrete ABB scheme can
be implemented in several ways and is designed for different types/levels of security for different
efficiency, e.g., passive or active, cryptographic or information-theoretical [7, 12], deterministic or
statistical [17], honest or dishonest majority [22, 16]. The security type/level of high-level protocols
would then depend on which concrete ABB scheme is used.

Remark 2.1. There is some ambiguity regarding the term (secure) arithmetic black-box in the
literature. In some papers (especially of two-party computation), this term means that a secure
multiplication protocol is assumed to be secure and used in a black-box way, but the processes of
each party can be designed individually. In other words, such a model assumes a multiplication
oracle. On the other hand, in accordance with [4, 13, 34, 26, 27], our setting is a more black-box
setting, where only the whole behavior of the parties is described in protocols.

We say that a protocol is unconditionally secure in the ABB model if the protocol is secure given
that the underlying ABB scheme is secure. Additionally, the security of the protocol should com-
pletely follow that of the ABB scheme without any extra assumption (e.g., without any additional
security parameter for statistical security or an additional hardness assumption).

Definition 2.2 (Unconditional Security). Let [x]FN
, [y]FN

be the inputs and let v1, ..., vk be the
revealed values (through the second ABB operation) of protocol P. Let T ⊆ 2[n] be the collection of
sets that are not allowed to jointly access a secret through the underlying secret sharing scheme of
ABB. (For example, in a threshold-t secret sharing scheme, T = {S ∈ 2[n]||S| < t}.) If, for all S ∈
T , we have V iewS([x]FN

|v1, ..., vk) = V iewS([x]FN
) and V iewS([y]FN

|v1, ..., vk) = V iewS([y]FN
),

then P is unconditionally secure.

In the following two lemmas, we reason about the security of the protocols in the ABB model.
Because we assume that the underlying primitives of ABB are secure, the secret values can only
be leaked through the reveal operation of ABB. Hence when a protocol is constructed in a pure
ABB framework, we can only check whether the revealed values contain any information to ensure
the security. Lemma 2.3 is straightforward, and Lemma 2.4 simply follows Lemma 2.3 and the
definition of ABB and unconditional security. Both lemmas are self-explanatory.

Lemma 2.3. Let T ⊆ 2[n] be the collection of sets that are not allowed to jointly access a secret
through the underlying secret sharing scheme of ABB.

1) Let r be a secret random value which is uniformly and independently sampled from FN . Then,
for all S ∈ T and for all x ∈ FN , we have V iewS([x]FN

|x + r) ≡s V iewS([x]FN
).

2) Let r be a secret random value which is uniformly and independently sampled from F∗N . Then,
for all S ∈ T and for all x ∈ F∗N , we have V iewS([x]FN

|x · r) ≡s V iewS([x]FN
).

4

Lemma 2.4. If all of the revealed values of an ABB-based protocol only involve the following two
cases, then the protocol is unconditionally secure.

1) [r]FN
∈R FN ; z ← [x]FN

+ [r]FN
.

2) [r]FN
∈R F∗N ; z ← [x]FN

· [r]FN
.

All of the protocols in this paper are implemented by constant-depth circuits with uncondi-
tional security in the ABB model, and the complexity is measured according to how many secure
multiplications are used. We abbreviate the secure multiplication to MULT as a unit. Regarding
the other two basic operations, because the computation/communication cost of both c ← [x]FN

and c ← [x]FN
· [y]FN

are not more than [z]FN
← [x]FN

· [y]FN
, we simply count their costs by one

MULT.

2.3 Secret Random Elements

Several of our protocols require computation involving secret random elements. Because they are
unrelated to the inputs, the parties can prepare them in the offline phase. Here we introduce three
basic types of random element generation. We describe them using Zp-arithmetic; similar methods
exist for general FN -arithmetic.
Random Elements. The method for generating a secret sharing of a uniformly random, unknown
element in Zp depends on the security type of the concrete ABB scheme. However, a standard
framework is the following.3 Each party Pi (uniformly and independently) samples a random value
ri from Zp and sends its shares to all of the parties according to the secret sharing scheme. Then,
the parties add up the secret shares, [r]p =

∑n
i=1[ri]p. In the active setting, if the j-th party cheats

on the value of rj , the randomness of r can still be achieved by the other parties. When at least
one honest party contributes to the sum, r will be random and private. The cost is no more than
one MULT. We denote this operation as [r]p ← Zp.
Random Bits. Here a random bit is a secret [b]p with constraint b ∈ {0, 1}. To generate a random
bit, the parties first perform [r]p ← Zp, r2 ← [r]p · [r]p and check whether r2 = 0, to abort or not.
If r2 = 0, then the parties the parties output [b]p ← ([r]p/

√
r2 + 1)/2. The probability that r2 = 0

is only 1/p, which is negligible. The whole procedure costs approximately 2 MULTs and 2 rounds.
[13]
Random Solved Bits. A set of random solved bits (SolvedRan) [r]B = ([r`−1]p, ..., [r0]p) can be
generated first by generating ` random bits, and then the parties check whether [r]B < p to abort
or not. Following the assumption in [13, 27, 34, 26], we run four candidates in parallel to obtain a
low aborting probability. In the literature, the test [r]B < p dominates the cost of this functionality,
but this procedure can be improved to be sublinear in ` by using the solution in Section 4. However,
it still costs O(`) MULTs to generate ` random bits. We discuss this constraint further in Section
8.

3 Existence of d-Effective Sign Modules of Finite Fields

In this section, we show that any finite field of an odd characteristic has a good property such that
we can construct efficient secure protocols using this property (shown later, in Section 6). We abuse

3Because this procedure is non-black-box, this function can be assumed to be one of the basic operations in the
ABB model.

5

the term “sign” in a group (G, ¦) that has a subnormal group G+, which has exactly 2 cosets G+ and
G−. In other words, the order of the quotient group G/G+ is 2. For all x1, r1 ∈ G+, x2, r2 ∈ G−,
we have the following properties: x1 ¦r1, x2 ¦r2 ∈ G+, and x1 ¦r2, x2 ¦r1 ∈ G−. Denote the identity
of G+ by g+, and let g− be the element in G− such that g− ¦ g− = g+. Accordingly, the “sign” of
x in G is defined as SignG(x) = g+ if x ∈ G+; else, g−.

While we define sign functions over a finite group G, integer signs are usually more of a concern
in most applications. Therefore, in the next step, we attempt to map integers in a limited range
to a subset of G and simulate the integer sign by SignG. We will first focus on the computation
over finite fields. Let p be an odd prime, and let FN be a finite field, where N = pn. In addition,
let id be the multiplicative identity of FN . Then, G should be a subgroup of FN . Assume that
integers are encoded in a naturally way, using {id, ..., (p − 1)/2 · id} for positive numbers and
{(p− 1)id, ..., (p + 1)/2 · id} for negative numbers. We hope that the mapping from these elements
to G is efficient and that the effective simulation range of SignG is large.

Definition 3.1 (d-effective sign module). Let FN be a finite field of an odd characteristic, and let
id be the multiplicative identity of FN ; let G and G+ be two multiplicative subgroups of F∗N with
G+ ⊂ G and |G : G+| = 2, and let the other coset of G+ be G−. In addition, let f(x) : FN → G
be a polynomial mapping function such that for all x in {0, id, ..., d · id}, f(x) is in G+, and for all
x in {(N − 1)id, ..., (N − d)id}, f(x) is in G−. Then (f, SignG) forms a d-effective sign module over
FN .

Note that there may be many choices for the mapping function f(x). However, when the input
x is a secret in secure computation, it is inefficient to implement the mapping by an arbitrary table.
Instead, we expect a very efficient mapping, such as a linear mapping or a low-degree polynomial.
Also note that FN is restricted to have an odd characteristic; otherwise, F∗N does not contain any
subgroups G,G+ such that |G : G+| = 2 because |F∗N | is odd.

By default, we use the largest multiplicative subgroup, F∗N , to compute the sign. Note that
F ∗

N is a valid group for constructing sign modules because the nonzero quadratic residues in FN

form a subgroup of F∗N , and the subgroup has two cosets. The other coset is the set of quadratic
non-residues in FN . SignF∗N (x) can be computed from x(N−1)/2 with O(log3 N) bit operations, or
we can use a generalized version of the Jacobi symbol algorithm for any finite field, to obtain better
efficiency (O(log2 N) bit operations) [3].

Then, in Theorem 3.3, we show that there is always an Ω(log N)-effective sign module of FN

when p > log2 N . To this aim, we first derive the number of a specific subset of d-effective sign
modules of FN , as described in Lemma 3.2. Although a similar result of Lemma 3.2 for modular
fields can be found in [28], their proofs are through probabilistic demonstration, which only implies
a statistically asymptotic guarantee. Therefore, for completeness, we show a deterministic proof
for general finite fields along the lines of [2, 19] in Section 3.1.

Lemma 3.2. Let FN be a finite field, where N = pn, where p is an odd prime. Let a be a nonzero
element in FN , and let d be an integer, 0 ≤ d < (p−1)/2. Let S = {x ∈ FN |x, x+a, ..., x+d ·a are
quadratic residues, and x − a, ..., x − d · a are quadratic non-residues }. Then, |S| is in the range(

N
22d+1 − d− 1

2

)±√N
(
d− 1

2

)

Theorem 3.3. For all N = pn, where p is an odd prime, FN contains a d-effective sign module
with d = min(blog2 N/5c , (p− 3)/2).

6

Proof. Following Lemma 3.2 and its notation, we have that |S| > 0 if d satisfies the following:

N

22d+1
>
√

N

(
d− 1

2

)
+

(
d +

1
2

)
.

Because N ≥ 1, it is adequate to request the following:

d <
1
4

log2 N − 1− 1
2

log2 d.

On the other hand, we require d < (p − 1)/2 so that x − d · a, ..., x + d · a are distinct. Hence, we
conclude that there is a d-effective sign module of FN with d = min(b(log2 N)/5c , (p− 3)/2).

3.1 Proof of Lemma 3.2

Let χ : FN → {−1, 0, 1} be the quadratic character of FN , i.e., χ(x) = 1 if x is a quadratic residue;
χ(x) = 0 if x = 0; χ(x) = −1 if x is a quadratic non-residue.

Theorem 3.4 (Weil bound). Let f(x) ∈ FN [x] be a polynomial of positive degree which is not
of the form h2(x) for any h(x) ∈ FN [x], and let t be the number of distinct roots of f(x) in the
algebraic closure of FN . Then

∣∣∣∣∣∣
∑

x∈FN

χ(f(x))

∣∣∣∣∣∣
≤ (t− 1)

√
N.

(See e.g., p.43, Theorem 2C of [32].)

Let H(x) =
∏d

i=1(1− χ(x− i · a)) ·∏d
i=0(1 + χ(x + i · a)),

S1 = {x ∈ FN |χ(x− a) = ... = χ(x− d · a) = −1, χ(x) = χ(x + a) = ... = χ(x + d · a) = 1},
S2 = {x ∈ FN |χ(x− a) = 1 or... or χ(x− d · a) = 1 or χ(x) = −1 or..., or χ(x + d · a) = −1},
and S3 = FN − S1 − S2.

Note that the condition of S3 is similar to S1 except one of χ(x−d ·a), ..., χ(x+d ·a) is zero. Since
FN only contains one zero, we have |S3| = 2d + 1. Let |S1| = s. Then, due to

∑
x∈S2

H(x) = 0,

∑

x∈FN

H(x) = 22d+1s + 22d(2d + 1).

On the other hand, H(x) can be expanded as

H(x) = 1 +
d∑

m=1

d+1∑

n=1

(−1)m
∑

1≤i1<...<im≤d
0≤j1<...<jn≤d

χ((x− i1 · a)...(x− im · a)(x + j1 · a)...(x + jn · a)).

Let f(x) = (x− d · a) · ... · (x + d · a). Since 2d + 1 < p and f(x) has an odd number of roots, f(x)
can not be written as h(x)2 for some h(x) ∈ FN [x]. Therefore, applying Theorem 3.4 we have

7

∣∣22d+1s + 22d(2d + 1)−N
∣∣ ≤

d∑
m=1

d+1∑
n=1

∑

1≤i1<...<im≤d
0≤j1<...<jn≤d

∣∣∣∣∣
∑

x∈FN

χ((x− i1 · a)...(x− im · a)(x + j1 · a)...(x + jn · a))

∣∣∣∣∣

≤
d∑

m=1

d+1∑
n=1

Cd
mCd+1

n (m + n− 1)
√

N

< 22d(2d− 1)
√

N.

Hence

N

22d+1
− d− 1

2
−
√

N(d− 1
2
) < s <

N

22d+1
− d− 1

2
+
√

N(d− 1
2
).

4 Concrete Sign Modules of Prime Fields

In this section, we describe more results regarding sign modules of prime fields expressed in the
form of Zp, a ring of congruence classes of a prime characteristic.

First, we observe that in many applications, an adequate field size is required instead of a
specific p. Hence, we ask the following question: when ` is given, is there a prime p ∈ [2`−1, 2`]
such that Zp has a sign module whose effectiveness is better than the bound described in Theorem
3.3? We will show the existence of Ω(log p log log p)-effective sign modules of Zp in this setting.
Sign modules with such effectiveness can provide simpler and more efficient construction of secure
protocols. Specifically, a d-effective sign module with d > 2 log2 p supports secure protocols such as
OR∗([x]B) and AND∗([x]B), to compute using 1 MULT in the online phase (shown later, in Section
6).

Second, although by Theorem 3.3 we know that there is always an Ω(log p)-effective sign module
of Zp, we have no idea how to find one of such sign modules. A trivial but inefficient method is
to sample a prime p ∈ [2`−1, 2`], involving a primality test with a success probability of Ω(1/ log p)
(due to the prime density) first and then to sample an element in Zp. However, by Lemma 3.1,
the success probability through random sampling is only 2−θ(log p), and the computation in each
sampling mainly involves quadratic character tests (each of which costs O(log2 p) bit operations
using [3]). When ` is given first, we show a randomized method to sample a prime p of length `
accompanied by an Ω(log p)-effective sign module of Zp with a success probability of Ω(1/ log p).
The computation of each sampling mainly involves a primality test, which can be done in Õ(log6 p)
4 by [23]. The intuition is that, because the distribution of the quadratic residue/non-residue is
quite uniform in Zp, the density of a certain pattern is quite small. On the other hand, the density
of primes in arithmetic progressions is much larger. Hence, it would be more efficient to express
the pattern by certain arithmetic progressions first and then to sample a prime among them.

4.1 ±d-CQRN Scheme

Theorem 3.3 states the existence of an Ω(`)-effective sign module in Zp for each prime p ∈ [2`−1, 2`].
By intuition, if we choose the most effective sign module among the sign modules of those prime

4The notation Õ(x) signifies a bound c1x(log x)c2 for suitable positive constants c1 and c2.

8

fields, it is possible to promote the effectiveness. To show that this possibility is true, we will prove
the existence of an Ω(` log `)-effective sign module when ` is given under the generalized Riemann
hypothesis (GRH).

Theorem 4.1. Assume GRH. Then, there exists a prime p ∈ [2`−1, 2`] such that Zp has an
Ω(` log `)-effective sign module.

Instead of purely proving the existence, we provide concrete construction. Specifically, we show
that a simple pattern of quadratic character is adequate to obtain the result. (In Section 4.2, we
reason that this simple pattern is already a statistically optimal choice.)

Definition 4.2. We say that a prime p is qualified for ±d-Consecutive Quadratic Residues and
Non-residues (±d-CQRN) if and only if 1, ..., d ∈ QRp and −1, ...,−d ∈ NRp.
Note that, if p is qualified for ±pk-CQRN, then p is also qualified for ±d-CQRN for d up to pk+1−1.

Note that, when p is qualified for ±d-CQRN, (x,SignZp) forms a d-effective sign module of Zp.
We will prove Theorem 4.1 by showing that there is a prime p ∈ {2`−1, 2`} that is qualified for
±d-CQRN with d = Ω(` log `). This proof is accomplished by elucidating the relationship between
the range of primes and the number of primes that are qualified for ±d-CQRN. Specifically, we
would like to know whether the number of primes with length ` that are qualified for ±d-CQRN,
for some d = Ω(` log `), is greater than 0.

Definition 4.3. Let N(x, d) denote the number of the primes that are smaller than x and are
qualified for ±d-CQRN.

First, in the following lemma, we show that the conditions of ±d-CQRN can be expressed as
the union of

∏k
i=2

pi−1
2 sets of linear equations, where k = π(d).

Lemma 4.4. Let k = π(d) and let p be a prime, p > 3. Then, p is qualified for ±d-CQRN if and
only if

{
p ≡ −1 mod 8,
p ≡ qi mod pi,∀i = 2, ..., k,

(1)

for some
{

qi ∈ QRpi , if pi ≡ 1 mod 4;
qi ∈ NRpi , if pi ≡ 3 mod 4.

(2)

The proof is provided in Section 5.
Then, by Lemma 4.4, to find a prime p that is qualified for ±d-CQRN is equivalent to finding

a prime solution of any of these equation sets. Because each equation corresponds to an arith-
metic progression, by Dirichlet’s theorem, we know that there are infinitely many prime solutions.
Furthermore, if the distribution of primes were perfect independent random, then for all x and
i ≥ 2, E

[∑
qi∈QRpi

π(x; pi, qi)
]

= E
[∑

qi∈NRpi
π(x; pi, qi)

]
= π(x)/2, E [π(x; 8, 7)] = π(x)/4, and

thus, E [N(x, d)] = π(x)/2k+1. We know that the real distribution is quite close to the behavior
of random, and that these expected results can be obtained asymptotically when x grows to infin-
ity by, e.g., Dirichlet’s theorem. However, because the distribution of primes and the pattern of
quadratic residues/non-residues is not truly random, the proof should be taken more carefully when
x is not very large and when deterministic results instead of probabilistically asymptotic results
are considered.

9

Lemma 4.5. Assume GRH. Then we have∣∣∣∣∣N (x, d)−
(

1
2

)k+1

π(x)

∣∣∣∣∣ < O

((
3
2

)k−1 √
x

log x

)
,where k = π(d).

The proof is provided in Section 5.2.
Using Lemma 4.5, we prove Theorem 4.1 by showing that there exists d ∈ Ω(` log `) such that

N(2`, d)−N(2`−1, d) > 0 when ` is sufficiently large.

Proof of Theorem 4.1.
Let k = π(d) (i.e., pk ≤ d < pk+1). By Lemma 4.5, there are constants A and B such that for all
d > A,

(
1
2

)k+1 2`

` ln 2
−B

(
3
2

)k−1 2`/2

`
< N(2`, d) <

(
1
2

)k+1 2`

` ln 2
+ B

(
3
2

)k−1 2`/2

`
.

Then,

N(2`, d)−N(2`−1, d) >

(
1
2

)k+1 2`

` ln 2

(
1− 1

2(`− 1)

)
− 2B

(
3
2

)k−1 2`/2

`
.

To obtain the maximum k that satisfies N(2`, d)−N(2`−1, d) > 0 from the above condition, we
set

k =
⌈

1
log2 3

(
`

2
− 1− log2 B − log ln 2− log

(
1− 1

2(`− 1)

))⌉
.

Hence, k = Ω(`). Besides, k = π(d) > d
ln d , ∀d ≥ 17. [30]

This implies that there exists constants C and D such that for all ` > C, N(2`, D` log `) −
N(2`−1, D` log `) > 0 (for the reason π(` log `) = O(`)). Hence we conclude the existence of
Ω(` log `)-effective sign modules.

Corollary 4.6. Assume GRH. Then there is a constant C such that for all ` ≥ C, there always
exists a prime p ∈ Zp which contains a (2` + 1)-effective sign module (using ±(2` + 1)-CQRN
scheme).

Corollary 4.6 is simply implied by the stronger result described in Theorem 4.1. From the proof
of Theorem 4.1, we can expect that N(2`, 2`+1)−N(2`−1, 2`+1) >> 1 when ` is sufficiently large.
Furthermore, using numerical data as an auxiliary verification (See Appendix A and Table 3), we
show C = 24 is only a small number.

4.2 ±d-CQRN is Statistically Optimal

In Theorem 4.1 and Corollary 4.6, we have shown that the more effective sign modules can be
obtained in the setting where we fix ` first and select a prime p of Zp between 2`−1 and 2`. There
follows a natural question of whether ±d-CQRN is the best choice for the mapping of sign modules
in Zp. In the following lemma, we show that this choice is the best at least when we consider only
polynomial mapping functions. Moreover, for computation based on secure arithmetic circuits,
because only polynomial functions (with a constant degree) can be evaluated efficiently, this result
implies that the simple ±d-CQRN is already shown to be the best choice.

10

Lemma 4.7. Consider the set of polynomial mapping functions that maps {0, ..., d} to a subset
in QRp and {−1, ...,−d} to a subset in NRp. The simple mapping of ±d-CQRN (f(x) = x) is
(statistically) optimal.

Proof. First, instead of mapping x to x, consider an addition operation, i.e., a shift mapping from
x to x + a for a nonzero constant a. This mapping scheme would break the simple requirement of
−1 ∈ NRp as Requirement 3.2 and would require more conditions for {−1, ...,−d} ∈ NRp. On the
other hand, the same number of conditions for {1, ..., d} ∈ QRp remains. Therefore, similar to the
derivation of Equation 1 in Lemma 4.4 for ±d-CQRN, the conditions of this mapping scheme can
also be derived but with considerable more constraint equations. Hence, follow a similar derivation
as in Lemma 3.2, the number of primes N(x, k) in this scheme would be (statistically) considerably
less than than the number in ±d-CQRN.

Second, consider the multiplication operation of mapping x to ax for a constant a. This mapping
scheme would only add an additional condition, a ∈ QRp; thus, it could not be better than the
simple mapping scheme.

Then, the above inferences imply that any arithmetic combination (i.e., a polynomial mapping
function) cannot gain advantages, and the simple mapping is already the optimum mapping among
these functions.

4.3 Finding Concrete Sign Modules

Because we prove the existence of effective sign modules by constructing concrete instances, a related
method for finding an effective sign module can also be deduced. First, note that in Equation 1
and 2, for all i = 2 to k, pi has pi−1

2 non-zero quadratic residues and pi−1
2 quadratic non-residues.

Accordingly, there are
k∏

i=2

pi−1
2 sets of k-simultaneous equations. Using the Chinese Remainder

Theorem, each set of the k-simultaneous equations can also be expressed as follows:

p = −m1
Q

8
+

k∑

i=2

mi · Q

pi
· qi + c ·Q, c ∈ Z, p > 0, (3)

where Q = 8 ·
k∏

i=2
pi = 4 · pk], and m1,m2, ...,mk satisfy

m1
Q

8
+

k∑

i=2

mi · Q

pi
= 1. (4)

Note that, because Q
8 , Q

p1
..., Q

pk
are coprime to each other, the value of m1, ..., mk can be solved

by the Euclidean Algorithm efficiently.
Hence, by Lemma 4.4, one way to find a qualified prime p < Q is by randomly sampling these

k∏
i=2

pi−1
2 sets’ q′is, substituting them into Equation 3 and testing whether p is a prime. To perform

this task, we are required to find all of the qi’s that satisfy Equation 2 and to compute the mi’s in
Equation 4 first; however, these steps can be performed in polynomial time and need to only be

11

computed once. Then, because Equation 3.3 can be computed efficiently, the main computation
involves a primality test, which can be accomplished in Õ(log6 p) by [23]. Furthermore, instead of
p < Q, we can also ask 2`−1 < p < 2` for a given `. An algorithm for this setting is shown in Figure
1. Note that [(a− 1)Q, aQ] ∩ [2`−1, 2`] ≥ Q/2

Input: ` > 2

Output: a prime p ∈ [2`−1, 2`+1], qualified for ±d-CQRN.

1. Set k such that 4pk−1] < 2` < 4pk].

2. Set Q = 4pk−1]. Set a = argmaxt|[(t− 1)Q, tQ] ∩ [2`−1, 2`]|.
3. Randomly sample qi’s according to Equation 2, and substitute qi’s into

Equation 3 to compute the only p such that (a− 1)Q < p < aQ.

4. Do primality test. If p is a prime in [2`−1, 2`], then output p; else, go to
Step 3.

Figure 1: An algorithm for sampling a qualified prime

Lemma 4.8. The success probability in each sampling of the algorithm in Figure 1 (Step 3) is
Ω(1/ log Q), and any output p of the algorithm is qualified for ±d-CQRN with d = Ω(log p).

Proof. By Lemma 4.2, the number of primes that are between (a−1)Q and aQ and are qualified for
±pk−1- CQRN is θ

(
2−kQ/ log Q

)
. By Lemma 4.4, all of these qualified primes are included in the

k−1∏
i=2

pi−1
2 = O(2−kQ) sets of solutions in Equation 2. Hence, if we sample these solutions randomly

(by sampling q′is satisfying Equation 2), then the success probability is Ω(1/ log Q). Additionally,
a < pk and log2 p − log2 a < log2 Q = pk−1(1 + o(1))/ ln 2 (from the Chebyshev function) implies
pk−1 = Ω(log p). Hence, we have that any output p is qualified by ±d-CQRN with d = Ω(log p).

5 Supplementary Proofs for Section 4.1

To be self-contained with respect to references in our proof, we list the basic lemmas of quadratic
residues, which are Lemma 5.1, Lemma 5.2 and Theorem 5.3; these lemmas can be found in books
on number theory. Let a be an integer, and let p be an odd prime. Denote the Legendre symbol
by (a

p) (which is 0 if a|p, 1 if a ∈ QR∗
p, and -1 if a ∈ NRp).

Lemma 5.1. Euler’s criterion determines whether a is a quadratic residue modulo p. Let p be an
odd prime, and let a be an integer that is coprime to p. Euler’s criterion can be expressed by using
the Legendre symbol, as (a

p) ≡ a(p−1)/2 mod p.

Lemma 5.2. The following properties can be derived from Euler’s criterion : À (a
p) = (p+a

p). Á

(ab
p) = (a

p)(b
p). Â (a2

p) = 1 if a - p. Ã (−1
p) = (−1)(p−1)/2. In addition, the solution to (2

p) can be

derived from Gauss’s Lemma: Ä (2
p) ≡

{
1, p ≡ ±1 mod 8;
−1, p ≡ ±3 mod 8.

12

Theorem 5.3 (The law of quadratic reciprocity). Let p and q be two distinct odd primes. Gauss’s
statement of the law of quadratic reciprocity can be formulated using the Legendre symbol: (q

p) ={
(p

q), if p ≡ 1 mod 4 or q ≡ 1 mod 4;
(−p

q), if p ≡ q ≡ 3 mod 4.

5.1 Proof of Lemma 4.4

By Lemma 5.2 Á, the following two requirements are equivalent to the conditions of ±d-CQRN for
a prime p in Definition 4.2.

{
1, ..., d ∈ QRp (Requirement 1)
−1 ∈ NRp (Requirement 2)

First, note that the condition of p for Requirement 2 is implied by Lemma 5.2 Ã. In other
words, p ≡ 3 mod 4. Second, Requirement 1 can be reduced to p1, ..., pk ∈ QRp. Then, according
to the law of quadratic reciprocity (Theorem 5.3), the conditions of p are derived as follows:

1. ∀pi ≡ 1 mod 4, pi ∈ QRp if and only if p ∈ QRpi , which implies that p ≡ qi mod pi for
some qi ∈ QRpi (by Lemma 5.2 À).

2. ∀pi ≡ 3 mod 4, −pi ∈ QRp if and only if p ∈ QRpi . This result implies that pi ∈ QRp if
and only if (1) −pi ∈ QRp and −1 ∈ QRp or (2) −pi ∈ NRp and −1 ∈ NRp. Condition
(1) contradicts Requirement 2; hence, we retain condition (2), which implies that p ∈ NRpi .
This step leads to p ≡ qi mod pi for some qi ∈ NRpi (by Lemma 5.2 À).

3. The condition of the first prime p1 = 2 is provided by Lemma 5.2 Ä. However, p ≡ 1 mod 8
contradicts Requirement 2; thus, only the condition p ≡ −1 mod 8 is left.

The above conditions of p for Requirement 1 and 2 can then be summarized as Equation 1 and 2
in Lemma 4.4.

5.2 Proof of Lemma 4.5

Here we prove a more generalized theorem, of which Lemma 4.5 is an immediate result. Note that
in the following, p denotes a prime.

Theorem 5.4. Assume GRH and let χa1 , ..., χak be any nonprinciple characters with 2 - ai,∀i and
(ai, aj) = 1, ∀i 6= j. Then,

∑

p≤x
p mod 8=7

p-a1···ak

k∏

i=1

1± χai(p)
2

= 2−(k+2)π(x) + O

((
3
2

)k−1 √
x

log x

)

To prove the theorem, we require several preparing lemmas. First, we introduce a known
inequality of nonprinciple characters summing over primes.

13

Lemma 5.5 (Theorem 1 of [6] or (1.3) of [5] or (2.12) of [31]). Assume GRH. For all nonprinciple
character χa modulo a, we have

∣∣∣∣∣∣
∑

p≤x,p-a

1± χa(p)
2

− π(x)
2

∣∣∣∣∣∣
≤ α = O

(√
x

log x

)
.

Lemma 5.6. Assume GRH and let χa and χb be two quadratic characters modulo a and b respec-
tively with (a, b) = 1. Then we have

∣∣∣∣∣∣
∑

p≤x,p-ab

(
1± χa(p)

2

)(
1± χb(p)

2

)
− π(x)

4

∣∣∣∣∣∣
≤ β = O

(√
x

log x

)
.

Proof. Let

f±,± =
∑

p≤x,p-ab

(
1± χa(p)

2

)(
1± χb(p)

2

)
− π(x)

4
.

By Lemma 5.5, each of |f+,+ + f+,−|, |f−,+ + f−,−|, |f+,+ + f−,+| and |f+,− + f−,−| is bounded

by α = O
(√

x
log x

)
. Besides, from the multiplicity property of Dirichlet character,

f+,+ + f−,− =
∑

p≤x,p-ab

1± χa(p)χb(p)
2

=
∑

p≤x,p-ab

1± χab(p)
2

,

where χab(p) is a nonprinciple character modulo ab. Hence we also have |f+,+ + f−,−| ≤ α.
W.l.o.g. assume f+,+ = α + γ and γ ≥ 0. Then we have f+,− ≤ −γ and f−,− ≤ −γ. However,
f+,− + f−,− ≥ −α. This leads to γ ≤ α/2 (as the following table). Similarly, if f+,+ = −α + γ and
γ ≤ 0, we also have γ ≥ −α/2.

frow,line + -
+ = α + γ ≤ −γ

− ≤ −γ ≤ −γ

Therefore
∣∣∣∣∣∣

∑

p≤x,p-ab

(
1± χa(p)

2

)(
1± χb(p)

2

)
− π(x)

4

∣∣∣∣∣∣
≤ 3α/2 = O

(√
x

log x

)
.

Lemma 5.7. Assume GRH and let χa be a quadratic characters modulo a. Then we have
∣∣∣∣∣∣∣∣

∑

p≤x,p-a
p mod 8=7

1± χa(p)
2

− π(x)
8

∣∣∣∣∣∣∣∣
≤ γ = O

(√
x

log x

)
.

14

Proof. Let χ1, χ2 and χ3 be the three nonprinciple characters modulo 8:

χ1(1) = χ1(3) = 1 & χ1(5) = χ1(7) = −1,
χ2(1) = χ2(5) = 1 & χ2(3) = χ2(7) = −1,
χ3(1) = χ3(7) = 1 & χ3(3) = χ3(5) = −1.

For all i = 1 to 3, let

f2i+1,±(x) =
∑

p≤x,p-a
x mod 8=2i+1

(
1± χa(x)

2

)
− π(x)

8
.

Note that by Lemma 5.6,

|f3,±(x) + f7,±(x)| =
∣∣∣∣∣∣

∑

p≤x,p-a

(
1− χ2(p)

2

)(
1± χa(p)

2

)
− π(x)

4

∣∣∣∣∣∣
≤ β = O

(√
x

log x

)
.

Similarly, |f1,±(x) + f7,±(x)| and |f1,±(x) + f3,±(x)| are also bounded by β.

f1,+ f3,+

f5,+ f7,+

f1,− f3,−
f5,− f7,−

Assume f7,+ = β+γ, γ ≥ 0, which implies f1,+ ≤ −γ and f3,+ ≤ −γ. Hence, −β ≤ f1,++f3,+ ≤
−2γ, which implies γ ≤ β/2.

Similarly, assume f7,+ = −β + γ, γ ≤ 0, we have γ ≥ −β/2. These combines to |f7,+| ≤ 3
2β.

Similarly, we also have |f7,−| ≤ 3
2β and complete to proof.

Proof of Theorem 5.4.

1. Let ai be one of a1, ..., ak and let f
(1)
± (x) =

∑
p≤x,p-ai

x mod 8=7

(
1±χai (x)

2

)
− π(x)

8 . By Lemma 5.7, we

have |f (1)
± (x)| ≤ α1 = O

(√
x

log x

)
.

2. Let ai, aj be two of a1, ..., ak and let f
(2)
±,±(x) =

∑
p≤x,p-aiaj

x mod 8=7

(
1±χai (x)

2

) (
1±χaj (x)

2

)
− π(x)

16 . From

Step 1, we have both of |f (2)
+,+(x) + f

(2)
+,−(x)| and |f (2)

+,−(x) + f
(2)
−,−(x)| are bounded by α1.

Besides, from the multiplicity property of Dirichlet’s character, we also have |f+,+ + f−,−| =∑
p≤x,p-a

x mod 8=7

(
1±χai (x)χaj (x)

2

)
− π(x)

8 ≤ α1.

Then, w.l.o.g. assume f
(2)
+,+(x) = α1 + γ(1), γ(1) ≥ 0. We have f

(2)
+,−(x) ≤ γ(1) and f

(2)
−,−(x) ≤

γ(1). These lead to −α1 ≤ f
(2)
+,+ + f

(2)
−,− ≤ −2γ, which implies γ ≤ α1/2. From similar

inferences, we have |f (2)
±,±| ≤ α(2) ≤ 3

2α(1).

15

3. By induction, we have
∣∣∣∣∣∣∣∣∣∣∣

∑

p≤x
p mod 8=7

p-a1···ak

k∏

i=1

1± χai(p)
2

− 2−(k+2)π(x)

∣∣∣∣∣∣∣∣∣∣∣

≤ αk ≤
(

3
2

)k−1

α1 = O

((
3
2

)k−1 √
x

log x

)

6 Secure Protocols

To set up a secure computation, first, the parties decide the input size `, which usually depends on
the domain of the plain text, on how many elements and functions are involved, on the range of
the computation, and on the accuracy that is designed. According to Corollary 4.6, there always
exist primes with bit-length ` that are qualified for ±(2` + 1)-CQRN when ` is sufficiently large.
Hence after ` is decided, the parties agree on a public qualified prime p and perform computation
with the Zp-ABB. Under this setting, we construct protocols and estimate costs based on the use
of such (2` + 1)-effective sign modules, for example. Nevertheless, because by Theorem 3.3, there
exists Ω(`)-effective sign modules for any finite field with an odd characteristic, similar (almost the
same) protocols with the same complexity can be obtained when secure arithmetic of an arbitrary
finite field of a sufficiently large characteristic is used. The small difference of the implementation
is described in the content.

First in Section 6.1, we implement a ±`-Sign protocol ([z]p ← Sign±`([x]p)), which tests the
“sign” of x ∈ {p− `, ..., p− 1}∪ {0, ..., `}. The ±`-Sign implies protocols of the `-CMP family (e.g.,
[z]p ← CMP`([x]p ≥ [y]p)), which can compare values within a small range. The `-CMP family then
servers as a building block. In Section 6.2, we implement several Boolean functionalities involving
Threshold-k, AND∗, OR∗, Bits Equality Test, Prefix OR/AND, and the Masking Vector. These
entities are useful for constructing higher-level protocols that are not limited here. In Section 6.3,
we construct elementary bitwise and digit-wise less-than solutions, which have sublinear complexity
but are not optimal. In Section 6.4, we present the first tight bound solution to bit decomposition
in the ABB model and a digit decomposition protocol. Then, in Section 6.5, combining all of these
techniques, we propose our main result for secure protocols - an efficient solution of bitwise less-
thans. In Section 6.6, we summarize the use of CMP` and bitwise less-than in high-level applications
that involve zero-test, integer comparison and modulo reduction. The protocol hierarchy is shown
in Figure 2.

Our protocols split into online and offline phases. In the offline phase, the parties prepare
(conditioned) random elements that are independent of the inputs. A set of random elements may
have a condition on each other. However, different sets of random elements are required to be i.i.d.
in sampling so that they can be used in the UC-based construction [10]. Because our protocols
are described in a hierarchical structure, for higher-level protocols, we describe the offline phase
only when additional random elements are required. Regarding the cost estimation, although the
two phases are estimated separately, the cost of the offline phase does not affect the complexity of
the whole procedure for the lower level protocols (Section 6.1 - 6.3). For those protocols, the two
phase model provides only a minor optimization. However, it makes a difference for the higher level

16

±l-Sign l-CMP

Threshold-k AND*OR*

PrefixANDMaskingVectorPrefixOR

DigitLessThan

Partial

DigitDecomp.

BitLessThan2

ZeroTest ModRed CMP

Sec 5.1

Sec 5.2

Sec 5.5

Sec 5.6

BitsEql

BitLessThan1

Partial

BitDecomp.

Sec 5.3

Sec 5.4

PostfixBLT PostfixDLT

Figure 2: Protocol hierarchy. The dotted lines denote trivial reductions.

17

protocols (Section 6.4 - 6.6), where we require one or several sets of random-solved-bits (SolvedRan)
(See, e.g., [13] or Section 2.3 for a definition) that are prepared in the offline phase. In addition,
we discuss an improvement of the complexity of random-solved-bits generation in the ABB model
in Section 6.3 and some non-black-box manners for advanced improvement in Section 8.

Security. Our protocols are constructed strictly in the Zp-ABB model; and thus, the uncondi-
tional security of each protocol directly follows Lemma 2.4. Because this construct is easy to check,
we will spare the routine description.

6.1 Small Range Comparison

±`-Sign: [z]p ←Sign±`([x]p), ∀x ∈ {−`, ..., `}
offline: generate random pairs {[r]p, [s]p}, where r ∈ Z∗p , s = SignZp

(r).

1. [a]p ← Zp, [b]p ← Zp

2. [c]p ← [a]p · [a]p, [d]p ← [a]p · [b]p
3. [e]p ← [c]p · [d]p, f ← [d]p · [d]p, if f = 0, abort.

4. [r]p ← (
√

f)−1[e]p, [s]p ← (
√

f)−1[d]p

Online:

1. x′ ← [2x + 1]p · [r]p
2. [z]p ← SignZp(x′) · [s]p

`-CMP family: ∀x, y ∈ {0, ..., `}, compare x and y.
CMP`([x]p ≤ [y]p) = CMP`([y]p ≥ [x]p) ← 2−1(Sign±`([y − x]p) + 1)
CMP`([x]p < [y]p) = CMP`([y]p > [x]p) ← 1− CMP`([y] ≤ [x])
CMP`([x]p = [y]p) ← CMP`([x]p ≤ [y]p) · CMP`([x]p ≥ [y]p)

Figure 3: Implementation of ±`-Sign and `-CMP

Small range sign. The definition of the sign function here is slightly different from that of SignG,
which is defined on a multiplicative group in Section 3. We involve the additive 0 in Zp. In other
words, the evaluation is effective when the input is in {−`, ..., `}. Protocol ±`-Sign: [z]p ← `([x]p)
implements this partial function over Zp. It outputs [1]p when x is in {0, ..., `} and [−1]p when x
is in {−1, ...,−d}.

The concrete scheme is shown in Figure 3. In the offline phase, a random secret [r]p and its
“sign” [s]p are prepared. If the protocol does not abort, then r is uniformly sampled from Z∗p .
The only revealed value is f = a2b2, which is independent of s = SignZp(ab) and a2, and thus,
independent of r = a2s. If f = 0, then the protocol aborts. This event occurs with a probability
that is less than 2/p. In the online phase, because x is allowed to be 0, we weed out this case by
shifting x to 2x + 1. Then, 2x + 1 has the same “sign” as x when x 6= 0 and is “positive” when
x = 0. Then a random secret [r]p is used to protect [2x+1]p. Because r is a uniformly random value

18

in Z∗p , no information of x is leaked. Finally, the “sign” of x can be inferred through the “sign” of
r and x′. The price of shifting x to 2x + 1 is that the effective range of the input is approximately
half of the range when [x]p 6= 0 is ensured. Because p is qualified for ±(2` + 1)-CQRN, the output
value is valid.

Complexity. Note that, because p is a prime, both (
√

d)−1 and SignZp(x′) can be computed
efficiently in polynomial time. The offline phase takes approximately 6 MULTs and 3 rounds, while
the online phase takes only 1 MULT and 1 round.

Small range comparison. The output of ±`-Sign in {[1]p, [−1]p} is easy to convert to {[1]p, [0]p}.
Hence, ±`-Sign implies the `-CMP family, which is designed for small range comparison. Because
for all x, y ∈ {0, ...`}, we have x− y ∈ {−`, ..., `}, x− y ∈ {−`, ..., `}, the test is valid. The cost of
the `-CMP family is the same as ±`-Sign. The `-CMP family then serves as a building block that
is similar to the MULT protocol in this paper.

While we construct the protocol using ±(2`+1)-CQRN of Zp, it is easy to generalize the result
by using any Ω(log p)-effective sign module of any prime field. We summarize this generalized result
in the following theorem.

Theorem 6.1. For all odd prime p, there exists a number φ = Ω(log p) such that CMPφ can be
computed in the Zp-ABB model using O(1) MULTs and O(1) rounds.

Proof. By Lemma 3.2 and Theorem 3.3, Zp contains a d-effective sign module (β + xα,SignZ∗p)
with d = Ω(log p). This sign module suffices to construct a CMPφ protocol with φ ≥ (d − 1)/2,
using a similar procedure in Figure 3, and we need to only modify Step 4 in the offline phase and
Step 1 in the online phase of ±`-Sign. First, note that −1 is not necessarily in NRp, and a2s can
always be in QR∗

p, regardless of whether s = 1 or −1. Let γ be any element in NRp. Hence in the
offline phase, we replace [r]p ← (

√
f)−1[e]p with [r]p ← (1 − γ)(2

√
f)−1[e]p + (1 + γ)2−1[c]p such

that r = a2 when s = 1 and r = γa2 when s = −1. Second in the online phase, if β, β +α, ..., β +dα
are all non-zero, then we replace x′ ← [2x + 1]p · [r]p with x′ ← [β + xα]p · [r]p; otherwise, if one of
β + (2k− 1)α, for k = 1, ...(d + 1)/2, is zero, we replace it with x′ ← [β + 2xα]p · [r]p; otherwise, we
replace it with x′ ← [β + (2x + 1)α]p · [r]p. Therefore, with these simple replacements, the whole
complexity of computing CMPφ in the Zp-ABB model remains O(1) MULTs and O(1) rounds.

In addition, because Theorem 3.3 provides a guarantee for general finite fields, a similar result
can be obtained when we use an FN -ABB scheme, even though it is more natural to use a modular
field/ring in arithmetic computation. We describe this extension in the following corollary, whose
proof is similar to that of Theorem 6.1 and omitted. For the same reason, the remaining theorems
for Zp in this section can be extended for the case of FN . We will omit these similar statements.

Corollary 6.2. Let p be an odd prime, and let N = pn, where n = O(p/logp), i.e., p = Ω(log N).
Then, for any φ = Ω(log N), CMPφ can be computed in the FN -ABB model using O(1) MULTs and
O(1) rounds.

19

Threshold-k: Test whether the number of 1’s in [x]mB is greater than or equal to
k, where x ∈ Zp. (We only concern a meaningful value of x ∈ {0, ..., p−
1}.)
Threshold([x]mB , k) ← CMP`(

∑m−1
i=0 [xi]p ≥ k)

OR∗([x]mB) = Threshold([x]mB , 1)
AND∗([x]mB) = Threshold([x]mB ,m)

Bits Equality Test: Test whether a secret [x]mB is equal to a public value a,
where x, a ∈ Zp. When m < `, set xi = 0, ∀i = `− 1, ..., m.

BitsEql([x]mB , a) ← CMP`(
∑`−1

i=0 [xi]p ⊕ ai ≤ 0), where a =
∑m−1

i=0 2iai.

Prefix-OR: [z]m ← PrefixOR([x]mB), x ∈ Zp

∀i = m− 1, ..., 0, in parallel: [zi]p ← CMP`(
∑m−1

j=i [xi]p ≥ 1) in parallel.

Prefix-AND: [z]m ← PrefixAND([x]mB), x ∈ Zp

∀i = m− 1, ..., 0, in parallel: [zi]p ← CMP`(
∑m−1

j=i [xi]p ≥ m) in parallel.

Masking Vector: [z]mB ← MV([x]mB),∀x ∈ Zp. Return a Boolean vector indi-
cating the location of the first nonzero bit.

1. [u]mB ← PrefixOR([x]mB)

2. ∀i = 0...,m− 2, [zi]p ← [ui]p − [ui+1]p,

3. [zm−1]p ← [um−1]p

Figure 4: Implementation of several Boolean functionalities

20

6.2 Useful Boolean Functionalities

Threshold-k tests whether the number of 1’s of a bit-decomposed secret (a Boolean vector) [x]mB =
{[xm−1]p, ..., [x0]p]}, xi ∈ {0, 1}, x =

∑m−1
i=0 ∈ {0, ..., p − 1},m ≤ `, is greater than or equal to k.

Because for all x ∈ {0, ..., p− 1}, this number is small (
∑m−1

i=0 xi ≤ m ≤ `), we can use one `-CMP
to handle it. Threshold-k is the first apparent use of the Sign module. In most real applications, we
do not aim to construct general Boolean functions by secure arithmetic circuits. Instead, the main
purpose of arithmetic circuits is for arithmetic computation, and only Boolean functions fulfilling
the arithmetic purposes are of interested. Threshold-k plays a key rule in many of these functions.
For example, OR∗ computes [xm − 1]p∨, ...,∨[x0]p and AND∗ computes [xm − 1]p∧, ...,∧[x0]p. OR∗

is equivalent to Threshold-1 while AND∗ is equivalent to Threshold-m. In addition, Bits-Equality-
Test tests whether a bit-decomposed secret [x]B is equal to a public value a. Because a is public,
it can be decomposed into a0, ..., a`−1, where a =

∑`−1
i=0 ai2i, and the exclusive-or of [xi]p and ai (

[xi]⊕ ai = [xi]p + ai − 2ai[xi]p) can be computed locally without communication. When the input
only has m bits (i.e., [x]mB) with m < `, we can first extend it to [x]B by adding value-0 elements.

Complexity. Because there are only trivial reductions (communication free with polynomial-
time computation), the cost of these protocols (Threshold-k, OR∗, AND∗ and BitsEql) is equal to
that of CMP`.

In addition, Prefix-OR and Prefix-AND run m instances of OR∗ and AND∗ respectively, in
parallel, and Masking Vector (MV) can be reduced to Prefix-OR. Hence, each of these protocols
requires m invocations of CMP`.5

Similar to the generalization of Theorem 6.1, we can extend these results for general Zp. By
Theorem 6.1, CMPφ, where φ = Ω(log p), can be computed using O(1) MULTs and O(1) rounds in
the Zp-ABB model. This implies that Threshold can be composed by a constant number (at most
d`/φe + 1) of CMPφ. Therefore, the complexity remains the same. We describe this extension in
the following theorem.

Theorem 6.3. For all odd prime p and for all x ∈ Zp, given [x]B as the input, Threshold,OR∗,AND∗

and BitsEql can be computed using O(1) MULTs and O(1) rounds, and PrefixOR, PrefixAND and MV
can be computed using O(m) MULTs and O(1) rounds in the Zp-ABB model.

6.3 Elementary Bit/Digit-wise Less-Than

Here we implement our first version of bit/digit-wise less-than called BLT1/DLT, which will be
used in constructing an advanced solution. Although BLT1 and DLT are elementary, they already
have sublinear complexity. The two protocols follow a logic similar to that of [13] and are inspired
by the fact that CMP` compares blog2 `c-bits values using only 1 MULT online (plus 6 MULTs
offline). Given two bit/digit-decomposed values as the inputs, the solution intuition is to find the
first distinct bit/digit pair from the most significant bit/digit, and then to return the comparison
of these two bits/digits. The concrete schemes are shown in Figure 5.

Digit-wise Less-Than compares two digit-decomposed secrets ([z]p ← DLT([x]mD(d) < [y]mD(d)), d ≤
`). Note that for all i, 0 ≤ xi, yi < d ≤ `, and thus xi and yi can be compared using one CMP`. Our

5Since the whole (offline and online) procedure of `-CMP costs 7 s, the Prefix OR/AND protocol can be improved
by computing the significant bits (i = ` − 1, ..., ` − 6) directly by the MULT protocol. Nevertheless this result
improvement is minor when ` is large, so we omit the detail.

21

Digit-wise Less-Than: [z]p ← DLT([x]mD(d) < [y]mD(d)), d ≤ `

1.
∀i = 0, ...,m− 1, in parallel: [ei]p ← CMP`([xi]p > [yi]p),

[fi]p ← CMP`([xi]p < [yi]p)

2. ∀i = 0, ...,m− 1, in parallel: [ui]mp ← [ei]p + [fi]p − 2[ei]p · [fi]p
3. [v]mB ← PrefixOR([u]mB)

4. [z]p ← 1− [v]mB · [e]mB
Bitwise Less-Than (ver. 1):

When the inputs involve two secrets: [z]p ← BLT1([x]mB < [y]mB)

1. Set a = blog2 `c, d = 2a and ω = dm/ae
2. ∀i = 0, ..., ω − 1, [x′i] ←

∑a−1
j=0 [xi·d+j]p, [y′i] ←

∑a−1
j=0 [yi·d+j]p

3. [z]p ← DLT([x′]ωD(d) < [y]ωD(d))

When the inputs involve one secret: [z]p ← BLT1([x]mB < a), a =∑m−1
i=0 ai2i

1. Set a = blog2 `c, d = 2a and ω = dm/ae
2. ∀i = 0, ...,m− 1, [ei]p ← [xi]p ⊕ ai

3. ∀i = 0, ..., ω − 1, in parallel: [fi]p ← CMP`(
∑a−1

j=0 [ei·d+j]p ≥ 1)

4. [g]ωB ← MV ([f]ωB)

5. [u]p ← [g]ωB · [x]ωB (Note that [x]mB implies [x]ωB)

6. [v]p ← [g]ωB · [a]ωB (Note that a implies [a]ωB) (communication-free)

7. [z]p ← CMP`([u]p < [v]p)

For [z]p ← BLT1([x]mB > a), replace Step 7 by [z]p ← CMP`([u]p > [v]p)

Figure 5: Implementation of DLT and BLT1

22

DLT is designed as an efficient component for higher-level protocols. Hence, the value of d would
be set to ` or close to ` so that the complexity can be improved by an Ω(log `) factor. Although
DLT is not designed for a general digit purpose, an extension for a general digit purpose is not
difficult to obtain. Nevertheless, the improvement factor is still bounded by Ω(log `) because p is
only assumed to be qualified for ±(2` + 1)-CQRN.

Bitwise less-than compares two bit-decomposed values. Here, we proposed an elementary
scheme called BLT1. In BLT1 when the inputs are two secrets, it is reduced only to DLT by
rearranging the inputs to base-2blog2 `c digit-decomposed values. Moreover, when the inputs are one
secret and one public value, we improve it by direct implementation.

Complexity. DLT involves 3m+1 CMP′`s and m MULTs. The total cost is 3 rounds and 18m+6
MULTs in the offline phase and 4 rounds and 4m+1 MULTs in the online phase. In the case of two
secret inputs, m-bits BLT1 is reduced to ω-bits DLT, where ω = dm/ blog2 `ce. In the case of one
secret and one public input, BLT1 involves 2ω +1 CMP′`s and ω MULTs. The total cost is 3 rounds
and 12ω + 6 MULTs in the offline phase and 4 rounds and 3ω + 1 MULTs in the online phase.

By Theorems 6.1 and 6.3, we also have the following extension.

Theorem 6.4. For all Zp, [z]p ← BLT1([x]mB < [y]mB) can be implemented by Zp-ABB using
O(m/ log `) MULTs and O(1) rounds.

Remark 6.5. [Using BLT1 to improve SolvedRan] The definition and standard implementation of
SolvedRan can be found in [13, 27] or in Section 2.3. In the process of SolvedRan, after generating
` = dlog2 pe random secret bits {[r`−1]p, ..., [r0]p}, we must test whether

∑`−1
i=0 2iri < N , to ensure

that r is uniformly sampled from Zp. Using BLT1, the test costs O(`/ log `) MULTs. Thus, the
original dominant term in SolvedRan is improved and becomes minor. However, generating `
independent random secret bits still costs O(`) MULTs which becomes the dominant computation.

6.4 Partial Bit/Digit-Decomposition

Bit-decomposition decomposes a secret [x]p to a set of binary based sharing [x]B. This approach is a
standard method that addresses the both worlds - the Boolean functions of [x]B and the arithmetic
functions of [x]p. Because there are ` outputs of nontrivial functions that involve ` inputs, the
problem has a lower bound Ω(`). Here, we propose the first tight bound solution for the ABB
model. Because our solution is based on the CMP` protocol, which only costs a few MULTs, it is
efficient in practice. Moreover, when the input is conditioned on x < 2m, instead of decomposing
the whole ` bits blindly, we would expect to perform partial decomposition for higher efficiency.

Our solution is based on the method of the postfix comparison in [34] with variations such
that a partial bit-decomposition ([x]mB ← BitDec([x]p,m), x < 2m) can be efficiently evaluated
when our sign-module based approaches are applied. First, a protocol postfix bit-less-than is
defined as [z]mB ← PostfixBLT([x]mB > [y]mB), where [zi]p = ([(x mod 2i+1) > (y mod 2i+1)]p).
Following the notation in [34] for clear expression, we define a protocol named full bitwise less-
than: ([z>]p, [z⊥]p) ← FullBLT([x]mB , [y]mB), z>, z⊥ ∈ {0, 1}. z> = 1 if and only if x > y; z⊥ = 1 if
and only if x < y. The outputs of FullBLT involve the complete information of the comparison. In
addition, the comparison job can be divided and concatenated.

23

Bits Comparison: ([z>]p, [z⊥]p) ← FullBLT([x]mB , [y]mB)

1. [z>]p ← BLT1([x]mB > [y]mB)

2. [z>]p ← BLT1([x]mB < [y]mB)

Postfix Bit-Less-Than: [z]mB ← PostfixBLT([x]mB > [y]mB),

1. Divide and expand ([x]mB , [y]mB) into a complete binary tree.

2. Tree ← Compute the FullBLT of each node in parallel (involving
2m− 1 pairs of the FullBLT results).

3. ∀i = 0, ...m − 1, in parallel: [zi]p = ([(x mod 2i+1) > (y
mod 2i+1)]p) ← CMP`([ui]p > [vi]p), where ([ui]p, [vi]p) is obtained
by concatenating at most 1 pair on each level of Tree. (Note x

mod 2i =
∑i−1

j=0 xj2j .)

Partial Bit-Decomposition: [x]mB ← BitDec([x]p,m), x < 2m

offline: Prepare a set of random solved bits {[r]B , [r]p}.
online:

1. c ← [x]p + [r]p
2. If c ≥ 2m − 1, set f = 1; else, [f]p ← BLT1([r]mB ≤ c)

3. ∀i = 0, ...,m− 1, [yi]p ← [f]p · [ci]p + (1− [f]p) · [(c + p)i]p
4. [u]mB ← PostfixBLT([r]mB > [y]mB)

5. [x mod 2m]p ← [x]p
∀i = m−1, ..., 1, [x mod 2i]p ← [y mod 2i]p+2i[ui]p−[r mod 2i]p

6. ∀i = m− 1, ..., 1, [xi]p ← 2−i([x mod 2i+1]p − [x mod 2i]p)
[x0]p ← [x mod 2]p

Figure 6: Implementation of Partial Bit-Decomposition

24

Definition 6.6 (Concatenation Operator). Let || denote the binary concatenation operator for
two pairs of bit-decomposition values, as follows: ([x]aB, [y]aB)||([x′]bB, [y′]bB) = ([u]a+b

B , [v]a+b
B), where

[u]a+b
B = {[xa−1, ..., x0, x

′
b−1, ..., x

′
0]}, [v]a+b

B = {[ya−1, ..., y0, y
′
b−1, ..., y

′
0]}.

Divide [x]mB into two parts by setting [x>]m−a
B = {[xm−1]p, ..., [xa]p} and [x⊥]aB = {[xa−1]p, ..., [x0]p}

for any 0 < a < m, and similarly also divide [y]mB into [y>]m−a
B and [y⊥]aB. We have

FullBLT([x]mB , [y]mB) = FullBLT((FullBLT([x>]m−a
B , [y>]m−a

B))||(FullBLT([x⊥]aB, [y⊥]aB))).

Lemma 6.7. Assume that p is qualified for ±(2`+1)-CQRN. In the Zp-ABB model, PostfixBLT([x]mB >
[y]mB) can be computed using O(1) rounds and O(m) MULTs (approximately 3 rounds and 33m
MULTs in the offline phase and 5 rounds and 7m MULTs in the online phase).

7:0

1:03:25:47:6

3:07:4

7 6 5 4 3 2 1 0

Figure 7: A demonstration of the comparison tree in PostfixBLT. The number denotes the bit index.
Note that only the right children and the root (circled by boxes) are involved.

Proof. First, divide and expand FullBLT([x]mB > [y]mB) into a complete binary tree Tree. The root
(on level blog2mc) is simply the full comparison FullBLT([x]mB > [y]mB) while the leaves are
FullBLT([xm−1]p, [ym−1]p),...,FullBLT([x0]p, [y0]p). (See Figure 7 for example)

Then, assume that FullBLT([x]νB, [y]νB) can be computed using R rounds and C(ν) = aν + b
MULTs. Each node on level i requires at most C(2i) MULTs. Specifically, we skip the computation
of leaves because their inputs are already one-bit pairs. The total cost of computing all of the nodes
except for the leaves in parallel is the following:∑blog2 mc

i=1 C(2i) · 2blog2 mc−i = a
∑blog2 mc

i=1 2i · m
2i + b

∑blog2 mc
i=1

m
2i = m(a log2 m + 2b)− b.

FullBLT([x]νB, [y]νB) can be implemented by two invocations of BLT1. Therefore, it costs 3 rounds
and (36ν/ blog2 `c + 12) MULTs in the offline phase and 4 rounds and 8ν/ blog2 `c + 2 MULTs in
the online phase. The total costs is at most 3 rounds and 60m MULTs in the offline phase and 4
rounds and 12m MULTs in the online phase.

Then, note that comparing [x mod 2i]p and [y mod 2i]p is equal to comparing the concatena-
tion of at most blog2 mc nodes of Tree (at most one on each level), and that the value of blog2 mc
bits is less than or equal to m ≤ `. Hence, for all i = 0 to m − 1, [zi]p ← [(x mod 2i) > (y

25

mod 2i)]p can be evaluated by one CMP`. These steps cost 6m MULTs in the offline phase and m
MULTs and one additional round in the online phase.

Furthermore, because only the right children and the root in Tree are used, we can save the
computation of the left children. (See Figure 7) To sum up, the total cost of PostfixBLT([x]mB > [y]mB)
is at most 3 rounds and 33m MULTs in the offline phase and 5 rounds and 7m in the online phase.

Digits Comparison: ([z>]p, [z⊥]p) ← FullCMP`([x]mD(d), [y]mD(d))

1. [z>]p ← DLT([x]mD(d) > [y]mD(d))

2. [z>]p ← DLT([x]mD(d) < [y]mD(d))

Postfix Digit-Less Than: [z]mB ← PostfixDLT([x]mD(d) > [y]mD(d)),

1. ∀i = 0, ...,m− 1, ([x′i]p, [y
′
i]p) ← FullCMP`([xi]p, [yi]p).

2. [z]mB ← PostfixBLT([x′]mB , [y′]mB).

Partial Digit-Decomposition: [x]mD(d) ← DigitDec([x]p, d,m), x < dm < p

offline: Prepare a set of random solved digits {[r]D(d), [r]p}.
online:

1. c ← [x]p + [r]p
2. If c ≥ dm − 1, set f = 1; else, [f]p ← DLT([r]mD(d) ≤ c)

3. ∀i = 0, ...,m− 1, [yi]p ← [f]p · [ci]p + (1− [f]p) · [(c + p)i]p
4. [u]mB ← PostfixDLT([r]mD(d) > [y]mD(d))

5. [x mod dm]p ← [x]p
∀i = m−1, ..., 1, [x mod di]p ← [y mod di]p+di[ui]p−[r mod di]p

6. ∀i = m− 1, ..., 1, [xi]p ← d−i([x mod di+1]p − [x mod di]p)
[x0]p ← [x mod d]p

Figure 8: Implementation of Partial Digit-Decomposition

The concrete schemes of FullBLT, PostfixBLT, and BitDec are shown in Figure 6. In BitDec, the
design of Steps 2 and 3 are from the observation that, for x < 2m, r < p, if (c ≥ 2m−1 ≥ x)∨(c ≥ r
mod 2m) is true, no wrap-around modulo p occurs in x + r mod p.

Complexity. BitDec requires an additional set of random solved bits that are prepared in the
offline phase. The total cost of BitDec is 1 PostfixBLT([r]mB > [y]mB) + 1 BLT1([r]mB ≤ c)+1SolvedRan
(in different rounds) + m MULTs (in parallel), where BLT1 only has sublinear complexity. Hence,
the cost is less than 3 rounds and 34m MULTs plus 1 SolvedRan in the offline phase and 11 rounds
and 9m MULTs in the online phase.

By Theorems 6.1 and 6.4, we also have the following extension.

26

Theorem 6.8. For all Zp and for all x in Zp, there exists a Zp-ABB protocol that computes the
bit-decomposition of x, [x]B ← BitDec([x]p), using O(log p) MULTs and O(1) rounds.

Digit-Decomposition decomposes a secret [x]p to a set of base-d sharing [x]D(d). For some applica-
tions, using a digit-decomposition is more efficient than using a bit-decomposition because fewer
elements are involved (e.g., our higher-level protocols are covered later). By a similar construction of
BitDec, we can also construct a partial digit-wise decomposition [x]mD(d) ← DigitDec([x]p, d, m), x <
dm. Here, we are only concerned with d ≤ ` because DigitDec is designed as an efficient component
for higher construction and because p is only assumed to be qualified for ±(2`+1)-CQRN, although
it is not difficult to construct a general digit version. The difference is that we replace BLT1 by
DLT and PostfixBLT by a PostfixDLT, which is defined as [z]mB ← PostfixDLT([x]mD(d), [y]mD(d)), where
[zi]p = ([(x mod di+1) > (y mod di+1)]p). PostfixDLT is the main job in DigitDec. To perform this
step, we define FullCMP` : ([z>]p, [z⊥]p) ← FullCMP`([x]p, [y]p) by an analog definition of FullBLT
(Definition 6.6). Similarly, FullCMP` is implemented by two CMP`s. Then, PostfixDLT can be
reduced to PostfixBLT by computing ([x′i]p, [y

′
i]p) ← FullCMP`([xi]p, [yi]p) for i = 0 to m − 1 first

and then [z]mB ← PostfixBLT([x′]mB , [y′]mB). (Recall that we use notation x =
∑m−1

i=0 xi2i.)
Similar to BitDec, DigitDec requires a set of random solved digits [r]D(d), [r]p which are prepared

in the offline phase. A set of random solved digits can be generated from processes similar to Solve-
dRan. Specifically, when d = 2ρ for any positive integer ρ, [r]D(d) can be obtained by rearranging
[r]B.

Complexity. Hence, if we set d = 2blog2 `c, then plus m invocations of FullCMP`, the total cost
of DigitDec is less than 3 rounds and 46m MULTs plus 1 SolvedRan in the offline phase and 13
rounds and 11m MULTs in the online phase. The complete procedure of FullCMP`, PostfixDLT and
DigitDec are shown in Figure 8.

Similar to the summarization in Theorem 6.8, we also have the following lemma.

Lemma 6.9. For all Zp and for all x < dm, where d = O(log p), if a d-digit-wise random [r]D(d),
where r ∈R Zp, is prepared in the offline phase, then [x]mD(d) ← DigitDec([x]p) can be implemented
by Zp-ABB using O(m) MULTs and O(1) rounds in the online phase.

6.5 Bitwise Less-Than

Combining all of the techniques above, we propose our main result regarding the bitwise less-than.
This approach follows the logic of finding the first distinct bit between x and a. First we rearrange
the bits of [xi] ⊕ ai,∀i = 0, ..., m − 1 into µ × (λρ) blocks, where ρ = blog2 `c, λ =

⌊
κ ·

√
m/ρ

⌋

and µ = dm/(λρ)e, where κ is an optimization parameter. The idea is to locate the first non-zero
row (which can be accomplished efficiently by OR∗ and MV) and then to locate the first non-zero
element of that row (which requires DigitDec, CMP` and MV) of the blocks. Certainly, the whole
computation should be conducted privately so that the location information is stored in secret
vectors ([u′]µB and [g]λB). Finally, using an inner product, we derive the result of ([x]mB < a). The
concrete protocol is shown in Figure 9.

27

Bitwise Less-Than (ver. 2): [z]p ← BLT2([x]mB < a):

1. ∀i = 0, ...,m− 1, [yi]p ← [xi]p ⊕ ai.

2. Let ρ = blog2 `c, d = 2ρ. Set λ =
⌊
κ ·

√
m/ρ

⌋
, µ = dm/(λρ)e,

where κ is an optimization parameter.
Rearrange [y]B into µ × (λρ) blocks, while set the first/last (m −
λµρ) empty blocks to be 0. Rearrange a similarly. (Now a =∑µ

i=0

∑λ
j=0 ai,j)

3. ∀i = 0, ..., µ− 1, [ui]p ←
∨λρ−1

i=0 [yi,j]p (using the OR∗ protocol)

4. [u′]µB ← MV([u]µB)

5. ∀j = 0, ..., λ− 1, [vj]p ←
∑µ−1

i=0

∑ρ−1
k=0[u

′
i]p · 2kai,jρ+k

6. ∀i = 0, ..., µ− 1, [w′i]p ←
∑λρ−1

j=0 2j [xi,j]p

7. [w]p ← [w′]µ · [u′]µB
8. [w]λD(d) ← DigitDec([w]p, d, λ)

9. ∀i = 0, ..., λ− 1, [ei]p ← CMP`([wi]p < [vi]p
10. ∀i = 0, ..., λ− 1, [fi]p ← CMP`([wi]p > [vi]p.

11. [g]λB ← MV([e + f]λB)

12. [z]p ← [g]λB · [e]λB
For [z]p ← BLT2([x]mB > a), replace Step 12 by [z]p ← [g]λB · [f]λB .

Figure 9: Implementation of BLT2

28

Complexity. BLT2 involves µ + λ MULTs, µ + 2λ CMP` , 1 MV([u]µB), 1 MV([e + f]λB), and 1
DigitDec([w]p, d, λ). For the optimal adjustment, by setting κ to

√
1/5, the total cost is less than 3

rounds and 58
√

m/ log2 ` plus one SolvedRan in the offline phase and 15 rounds and 14
√

m/ log2 `
in the online phase.

By Theorems 6.1 and 6.3 and Lemma 6.9, we have also the following extension.

Theorem 6.10. For all Zp, given a binary-expressed random [r]B, where r ∈R Zp, prepared in
the offline phase, [z]p ← BLT2([x]mB < a) can be implemented by Zp-ABB using O(

√
m/ log log p)

MULTs and O(1) rounds in the online phase.

6.6 Applications

Our bitwise less-than solution implies new complexity bounds for several high-level applications in
the online phase. For example, with a set of random solved bits {[r]B, [r]p} that are prepared in
the offline phase, a Zero Test (testing whether [x]p is zero) can be performed by one BitsEql, or
equivalently one CMP`, in the online phase. Several known reductions of applications that were
related to bitwise less-than involving the least significant bit [27], integer comparison [27] and
modulo reduction [26] are summarized in Figure 10. When a few sets of {[r]B, [r]p}, depending
on how many invocations of bitwise less-than are used in the protocol, have been prepared in the
offline phase, the remaining computation of these applications can be performed using O(1) rounds
and O(

√
`/log`) MULTs.

7 Related Works and Comparison

This paper is the first study of the “sign” module and its effect on secure arithmetic circuits.
However, several results of bit-decomposition, comparison, modulo reduction and equality test
based on secure arithmetic circuits have been shown in the previous works and serve as good guides
to the problem in this paper. In the following description, we focus on the complexity in the
constant-depth arithmetic circuits and leave the detailed cost estimation for Section 7.1.

Bit-decomposition In [13], Damg̊ard et al. introduce the first constant-rounds bit-decomposition
protocol with perfect security. Their method is based on the computation of the prefix-carries func-
tion. Expressing the carry computation as a semigroup product of the elements carry, propagate,
and kill, they follow a (Boolean) construction in [11] and obtain a O(` log `) complexity. Latter in
[34], Using a tree construction and postfix-comparison, Toft improves the complexity to O(` log∗ `),
and in [29], Reistad and Toft further improve it to O(`) but only with statistical security against
passive adversaries.

Symmetric Boolean functions are Boolean functions with values that depend only on the number
of ones in the input. Expressing them as a polynomial function bit-summation (i.e., f(x0, ..., x`−1) =
φ(1 +

∑`−1
i=0)), Damg̊ard et al. [13] use the prefix-multiplication (a variation of unbounded fan-

in multiplication in [4]) to compute it. They obtain a O(`) complexity for symmetric functions
involving frequently used AND∗ and OR∗.

Integer Comparison Here we only enumerate representative results that use constant-depth
arithmetic circuits and are unconditionally secure. The kernel circuits of secure comparison can
be expressed as bitwise less-than. In [13], although their bitwise less-than protocol has complex-
ity O(`), their secure comparison protocol requires O(` log `) because of the complexity of their

29

Zero Test: [z]p ← ([x]p = 0)

offline: Prepare a pair of random solved bits {[r]B , [r]p}.
online:

1. c ← [x]p + [r]p.
2. [z]p ← BitsEql([r]B , r).

Least Significant Bit(LSB) [27]: [z]p ← ([x]p ≤ p/2)

offline: Prepare a pair of random solved bits {[r]B , [r]p}.
online:

1. c ← [2x]p + [r]p.
2. [(2x0] ← ([r]B ≤ c)·(c0⊕[r0]p)+(1−([r]B ≤ c))·(1−c0⊕[r0]p).
3. [z]p ← 1− [(2x)0]p.

Integer Comparison [27]: [z]p ← ([x]p ≤ [y]p)

1. [u]p ← ([x]p ≤ p/2); [v]p ← ([y]p ≤ p/2); [w]p ← ([x− y]p ≤ p/2);.

2. [z]p ← [u]p(1− [v]p)+(1− [u]p)(1− [v]p)(1− [w]p)+[u]p[v]p(1− [w]p)

Modulo Reduction [26]: [z]p ← ([x mod q]p = 0),∀q ∈ {2, ..., p− 1}
offline: Prepare a set {[r]D(q),B , [r]p}, where [r]D(q),B =

{[rm−1]B , ..., [r0]B}, where ρ = dlog2 qe and m = `/ρ, and
ri ∈ {0, ..., q − 1}.

online:

1. c ← [x]p + [r]p.
2. c0 ← c mod q; c′0 ← c + p mod q.
3. [u]p ← ([r]B ≤ c); [v]p ← ([r0]B ≤ c0); [w]p ← ([r0]B ≤ c′0).
4. [z]p ← [u]p([v]p(c − [r0]p) + (1 − [v]p)(q + c0 − [r0]p)) + (1 −

[u]p)([w]p(c− [r0]p) + (1− [w]p)(q + c0 − [r0]p)).

Figure 10: BLT-realted Applications

30

bit-decomposition. Later in [27], NIshide and Ohta propose an approach without using a bit-
decomposition protocol and obtain a O(`) complexity.

Modulo reduction One way to compute modulo reduction is through bit-decomposition and
linear re-composition of the shares as described in [13]. However, in [13], this approach requires
O(` log `) because of bit-decomposition. Recently, in [26], Ning and Xu use an idea that is similar
to [27] (the random masking trick), to avoid bit-decomposition and to obtain a O(`) complexity.

7.1 Cost Estimation and Comparison

In Table 1, we estimate the cost of our zero test, integer comparison and modulo reduction protocols
and compare them with the best known solutions in the same setting (i.e., with unconditional
security in the Zp-ABB model). For simplicity, we omit the constant terms that are smaller than
the coefficient of the dominant terms in the complexity.

Bit Decomposition. The analysis can be found in Section 6.4. Adding 8` + 60`/ log2 ` of one
SolvedRan in the offline phase, we complete the cost estimation of our BitDec.

AND∗/OR∗. As described in Section 6.2, AND∗ and OR∗ (as well as Threshold and BitsEql) can
be trivially reduced to CMP`. Hence their cost is the same as the cost of one CMP`.

(Deterministic) Zero Test. The offline phase mainly involves one invocation of SolvedRan. The
trimmed estimation of this cost, which is described in [27], is 7 rounds and 76` MULTs. Using
the improvement by Remark 6.5 and following the same amortized analysis (first used in [13]),
which generates four candidates of [r]B in parallel to ensure a low aborting (when r ≥ p) rate,
the cost of SolvedRan can be reduced to 8`+60`/ log2 `. Leaving out SolvedRan, the zero test
protocol in [27] mainly involves one AND∗. However, without using the sign module, their
solution (from [13]) requires 3 rounds and 5` MULTs.

Integer Comparison. In the offline phase, our solution involves mainly 6 invocations of Solve-
dRan, while the solution of [27] mainly involves 3 invocations of SolvedRan. However, because
of the improvement of SolvedRan, we still have a minor improvement on the coefficient of the
dominant term. The cost of the online phase is ascribed mainly to 3 invocations of bitwise
less-thans.

Problem Scheme Offline Online
Rounds MULTs Rounds MULTs

Bit
Decomposition

[34] 7 52` + 24
√

` 26 57` log∗ ` + 19` +
14
√

` log∗ ` + 8
√

`
Proposed 9 42` + 60`/ log2 ` 11 9`

AND∗, OR∗
[13] 2 3` 2 2`
Proposed 3 6 1 1

(Deterministic)
Zero Test

[27] 7 76` 3 5`
Proposed 9 8` + 60`/ log2 ` 1 1

Integer
Comparison

[27] 7 228` 8 51`

Proposed 9 48`+360`/ log2 `+174
√

`/ log2 ` 18 42
√

`/ log2 `
Modulo
reduction

[26] 7 312` 8 42`

Proposed 9 56`+420`/ log2 `+174
√

`/ log2 ` 17 42
√

`/ log2 `

Table 1: Cost Estimation of Several Unconditional Secure Multiparty Protocols in the Zp-ABB
Model. ` = log2 p. 31

Modulo Reduction. The offline phase of modulo reduction is slightly more complex. It requires a
pair of {[r]D(q),B, [r]p}. This approach must first generate [ri]

ρ
B for i = 0, ..., m−1 first. Using

our improved SolvedRan, this step requires approximately 9 rounds and 32` + 240`/ log2 `
MULTs. Adding 3 invocations of SolvedRan that are used in BLT2, these components sum to
56` + 420` log2 `. The online phase is ascribed mainly to 3 invocations of bitwise lese-than.

8 Discussion and Open Issue

Finally we list four topics that are related to this paper and discuss a few open questions for each
of them.

8.1 Sign Modules of Modular Rings

In Sections 3 and 4, we show the existence of Ω(log N)-effective sign modules in any finite field FN

with N = pa and p = O(log N). We show more results regarding sign modules of prime fields; given
an integer `, we propose an efficient randomized algorithm to find an Ω(`)-effective sign module
and to show the existence of an Ω(` log `)-sign module of Zp with ` = dlog2 pe.

We can also discuss the case of finite rings. Although Definition 3.1 is described using finite
fields, the same definition works for finite rings. Moreover, because modular rings (rings of congru-
ence classes) are more natural for simulating integer arithmetic as well as integer comparison and
bit-decomposition, explicit results of a modular ring ZN may be more interesting for these appli-
cations. Using a similar idea for the proofs in Section 3 for FN or Section 4 for Zp, it is possible
to prove the existence of an effective sign module of ZN . However, this extension is not trivial and
requires several technical solutions. Next, we suggest some open issues regarding sign modules of
modular rings. How can we find a concrete sign module? How can we use a sign module of ZN in
applications? Note that, because we need to consider Z∗N carefully, additional constraints for usage
are accompanied. Additionally, note that several operations in ZN need some factorization infor-
mation with respect to N . For example, the known efficient methods for computing the quadratic
character require λ(N) (Carmichael function), and the known efficient methods for computing

√
x

and sampling of a random value in Z∗N require the factorization of N .

8.2 Random Elements

In this paper, the computation is divided into the offline phase and the online phase. Thus the
problem is also divided into two parts. The main work in the offline phase is to generate a set of
secret random bits {[b0]p, ..., [b`−1]p}, where ` = log2 p or a set of random digits {[d0]p, ..., [dm−1]p},
where m = d`/ log2 de for base-d digits.

The random elements can be seen as valuable resources and some corresponding commodity
models can be discussed. However, note that if we require each bit to be independent, the com-
putation complexity is lower-bounded by Ω(`) MULTs for generating ` secret random bits using an
arithmetic black-box. However, some improvements are possible in non-black-box settings. First,
because each secret random bit is generated independently and in parallel, the generation of ` secret
random bits could be divided into subsets of parties. Although this improvement may work in some
specific settings, the implementation should be considered with concrete security models. Second,
although computing ` independent random bits is lower-bounded by Ω{`}, this does not imply that

32

the lower bound of computing m independent random digits is also Ω(`). An open question is
whether we can generate m secret random digits using O(m) MULTs in the ABB setting (or using
O(m log p) communication bits in non-black-box settings). One candidate solution is to involve
integer-based sharing and compromise with statistical security. We refer readers to Algesheimer
et al.’s modulo reduction protocol described in [1] for this direction. However, the protocols in
[1] are only passively secure, and it remains unknown whether it can be promoted to be actively
secure without losing too much efficiency. Finally, using non-independent pseudo-random bits with
weaker security is also a compromise for higher efficiency.

8.3 Extended Applications

First, the techniques that are developed in this paper can be used to build higher-level protocols
of, e.g., integer division, the greatest common divisor and the k-th ranked element. The existence
of effective sign modules of Zp implies that the online phase of these protocols can be improved
from known results.

Second, in Section 4, we use a specific pattern of quadratic residues and non-residues to construct
instances of sign modules of Zp. Because of the existence of specific types of patterns in finite
fields, it is possible to define more modules (other than sign modules) using patterns of quadratic
residues/no-residues, or patterns of other characters of finite fields for various purposes.

8.4 Fully Homomorphic Encryption-Based Computation

Fully Homomorphic Encryption (FHE) supports computation of arbitrary circuits on ciphertexts
homomorphically, which implies a non-interactive model in secure multiparty computation. How-
ever, there are still several challenges to making FHE practical for secure arithmetic computation.
The first challenge concerns the practical efficiency which is affected drastically by security param-
eters. One may like to refer to a recent demonstration [21], a real implementation of a variant of
Gentry’s scheme [18]. Nevertheless, this challenge could be conquered gradually by successive FHE
schemes in the future. The second challenge is that a concrete scheme of an arithmetic version of
FHE (AFHE) (e.g., FN -arithmetic or ZN -arithmetic) is still an open problem. We can emulate
only the computation with Boolean circuits using current schemes. Even if these challenges are
solved, because the advantages of arithmetic circuits v.s. those of Boolean circuits are indepen-
dent of whether we use an FHE scheme, the problem of efficient non-arithmetic computation using
secure arithmetic circuits remains. Specifically, from the results of this paper, we provide some
prepared notes for cases where an AFHE scheme is available. Although we leave strict definitions
and proofs here, it is reasonable to conjecture that, in the non-interactive model of AFHE, compu-
tation involving bit-decomposition, modulo reduction, comparison and zero tests will be inefficient
and will suffer from a high lower-bound. Therefore, an interesting question becomes the following:
how much could the situation be improved if we allow one or a small number of interactions in
AFHE-based computation? One potential scheme is to compare shared secrets with ciphertexts of
AFHE and to compare the reveal operation in our protocols with the decryption of intermediary
ciphertexts (which requires interaction). Then, from a similar idea of the protocols in this paper
and given some random ciphertexts prepared in the offline phase, the computation cost should be
improved remarkably in the online phase.

33

References

[1] J. Algesheimer, J. Camenisch, and V. Shoup. Efficient computation modulo a shared secret
with application to the generation of shared safe-prime products. In 22nd CRYPTO, pages
417 – 432, 2002.

[2] L. Babai, A. Gál, J. Kollár, L. Rónyai, T. Szabó, and A. Wigderson. Extremal bipartite graphs
and superpolynomial lower bounds for monotone span programs. In Proc. 28th STOC, pages
603–611, 1996.

[3] E. BACH. A Note on Square Roots in Finite Fields. IEEE Transactions on Information
Theory, 36(6):1494 – 11498, Nov. 1990.

[4] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a constant number
of rounds of interaction. In 8th ACM Symposium on Principles of Distributed Computing,
pages 201–209, 1989.

[5] C. Bays, K. Ford, R. H. Hudson, and M. Rubinstein. Zeros of Dirichlet L-functions near the
real axis and Chebyshev’s bias. Journal of Number Theory, 87(1):54–76, 2001.

[6] C. Bays and R. H. Hudson. Zeroes of Dirichlet L-Functions and irregularities in the distribution
of primes. Mathematics of Computation, 69(230):861–866, 1999.

[7] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proc. 20th STOC, pages 1–10, 1988.

[8] P. Bogetoft, D. Christensen, I. Damg̊ard, M. Geisler, T. Jakobsen, M. Krøigaard, J. Nielsen,
J. Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach, and T. Toft. Multi-party computation
goes live. In Cryptology ePrint Archive, Report, 2008.

[9] P. Bunn and R. Ostrovsky. Secure two-party k-means clustering. In Proc. 14th CCS, pages
486–497, 2007.

[10] R. Canetti. Universally Composable Security: A new paradigm for cryptographic protocols.
In Proc. 42nd FOCS, pages 136–145, 2001.

[11] A. K. Chandra, S. Fortune, and R. Lipton. Unbounded fan-in circuits and associative functions.
In STOC, pages 52 – 60, 1983.

[12] D. Chaum, C. Crepéau, and I. Damg̊ard. Multiparty unconditionally secure protocols. In
Proc. 20th STOC, pages 11–19, 1988.

[13] I. Damg̊ard, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Unconditionally secure constant-
rounds multi-party computation for equality, comparison, bits and exponentiation. In Proc.
3rd TCC, pages 285–304, 2006.

[14] I. Damg̊ard and G. L. Mikkelsen. Efficient robust and constant-round distributed RSA key
generation. In Proc. 7th TCC, pages 183–200, 2010.

[15] I. Damg̊ard and J. B. Nielsen. Universally composable efficient multiparty computation from
threshold homomorphic encryption. In CRYPTO, pages 247–264, 2003.

34

[16] I. Damg̊ard and C. Orlandi. Multiparty computation for dishonest majority: from passive to
active security at low cost. In Proc. 30th CRYPTO, pages 558–576, 2010.

[17] I. Damg̊ard and R. Thorbek. Non-interactive proofs for integer multiplication. In Proc. 26th
EUROCRYPT, pages 412–429, 2007.

[18] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proc. 41st STOC, pages
169–178, 2009.

[19] R. L. Graham and J. H. Spencer. A constructive solution to a tournament problem. Canad.
Math. Bull., 14(1):45–48, 1971.

[20] J. Guajardo, B. Mennink, and B. Schoenmakers. Modulo reduction for paillier encryptions
and application to secure statistical analysis (extended abstract). In Financial Cryptography
’10, volume 6052, pages 375–382, 2010.

[21] S. Halevi and C. Gentry. Implementing gentry’s fully-homomorphic encryption scheme. In
Eurocrypt’ 11, volume 6632, pages 129–148, 2011.

[22] Y. Ishai, M. Prabhakaran, and A. Sahai. Secure arithmetic computation with no honest
majority. In Proc. 6th TCC, pages 294–314, 2009.

[23] H. W. Lenstra and C. Pomerance. Primality testing with Gaussian periods. In preliminary
version, http://www.math.dartmouth.edu/ carlp/PDF/complexity12.pdf, July 2005.

[24] Y. Lindell and B. Pinkas. Privacy-preserving data mining. Journal of the Cryptology,
15(3):177–206, 2002.

[25] Y. Lindell and B. Pinkas. Secure multiparty computation for privacy-preserving data mining.
Journal of the ACM, 1(1):59–98, 2009.

[26] C. Ning and Q. Xu. Multiparty computation for modulo reduction without bit-decomposition
and a generalization to bit-decomposition. In Asiacrypt, page 487, 2010.

[27] T. Nishide and K. Ohta. Multiparty computation for interval, equality and comparison. In
10th PKC, pages 343–360, 2007.

[28] R. PERALTA. On the distribution of quadratic residues and nonresidues modulo a prime
number. Mathematics of Computation, 58(197):433–440, 1992.

[29] T. Reistad and T. Toft. Linear, constant-rounds bit-decomposition. In ICICS, pages 245–257,
2009.

[30] J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers.
Illinois J. Math, 6(1):64–94, 1962.

[31] M. Rubinstein and P. Sarnak. Chebyshev’s bias. Experiment. Math., 3(3):173–197, 1994.

[32] W. M. Schmidt. Equations over finite fields: An elementary approach. Springer-Verlag, 1976.

[33] A. Shamir. How to Share a Secret. In CACM, 22, pages 612–613, 1979.

35

[34] T. Toft. Constant-rounds, almost-linear bit-decomposition of secret shared values. In CT-RSA
’09, pages 357–371, 2009.

A Numerical Data

Definition A.1. For a positive number d, let t(d) be the first prime that is qualified for ±d-CQRN.

Definition A.2. For a positive number `, we define n(`) = max{d | ⌈log2 t(d)
⌉

= `}. This notation
stands for the maximum effective mapping range {−d, ..., d} in Zp that we can obtain when p is
restricted to 2`−1 < p < 2`.

We show the growth of t and n in Tables 2 and 3 respectively and make the following claim.

Claim A.1. n(`) ≥ 2` + 1, ∀` ≥ 24

From Lemma 4.1, we have n(`) = Ω(` log `). This implies that there is a constant C such that
for all ` ≥ C, n(`) ≥ 2` + 1. In Table 3, we observe that n(`) ≥ 2` + 1 is true for all ` ≥ 24, and
specifically, n(`) ≥ 3` when ` = 32. In addition, from the proof of Theorem 4.1, we can expect that
N(2`, 2` + 1) − N(2`−1, 2` + 1) >> 1 when ` is sufficiently large, and from Table 3, this number
grows to 131 when ` = 32. This implies that this claim is true, although a strict proof would rely
on the analysis of the error term of N(2`, 2` + 1)−N(2`−1, 2` + 1).

d t(d) d t(d) d t(d) d t(d) d t(d) d t(d)
1 3 18 5711 35 366791 52 12537719 69 120293879 86 2929911599
2 7 19 10559 36 366791 53 30706079 70 120293879 87 2929911599
3 23 20 10559 37 366791 54 30706079 71 120293879 88 2929911599
4 23 21 10559 38 366791 55 30706079 72 120293879 89 2929911599
5 71 22 10559 39 366791 56 30706079 73 131486759 90 2929911599
6 71 23 18191 40 366791 57 30706079 74 131486759 91 2929911599
7 311 24 18191 41 366791 58 30706079 75 131486759 92 2929911599
8 311 25 18191 42 366791 59 36415991 76 131486759 93 2929911599
9 311 26 18191 43 366791 60 36415991 77 131486759 94 2929911599
10 311 27 18191 44 366791 61 82636319 78 131486759 95 2929911599
11 479 28 18191 45 366791 62 82636319 79 131486759 96 2929911599
12 479 29 31391 46 366791 63 82636319 80 131486759 97 7979490791
13 1559 30 31391 47 4080359 64 82636319 81 131486759 98 7979490791
14 1559 31 366791 48 4080359 65 82636319 82 131486759 99 7979490791
15 1559 32 366791 49 4080359 66 82636319 83 2929911599 100 7979490791
16 1559 33 366791 50 4080359 67 120293879 84 2929911599
17 5711 34 366791 51 12537719 68 120293879 85 2929911599

Table 2: The growth of t(d).

36

` n(`) the first in-
stance of n(`)

N(2`, 2`+1)−
N(2`−1, 2`+1)

` n(`) the first in-
stance of n(`)

N(2`, 2`+1)−
N(2`−1, 2`+1)

1 0 0 0 17 28 95471 0
2 1 3 2 18 30 250799 0
3 2 7 2 19 42 366791 2
4 0 0 0 20 40 701399 0
5 4 23 0 21 42 1579751 0
6 4 47 0 22 46 4080359 2
7 6 71 0 23 46 5154551 0
8 6 191 0 24 52 12537719 3
9 12 479 0 25 58 30706079 9
10 10 719 0 26 60 36415991 5
11 16 1559 0 27 82 131486759 24
12 16 2999 0 28 72 139191191 32
13 18 5711 0 29 70 302794631 37
14 22 10559 0 30 78 546655511 27
15 30 31391 0 31 82 1147846391 83
16 28 35279 0 32 96 2929911599 131

Table 3: The growth of n(`). 0 indicates that there is no such instance.

37

	Introduction
	Our Results

	Preliminaries
	Notations
	Model of Secure Arithmetic Black-Box
	Secret Random Elements

	Existence of d-Effective Sign Modules of Finite Fields
	Proof of Lemma 3.2

	Concrete Sign Modules of Prime Fields
	d-CQRN Scheme
	d-CQRN is Statistically Optimal
	Finding Concrete Sign Modules

	Supplementary Proofs for Section 4.1
	Proof of Lemma 4.4
	Proof of Lemma 4.5

	Secure Protocols
	Small Range Comparison
	Useful Boolean Functionalities
	Elementary Bit/Digit-wise Less-Than
	Partial Bit/Digit-Decomposition
	Bitwise Less-Than
	Applications

	Related Works and Comparison
	Cost Estimation and Comparison

	Discussion and Open Issue
	Sign Modules of Modular Rings
	Random Elements
	Extended Applications
	Fully Homomorphic Encryption-Based Computation

	Numerical Data

