
Publicly Verifiable Delegation of Computation

Charalampos Papamanthou∗

UC Berkeley
Elaine Shi†

PARC/UC Berkeley
Roberto Tamassia‡

Brown University

November 2, 2011

Abstract

We initiate the study of publicly verifiable computation, which generalizes authenticated data struc-
tures, and verifiable computation in the secret-key setting. In publicly verifiable computation, a trusted
source outsources an application (algorithm) to an untrusted server. Any client can ask the server to run
the application over some given inputs, and the server can produce a witness vouching for the correctness
of the outcome. We propose publicly verifiable computation schemes supporting expressive manipula-
tions over multivariate polynomials, such as polynomial evaluation and differentiation. Our scheme
allows the client to verify the outcome in time proportional to the size of the input, and not depending
on the degree and the description of the polynomial, i.e., in asymptotically less time than performing
the computation locally. Moreover, our scheme allows the source to efficiently update the polynomial
coefficients without performing expensive recomputations proportional to the size of the polynomial.

1 Introduction

Given the emergence of the cloud computing paradigm in business and consumer applications, it has become
increasingly important to provide integrity guarantees in third-party data management settings. This security
goal has prompted the development of new research areas, such as authenticated data structures (e.g., [21,
32, 34]) and outsourced verifiable computation (e.g., [1, 11, 15]), that aim at developing efficient solutions
for verifying the correctness of outsourced computations, a crucial property for the trustworthiness of cloud
services. In this context, it is especially important to minimize the computational overhead incurred by the
verification processes at the client and server, or otherwise the benefits of outsourcing data and computations
are dismissed. Ideally, the computations performed by the server should be verified by the client without
having to locally rerun them and by utilizing a small additional amount of cloud storage.

Consider the following scenario. A trusted source has developed a cloud application and wants to make
it available to its clients. However, due to the large number of clients, this application cannot be executed
on the local data center of the source and is outsourced to several untrusted servers in the cloud. How can
a client (e.g., a smart phone with limited computational resources) efficiently verify that the application will
return the correct results, under the assumption that she trusts only the source that created the application?
Here, efficiency means that the running time of the verification algorithm should be asymptotically less than
the time needed to execute the application. Note that since we want to support any client, we require the
verification mechanism not depend on a secret key, i.e., we are in quest of a publicly verifiable scheme. This
requirement is used in the literature on authenticated data structures [32] but is not captured by the recent
body of work on delegation of computation [4, 15].
∗cpap@cs.berkeley.edu
†elaines@cs.berkeley.edu
‡rt@cs.brown.edu

1

This paper introduces the model of publicly verifiable computation. Publicly verifiable computation is
strictly more general than its secret-key counterpart. In particular, a publicly verifiable computation scheme
immediately implies a secret-key verifiable computation scheme supporting the same operations. As a result,
designing publicly verifiable computation mechanisms is in general more challenging than in the secret-
key setting. Our notion of publicly verifiable computation also generalizes the model of authenticated data
structures, since authenticated data structures are essentially a special case of publicly verifiable computation
where the computation supported are data structure operations.

Apart from the efficiency requirement mentioned above, another important goal of publicly verifiable
computation is the ability to support expressive operations. In this paper, we build a publicly verifiable
computation toolkit supporting expressive polynomial manipulations, including evaluation and differenti-
ation on general (univariate and multivariate) polynomials over Zp. Our constructions are efficient and
non-circuit-based.

Specifically, we consider the following setting. Suppose that a trusted source outsources a degree-d
n-variate polynomial f(x) to an untrusted server. The source also publishes a succinct signature of the
polynomial which is refreshed whenever the source updates the polynomial. Later, a client can request to
evaluate the polynomial at a specific point in Znp , or request to evaluate the k-th (partial) derivative at a
given point. To facilitate verification, the untrusted server computes a succinct witness vouching for the
correctness of the computation result. Our constructions allow the client to verify the outcome in asymptot-
ically less running time than the cost of performing the computation itself. Specifically, if the client were
to evaluate the polynomial or the derivative itself, it would have to perform Ω(

(
n+d
d

)
) amount of work in

the worst-case, since it takes Θ(
(
n+d
d

)
) bits to describe an n-variate polynomial with degree at most d in the

worst-case. However, using our constructions, the client’s verification cost is asymptotically less than the
above (see Table 1).

Other than the performance numbers shown in Table 1, we emphasize that our construction supports
efficient incremental updates—it requires O(1) computation and bandwidth overhead for the trusted source
to update O(1) number of coefficients in the polynomial.

Contributions. Our main contributions are summarized below:

1. We initiate the study and give definitions of publicly verifiable computation, which is a generalization
of authenticated data structures [32] and secret-key verifiable computation [4, 15];

2. To the best of our knowledge, we present the first publicly verifiable computation scheme for op-
erations on multivariate polynomials, such as polynomial evaluation and polynomial differentiation.
Our construction implies the first verifiable computation scheme in the secret-key setting (i.e., in a
two-party setting) for verification of polynomial differentiation;

3. We achieve verification costs that are not dependent on the total degree of the polynomial. Namely,
for a polynomial with n variables of total degree d, the verification cost is O(n) (and O(n + k)
for k-th derivative computation). This is optimal since the size of the input (the values of the n
variables) is O(n). With a small increase in server computation, our scheme further reduces the client
verification cost in comparison with the best previous result by Benabbas et al. [4] (see Table 1).

1.1 Main techniques

Multivariate polynomial evaluation. The polynomial commitment scheme by Kate et al. [23] (see Table 1)
can be employed to achieve public verifiability of univariate polynomial evaluations. However, there does
not seem to be any straightforward method to extend it to the multivariate case. Specifically, Kate et al. [23]
observe that to vouch for the outcome of a polynomial f(x) in Zp evaluated at the point a ∈ Zp, one can

2

rely on the property that the polynomial f(x)−f(a) is perfectly divisible by the degree-1 polynomial x−a,
where a ∈ Zp. In other words, one can find a polynomial w(x) such that f(x) − f(a) = (x − a)w(x).
Using this property, they construct a witness from the term w(x), and using the pairing operation in bilinear
groups, they encode the above test f(x)− f(a) = (x− a)w(x) in the exponents of group elements.

Unfortunately, the test f(x) − f(a) = (x − a)w(x) does not apply to the multivariate case. To allow
verifiable computation for multivariate polynomials, we propose a novel technique based on the following
key observation. Let f(x) be a multivariate polynomial in Zp where x = [x1, x2, . . . , xn]. Then for a =
[a1, a2, . . . , an] ∈ Znp , the polynomial f(x)−f(a) can be expressed as f(x)−f(a) =

∑
i∈[n](xi−ai)wi(x).

The polynomials wi(x) will be used to construct witnesses in our scheme. Namely, we encode the terms in
bilinear groups, as exponents of group elements. The verification is a pairing product equation encoding the
above test in the exponent.

Derivative evaluation. A naive method to support verifiable derivative evaluation is for the source to com-
mit to nk polynomials during setup, corresponding to the 1st, 2nd, . . . , k-th derivatives of each possible
variable. However, as noted in Section 4, this naive scheme results in increased setup and update overhead.

Our techniques for verifying the evaluation of an arbitrary derivative are inspired by the following ob-
servation that holds for first derivatives of univariate polynomials: Given a univariate polynomial f(x),
then the remainder of dividing the polynomial f(x) − f ′(a)x with the polynomial (x − a)2 is always
a constant polynomial, and not a degree-one polynomial, as would generally happen. In other words,
f(x) − f ′(a)x = (x − a)2q(x) + b for some q(x) ∈ Zp[x], and b ∈ Zp. A similar, slightly more in-
volved, observation can be made for higher-order derivatives and multivariate polynomials. More details are
provided in Section 4.

We note here that since our techniques are applied for polynomials in Zp, one might wonder what is the
meaning of a derivative in Zp. It appears that derivatives in Zp do have applications. For example, the Hasse
derivative [12] of polynomials in finite fields has applications in coding theory, and is directly related to
classic Newton-Leibniz derivative through a simple formula. Therefore, verification of the classic derivative
in Zp directly enables the verification of the Hasse derivative.

Note on the security notion. For both polynomial evaluation and derivative evaluation, the test for multi-
variate polynomials contains a sum of terms, as opposed to a single term in the univariate case. This gives
rise to certain technicalities making the proof much trickier than the univariate case [23]. We observe that
if the adversary commits to the challenge point upfront, then the simulator can carefully craft an `-SBDH
instance into the game with the adversary, such that if the adversary breaks the security of the verifiable
computation scheme, the simulator can then break the computational assumption (see Definition 5). There-
fore, while we prove full security for the univariate case, we use a reasonable relaxation called selective
security for the multivariate case, since our proof requires the adversary commit to the challenge point up-
front. Our selective security notion (Definition 4) is analogous to the selective security notion often adopted
in the Identity-Based Encryption (IBE) [6], Attribute-Based Encryption (ABE) [22], Functional Encryption
(FE) [33] and Predicate Encryption (PE) [9] literature.

1.2 Related work

Recent works on secret-key verifiable computation [1, 11, 15] achieve operation sensitive verification of
general boolean circuits, where “operation sensitive” means that the bandwidth required is asymptotically
minimal, i.e., asymptotically the same as the size of the query and the size of the answer. Although such
approaches cover polynomial operations as a special case, thus providing verifiability, they are inherently
inadequate to meet our goals of 1) public verifiability, since a secret key is required for verification; and 2)
dynamic updates, since the description of the circuit is fixed at the initialization of the scheme—both impor-
tant properties in real-world scenarios. Moreover, due to the use of primitives such as fully-homomorphic

3

Scheme Source Server Client Publicly
Setup Query Verification Verifiable

polynomial evaluation: univariate polynomial of degree d
Kate et al. [23] O(d) O(d) O(1) yes

polynomial evaluation: n-variate polynomial of degree d
Benabbas et al. [4] O

((
n+d
d

))
O
((

n+d
d

))
O(n log d) no

This paper O
((

n+d
d

))
O
(
n
(
n+d
d

)
min{log n, d}

)
O(n) yes

k-th derivative evaluation: n-variate polynomial of degree d
This paper O

((
n+d
d

))
O
(
n
(
n+d
d

)
min{log n, d}+ d log d

)
O(n+ k) yes

Table 1: Asymptotic performance (running times) of our scheme in comparison with related work. The
numbers shown represent worst-case performance. Appendix B.2 discusses some practical optimizations
one can do to achieve much better practical performance for polynomials of smaller sizes. Note that the
storage requirement at the server is O(

(
n+d
d

)
) since this is the worst-case size of an n-variate polynomial

whose total degree is bounded by d. We require no permanent storage at the client, since all necessary
cryptographic information required for verification can be signed by the trusted source, stored at the server,
and downloaded by the client on the fly.

encryption [16], their practicality is unclear.
Related to this paper is the work on authenticated data structures whose goal is to provide publicly verifi-

able solutions for data structure problems, such as dictionaries [19, 27], graphs [21, 25], hash tables [31, 35]
and sets [32]. The great majority of authenticated data structures involve the use of cryptographic hash-
ing [2, 5, 19, 25, 26, 28] or other primitives [18, 30, 31] to hierarchically compute one or more secure digests
over the outsourced data. Most authenticated data structures incur verification costs that are proportional to
the time spent to produce the query answer and thus are not operation sensitive. Some bandwidth-optimal
and operation-sensitive solutions have been developed for range queries [2, 20] and set operations [32].

The challenge of public verifiability also arises in memory checking [5, 14, 29], a fundamental approach
to data integrity: Dwork et al. [14] show how to trade off reads and writes for a secret-memory checker
but state that it is “intriguingly” difficult to achieve the same result for checkers using only public reliable
memory. Non-membership proofs are also related, both for the RSA accumulator [24] and the bilinear-map
accumulator [3, 10, 13].

Perhaps closest related works are those by Kate et al. [23] and Bennabas et al. [4]. Kate et al. [23]
give a publicly verifiable commitment scheme for univariate polynomials. However, their scheme does not
directly extend to multivariate polynomials. On the other hand, while Bennabas et al. [4] develop methods
for operation sensitive verification of multivariate polynomial evaluation, their solution is restricted to the
secret-key setting. Moreover, their verification complexities depend on the degree of the polynomial (see
Table 1). Note that our construction is the first to support the efficient verification of differentiation queries—
even in the secret-key setting.

2 Preliminaries, definitions and assumptions

In this section, we give necessary definitions that are going to be used in the rest of the paper. The security
parameter is denoted with λ, PPT stands for probablistic polynomial-time and neg(λ) denotes the set of
negligible functions, i.e., all the functions less than 1/p(λ), for all polynomials p(λ). We also use bold
letters for vector variables, i.e., x = [x1, x2, . . . , xn] denotes a vector of n entries x1, x2, . . . , xn.

4

We begin with the definition of a publicly verifiable computation scheme. This definition is based on an
analogous definition of an authenticated data structure scheme [32], appropriately adjusted for the case of
publicly verifiable computation.

Definition 1 (Publicly verifiable computation scheme) A publicly verifiable computation scheme for a
function family F is a tuple of six PPT algorithms (KeyGen,Setup,Compute,Verify,Update,Refresh) with
the following specification:

1. (PK,SK) ← KeyGen(λ,F): The KeyGen algorithm takes as input the security parameter λ and a
function family F . It outputs a public key and a secret key pair (PK,SK);

2. VI(f)← Setup(SK,PK, f): The Setup algorithm takes as input the secret key SK, the public key PK,
and a function f ∈ F . It outputs the public verification information VI(f) for the function f ;

3. (v, w) ← Compute(PK, f,a): The Compute algorithm takes as input the public key PK, a function
f ∈ F and a point a ∈ domain(f). It outputs a pair (v, w), where v = f(a) is the output of the
function f at point a, and w is a witness;

4. {0, 1} ← Verify(PK,VI(f),a, v, w): The Verify algorithm takes as input the public key PK, public
verification information VI(f), data point a ∈ domain(f), the claimed result v and a witness w. It
outputs either 0 or 1;

5. (VI(f ′), upd)← Update(SK,PK,VI(f), f ′): The Update algorithm takes as input the secret key SK,
the public key PK, the public verification information VI(f) for the old function f and the updated
function description f ′. It outputs update information upd and updated public verification information
VI(f ′);

6. VI(f ′) ← Refresh(PK,VI(f), upd, f ′): The Refresh algorithm takes as input the public key PK,
the public verification information VI(f) for the old function f , the update information upd and the
updated function description f ′. It outputs the updated public verification information VI(f ′).

In is important to note in this definition that algorithm Verify is required not have access to the secret key
SK, effectively turning the scheme into publicly-verifiable. Moreover, note the difference between Update
and Refresh: Algorithm Refresh does not have access to the secret key, which serves the purpose of enabling
an untrusted party to perform the update.

2.1 Protocols

In this section, we briefly describe how the above algorithms of a publicly verifiable computation scheme
are applied in a three-party protocol, involving a trusted source, an untrusted server and a client. Note that
this is exactly the setting that has been used in authenticated data structures literature (e.g., [32]).

Initially, the source wishes to outsource the computation of a function f ∈ F to an untrusted server.
It runs algorithm KeyGen to output the keys of the system and then algorithm Setup that takes f as input
and outputs the verification information VI(f), which is sent to the untrusted server, along with the original
function f . The verification information contains a succinct, usually constant-size, signed description of the
function (circuit) to be verified. The client issues queries a on function f . On input a query a, the server
computes the answer f(a) and a witness w by using algorithm Compute. The server then sends f(a) and
w to the client. Finally, the client executes algorithm Verify, which takes as input a, f(a), w and VI(f),
in order to publicly verify (either accept or reject) the correctness of f(a), based only on the freshness and
correctness of VI(f) that is published by the source. How to ensure freshness and correctness of VI(f) has

5

been studied in classic settings (e.g., time-stamped signatures [34]), and is outside the scope of this paper.
However, we provide some suggestions in Appendix D.

The Update algorithm allows the trusted source to update the function f to some new function f ′. It
outputs update description upd and the new verification information VI(f ′) containing the signed digest of
the new function f ′, which will later be used to publicly verify the correctness of computing the updated
function f ′. A naive way to realize the Update algorithm is to simply run the Setup algorithm again for the
new f ′. However, in practice, one may wish to allow more efficient incremental update. Finally, the Refresh
algorithm is run by the untrusted server and has the same functionality with Update, with the difference that
it does not use the secret key.

2.2 Correctness and security definitions

We describe now in this section the correctness and security definitions for a publicly verifiable computation
scheme. Intuitively, a publicly verifiable computation scheme is correct if whenever its algorithms are
executed honestly, it never rejects a correct answer. Also, it is secure if the adversary cannot persuade a
verifier to accept a wrong computational result, except with negligible probability.

Definition 2 (Correctness of a publicly verifiable computation scheme) Let λ be the security parameter,
and P = (KeyGen,Setup,Compute,Verify,Update,Refresh) be a publicly verifiable computation scheme
for a function family F . We say that P is correct, if the following holds. Let (PK,SK) ← KeyGen(λ,F).
For all i = 1, . . . , poly(λ), for any function fi ∈ F , suppose VI(fi) is the output of either (VI(fi), upd) ←
Update(SK,PK,VI(fi−1), fi) or VI(fi)← Refresh(PK,VI(fi−1), upd, fi), where VI(f0) is output by algo-
rithm Setup(SK,PK, f0) for some f0 ∈ F . For any i = 0, . . . , poly(λ) and for any a ∈ domain(fi), let
(v, w)← Compute(PK, fi,a). Then, we have 1← Verify(PK,VI(fi),a, v, w).

In the following, we give two security definitions. The first (full security) can be used to prove security
for the case of univariate polynomials. The second (selective security) is used for the case of multivariate
polynomials and is a reasonable relaxation of the first. This relaxation requires the adversary to commit
ahead of time to the challenge point x, which is analogous to the selective security notion often adopted
in the Identity-Based Encryption (IBE) [6], Attribute-Based Encryption (ABE) [22], Functional Encryption
(FE) [33] and Predicate Encryption (PE) [9] literature.

Definition 3 (Full security of a publicly verifiable computation scheme) Let λ be the security parameter
and P = (KeyGen,Setup,Compute,Verify,Update,Refresh) be a publicly verifiable computation scheme
for a function family F . We say that P is fully-secure if no PPT adversary A has more than negligible
probability neg(λ) in winning the following security game played between A and a challenger:

1. Initialization. The challenger runs the KeyGen algorithm which outputs (PK, SK). The challenger
gives PK to the adversary A but maintains SK secret;

2. Update queries. The adversary initially makes an oracle query to the Setup(SK,PK, f0) algorithm,
specifying an initial function f0 ∈ F , outputting VI(f0). Then, for i = 1, . . . , poly(λ), he adaptively
makes a polynomial number of oracle queries to the Update(SK,PK,VI(fi−1), fi) algorithm, each
time specifying fi ∈ F . The challenger answers the queries by returning the resulting VI(fi);

3. Challenge. The adversary A outputs a tuple (VI,a, v, w). The adversary A wins the game if
Verify(PK,VI,a, v, w) = 1 and if one of the following is true:

(a) Either VI was never returned in a Setup or Update query;
(b) Or VI was previously returned in a Setup or Update query upon input fj ∈ F and fj(a) 6= v.

6

We note that in the above definition, Case (a) in the challenge phase refers to the event that the adversary
A succeeds in forging verification information VI, whereas Case (b) refers to the event that the adversary
claims a wrong computational result that however passes the verification test.

Definition 4 (Selective security of a publicly verifiable computation scheme) Let λ be the security pa-
rameter and P = (KeyGen,Setup,Compute,Verify,Update,Refresh) be a publicly verifiable computation
scheme for a function family F . We say that P is selectively-secure if no PPT adversary A has more than
negligible probability neg(λ) in winning the following security game played between A and a challenger:

1. Initialization. The challenger runs the KeyGen algorithm which outputs (PK, SK). The challenger
gives PK to the adversary A but maintains SK secret. At this point, the adversary commits to a
challenge point a∗;

2. Update queries. The adversary initially makes an oracle query to the Setup(SK,PK, f0) algorithm,
specifying an initial function f0 ∈ F , outputting VI(f0). Then, for i = 1, . . . , poly(λ), he adaptively
makes a polynomial number of oracle queries to the Update(SK,PK,VI(fi−1), fi) algorithm, each
time specifying fi ∈ F . The challenger answers the queries by returning the resulting VI(fi);

3. Challenge. The adversary A outputs a tuple (VI,a∗, v, w), where a∗ is the challenge point that he
committed to in the initialization phase. The adversary A wins the game if Verify(PK,VI,a∗, v, w) =
1 and if one of the following is true:

(a) Either VI was never returned in a Setup or Update query;
(b) Or VI was previously returned in a Setup or Update query upon input fj ∈ F and fj(a∗) 6= v.

2.3 Multivariate polynomials notation

This paper will build a cryptographic toolkit supporting publicly verifiable computation for expressive ma-
nipulations over multivariate polynomials. We now define some notations for multivariate polynomials.

Multiset definitions. A multiset over some universe U is a generalized set comprising elements from the
universe U , where each element can appear more than once; for example, {1, 1, 2, 3, 3, 3} is a multiset.
In this paper, we use the following notation to denote multisets. Formally, a multiset S : U → Z≥0 is a
function mapping each element in a universe U to its multiplicity. For any element x not in the multiset
S, we define S(x) to be 0. For example, for the multiset {a, a, b, c, c, c}, we have S(a) = 2, S(b) = 1,
S(c) = 3; however, S(e) = 0 since e is not contained in the above multiset.

Let now S, T denote two multisets over some universe U . We say that S ⊆ T , if ∀a ∈ U , S(a) ≤ T (a).
Finally, the size of a multiset S over some universe U , denoted |S|, is defined as the sum of the multiplicity
of all elements in the multiset S, i.e., |S| =

∑
a∈U S(a). To make the notation more compact, we denote

with Sd,n the set of multisets of size at most d over the universe {1, 2, . . . , n}.
Multivariate polynomials with multiset notation. In this paper, we consider verifiable computation for
multivariate polynomials over the filed Zp. Let f ∈ Zp[x1, x2, . . . , xn] be an n-variate polynomial over Zp
with maximum degree d. We can use the following generic notation to represent f , i.e.,

f(x1, x2, . . . , xn) =
∑

S∈Sd,n

cS ·
∏
i∈S

x
S(i)
i . (2.1)

For example, the multiset {1, 1, 2, 2, 2, 5} corresponds to the term for x21x
3
2x5 in the expanded form of the

polynomial. The empty multiset ∅ corresponds to the constant term in the polynomial.
The degree of a multivariate polynomial is the maximum total degree of any monomial contained in the

polynomial. For example, the degree of the polynomial 3x1x2 + x33x4x5 is 5.

7

2.4 Bilinear groups and computational assumptions

We now review some background on bilinear groups of prime order. Let G be a cyclic multiplicative group
of prime order p, generated by g. Let also GT be a cyclic multiplicative group with the same order p and
e : G×G→ GT be a bilinear pairing with the following properties: (1) Bilinearity: e(P a, Qb) = e(P,Q)ab

for all P,Q ∈ G and a, b ∈ Zp; (2) Non-degeneracy: e(g, g) 6= 1; (3) Computability: There is an efficient
algorithm to compute e(P,Q) for all P,Q ∈ G. We denote with (p,G,GT , e, g) the bilinear pairings
parameters, output by a PPT algorithm on input 1λ.

The assumption that we are going to use in order to prove security of our construction is the following:

Definition 5 (Bilinear `-strong Diffie-Hellman assumption) Suppose λ is the security parameter and let
(p,G,GT , e, g) be a uniformly randomly generated tuple of bilinear pairings parameters. Given the ele-
ments g, gt, . . . , gt

` ∈ G for some t chosen at random from Z∗p, where ` = poly(λ), there is no polynomial-
time algorithm that can output the pair (c, e(g, g)1/(t+c)) ∈ Z∗p\{−t} × GT except with negligible proba-
bility neg(λ).

3 Construction for multivariate polynomial evaluation

In this section we present the construction of a publicly-verifiable computation scheme for multivariate
polynomial evaluation. Before we start the presentation of the algorithms of the scheme in Definition 1, we
give some preliminary results. Our construction relies on the following key observation stated in Lemma 1.

Lemma 1 Let f(x) ∈ Zp[x] denote an n-variate polynomial over Zp. Then, f(x) evaluates to 0 at a ∈ Znp ,
i.e., f(a) = 0, if and only if f(x) can be expressed in the form f(x) =

∑
i∈[n](xi − ai)qi(x), where for all

i ∈ [n], qi(x) ∈ Zp[x] is some polynomial over Zp.

Proof: The direct of the above claim is straightforward: If a polynomial f(x) can be expressed as∑
i∈[n](xi − ai)qi(x), it evaluates to 0 at a. For the inverse, the proof is by explicit construction. Given a

polynomial f(x) ∈ Zp[x], we use polynomial division to first divide f(x) by (x1 − a1). Specifically,

f(x1, x2, . . . , xn) = (x1 − a1) · q1(x1, x2, . . . , xn) + r1(x2, x3, . . . , xn) ,

where r1(x2, x3, . . . , xn) is the remainder term, and r1(x2, x3, . . . , xn) should no longer contain the variable
x1. Next, divide r1(x2, x3, . . . , xn) by (x2 − a2), and divide the remainder by (x3 − a3), and so on. In this
way, we can write f(x) as

f(x) =
∑
i∈[n]

(xi − ai)qi(x) + rn ,

where rn ∈ Zp. Now since f(a) = 0, rn has to be 0, since otherwise, f(a) would not evaluate to 0.
We now give a useful corollary to be used in the construction of our scheme:

Corollary 1 Let f(x) ∈ Zp[x] denote an n-variate polynomial over Zp. For a ∈ Znp , f(x)−f(a) evaluates
to 0 at a. Therefore, there exist polynomials qi(x) ∈ Zp[x] for i ∈ [n] such that f(x)−f(a) =

∑
i∈[n](xi−

ai)qi(x).

Intuition. Given an n-variate polynomial f(x), the trusted source first creates a digest of the polynomial
by picking a random point t ∈ Znp (referred to as the commitment point), and evaluating the polynomial
at t. The resulting value f(t) will be used to compute the digest gf(t), which the trusted source signs and
publishes. The digest gf(t) together with its signature comprise VI(f). Later in the computation stage, when
a server wishes to prove that v is indeed the value f(a), it will rely on the key observation stated in Corol-
lary 1. Basically, it will find n polynomials q1(x), q2(x), . . . , qn(x) such that the relation of Corollary 1

8

holds, and the values gqi(t) (i = 1, . . . , n) will be provided as witnesses. To allow the server to evaluate
the polynomials qi(x) at the commitment point t in the exponent, the public key must contain appropriate
helper terms. If the claimed computation result v is correct, then the following must be true, where both
sides of the equation are evaluated at the commitment point t.

f(t)− v =
∑
i∈[n]

(ti − ai)qi(t) . (3.2)

Since in the real construction, the terms in the above equation are encoded in the exponents of group el-
ements, the verifier cannot directly check the above equation. However, since bilinear groups allow us to
express polynomials of degree-2 in the exponent, the verifier can check the above condition using operations
in the bilinear group, including the pairing operation which allows one to express one multiplication. The
bilinear group operations directly translate to checking the above condition (Equation 3.2) in the exponent.

3.1 Algorithms of the scheme

As we will see, the security of our construction relies on the `-SBDH assumption (see Definition 5) and the
security of a standard signature scheme satisfying existential unforgeability under adaptive chosen message
attacks (e.g., [17]). Let Σ be such a signature scheme. We use the notation (Σ.sk,Σ.pk) ← Σ.Key(λ),
σ ← Σ.Sign(sk,msg), {0, 1} ← Σ.Ver(Σ.pk, σ,msg) to denote the key generation, signing, and verification
algorithms of the signature scheme respectively. This signature scheme will be used by the trusted source
to sign some “digest” of the polynomial f . The digest and the signature will be included in the verification
information VI(f).

Algorithm (PK,SK) ← KeyGen(λ,F): Suppose that the function family F ⊆ Zp[x1, x2, . . . , xn] rep-
resents all polynomials over Zp with at most n variables and degree bounded by d. Namely, family
F contains the polynomials represented by multisets in set Sn,d (see Relation 2.1) The KeyGen algo-
rithm does the following operations: (a) It invokes the key generation algorithm of the signature scheme
(Σ.sk,Σ.pk) ← Σ.Key(λ); (b) Next, it invokes the bilinear group generation algorithm to generate a bilin-
ear group instance of prime order p (of λ bits), with a bilinear map function e : G × G → GT ; (c) Then
it chooses a random generator g ∈ G; (d) Then it chooses a random point t = [t1, t2, . . . , tn] ∈ Znp and
computes the witness generation setWn,d as below:

Wn,d =
{
g
∏
i∈S t

S(i)
i : ∀S ∈ Sn,d

}
. (3.3)

For example, the witness generation set W2,2 contains the elements g, gt1 , gt2 , gt
2
1 , gt

2
2 , gt1t

2
2 , gt

2
1t2 , gt

2
1t

2
2 .

The algorithm finally outputs the public key PK that contains Σ.pk, g,Wn,d and the description of G,GT , e.
The secret key SK contains the signature signing key Σ.sk and the commitment point t. We describe an
optimization referring to the size of the size ofWn,d in Section B.2 in the Appendix.

Algorithm VI(f) ← Setup(SK,PK, f): Let f(x) ∈ Zp[x1, . . . , xn] denote an n-variate polynomial of
maximum degree d over Zp that is represented by the multisets S1, S2, . . . , Sk ∈ Sn,d and the respective co-
efficients c1, c2, . . . , ck ∈ Zp (the polynomial has k terms), as defined in Relation 2.1. The setup algorithm,
by using the witness generation setWn,d contained in PK, computes the digest of the polynomial, i.e.,

digest(f) = gf(t) =

(
g
∏
i∈S1

t
S1(i)
i

)c1
×
(
g
∏
i∈S2

t
S2(i)
i

)c2
× . . .×

(
g
∏
i∈Sk

t
Sk(i)

i

)ck
. (3.4)

The algorithm outputs the public verification information VI(f) to contain digest(f) and its signature
Σ.Sign(sk, digest(f)).

9

Algorithm (v, w)← Compute(PK, f,a): The Compute algorithm first computes v = f(a). Then, and due
to Corollary 1, it finds an appropriate set of polynomials q1(x), q2(x), . . . , qn(x) to express the polynomial
f(x)− v as

f(x)− v =
∑
i∈[n]

(xi − ai)qi(x) .

The witness w is a vector of n witnesses w1, w2, . . . , wn, such that wi = gqi(t) for all i ∈ [n]. Note that wi
can easily be computed using the witness generation setWn,d, as is achieved for the digest in Relation 3.4.
It finally outputs the pair (v, w) denoting the outcome of the polynomial evaluated at a, and a witness to
vouch for the correctness of the computation.

Algorithm Verify(PK,VI(f),a, v, w): Parse PK as the public key of the signature scheme Σ.pk and the
witness generation set Wn,d and VI(f) as the digest digest and the respective signature σ. To verify
that v is indeed the outcome of the correct polynomial evaluated at point a ∈ Znp , given a witness w =
[w1, w2, . . . , wn], algorithm Verify checks if the following equations hold:

Σ.Ver(Σ.pk, σ, digest)
?
= 1 and

n∏
i=1

e
(
gti · g−ai , wi

) ?
= e

(
digest · g−v, g

)
.

In the above, the terms gti are contained in PK (specifically inWn,d) and digest equals gf(t) (with all but
negligible probability) if the verification of the signature is successful. The algorithm accepts the computa-
tion result v, and outputs 1 if the above equations hold; otherwise, it rejects and outputs 0.

Algorithm (VI(f ′), upd) ← Update(SK,PK,VI(f), f ′): Let f denote the current polynomial and f ′ be
the new polynomial that corresponds to the update. Assume that f ′ and f differ in only one coefficient.
Specifically, let S denote the multiset corresponding to that coefficient.1

Parse the secret key as SK = (Σ.sk). Suppose now that the current verification information is VI(f) =
(digest(f), σ). The algorithm computes

digest(f ′)← digest(f) · g(c′S−cS)
∏
i∈S t

S(i)
i and σ′ ← Σ.Sign(Σ.sk, digest(f ′)) ,

updating in this way VI(f) to VI(f ′). Notice that the term g
∏
i∈S t

S(i)
i is included in the public key PK.

Finally, the update information upd output by the algorithm is simply VI(f ′).

Algorithm VI(f ′) ← Refresh(PK,VI(f), upd, f ′): The Refresh algorithm outputs upd as VI(f ′) and also
updates the description of the function to f ′.

We now give the final result of this section:

Theorem 1 (Publicly verifiable computation scheme for polynomial evaluation) There exists a publicly
verifiable computation scheme {KeyGen,Setup,Compute,Verify,Update,Refresh} for the evaluation of n-
variate polynomials of total degree d, such that (1) It is correct according to Definition 2; (2) For n = 1,
it is fully-secure according to Definition 3 and under the the `-SBDH assumption; (3) For n > 1, it is
selectively-secure according to Definition 4 and under the the `-SBDH assumption; (4) Algorithm Setup
runs inO(

(
n+d
d

)
) time; (5) Algorithm Compute runs inO(n

(
n+d
d

)
min{log n, d}) time, outputting a witness

of O(n) size; (6) Algorithm Verify runs in O(n) time; and (7) Algorithms Update and Refresh run in O(1)
time for updating O(1) number of coefficients.

The correctness of our construction follows in a straightforward manner from Corollary 1, and the
bilinear property of the pairing operation e. We present the security proofs for the multivariate case (Part
(3) of Theorem 1) in Appendix C.1. We present the security proofs for the univariate case (Part (2) of
Theorem 1) in Appendix C.3. The asymptotic performance analysis is provided in Appendix A.1.

1Namely, the only difference between f and f ′ is that the coefficient cS corresponding to the term
∏
i∈S x

S(i)
i is updated to c′S

in f ′.

10

4 Construction for multivariate polynomial differentiation

In this section, we construct a publicly verifiable computation scheme for the verification of differentiation
queries. Namely, given a polynomial f(x), we derive efficient verification methods for the k-th partial
derivative at some point a, i.e., the computation ∂kf(x)/∂xkj (a).

One naive method to support derivative computation is to commit to all nk polynomials correspond-
ing to all the possible derivatives (k in total) of each possible variable. This would incur a setup cost of
O(nk

(
n+d
d

)
), while our construction requires only O(

(
n+d
d

)
) setup cost, the same with the simple polyno-

mial evaluation. Another drawback of the naive method is increased update cost, since an update operation
would now involve updating all nk polynomials.2

We now explain our novel construction supporting differentiation queries on polynomials. We will rely
on a useful property of the k-th derivative for polynomials. To provide the necessary intuition, we first state
the property for the univariate case as in Lemma 2.

Lemma 2 (Property of k-th derivative of a univariate polynomial) Let f(x) denote a univariate polyno-
mial over Zp. For a ∈ Zp, f(x) can be expressed as f(x) = (x − a)k+1q(x) + ckx

k + ck−1x
k−1 + . . . +

c1x + c0, where c1, c2, . . . , ck ∈ Zp. Then, the k-th derivative of f(x) evaluates to k! · ck at point a, i.e.,
∂kf(x)
∂xk

(a) = k! · ck.

Proof: Let g(x) = (x− a)k+1. First, observe that for all 0 ≤ j ≤ k, ∂
jg(x)
∂xj

(a) = 0. In the above the 0-th
derivative of a polynomial is the polynomial itself. The k-th derivative of a product of terms g(x)q(x) can
be expressed as below:

∂kg(x)q(x)

∂xk
= g(x)

∂kq(x)

∂xk
+

(
k

1

)
∂q(x)

∂x

∂k−1q(x)

∂xk−1
+

(
k

2

)
∂2q(x)

∂x2
∂k−2q(x)

∂xk−2
+ . . .+

∂kg(x)

∂xk
q(x) .

Due to the fact that ∂jg(x)
∂xj

(a) = 0 for all 0 ≤ j < k, we have ∂kg(x)q(x)
∂xk

(a) = 0. Suppose now r(x) =

ckx
k + ck−1x

k−1 + . . .+ c1x+ c0. Then, we have ∂kf(x)
∂xk

(a) = ∂k(g(x)·q(x))
∂xk

(a) + ∂kr(x)
∂xk

(a) = ∂kr(x)
∂xk

(a) =
k! · ck.

We generalize now this property to the multivariate case.

Lemma 3 (Property of partial k-th derivative of a multivariate polynomial) Let x = [x1, x2, . . . , xn],
and let f(x) ∈ Zp[x] denote a multivariate polynomial over Zp. Then, for a = [a1, a2, . . . , an] ∈ Znp , f(x)
can be expressed as

f(x) =
n∑
i=2

(xi − ai)ui(x) + (x1 − a1)k+1q(x1) + ckx
k
1 + ck−1x

k−1
1 + . . .+ c1x1 + c0 . (4.5)

Then, the k-th derivative of f(x) with respect to x1 evaluates to k! · ck at point a, i.e., ∂
kf(x)

∂xk1
(a) = k! · ck.

A similar result holds for derivatives with respect to any variable xi by variable renaming.

Proof: The proof is by explicit construction. The polynomial u2(x) is the quotient when dividing f(x) by
(x2 − a2), the remainder is then divided by (x3 − a3), resulting in the quotient u3(x), and the remainder is
then divided by (x4 − a4), and so on. This goes on until we divide the remainder with (xn − an), at which
point, we are left with a remainder r(x1) containing only the variable x1. At this point, we divide r(x1) by
(x1 − a1)k+1 resulting in the quotient q(x1), and the remainder is expressed as ckxk1 + ck−1x

k−1
1 + . . . +

2Such a solution would also increase the communication cost during an update between the source and the untrusted server.
Namely, every time the source would update a coefficient, it would need to communicate O(nk) signatures, whereas in our scheme
there is a need only for one signature.

11

c1x1 + c0. We now show that ∂kf(x)/∂xk1(a) = k! · ck. To do this, we analyze the k-th derivative with
respect to x1 for each additive term of f(x) expressed in the above form. Notice that for 2 ≤ i ≤ n, we
have

∂k(xi − ai)ui(x)

∂xk1
(a) = (xi − ai)

∂kui(x)

∂xk1
(a) = 0 .

Let g(x1) = (x1 − a1)k+1. As proven in Lemma 2, we have ∂kg(x1)q(x1)

∂xk1
(a1) = 0. Also notice that for all

polynomials whose degree in x1 is smaller than k, its k-th derivative with respect to x1 is 0. As a result,
∂kf(x)

∂xk1
(a) =

∂kckx
k
1

∂xk1
(a) = k! · ck.

Intuition. Similar to the construction for polynomial evaluation, the trusted source computes a digest gf(t)

for the polynomial at a random commitment point t ∈ Znp . The digest is signed and published. In the
computation stage, for the server to prove that the claimed result v is indeed the k-th derivative with respect
to some variable x1, evaluated at a ∈ Znp , i.e., v = ∂kf(x)/∂xk1(a), the server first expresses the polynomial
as in Equation 4.5 and then provides the following witnesses{

gui(t), i = 2, . . . , n
}
∈ Gn−1 and gq(t1) ∈ G and c0, c1, . . . , ck−1 ∈ Zp .

The client can then check that Equation 4.5 holds, when both sides are evaluated at the commitment point
t. Since terms in the relation of Equation 4.5 are encoded as exponents of bilinear group elements, the
verification is through bilinear group operations, which translates to algebra in the exponents.

4.1 Algorithms of the scheme

In this section we provide the detailed construction for the verification of derivatives evaluation. Algo-
rithms KeyGen, Setup, Update and Refresh are exactly the same with the case of multivariate polynomial
evaluation in Section 3. We describe in detail algorithms Compute and Verify.

Algorithm (v, w)← Compute(PK, f,a, k, i): The Compute algorithm here takes in two additional param-
eters k and i, indicating the evaluation of the k-th derivative of the polynomial with respect to variable xi
at a. Without loss of generality, below we assume i = 1. In other words, the algorithm should evaluate
∂kf(x)

∂xk1
(a). Due to Lemma 3, f(x) can be expressed as

f(x) =
n∑
i=2

(xi − ai)ui(x) + (x1 − a1)k+1q(x1) + ckx
k
1 + ck−1x

k−1
1 + . . .+ c1x1 + c0 .

The witness w for the derivative computation is the following tuple:(
gu2(t), gu3(t), . . . , gun(t), gq(t1), ck−1, . . . , c1, c0

)
∈ Gn × Zkp .

Finally, the result of the computation is given by v = k! · ck.

Algorithm Verify(PK,VI(f),a, v, w, k, i): Let ck = v
k! . Parse PK as the public key of the signature scheme

Σ.pk and the witness generation setWn,d and VI(f) as the digest digest and the respective signature σ. To
verify that v is indeed the outcome of the k-th partial derivative on varaible x1 evaluated at point a ∈ Znp ,
perform the following steps. Parse w as (w2, . . . , wn, ω, ck−1, . . . , c0). Given the witness w, algorithm
Verify checks if the following equations hold:

Σ.Ver(Σ.pk, σ, digest)
?
= 1 and e (digest, g)

?
=

n∏
i=2

e
(
gtig−ai , wi

)
·e
(
g(t1−a1)k+1

, ω
)
·
k∏
i=0

e
(
gt
i
1 , g
)ci

.

12

In the above, all the used expressions are computable by using the elements in the witness generation set
Wn,d. Also, digest equals gf(t) (with all but negligible probability) if the verification of the signature is
successful. The algorithm accepts the computation result v, and outputs 1 if the above equations hold;
otherwise, it rejects and outputs 0.

Theorem 2 (Publicly verifiable computation scheme for polynomial differentiation) There exists a pub-
licly verifiable computation scheme {KeyGen,Setup,Compute,Verify,Update,Refresh} for the differenti-
ation (k-th partial derivative) of n-variate polynomials of total degree d, such that (1) It is correct ac-
cording to Definition 2; (2) For n = 1, it is fully-secure according to Definition 3 and under the the
`-SBDH assumption; (3) For n > 1, it is selectively-secure according to Definition 4 and under the
the `-SBDH assumption; (4) Algorithm Setup runs in O(

(
n+d
d

)
) time; (5) Algorithm Compute runs in

O(n
(
n+d
d

)
min{log n, d} + d log d) time, outputting a witness of O(n + k) size; (6) Algorithm Verify runs

in O(n + k) time; and (7) Algorithms Update and Refresh run in O(1) time for updating O(1) number of
coefficients.

The correctness of our construction follows in a straightforward manner from Lemma 3, and the bilinear
property of the pairing operation e. We present the security proofs for the multivariate case (Part (3) of
Theorem 2) in Appendix C.2. We present the security proofs for the univariate case (Part (2) of Theorem 2)
in Appendix C.3. The asymptotic performance analysis is provided in Appendix A.2.

5 Conclusions and open problems

Motivated mainly by cloud computing applications, in this paper we initiate the study of publicly verifiable
computation, extending and generalizing previous work on authenticated data structures and outsourced
verifiable computation in the secret key setting. Some interesting and challenging open problems that stem
from this work include proving the full security for the multivariate constructions and also constructing
efficient publicly verifiable computation schemes for other expressive operations, such as graph and data
mining algorithms. Also, it would be very challenging to construct efficient mechanisms for the verification
of general boolean circuits in the public key setting.

Acknowledgments

This work was supported by the National Science Foundation under grants CCF-0424422, 0842695, 0808617
and CNS-1012060, by the Air Force Office of Scientific Research (AFOSR) under MURI award FA9550-
09-1-0539, by the MURI program under AFOSR grant FA9550-08-1-0352, by the Center for Geometric
Computing at Brown University and NetApp. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the sponsors.
The authors thank Basilis Gidas for verifying the validity of Lemma 1.

References

[1] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient verification via se-
cure computation. In International Colloquium on Automata, Languages and Programming (ICALP),
pages 152–163. Springer, 2010.

[2] M. J. Atallah, Y. Cho, and A. Kundu. Efficient data authentication in an environment of untrusted
third-party distributors. In Proceedings of International Conference on Data Engineering (ICDE),
2008.

13

[3] M. H. Au, P. P. Tsang, W. Susilo, and Y. Mu. Dynamic universal accumulators for DDH groups and
their application to attribute-based anonymous credential systems. In Proc. Cryptographers’ Track at
the RSA Conference (CT-RSA), pages 295–308. Springer, 2009.

[4] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over large datasets. In
CRYPTO, pages 111–131, 2011.

[5] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of memories.
Algorithmica, 12(2/3):225–244, 1994.

[6] D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption without random ora-
cles. In EUROCRYPT, 2004.

[7] D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions. In EUROCRYPT,
pages 149–168, 2011.

[8] D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary fields and new tools for
lattice-based signatures. In Public Key Cryptography, pages 1–16, 2011.

[9] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data. In TCC, pages
535–554, 2007.

[10] J. Camenisch, M. Kohlweiss, and C. Soriente. An accumulator based on bilinear maps and efficient
revocation for anonymous credentials. In Public Key Cryptography (PKC), pages 481–500, 2009.

[11] K.-M. Chung, Y. Kalai, and S. Vadhan. Improved delegation of computation using fully homomorphic
encryption. In CRYPTO, 2010.

[12] V. C. da Rocha Jr. Digital sequences and the hasse derivative. Communications Coding and Signal
Processing, 3:256–268, 1997.

[13] I. Damgård and N. Triandopoulos. Supporting non-membership proofs with bilinear-map accumula-
tors. Cryptology ePrint Archive, Report 2008/538, 2008. http://eprint.iacr.org/.

[14] C. Dwork, M. Naor, G. N. Rothblum, and V. Vaikuntanathan. How efficient can memory checking be?
In Theoretical Cryptography Conference (TCC), pages 503–520, 2009.

[15] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computation
to untrusted workers. In CRYPTO, pages 465–482, 2010.

[16] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.

[17] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-
message attacks. SIAM J. Comput., 17:281–308, April 1988.

[18] M. T. Goodrich, R. Tamassia, and J. Hasic. An efficient dynamic and distributed cryptographic ac-
cumulator. In Proc. Information Security Conference (ISC), volume 2433 of LNCS, pages 372–388.
Springer, 2002.

[19] M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenticated dictionary with
skip lists and commutative hashing. In Proc. DARPA Information Survivability Conference and Expo-
sition II (DISCEX II), pages 68–82, 2001.

14

http://eprint.iacr.org/

[20] M. T. Goodrich, R. Tamassia, and N. Triandopoulos. Super-efficient verification of dynamic outsourced
databases. In Proc. RSA Conference, Cryptographers’ Track (CT-RSA), volume 4964 of LNCS, pages
407–424. Springer, 2008.

[21] M. T. Goodrich, R. Tamassia, and N. Triandopoulos. Efficient authenticated data structures for graph
connectivity and geometric search problems. Algorithmica, 60(3):505–552, 2011.

[22] V. Goyal, A. Jain, O. Pandey, and A. Sahai. Bounded ciphertext policy attribute based encryption. In
Proceedings of the 35th international colloquium on Automata, Languages and Programming, Part II,
ICALP ’08, pages 579–591, 2008.

[23] A. Kate, G. Zaverucha, and I. Goldberg. Polynomial commitments. In Asiacrypt, 2010.

[24] J. Li, N. Li, and R. Xue. Universal accumulators with efficient nonmembership proofs. In Proc.
Applied Cryptography and Network Security (ACNS), pages 253–269, 2007.

[25] K. M. Man Lung Yiu, Yimin Lin. Efficient verification of shortest path search via authenticated hints.
In ICDE, pages 237–248, 2010.

[26] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine. A general model for
authenticated data structures. Algorithmica, 39(1):21–41, 2004.

[27] R. C. Merkle. A certified digital signature. In G. Brassard, editor, Proc. CRYPTO ’89, volume 435 of
LNCS, pages 218–238. Springer-Verlag, 1989.

[28] M. Naor and K. Nissim. Certificate revocation and certificate update. In Proc. 7th USENIX Security
Symposium, pages 217–228, Berkeley, 1998.

[29] M. Naor and G. N. Rothblum. The complexity of online memory checking. J. ACM, 56(1), 2009.

[30] C. Papamanthou and R. Tamassia. Cryptography for efficiency: Authenticated data structures based
on lattices and parallel online memory checking. Cryptology ePrint Archive, Report 2011/102, 2011.
http://eprint.iacr.org/.

[31] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Authenticated hash tables. In Proc. ACM
Conference on Computer and Communications Security (CCS), pages 437–448. ACM, October 2008.

[32] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Optimal verification of operations on dynamic
sets. In CRYPTO, pages 91–110, 2011.

[33] A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457–473, 2005.

[34] R. Tamassia. Authenticated data structures. In Proc. European Symp. on Algorithms, volume 2832 of
LNCS, pages 2–5. Springer-Verlag, 2003.

[35] R. Tamassia and N. Triandopoulos. Efficient content authentication in peer-to-peer networks. In Proc.
Int. Conf. on Applied Cryptography and Network Security (ACNS), volume 4521 of LNCS, pages 354–
372. Springer, 2007.

[36] D. Wendlandt, D. Andersen, and A. Perrig. Perspectives: Improving SSH-style host authentication
with multi-path probing. In Proc. USENIX Annual Technical Conference, June 2008.

15

http://eprint.iacr.org/

Appendices

A Asymptotic performance

A.1 Construction for multivariate polynomial evaluation

Setup. In algorithm Setup, the trusted data source performs O(
(
n+d
d

)
) amount of computation, and transfer

O(
(
n+d
d

)
) amount of information to the server. In the above, n is the number of variables and d is an upper

bound on the degree. To see why, observe that
(
n+d
d

)
is the number of n-variate monomials with degree at

most d.
While this is the worst-case performance, in Section B.2, we discuss how to significantly reduce the

amount of computation and bandwidth needed for the trusted source in practice for polynomials of smaller
sizes.

Also, note that the verification information has size O(n).

Computation and verification. In the computation phase, it is not hard to see that the communication
between the client and the server is O(n), and that the client performs O(n) amount of work to verify the
correctness of the computation result.

As for server-side computation, the server needs to decompose the polynomial according to Equa-
tion 3.2. This polynomial decomposition dominates the asymptotic performance.

To perform the polynomial decomposition, the server performs n polynomial divisions. If one uses the
naive polynomial division algorithm, since each variable can have degree up to d, each polynomial division
involves d steps, and each step takes time proportional to the number of terms in the polynomial, namely,
O(
(
n+d
d

)
). Therefore, the polynomial decomposition (Equation 3.2) can be done in O(nd

(
n+d
d

)
) time using

the naive algorithm.
In cases where d > log n, one can use the FFT method to perform polynomial division, resulting in

O(n log n
(
n+d
d

)
) computation time.

A.2 Construction for derivative evaluation

Setup. Same as above.

Computation and Verification. It is not hard to see that the client’s verification cost and the witness size
are both O(n+ k). In particular, notice that the client needs to expand polynomials of the form (x− a)k+1,
and this can be done in O(k) time. The remainder of the computation clearly can be done in O(n+ k) time.

As for server computation, similar to the polynomial evaluation case, the server performs a polynomial
decomposition according to Equation 4.5. This decomposition can take two steps. First, decompose as
below:

f(x) =

n∑
i=2

(xi − ai)ui(x) + r(x1) , (A.6)

where r(x1) is a polynomial only in x1. This step takes the same amount of time as in the polynomial
evaluation case, i.e., O(n

(
n+d
d

)
min{log n, d}).

Next, decompose r(x1) as below:

r(x1) = (x1 − a1)k+1q(x1)ckx
k
1 + ck−1x

k−1
1 + . . . c1x1 + c0 . (A.7)

This step takes O(d log d) time, since it involves a polynomial division—we can use the FFT method for
that.

16

B Practical optimizations and extensions

B.1 Computing derivatives in a batch

The construction for evaluating derivatives in Section 4 can be used to verifiably compute the values of
the k, k − 1, k − 2, . . . , 0-th derivatives with respect to some variable x1 (evaluated at a) in a single run.
Specifically, observe that in Lemma 3, for 0 ≤ κ ≤ k, the κ-th derivative of the function f at a is the
following:

∂κf

∂xκ1
(a) =

k∑
i=κ

i!

(i− κ)!
cia

i−κ
1 . (B.8)

Since the witness returned from the server contains all of c0, c1, . . . , ck−1 as well, the client can easily
compute the k − 1, k − 2, . . . , 0-th derivatives. In Appendix C.2, we show that if the `-SBDH assumption
holds, then the server must return all the correct c0, c1, . . . , ck−1 values.

As a result, if a client wishes to evaluate multiple derivatives with respect to the same variable, it suffices
for the server to run Compute only once and return the corresponding witness – in other words, the additional
derivatives “get a free ride”.

B.2 Smaller witness generation set for smaller polynomials

In our basic constructions in Sections 3 and 4, the witness generation setWn,d contains one term correspond-
ing to every possible monomial with at most n variables and degree d. Therefore, the witness generation set
is of size

(
n+d
d

)
—the number of multisets of d elements chosen among n+ 1 things (the n variables and the

constant 1).
In practice, if a polynomial is smaller in size when expressed as a sum of product terms, one can po-

tentially reduce the size ofWn,d. Specifically, for every monomial
∏
i∈S x

S(i)
i contained in the polynomial,

represented by multiset S, the server just needs the following terms (monomials) to appear inWn,d:

∀T ⊆ S : g
∏
i∈T t

T (i)
i , (B.9)

where T ⊆ S if and only if T (i) ≤ S(i) ∀i ∈ [n]. Therefore, if each variable has O(1) degree, and there
are at most m terms in the polynomial, then the total size ofWn,d will be O(m).

Notice that if this optimization is used, the Update algorithm needs to be modified accordingly. Specifi-
cally, if a new monomial corresponding to the multiset S is added during an update, then the trusted source
also has to additionally expand the public key PK and compute and transfer the terms contained in Equa-
tion B.9 to the server during an update.

C Security proofs

C.1 Construction for multivariate polynomial evaluation

We now build a simulator S which obtains an instance of the `-SBDH assumption from a challenger C. The
simulator S then embeds this `-SBDH assumption into an instance of the verifiable computation scheme—
such that if an adversary A can break the selective security of the verifiable computation scheme with more
than negligible probability, the simulator S can then leverage the adversaryA to break the `-SBDH instance
it obtained from from the challenger, also with non-negligible probability.

17

C.1.1 Proof of Part (3) of Theorem 1

Assume that the simulator S obtains the following `-SBDH assumption from the challenger C, where ` = d
(the maximum degree of the polynomial):(

g, gτ , gτ
2
, . . . , gτ

d
)
.

Initialization. The challenger runs the key generation algorithm, and gives the public key PK to the adver-

sary A. The adversary then commits to a challenge point

a∗ = [a∗1, a
∗
2, . . . , a

∗
n] .

Setup. When the adversary first queries the Setup algorithm, the simulator S performs the following. The
simulator needs to choose a random point t, evaluate the polynomial at t, and create the corresponding
witness generation set Wn,d and verification information VI(f) the chosen point t. The simulator S will
implicitly choose the point t as below. The simulator implicitly lets

t1 = τ . (C.10)

For i ∈ {2, 3, . . . n}, the simulator first picks random (ri, si) such that

a∗i = ri · a∗1 + si . (C.11)

The simulator then implicitly lets
ti = ri · τ + si . (C.12)

The simulator remembers the values of all ri’s for later usage.
Now the simulator needs to compute Wn,d and VI(f). The problem is that the simulator does not

actually know the ti’s, since these values are inherited and transformed from the `-SBDH assumption it
obtained from the challenger. Fortunately, observe that the challenger can still compute all terms in Wn,d

and VI(f), since when one plugs in Equations C.10 and C.12, it is not hard to see that all terms in Wn,d

and VI(f) are essentially of the form gq(τ) where q(τ) is some polynomial of degree at most d. Since the
challenger knows the values of

(
g, gτ , gτ

2
, . . . , gτ

d
)

, it can easily compute all of these terms. Notice that
in the above simulation the terms generated by the simulator are identically distributed as running the real
Setup algorithm.

Updates. The adversary can request update the polynomial either by calling the Setup algorithm again,
or by calling the incremental update algorithm Update. As mentioned in Section 3, updates change the
verification information VI(f). It is not hard to see that the simulator does not need to know the ti’s to
update the digest in the VI(f). It can then use the signing key Σ.sk to sign the updated digest.

Challenge. The adversary outputs a forgery for the committed point a∗. The forgery consists of some VI(f),
a claimed outcome v of the polynomial at a∗, and a witness w = (w1, w2, . . . , wn). Due to the security of
the signature scheme, VI(f) must be an output of one of the oracle queries to either Setup or Update—since
otherwise, one can leverage this adversary and build a straightforward reduction to break the security of the
signature scheme. Let f denote the corresponding input of that oracle query which resulted in VI(f). If the
forgery is successful, the following must be true: v 6= f(a∗) and Verify(VI,x, v, w) = 1. The simulator will
now leverage this forgery to break the `-SBDH instance it got from the challenger.

Specifically, let c = v − f(a∗) 6= 0 ∈ Zp, i.e., the difference between the true outcome and the claimed
outcome. Since the verification succeeds, we have

e (g, g)f(t)−v =
∏
i∈[n]

e
(
gti−a

∗
i , wi

)
.

18

Or equivalently,
e (g, g)c = e (g, g)f(t)−f(a

∗) ·
∏
i∈[n]

e
(
ga
∗
i−ti , wi

)
. (C.13)

Due to Lemma 1, the simulator can find polynomials q1(t), q2(t), . . . , qn(t) such that

f(t)− f(a∗) =
∑
i∈[n]

(ti − a∗i)qi(t) .

Therefore, we can re-write the above Equation C.13 as below:

e (g, g)c =
∏
i∈[n]

e
(
gti−a

∗
i , gqi(t)

)
·
∏
i∈[n]

e
(
ga
∗
i−ti , wi

)
. (C.14)

Or equivalently,
e(g, g)c =

∏
i∈[n]

e
(
gti−a

∗
i , gqi(t) · wi

)
. (C.15)

Now, the simulator will try to raise both sides of the above Equation C.15 to 1
τ−a∗1

, i.e., divide the exponent
by τ − a∗1. If the simulator can successfully do this for the right-hand side, then clearly, the simulator would

be able to obtain the value e(g, g)
c

τ−a∗1 —thereby breaking the `-SBDH assumption.
The problem is that it is not possible to directly raise the right-hand side of Equation C.15 to 1

τ−a∗1
.

Fortunately, recall that the simulator has carefully crafted the ti values earlier (implicitly without actually
learning the ti values). Specifically, due to Equations C.10, C.11, and C.12, it is not hard to see that

ti = a∗i = ri(τ − a∗1) .

As a result, ∏
i∈[n]

e
(
gti−a

∗
i , gqi(t) · wi

) 1
τ−a∗1

=
∏
i∈[n]

e
(
gri , gqi(t) · wi

)
.

It is not hard to see that the right-hand side of the above equation provides an efficient method for the
simulator to raise the right-hand side of Equation C.15 to 1

τ−a∗1
. Specifically, the simulator can now compute

e (g, g)
1

τ−a∗1 =

∏
i∈[n]

e
(
gri , gqi(t) · wi

)c−1

,

breaking in this way the `-SBDH assumption. This completes the proof.

C.2 Construction for derivative evaluation

We now build a simulator S which obtains an instance of the `-SBDH assumption from a challenger C. The
simulator S then embeds this `-SBDH assumption into an instance of the verifiable computation scheme
for the derivative evaluation—such that if an adversary A can break the selective security of the verifiable
computation scheme with more than negligible probability, the simulator S can then leverage the adversary
A to break the `-SBDH instance it obtained from from the challenger, also with non-negligible probability.

19

C.2.1 Proof of Part (3) of Theorem 2

Assume that the simulator S obtains the following (k + 1)d-SBDH instance from the challenger C,(
g, gτ , gτ

2
, . . . , gτ

(k+1)d
)
,

where 0 ≤ k ≤ d is the highest order derivative one needs to support, and d is an upper bound on the degree
of the polynomial.

Initialization. The challenger runs the key generation algorithm, and gives the public key PK to the adver-
sary A. The adversary then commits to a challenge point

a∗ = [a∗1, a
∗
2, . . . , a

∗
n] .

Setup. When the adversary first queries the Setup algorithm, the simulator S performs the following. The
simulator needs to choose a random point t, evaluate the polynomial at t, and create the corresponding
witness generation set Wn,d and verification information VI(f) the chosen point t. The simulator S will
implicitly choose the point t as below. The simulator guesses at random an index j ∈ [n], and an order
0 ≤ k ≤ d—such that in the challenge stage, the adversary will output a forgery for the k-th derivative

∂kf(x)

∂xkj

at point a∗. If this guess turns out to be wrong later, the simulation simply aborts. Notice that the simulator
can guess right with probability 1

nd .
For the chosen coordinate j, the simulator implicitly lets

tj = τ , (C.16)

without actually computing tj .
For i 6= j, the simulator picks random ri ∈ Zp, and implicitly chooses

ti = ri(τ − a∗j)k+1 + a∗i , (C.17)

without actually computing the values. The simulator remembers the ri values for later use.
Now the simulator needs to compute the witness generation set Wn,d and VI(f). The problem is that

the simulator does not actually know the ti’s, since these values are inherited and transformed from the
(k + 1)d-SBDH instance it obtained from the challenger. Fortunately, observe that the challenger can still
compute all terms in Wn,d and VI(f), since when one plugs in Equations C.16 and C.17, it is not hard to
see that all terms in WK and VI are essentially of the form gq(τ) where q(τ) is some polynomial of degree
at most (k + 1)d.

Since the challenger knows the values of

g, gτ , gτ
2
, . . . , gτ

(k+1)d

from the (k+ 1)d-SBDH instance, it can easily compute all of these terms. Notice that in the above simula-
tion the terms generated by the simulator are identically distributed as as running the real Setup algorithm.

Updates. The adversary can request update the polynomial either by calling the Setup algorithm again,
or by calling the incremental update algorithm Update. As mentioned in Section 3, updates change the
verification information VI(f). It is not hard to see that the simulator does not need to know the ti’s to
update the digest in the VI(f). It can then use the signing key Σ.sk to sign the updated digest.

20

Challenge. The adversary outputs a forgery for the committed point a∗, evaluating the derivative ∂kf(x)/∂xkj .
If the values of k and j turn out to be different that what the simulator guessed, simply abort the simulation.
As mentioned earlier, the simulator can guess correctly with probability 1

nd .
The forgery consists of some VI(f), a claimed derivative v for ∂kf(x)/∂xkj (a

∗), and a witness parsed
as:

w = (w2, w3, . . . , wn, ω, ck−1, ck−2 . . . , c0) .

Due to the security of the signature scheme, VI(f) must be an output of one of the oracle queries to either
Setup or Update—since otherwise, one can leverage this adversary and build a straightforward reduction to
break the security of the signature scheme. Let f denote the corresponding input of that oracle query which
resulted in VI(f). If the forgery is successful, the following must be true:

v 6= ∂kf(x)

∂xkj
(a∗) and Verify(VI,x, v, w, k, i) = 1 .

The simulator will now leverage this forgery to break the (k+1)d-SBDH instance it got from the challenger.
Since the verification succeeds, the following holds:

e
(
gf(t), g

)
=
∏
i 6=j

e
(
gtig−a

∗
i , wi

)
· e
(
g(tj−a

∗
j)
k+1

, ω
)
·
k∏
i=0

e
(
gt
i
j , g
)ci

, (C.18)

where ck = v
k! . The simulator now decomposes f(t) as in Lemma 3.

f(t) =
∑
i 6=j

(ti − a∗i)ûi(t) + (xj − a∗j)k+1q̂(xj) + ĉkx
k
j + ĉk−1x

k−1
j + . . .+ ĉ1xj + ĉ0 .

Notice that we use the convention that the hatted values correspond to the correct decomposition of the
polynomial which is performed by the simulator. The unhatted versions of the same variables are those
returned by the adversary. They may not be from the correct the decomposition, however, the verification
equation (Equation C.18) still holds. Rewrite Equation C.18 as:

k∏
i=0

e
(
gt
i
j , g
)ĉi−ci

= e
(
g(tj−a

∗
j)
k+1

, ωg−q̂(t)
)∏
i 6=j

e
(
gti−a

∗
i , wig

−û(t)
)
. (C.19)

Due to Equation C.17, for i 6= j, we have

ti − a∗i = ri
(
tj − a∗j

)k+1
= ri

(
τ − a∗j

)k+1
.

The simulator can raise the right-hand side of Equation C.19 to 1
(τ−a∗j)k+1 , by computing the following:

e
(
g, ωg−q̂(t)

)∏
i 6=j

e
(
gri , wig

−û(t)
)
.

Notice that the simulator is able to compute the values gq̂(t) and gû(t) (evaluated at t) simply by using terms
contained inWn,d, even though the simulator does not know the value of t in the clear.

Let ∆i = ĉi − ci. The simulator now has the following:

e (g, g)

∑k
i=0 ∆iτ

i

(τ−a∗
j

)k+1
= e

(
g, ωg−q̂(t)

)∏
i 6=j

e
(
gri , wig

−û(t)
)
. (C.20)

We now prove the following lemma.

21

Lemma 4 Given e (g, g)

∑k
i=0 ∆iτ

i

(τ−a∗
j

)k+1
from Equation C.20, the simulator can break the (k + 1)d-SBDH as-

sumption.

Suppose, without loss of generality that
∑k

i=0 ∆iτ
i does not divide (τ − a∗j)k+1. If not, one can cancel out

the (τ − a∗j) factors appearing in polynomial
∑k

i=0 ∆iτ
i, which yields prime polynomials. Then, by using

the extended Euclidean algorithm, the simulator can compute polynomials g(τ) and f(τ) such that

g(τ)
k∑
i=0

∆iτ
i + f(τ)(τ − a∗j)k+1 = 1⇒ g(τ)

k∑
i=0

∆iτ
i = 1− f(τ)(τ − a∗j)k+1 .

Therefore Equation C.20 is equivalent to

e (g, g)

1−f(τ)(τ−a∗j)k+1

(τ−a∗
j

)k+1
= e

(
gg(τ), ωg−q̂(t)

)∏
i 6=j

e
(
grig(τ), wig

−û(t)
)
,

yielding

e (g, g)
1

(τ−a∗
j

)k+1
= e (g, g)f(τ) e

(
gg(τ), ωg−q̂(t)

)∏
i 6=j

e(grig(τ), wig
−û(t)) ,

which eventually gives

e (g, g)
1

τ−a∗
j = e (g, g)f(τ)(τ−a

∗
j)
k

e
(
gg(τ)(τ−a

∗
j)
k

, ωg−q̂(t)
)∏
i 6=j

e
(
grig(τ)(τ−a

∗
j)
k

, wig
−û(t)

)
.

In other words, unless the adversary honestly follows the protocol, the simulator will be able to break the
(k + 1)d-SBDH assumption.

C.3 Full Security for Univariate Polynomials

For the special case of univariate polynomials, our constructions (both for polynomial evaluation and for
derivative evaluation) satisfy the full security definition.

C.3.1 Proof of Part (2) of Theorems 1 and 2

It is not hard to modify the proofs in Sections C.1 and C.2 to the univariate case, and achieve full security.
Since there is only a single variable in this case, the simulator can simply embed the τ obtained from the
challenger into the only variable by Equation C.10 or Equation C.16. Since the other variables disappear
from the proof, Equations C.12 and C.17 are no longer needed. As a result, there is no longer a need for
the adversary to commit to the challenge point ahead of time. We can therefore prove full security for the
special case of univariate polynomials.

D Discussion

Note on freshness. If the verification information VI(f) is stored at an untrusted server, the client needs to
download the necessary verification information (or a subset of the terms) during the verification step. A
malicious server can cheat by providing an old version of VI(f), thereby violating freshness guarantees.

Freshness is outside the scope of this paper, and essentially the same problem has been studied in classic
settings, such as in authenticated data structures [34], or the distribution of certificates in PKI [36]. We

22

suggest one potential method to achieve freshness below. Basically, the trusted source can build a Merkle
hash tree over all terms in the VI(f), sign the root hash, and publish the signed root hash. The trusted source
must have some channel to distribute the up-to-date root hash to all clients, e.g., publish it on a website.
For higher resilience, the trusted source can also distribute the up-to-date root hash to multiple parties, such
that one can use a majority vote mechanism to determine the most up-to-date hash. If clients and the trusted
source have weak clock synchronization, the trusted source can also update the root hash each day, and
attach a timestamp during signing. This way, a client can be sure that it has the latest root hash by checking
the timestamp.

Once a client can obtain the most up-to-date root hash, it can download a subset or all of VI(f), and the
using standard authenticated Merkle hash tree techniques, it can verify that the VI(f) (or a subset of it) is
the most up-to-date.

23

	Introduction
	Main techniques
	Related work

	Preliminaries, definitions and assumptions
	Protocols
	Correctness and security definitions
	Multivariate polynomials notation
	Bilinear groups and computational assumptions

	Construction for multivariate polynomial evaluation
	Algorithms of the scheme

	Construction for multivariate polynomial differentiation
	Algorithms of the scheme

	Conclusions and open problems
	Asymptotic performance
	Construction for multivariate polynomial evaluation
	Construction for derivative evaluation

	Practical optimizations and extensions
	Computing derivatives in a batch
	Smaller witness generation set for smaller polynomials

	Security proofs
	Construction for multivariate polynomial evaluation
	Proof of Part (3) of Theorem 1

	Construction for derivative evaluation
	Proof of Part (3) of Theorem 2

	Full Security for Univariate Polynomials
	Proof of Part (2) of Theorems 1 and 2

	Discussion

