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Abstract

Provable Data Possession (PDP) allows data owner to periodically and remotely
audit their data stored in a cloud storage, without retrieving the file and without
keeping a local copy. Ateniese et al. (CCS 07) proposed the first PDP scheme,
which is very efficient in communication and storage. However their scheme requires
a lot of group exponentiation operations: In the setup, one group exponentiation is
required to generate a tag per each data block. In each verification, (equivalently)
(m + `) group exponentiations are required to generate a proof, where m is the
size of a data block and ` is the number of blocks accessed during a verification.
This paper proposed an efficient PDP scheme. Compared to Ateniese et al. (CCS
07), the proposed scheme has the same complexities in communication and storage,
but is more efficient in computation: In the setup, no group exponentiations are
required. In each verification, only m group exponentiations are required to gen-
erate a proof. The security of the proposed scheme is proved under Knowledge of
Exponent Assumption and Factoriztion Assumption.

1 Overview

Ateniese et al. [ABC+07] proposed the first Provable Data Possession (PDP for short)
scheme. Their scheme is very efficient in communication and storage: the size of a proof
is independent on the number of blocks accessed during a verification and the storage
overhead due to authentication tags is a fraction1 of the size of the original data. However,
their scheme requires a large number of modular exponentiation in both setup phase and
verification phase, and is thus relative expensive in computation.

In this paper, we will propose a new PDP construction named POS, which requires no
modular exponentiation in the setup phase and a smaller number of group exponentiations
in verification phase, without sacrificing in communication or storage aspects. We remark
that both Ateniese et al. [ABC+07, ABC+11] and the proposed scheme in this paper
support only private key verification.

∗This is the full version of the PDP scheme described in the Appendix of Cryptology ePrint Archive,
Report 2011/362.

1This fraction is a configurable system parameter.
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1.1 A Brief Description of POS

Setup Phase.

Suppose Alice wants to backup her file F into a cloud storage server provided by Bob.
Alice encodes file F with some error erasure code to obtain data blocks (F0, . . . , Fn−1).
Alice chooses a RSA modulus N = pq, a secret seed, denoted as seed, of a pseudorandom
function PRF, and a secret number τ . Let φ(N) = (p− 1)(q− 1). With the secret private
key sk = (φ(N), seed, τ), Alice produces an authentication tag σi for each block Fi:

σi := τFi + PRFseed(i) mod φ(N). (1)

We emphasize that the generated authentication tag σi is much shorter than a data block
Fi. At the end of setup, Alice sends data blocks and tags {(i, Fi, σi) : i ∈ [0, n − 1]}
together with a public key pk = (N) to Bob.

Audit.

Later, Alice may remotely verify the integrity of her data file stored with Bob periodically.
In each verification session, Alice randomly selects a subset C ⊂ [0, n− 1] of indices and
selects a random weights νi for each i ∈ C. Alice sends {(i, νi) : i ∈ C} as challenge to
Bob. Bob then finds all data blocks Fi’s and authentication tags σi’s with index i ∈ C,
and apply the linear homomorphism to compute an aggregated message-tag pair (M, σ) as
below:

M :=
∑
i∈C

νiFi; (2)

σ :=
∑
i∈C

νiσi. (3)

We emphasize that the above two equations are computed over integer domain, and
thus the bit-length of the linear combination M (the aggregated authentication tag σ,
respectively ) is slightly larger than a data block Fi (an authentication tag σi, respectively).

Instead of sending the large message block M together with authentication tag σ directly
to the verifier Alice, Bob is able to produce a shorter data-tag pair with the help of Alice.
Alice generates a pair of public token pt and secret token st per each verification, where
the public token pt is sent to the prover Bob and the secret token st is kept private. With
pt and (M, σ), Bob is able to generate a shorter message-tag pair, which can be verified
by the verifier Alice with the private key and the secret token st.

Illustration Picture

Figure 1 illustrates the scheme POS briefed above. In Figure 1, a rectangle represents a
data block, and a circle represents a short authentication tag corresponding to the data
block represented by the rectangle that lies above. Those shaded rectangles represent data
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blocks that are generated by the error erasure code. In our scheme POS, a data block is
treated as a single large integer (much larger than the RSA modulus N). Figure 1 shows
an example where a data block is about three times larger than a tag, by dividing each
rectangle with dashed lines.

In a verification, a subset of three pairs of blocks and tags are selected, which are
aggregated into a single pair of block and tag through linear homomorphism. Since the
linear combination is computed over integer domain, the aggregated block (tag, respec-
tively) is slightly larger than an original data block (tag, respectively). With the help
of the public token pt provided by the verifier, a shorter block-tag pair can be generated
from the long aggregated block-tag pair. The verifier can verify the short block-tag pair
using a secret token st.

1.2 Organization

The rest of this chapter is organized as below. The next Section 2 describes the definition
of PDP . Section 3 presents the construction of our PDP scheme POS. Then we analyze
the performance of proposed scheme in Section 4 and security in Section 5. At the end,
Section 6 closes this chapter.

2 Provable Data Possession: Definition and Formu-

lation

A PDP scheme consists of five polynomial algorithms (KeyGen,DEncode,Challenge, Prove,Verify),
which are described as below.

• KeyGen(1λ)→ (pk, sk): Given security parameter λ, the randomized key generating
algorithm outputs a public-private key pair (pk, sk).

• DEncode(sk, F) → (idF, n, F̂): Given the private key sk and a data file F, the data
encoding algorithm DEncode produces a unique identifier idF, file size n (in term of
number of blocks) and the encoded file F̂.

• Challenge(sk, id, n) → (pt, st,Chall): The probabilistic algorithm Challenge takes as
input the private key sk, a file identifier id and the file size n (in term of number of
blocks), and outputs a public token pt, a private token st and a query Chall.
Note: (1) The public/secret token pair (pt, st) is generated independently per each
verification. (2) In both [ABC+07] and the scheme POS that will be presented later
in this Chapter, Chall is just a subset of indices (in the range [0, n− 1]) and weights
(from some group), and has no secret information involved.

• Prove(pk, idF, F̂, pt,Chall)→ ψ: Given the public key pk, an identifier idF, an encoded
file F̂, a public token pt and a challenge query Chall, the prover algorithm Prove
produces a proof ψ.
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Figure 1: An Efficient PDP scheme POS

• Verify(sk, idF, st,Chall, ψ)→ accept or reject: Given the private key sk, an identi-
fier idF, the secret token st, a challenge query Chall, and a proof ψ, the deterministic
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verifying algorithm Verify will output either accept or reject.

Remark 1 Compared to the POR, in the above description for PDP, the prover al-
gorithm Prover takes as an additional input a public token pt and the verifier algorithm
Verify takes a corresponding secret token st as an additional input, where the public/secret
token pair (pt, st) is generated online by the verifier for each verification session.

3 POS: An Efficient PDP Scheme

Like the first PDP scheme proposed by Ateniese [ABC+07], in our construction below
the prover requires a public token to generate a short proof and the verifier requires
a corresponding secret token to verify the short proof, where this pair of public-secret
tokens are generated by the verifier online per each verification session. Therefore, the
homomorphic cryptography component of the below construction is not a MAC scheme,
and we do not separate it out as a standalone component.

The description of scheme POS = (KeyGen,DEncode,Challenge,Prove,Verify) is as be-
low.

POS.KeyGen(1λ)→ (pk, sk)

Choose at random a λ bits RSA modulus N = pq, such that all of p, q, p′ = (p −
1)/2, q′ = (q−1)/2 are primes and the bit-lengths of p and q are the same. Without
loss of generality, assume p′ < q′. Let φ(N) = (p−1)(q−1) = 4p′q′. LetQRN denote
the subgroup of quadratic residues moduloN . Choose at random a generator g of the

subgroup QRN . Choose at random τ
$←− Zφ(n). Choose at random a seed, denoted

as seed, from the key space of the pseudorandom function PRF : {0, 1}2λ → Zφ(N).
The public key is pk = (N, g) and the private key is sk := (g, p, q, τ, seed).
Note: Then size of subgroup QRN equals to 1

4
φ(N) = p′q′.

POS.DEncode(sk, F)→ (id, {(i, Fi, σi) : i ∈ [0, n− 1]})

Let ρ ∈ (0, 1) be a system parameter. Apply rate-ρ error erasure code on data
file F to generate blocks (F0, . . . , Fn−1), such that each block Fi ∈ {0, 1}mλ and any
ρ-fraction of blocks Fi’s can recover the original file F. Choose a unique identifier
id for the file F. For each data block Fi, i ∈ [0, n − 1], the data owner computes an
authentication tag σi:

σi := τFi + PRFseed(id‖i) mod φ(N). (4)

Output (id, {(i, Fi, σi) : i ∈ [0, n− 1]}).
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POS.Challenge(sk, id, n)→ (pt, st, {(i, νi) : i ∈ C})

Find at random a secret value d
$←− Zφ(N), and computes gd := gd mod N . The

public token is pt := gd and the secret token is st := d. Chooses a subset C ⊂ [0, n−1]

at random and choose weight νi
$←− Zφ(N) at random for each i ∈ C. Output

(pt, st, {(i, νi) : i ∈ C}).

POS.Prove(pk, id, F̂, pt, {(i, νi) : i ∈ C})→ (ψ1, ψ2)

Find all selected blocks Fi’s and tags ti’s, and compute (π1, π2) as below over integer
domain:

π1 :=
∑
i∈C

νiFi; (5)

π2 :=
∑
i∈C

νiti. (6)

Compute (ψ1, ψ2) as below

ψ1 := gπ1
d mod N ; (7)

ψ2 := gπ2 mod N. (8)

Send (ψ1, ψ2) to the verifier.

POS.Verify(sk, id, st, {(i, νi) : i ∈ C}, ψ1, ψ2)→ accept or reject

With the private key sk = (g, p, q, τ, seed) and the secret token st = d, check whether
ψ1 ∈ QRN is a quadratic residue modulo N and the following equality holds.

(ψ1)
τ ?

=

(
ψ2

g
∑

i∈C νiPRFseed(id‖i)

)d
mod N (9)

If both verifications succeed, then output accept; otherwise output reject.

We remark that in the above scheme, we can change2 the proof from (ψ1, ψ2) to (ψ1, SHA256(ψ2))
to reduce the size from 2λ bits to (λ+256) bits using a secure hash function SHA256 [NIS02],
similar to Ateniese et al. [ABC+07].

2Meantime, change the range of the secret token d from Zφ(N) to Z∗
φ(N), in order to recover ψ2 from

ψ1 through Equation (9).
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Table 1: Comparison between Ateniese et al. [ABC+07] and POS proposed in this chapter
w.r.t. a 1GB file. The setting is described in Example 1.

Scheme Group Size Communication bits Computation (Data
Preprocess)

Computation (Prove)

Ateniese
[ABC+07] λ = 1024 2λ+ 160 + 256 = 2464 223 exp. over Z∗

N (100 + `) exp. over Z∗
N

POS λ = 1024 2λ+ 160 + 256 = 2464 223 mul. over Z∗
N 102 exp. over Z∗

N

4 Performance Analysis

TODO: Compared to PDP
The proposed scheme is efficient in storage, communication and computation. The

storage overhead due to authentication tags is 1/m of the file size (after error erasure
encoding). The proof size in a verification is 2λ bits. In the setup, the data encoding
algorithm DEncode requires n number of pseudorandom function evaluations, modular ad-
ditions/multiplications. In a verification session, the computation of the prover algorithm
Prove is dominated by the exponentiation with large integer exponent in Equation (7),
which is equivalent to m number of group exponentiation in Z∗N . The verifier algorithm
Verify requires one modular division, three modular exponentiation in Z∗N , ` number of
additions/multiplications in Zφ(N), and ` number of pseudorandom function evaluations,
where ` = |C| is the number of indices selected during a verification.

4.1 Comparison

We compare the proposed scheme POS and Ateniese et al. [ABC+07,ABC+11] in Table 1 in
the setting specified in the below example. We remark that both Ateniese et al. [ABC+07,
ABC+11] and the proposed scheme supports only private key verification.

Example 1 After erasure encoding, the file size is 1GB, block size is m = 100, and
storage overhead due to authentication tags is about 10MB for both schemes. For both
schemes, we assume that, during a verification, the challenge query {(i, νi) : i ∈ C} is
represented by two 80 bits PRF seeds. System parameter ` represents the size of set C.
All computation times are represented by the corresponding dominant factor. exp and mul

denote the group exponentiation and group multiplication respectively in the corresponding
group. Note that one 1024 bits modular exponentiation takes roughly 5 millisecond in a
standard PC.

5 Security Analysis of Scheme POS

5.1 Security Formulation

We review the Provable Data Possession formulation proposed by Ateniese et al. [ABC+07,
ABC+11]. The PDP security game between a probabilistic polynomial time (PPT) adver-
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sary A and a PPT challenger C w.r.t. a PDP scheme E = (KeyGen, DEncode, Challenge,
Prove, Verify) is as below.
Setup: The challenger C runs the key generating algorithm KeyGen to obtain public-
private key pair (pk, sk). The challenger C gives the public key pk to the adversary A
and keeps the private key sk securely.
Learning: The adversary A adaptively makes queries, where each query is one of the
following:

• Store query (F): Given a data file F chosen by A, the challenger C responses by
running data encoding algorithm (id, F̂)← DEncode(sk, F) and sending the encoded
data file F̂ together with its identifier id to A.

• Verification query (id): Given a file identifier id chosen by A, if id is the (partial)
output of some previous store query that A has made, then the challenger C initiates
a PDP verification with A w.r.t. the data file F associated to the identifier id in
this way:

– C runs the algorithm Challenge to generate a pair of public-secret tokens (pt, st)
and the a challenge query Chall, and sends (pt,Chall) to the adversary A and
keeps st safely. The secret token st will be used in the verifier Verify algorithm.

– A produces a proof ψ w.r.t. the challenge Chall;
Note: adversary A may generate the proof in an arbitrary method rather than
applying the algorithm Prove.

– C verifies the proof ψ by running algorithm Verify(sk, id,Chall, ψ). Denote the
output as b.

C sends the decision bit b ∈ {accept, reject} to A as feedback. Otherwise, if id
is not the (partial) output of any previous store query that A has made, C does
nothing.

Commit: Adversary A chooses a file identifier id∗ among all file identifiers she obtains
from C by making store queries in Learning phase, and commit id∗ to C. Let F∗ denote
the data file associated to identifier id∗.
Retrieve: The challenger C initiates one PDP verifications with A w.r.t. the data file
F∗, where C plays the role of verifier and A plays the role of prover, as in the Learning
phase. Suppose the challenger C asks A to check all data blocks Fi of F∗ with index i ∈ C.
The challenger C extracts file blocks {F′i : i ∈ C} from A’s storage by applying a PPT
knowledge extractor. The adversary A wins this PDP security game, if the challenger C
accepts A’s response in the verification. The challenger C wins this game, if the extracted
blocks {(i, F′i) : i ∈ C} are identical to the original {(i, Fi) : i ∈ C}.
Definition 1 ( [ABC+07]) A PDP scheme is sound if for any PPT adversary A, the
probability that A wins the above PDP security game is negligibly close to the probability
that C wins the same security game. That is

Pr[A wins PDP game ] ≤ Pr[C wins PDP game ] + negl. (10)
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5.2 KEA Assumption

The Knowledge of Exponent Assumption (KEA) is introduced by Damg̊ard [Dam92] and
subsequently appears in many works [HT98,BP04a,BP04b,Kra05,Den06]. The below is
a variant version of KEA in the RSA ring given by Ateniese et al. [ABC+07].

Assumption 1 (Knowledge of Exponent Assumption [Dam92,BP04a]) Let N =
pq be a RSA modulus, g ∈ Z∗N and s be an positive integer. For any PPT algorithm A
that takes (N, g, gs) as input and r as random coin and returns (C, Y ) such that Y = Cs

mod N , there exists a PPT extractor algorithm Ā which, given (N, g, gs, r) as input,
outputs x such that gx = C mod N .

Remark 2

• Note that the extractor Ā has access to A’s input (N, g, gs) and A’s random coin r,
thus Ā can replay step by step the process how A computes (C, Y ) from (N, g, gs).

• This assumption has been shown to hold in generic group by Abe and Fehr [AF07].

Assumption 2 (Factorization Assumption [RSA78]) We say an integer N is a RSA
modulus, if N = pq and all of p, q, p−1

2
, q−1

2
are prime numbers and bit-lengths of p and q

are equal. Then for any PPT adversary A, the probability that A can factorize a randomly
chosen λ bits RSA modulus, is negligible in λ.

5.3 Security Proof

Theorem 5.1 (POS is Sound) If the Knowledge of Exponent Assumption 1 holds and
the pseudorandom function PRF is secure, then the proposed scheme POS is sound.

The proof below is similar to the proof of Ateniese et al. [ABC+07] in the high level: If
an adversary A wins the security game, then a knowledge extractor (as in the assumption
KEA) can find a linear combination of data blocks (See Equation 5). Then each individual
block can be obtained by solving a linear equation system.

Like in previous chapters, at first in Lemma 5.2, we prove Theorem 5.1 in a simplified
no-feedback setting, where all decisions (acceptance or rejection) are kept secret from the
adversary in the PDP security game.

Lemma 5.2 Suppose the Factorization Assumption 2 holds and the pseudorandom func-
tion PRF is secure. Then the proof (φ1, φ2) in the proposed scheme POS is unforgeable in
the no-feedback setting, where all acceptance or rejection decisions are kept secure from
the adversary in the PDP security game. More precisely, let (φ̂1, φ̂2) denote the adver-
sary A’s response in the Retrieve phase of the PDP security game w.r.t. POS. The
probability

Pr[Verifier accepts (φ̂1, φ̂2) ∧ (φ̂1, φ̂2) 6= (φ1, φ2)] ≤ negl(λ) (11)

is negligible.
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Proof of Lemma 5.2:
Game 1 The first game is the same as the PDP security game, except that

• All acceptance or rejection decisions are kept secure from the adversary A. Essen-
tially, the challenger in the PDP security game does not answer verification queries
made by the adversary.

• Adversary A wins in Game 1, if A’s forgery proof (φ̂1, φ̂2) is accepted and it
is different from the genuine proof. Formally, let id, {(i, νi) : i ∈ C} and (pt, st)
denote the file identifier, challenge query, and public-secret tokens respectively in the
Retrieve phase of the PDP security game, let (ψ1, ψ2) denote the corresponding
genuine proof and (pk, sk) be the public-private key pair. Adversary A wins in
Game 1, if

Verify(sk, id, st, {(i, νi) : i ∈ C}, ψ̂1, ψ̂2) = accept and (ψ̂1, ψ̂2) 6= (ψ1, ψ2). (12)

Game 2 The second game is the same as Game 1, except that the pseudorandom
function PRF outputs true randomness. Precisely, the function PRFseed is evaluated in the
following way:

• The challenger keeps a table to store all previous encountered input-output pairs
(v,PRFseed(v)).

• Given an input v, the challenger lookups the table for v, if there exists an entry
(v, u), then return u as output. Otherwise, choose u at random from the range of
PRFseed, insert (v,PRFseed(v) := u) into the table and return u as output.

Game 3 The third game is the same as Game 2, except that:

• The range of the function PRF is changed from Zφ(N) to ZN . Note that in this game,
PRF is evaluated in the same way as in Game 2;

• The range of the authentication tag is also changed from Zφ(N) to ZN . More pre-
cisely, the Equation (4) (on page 5) is replaced by the following equations

σi := τFi + PRFseed(id‖i) mod N. (13)

We remark that in Game 3, the challenger is not able to verify adversary’s response, and
the challenger does not need to do verification either, since in the no-feedback setting, the
challenger will not answer verification queries made by the adversary.

Claim 5.1 If there is a non-negligible difference in a PPT adversary A’s success prob-
ability between Game 1 and Game 2, then there exists another PPT adversary B that
can break the security of the pseudorandom function PRF. More precisely,

|Pr[A wins Game 1]− Pr[A wins Game 2]| ≤ NPRF · AdvPRF
B ,
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where NPRF is the number of distinct evaluations of pseudorandom function PRF required
and AdvPRF

B denotes the probability that B can distinguish the output of PRF from true
randomness.

The above Claim 5.1 can be proved using a standard hybrid argument [Gol06]. Here we
save the details.

Claim 5.2 For any computationally unbounded adversary A, the probability that A can
find the secret value τ after interacting in Game 2, is 1

φ(N)
.

Proof (Proof Sketch of Claim 5.2): In Game 2, the function PRF outputs true
random numbers in Zφ(N) and thus the secret value τ is hidden perfectly. Therefore, the
probability that an (computationally unbounded) adversary A can find τ is 1

φ(N)
. Recall

that τ is chosen at random from group Zφ(N). ut

Claim 5.3 For any PPT adversary A, the probability that A can factorize N after in-
teracting in Game 3 is negligible.

Proof (Proof Sketch of Claim 5.3): Recall that in Game 3, the authentication tag
σi for each block is a group element chosen at random from ZN . Suppose a PPT adversary
A factorizes the RSA modulus N after interacting in Game 3.

Based on A, we construct a PPT adversary B to factorize N . Given only the RSA
modulus N , the adversary B can play the role of challenger to setup3 the PDP security
game w.r.t. scheme POS, and answer store queries made by the adversary A by sampling
uniform random number from ZN as the authentication tag σi. Thus,

Pr[A factorizes N in Game 3] ≤ Pr[B factorizes N ] = AdvFact
B . (14)

ut

Claim 5.4 For any PPT adversary A, the probability that A can factorize N after in-
teracting in Game 2 is negligible.

Proof of Claim 5.4: We will show that any PPT adversary cannot distinguish between
Game 2 and Game 3. As a result, Claim 5.3 can imply Claim 5.4.

Now we study the statistical difference [SV03] between uniform random variables over
Zφ(N) and over ZN .

3From the input N , B can generate the public key and simulate the algorithm DEncode. In the
no-feedback setting, B does not need to do verification, so secret key is not be necessary.
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Let X be a uniform random variable over Zφ(N) and Y be a uniform random variable
over ZN . The statistical difference [SV03] between X and Y is

SD(X, Y )
def
=

1

2

∑
a

|Pr[X = a]− Pr[Y = a]|

=
1

2

∑
a∈Zφ(N)

|Pr[X = a]− Pr[Y = a]| +
1

2

∑
a∈ZN\Zφ(N)

|Pr[X = a]− Pr[Y = a]|

=
1

2

(
1

φ(N)
− 1

N

)
× φ(N) +

1

2

(
1

N
− 0

)
× (N − φ(N))

= 1− φ(N)

N

= 1− (1− 1

p
)(1− 1

q
)

=
1

p
+

1

q
− 1

pq
.

Let N0 be a positive integer. Let Xi, i = 1, 2, . . . , N0, be independently and identically
distributed uniform random variables over Zφ(N), and Yi, i = 1, 2, . . . , N0, be indepen-
dently and identically distributed uniform random variables over ZN . According to Fact
2.1 and Fact 2.3 of Sahai and Vadhan [SV03], we have

SD((X1, . . . , XN0), (Y1, . . . , YN0)) ≤
∑

i∈[1,N0]

SD(Xi, Yi). (15)

The right hand side of the above Equation (15) is

∑
i∈[1,N0]

SD(Xi, Yi) = N0 × SD(X, Y ) = N0

(
1

p
+

1

q
− 1

pq

)
. (16)

Suppose the adversary A obtains exactly NPRF authentication tags σi (σ′i respectively)
for NPRF different indices i’s in Game 2 (Game 3 respectively). Since σi’s are inde-
pendently and identically distributed uniform random variables over Zφ(N) and σ′is are
independently and identically distributed uniform random variables over ZN , the differ-
ence of the adversary’s views4 in Game 2 and Game 3 is bounded as below

SD(ViewGame 2
A , ViewGame 3

A ) ≤ NPRF

(
1

p
+

1

q
− 1

pq

)
. (17)

The adversary A is polynomially bounded, which implies NPRF is polynomially bounded.
Therefore, the statistical difference SD(ViewGame 2

A , ViewGame 3
A ) is negligible in λ ≈

logN ≈ 2 log p ≈ 2 log q, and there is no adversary can distinguish between Game 2 and
Game 3.

4Adversary’s view is a transcript of all messages received.
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Combining with Claim 5.3, we conclude that the probability

Pr[A factorizes N in Game 2] ≤ Pr[A factorizes N in Game 3] +NPRF

(
1

p
+

1

q
− 1

pq

)

is negligible in λ ≈ logN . The proof for Claim 5.4 is complete. ut

Claim 5.5 Let (ψ̂1, ψ̂2) denote the adversary A’s output in the Game 2 and (ψ1, ψ2) be
the corresponding genuine output which shares the same values {(i, νi) : i ∈ C} with the
forgery output. Then,

Pr[A wins Game 2 ∧ (ψ̂1, ψ̂2) 6= (ψ1, ψ2)] ≤
1

p′
. (18)

Pr[A wins Game 2] ≤ 1

p′
. (19)

Proof of Cliam 5.5: Suppose the adversary A wins Game 2, then A’s forged proof
(ψ̂1, ψ̂2) is accepted and is different from the genuine output (ψ1, ψ2): (ψ̂1, ψ̂2) 6= (ψ1, ψ2).
Since both the forged proof and genuine proof are accepted by the verifier w.r.t. {(i, νi) :
i ∈ C} and satisfy the Equation (9) (on page 6), we have

(
ψ̂1

)τ
=

(
ψ̂2

g
∑

i∈C νiPRFseed(id‖i)

)d
mod N (20)

(ψ1)
τ =

(
ψ2

g
∑

i∈C νiPRFseed(id‖i)

)d
mod N (21)

Dividing Equation (20) with Equation (21), we have

(
ψ̂1

ψ1

)τ
=

(
ψ̂2

ψ2

)d
mod N (22)

Recall that the verifier algorithm Verify accepts only if ψ1, ψ̂1 ∈ QRN . Thus ψ̂1

ψ1
∈ QRN

is also a quadratic residue. For any element x ∈ QRN , x
1
4
φ(N) = 1, and the multiplicative

order of x modulo N will be a factor of 1
4
φ(N) = p′q′. Since ψ̂1

ψ1
6= 1, the multiplicative

order, denoted with ϕ, of ψ̂1

ψ1
modulo N is at least min{p′, q′} = p′. Thus a computationally

unbounded adversary B can invoke the adversary A to obtain the above Equation (22)
and find the value (τ mod ϕ) from Equation (22) by solving a discrete log problem with
ψ̂1

ψ1
as base. The probability that (τ mod ϕ) = τ is

Pr[(τ mod ϕ) = τ ] = Pr[τ ∈ Zϕ] =
ϕ

φ(N)
. (23)
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By Claim 5.2, we have the probability

Pr[A wins Game 2 ∧ (ψ̂1, ψ̂2) 6= (ψ1, ψ2)] ≤
Pr[B finds τ in Game 2]

Pr[(τ mod ϕ) = τ ]

=

1
φ(N)
ϕ

φ(N)

=
1

ϕ
≤ 1

p′

is negligible in λ ≈ logN ≈ 2 + 2 log p′. The proof of Claim 5.5 is complete. ut
Thus, Lemma 5.2 is proved. ut

Lemma 5.3 Suppose the Factorization Assumption 2 holds and the pseudorandom func-
tion PRF is secure. Then the proof (φ1, φ2) in the proposed scheme POS is unforgeable
in the feedback setting, where all acceptance or rejection decisions are provided to the
adversary in the PDP security game.

Proof (Proof Sketch of Lemma 5.3): In the simulated security game, the challenger
does not have all information of private key and thus cannot answer verification queries.

However, the challenger can construct a simulated verifier: The challenger keeps a
local copy of all files and tags and computes the genuine proof by himself/herself. The
challenger accepts a proof provided by the adversary, if and only if the received proof is
identical to the genuine proof.

We can show that the difference between the simulated verifier and the real verifier is
negligible, by using Lemma 5.2. ut

Now it is the time to prove the main Theorem 5.1 in this chapter.

Proof of Theorem 5.1: Lemma 5.3 states that the proof in the scheme POS is unforge-
able. Since for random value d ∈ Zφ(N), A can win PDP security game with non-negligible
probability. Then for many values di’s, A can compute (ψi,1 = gπ1

di
, ψi,2 = gπ2) correctly.

Let us just consider d1 and d2 among these di’s. Let c = d2
d1

mod φ(N). Given input

(gd1 , gd2 =
(
gd1
)c

), the adversary A can output (gd1π1 , gd2π1 =
(
gd1π1

)c
). By Knowledge

of Exponent Assumption (KEA [Dam92]), there exists an extractor that can find M , such
that gd1π1 = gd1M mod N .

Case 1: M 6= π1 If the two integers M and π1 are distinct (Caution: Here we treat M ,
π1 as large integer instead of group elements from Zφ(N)), then the difference M − π1 has
to be a multiple of 1

4
φ(N), from which the factorization of N can be found using Miller’s

result [Mil75].
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Case 2: M = π1 In this case, the extractor finds π1, as desired. Recall that the large
integer π1 =

∑
i∈C νiFi (Yes, integer, not group element) is linear equation of file blocks

Fi’s. Similar to the proof in Ateniese’s PDP [ABC+07], by choose independent weights νi’s
in |C| number of executions of the protocol, we obtain |C| independent linear equations
in the unknowns Fi, i ∈ C. Thus these file blocks Fi, i ∈ C, can be found by solving the
linear equation system over integer domain.

Thus, Theorem 5.1 is proved.
ut

6 Summary

In this paper, we proposed a PDP scheme POS which is very efficient in communication,
storage and computation. Compared to Ateniese et al. [ABC+07], POS is much more
efficient in computation, and equally efficient in communication and storage.
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