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ABSTRACT. In this paper, we prove a closed formula for the degree of regularity of
the family of HFE- (HFE Minus) multivariate public key cryptosystems over a finite
field of size q. The degree of regularity of the polynomial system derived from an
HFE- system is less than or equal to
(a= om0 Do)
(g = 1)(llogy(D—1)] +a+1)
+2
2
Here g is the base field size, D the degree of the HFE polynomial, r = [log,(D—1)|+1
and a is the number of removed equations (Minus number).

This allows us to present an estimate of the complexity of breaking the HFE
Challenge 2:

if ¢ is even and r + a is odd,

otherwise.

e the complexity to break the HFE Challenge 2 directly using algebraic solvers
is about 296,

1. INTRODUCTION

In 1994, Peter Shor [25] showed that all public key cryptosystems based on hard num-
ber theory problems, like the factoring problem or the discrete logarithm problem, can
be broken by a large quantum computer. Since then, people around the world have de-
voted significant effort looking for new types of public key cryptosystems, post-quantum
cryptosystems which could resist future quantum computers attacks. Multivariate public
key cryptosystems (MPKC) [8] are one of the four main groups of cryptosystems that
have the potential to accomplish this goal.

MPKC started in the 1980s via the attempts of Diffie, Fell, Tsujii, Shamir, Matsumoto,
Imai etc, but without much progress. The first real MPKC should be credited to the
cryptosystem proposed by Matsumoto and Imai [21], which however was defeated by
Patarin [22] 7 years later. After that Patarin developed the Hidden Field Equation
(HFE) cryptosystems, which use the same fundamental mathematical idea via special
functions over large extension fields [22].

Let F be a finite field of characteristic 2 with cardinality q. The key component is a
nearly bijective map P (called an HFE polynomial) over an extension field K of degree n
over F. We can identify K with F”, which allows P to induce a multivariate polynomial
map P’: F* — F". We then "hide” this core map by composing it on the left and the
right by two invertible affine maps L; and Lo over F™ respectively. This construction
yields a new map P : F* — F":

P(z1,...,mp)=L1oP oLy (x1,...,20) = (Y1, Yn) -
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In order to obtain a quadratic system, we choose P as a univariate polynomial of the
form:

P(X)= Y aX?t 4+ Y 0X7 tc

q*+q7<D q*<D

where the coeflicients are randomly selected. Since the decryption process involves solv-
ing the single variable polynomial equation P(X) =Y’ for a given Y’ using the standard
Berlekamp-Massey algorithm, we require that the degree D of P should not be too high.

However, Faugere and Joux demonstrated that we can solve and break these systems
easily in the case when ¢ = 2 and D small [15] using the Groébner basis algorithm Fy.
Furthermore their experimental results imply that such algorithms should finish at a
degree of order logq(D), such that the highest degree polynomials we need to process
are of a degree of order logq(D). Therefore they conclude that the complexity of the
algorithm is roughly O(n!°84(?)),

The critical concept in the complexity analysis of polynomial solving algorithms is the
concept of degree of reqularity. The degree of regularity of the polynomial system of P
consisting of polynomials py (21, ...,Zp),. .., Pu(Z1,...,2Zy) is the lowest degree at which
we have non-trivial polynomial relations between the p; components. It is commonly
accepted that in general this is the degree at which the solving algorithm will terminate
and therefore it is used to parameterize the complexity of the algorithm. Bardet, Faugere
and Salvy gave an asymptotic estimate formula for the degree of regularity of random
or generic systems. Granboulan, Joux and Stern sketched a new way to bound the
degree of regularity in the case ¢ = 2 using an approach to lift the problem back to the
extension field K, an idea, which first appeared in the works of Kipnis and Shamir [18]
and Faugere and Joux [15]. They managed to describe a connection of the degree of
regularity of the HFE system to the degree of regularity of a lifted system over the big
field. With additional assumptions, they obtained heuristic asymptotic bounds in the
case ¢ = 2, which leads to the conclusion that for D = O(n®), a > 1, the complexity of
Grobner basis solvers for the corresponding HFE systems is quasi-polynomial. Due to
the additional assumptions, the problem to derive any definitive general bounds on the
degree of regularity for general ¢ and n, or on the asymptotic behavior of the degree of
regularity was not resolved.

The work in [13] seems to suggest that HFE systems over a field of odd characteristic
could resist the attack of Grobner basis algorithms even when D is very small. Their
rationale is supported by some abstract algebraic geometry argument related to the usage
of field equations. This suggests that the previous results are not necessarily right for
fields other than GF(2).

In the case of general ¢, Dubois and Gama [14] made a big step by setting a rigorous
mathematical foundation for the arguments in [17]. They also derived a new inductive
method to compute the degree of regularity over any field. Following the work of [14], and
using a similar idea as in [17] — roughly that one can bound the degree of regularity of a
system by finding a bound for certain simpler subsystems — in [9], a new simple closed
formula was found for the degree of regularity for all HFE systems for any field using a
completely new constructive proof method. They constructively proved the upper bound
of the degree of regularity as an explicit function of ¢ and D. Such explicit formulas
enable them to draw conclusions about the upper bound complexity of inverting the
system using Groébner basis methods.



DEGREE OF REGULARITY FOR HFE- 3

In the paper [9], a strong conjecture is presented on the lower bound of the degree
of regularity for the case of odd ¢ of size Q(n), which implies that to invert the related
systems algebraically is actually exponential.

Following the same mathematical approach [5], it is actually proven that in the case
of the Square system, i. e., P(X) = X2, for an odd prime q which was proposed in [2],
the degree of regularity is exactly q.

This theorem therefore allows to draw the conclusion: Inverting Square systems
algebraically is exponential, when ¢ = Q(n), where n is the number of variables
of the system.

This proves the conjecture in [9], though it does not answer the question about the
cases other than Square systems. However common sense tells us that the conjecture is
very likely to be true for all generic HFE cases, since Square systems are the simplest
among all.

1.1. Our contribution in this paper. We consider the so called HFE- system, where
the public key is derived by removing a polynomials:

P~ =(p1,.-yPn—a)-
Such a variant is normally used for signatures like in the case of Sflash but can be used
for encryption if a is small.

The main contribution of this paper is a closed mathematical formula for the degree
of regularity for the HFE- systems. This work is closely related to the new method used
in studying the security of Sflash-V3 [12].

We prove that: The degree of reqularity of the HFE- system above is at most

1)

— (|1 D—-1
=)0 -1} 1)
if q is even and r + a is odd (where r = |log,(D —1)] +1);
2)

(¢ = 1)(llog, (D~ 1)) +a+1)
+ 2,
2
otherwise.

As far as we know, our work is the first to give a bound for degree of regularity for
HFE- systems (or any Minus system), and therefore shows a bound for the complex-
ity of the related algebraic attacks on HFE- systems. Clearly from the point of view
of cryptography, this result should have significant implications in many related areas.
Furthermore, we use this estimate to give an estimate of algebraic attacks on the HFE
Challenge 2 designed by Patarin. We conclude that the complexity to break HFE Chal-
lenge 2 directly using algebraic solvers is about 2°6. Furthermore our results demonstrate
that the claims in [3] are far from being correct.

This paper is organized as follows. We will first introduce HFE and Square cryptosys-
tems in the section below. In Section 3, we review the definition and basic properties
of the degree of regularity from [14][9]. In Section 4, we will prove the main theorem
that gives the upper bounds for the degree of regularity of HFE- systems and derive the
complexity of the Grobner basis attacks on the HFE Challenge 2.

2. PREVIOUS RESULTS

2.1. HFE systems and Square systems. Let F be a finite field of order ¢ and K
a degree n extension of F. Any map from K to K can be expressed uniquely as a
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polynomial function with coefficients in K and degree less than ¢™, namely

q"—1

P(X)= )Y aX' a €K
=0

Denote by degg (P) the degree of P(X).
Let ¢ be a map which identifies K and F™:

F* — K,

-1
K £ F.
Then we can build a new map P’ : F* — F»

P/(‘Tla ~~,1'n) = (p1($17 "5In)a "'apn(xh axn)) = ¢71 oPo d)(xla "7In)7

which is essentially P but viewed from the perspective of F".

In this case, again each component p;(x1,...,x,) can be expressed uniquely as a
polynomial in the x; such that the highest power of z; (j = 1,...,n) is not more than
g. This is due to the fact that x? = z; over F. Denote by degp(P) the maximum of the
degrees of the components p; of P’.

In some way, we can say that these are two different ways of defining the degree for
P, the degree over K and the degree over F. For example, the functions X9 | i < n, are
all linear viewed from the point of F™. Thus

deg]F(Xqi) =1 while degK(Xqi) =q".

In general the degree over F of the monomial X¢ will be the sum of the coefficients in
the base ¢ expansion of d or the ¢-Hamming weight of d. Therefore the degree of P over
F is the same as the maximum of the Hamming weights of all monomial terms of P(X).

An F-degree 2 or F-quadratic function from K to K is thus a polynomial all of whose
monomial terms have exponent ¢* + ¢/ or ¢’ or 0 for some i and j. The general form of
an F-quadratic function is

n—1 n—1
P(X)= > agX"T" +> b X7 +c
i,j=0 i=0

The function P(X) with a fixed low K-degree is used to build the HFE multivariate public
key cryptosystems. Originally the case ¢ = 2 was considered, which is very different from
general ¢, especially, when ¢ is an odd prime.

The simplest form of an F-quadratic function is

P(X) = X2,

which will give us the so called Square system. Surely if ¢ = 2, this map is actually of
degree one over ' as explained above.

For constructing a system of Square HFE-type, just as in the case of an HFE system
itself, we build a map P from an F-quadratic map P, where the nature of P is hidden
by pre- and post-composition with invertible affine linear maps L, Lo: F* — F™:

P=LioP olLs.
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2.2. Algebraic solvers — Grobner basis attacks. The most successful attack on
HFE systems is to apply the improved Grobner basis algorithms Fy and F5 to solve the
system

P1=Y15--+Pn = Yn-

In general, the transformations L; and Lo do not change the degree of regularity (see
below) of the system, therefore we only need to consider the case p; = 0,...,p, =0
where the p; are the component functions of P/ = ¢ o Po ¢~ 1.

A key step of the Grobner basis algorithm consists in searching combinations >, gip;,
gi € Flz1,...,z,], such that the degrees of the summands g¢;p; are equal and the degree
of this combination is lower than the degrees of its summands. In this case the corre-
sponding combination of highest degree terms ), ghpl is zero. The key moment in the
calculation occurs when such combinations are non-trivial. These non-trivial relations
will very likely generate mutants (see [6, 7, 20]), which are instrumental in solving the
system. Obviously the combinations

Pl — ol
are tautologically zero and the equation
()"~ = 1)pf =0

is just a result of the identity 7 = z in F. A non-trivial relation is one that does
not arise from these trivial identities. The degree at which the first non-trivial relation
occurs is called the degree of regularity. Extensive experimental evidence has shown that
the algorithm in general will terminate at or shortly after the degree of regularity, in
particular, for the case of HFE systems. The algorithm will never finish before dealing
with polynomials at the degree of regularity. Thus the calculation of the degree of
regularity is crucial to understanding the complexity of the algorithm.

3. DEGREE OF REGULARITY

We will present the definition of the degree of regularity as defined in [14] and the
main results in [14][9]. Let
nA=Fz,... 2,]/ (¥ —21,...,2d —x,).

This is the algebra of functions over F™. Let p1,...,p, be a set of quadratic polynomials
in ,A. Denote by ,A<j, the subspace of , A consisting of functions representable by a
polynomial of degree less than or equal to k.

For all j we have a natural map ¢;: ,A<;" — ,A<jt2 given by

wj(ala .. 'aan) = Zaipiv
i

where

nASjn = nASj X nASj X ... X nA§j~
If at least one of the a; has degree j but ). a;p; has degree less than j + 2, we say that
a “degree fall” occurs. Obviously we can have trivial degree falls of the form

pipi+ (=pi)p; =0 or  (p ' —1)p; =0.
The degree of regularity of the set {p1,...,pn} is the smallest degree at which a non-
trivial degree fall occurs. Obviously we can restrict our attention to the highest degree



6 JINTAI DING!2, THORSTEN KLEINJUNG?

terms in the a; and work modulo terms of smaller degree. Mathematically this means
working in the associated graded ring

WB=Flzy,...,x,]/ (2], ... 22).
The degree of regularity of the {p1,...,p,} in ,A will be the first degree at which
we find non-trivial relations among the leading components pf,...,p" (considered as

elements of ,B). By leading component, we mean the highest degree homogeneous
component of a multivariate polynomial.

Denote by ,Bj the subspace of ,B consisting of homogeneous elements of degree k.
Consider an arbitrary set of homogeneous quadratic elements {1, ..., A,} C,, Ba, which
are linearly independent. For all k& we have a natural map ¢ : B — ,Bio given by

Gr(br,. .o bn) =D bidi,

where
VLBZ:L = an X an X ... X an,
the direct product of n copies of ,By.
Let pRi(A1,...,An) = ker ¢, C ,B}. The key here is that

nBOL ) = @D aBRi(Ar, ) € B
k
is also a module of the ring ,,B. Inside ,, R (A1, - . ., Ay ) is the subspace of trivial relations,
nZi(A1,. .., An), generated by elements of the form:
(1) (0,...,0,X;,0,...,0,=X;,0...,0) for 1 <i<j<n, k>2wherebe By o;
A; is in the i-th position and —A; is in the j-th position;
(2) b(0,...,0, )\g_l,O. .,0) for 1 <i<n, k>2(q—1)and b € ,,B;_5(4—1); Where
)\371 is in the 4-th position.
The space of non-trivial relations is the quotient space , Rr (A1, ..., A\n)/nZr(A1, -y An).
From previous work, we know

Definition 3.1. The degree of regularity of {\1,...,A,} is defined by
Dieg({M -, A }) =min{k | nZ5_o({M, ... A }) € nRio({M, - A )}

Assuming the linear independence of the );, the degree of regularity depends only on
the subspace V' generated by the \;, so we can simplify the notation by writing Dyeg (V)
for Dyeg({ M1, -, An})-

There are two important properties of the degree of regularity which were observed
in [14].

Property 1. Let V' be a subspace of V. Then Dieg(V) < Dyeg (V7).
Property 2. Let K be an extension of F. Then Dyeg(Vik) = Dyeg(V) where Vk = V @p K.

Coming back to the case of an HFE system, let P be a quadratic map, P’ its associated
map with component functions p1,...,p, € ,A, and let V resp. V" be the vector spaces
generated by pi,...,p, resp. their leading components p?, ..., p". Our goal is to find a
bound for Dyeg(V?).

We begin by extending the base field to K. When we extend , A to ,A ®p K, we pass
from functions from F" to F to functions from F" to K. Via the linear isomorphism
¢~ ': K — F", we can show that this algebra is isomorphic to the algebra of functions
from K to K which is simply K[X]/ (X" — X)) [9].
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From elementary Galois theory [9] we know that the space Vi corresponds under this
n—1

identification with the space generated by P, P4,... P7 .
Furthermore, if we filter the algebra K[X]/ <X " X > by degree of functions over F,

then the linear component is spanned by X, X7 ... X 47" We can show easily [9] that
the associated graded ring will be the algebra ,Bx = K[X1,..., X,]/ (X{, ..., X1) where

X, corresponds to X9 . _
Let P; denote the leading component of P4 in »Br. The space generated by the P;
is exactly Vﬂg, the subspace of ,,Bx generated by the pf. Putting all the above together

we get the following theorem.

Theorem 3.2. [14] Dyey({p1,- -, pn}) = Dyeg({pls - ., 01}) = Dyeg({Pos ., Par})

In [9], inspired by [14], there is a rigorous proof of the following theorem:

Theorem 3.3. Let P be a quadratic operator of degree D. If Q-Rank(P) > 1, the degree
of regqularity of the associated system is bounded by

—1)(|1 D—-1 1
CEICACEET I
where Q-Rank(P) of a quadratic operator P(X) is the minimal rank of all quadratic

forms spanned by Vi, If Q-Rank(P) = 1, then the degree of reqularity is less than or
equal to q.

It is clear that this theorem gives an upper bound of the degree of regularity, and
with some reasonable assumptions on the termination conditions, this gives us an upper
bound of the complexity to break the related HFE systems algebraically. But to ensure
the security of the systems against algebraic attacks, we actually need a lower bound.
This one can prove in the case of Square systems [5].

Theorem 3.4. Let P be a quadratic operator for the square system for a finite field of
odd characteristic q. Then the degree of reqularity of the associated system is equal to q.

In the next section, we will deal with the HFE Minus systems.

4. THE DEGREE OF REGULARITY OF HFE-

Here, we assume that the polynomials p; are linearly independent. Since the co-
efficients of P are randomly chosen, it is extremely unlikely that the p; are linearly
dependent.

Now let us recall the HFE Minus system. It is derived from an HFE system by
removing a components and thus given by a set of n — a polynomials in n variables:

P~ = (plw-'vpn—a)-
Such a variant is normally used for signatures but can be used for encryption if a is
small. We would like to study the degree of regularity of this new system.
To reconnect with the original system, we will build a new system P° by amending
zeroes to P~:

Po = (ﬁh "'7ﬁn—a70a 7O>
Since the zero polynomials have no impact on the degree of regularity, we get

Lemma 4.1. The degree of regularity of the system defined by P is the same as the
degree of reqularity of the system defined by P~ .
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Let E be the standard forgetting map from F* — F?~¢ < F” defined as

E(x1,...;xn) = (21, .oy Tn—a, 0, .., 0).
Then we have that

P°=FEoP=FEoLjoP olLs.

Unlike in the case of HFE, E o L; is no longer invertible, but Ly is still invertible.
Therefore we consider

P =¢oFEoLio¢ptoP=E oP

where E{ = ¢o Eo L o¢~! and we know that the degree of regularity is determined
by this system.
From [9] we know that

Lemma 4.2. The degree of reqularity of the system of P~ is the same as the degree of
reqularity of the system formed by

Py, P, P4,
where
Pr=(P)"

Let W~ C K[X]/ <an - X> be the linear space (over K) spanned by Py, Py , ..., P,_;.
Since the dimension of the kernel of E is a > 0 we get

Lemma 4.3. The dimension of W~ over K is n — a.

For each element of W™, we can naturally associate a quadratic form and therefore a
rank, which is the rank of the corresponding quadratic form. We define the Q-Rank of
P~ to be the minimal rank of all elements in W ™.

Furthermore, from [9] we have that

Lemma 4.4. The degree of reqularity of the system formed by
Py.P,...,P,

1T n—1
is less than or equal to
(¢ —1) Q-Rank(P~)

2
2 +2

or q if Q-Rank(P~) =1 for odd gq.

This means that the key problem is to find the Q-Rank of P~ or the minimum rank
(Minrank) of the (non-trivial) matrices spanned by matrices associated with all P; .

Let R(P) be the rank of the quadratic form associated with a polynomial P. First we
know that

R(Py) < [log,(D—1)] +1 =,
if ¢ is odd or r is even; and
R(Py) < [log,(D 1)) =1~ 1,

if ¢ is even and r is odd, which is due to the facts that
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e The n x n matrix associated to the quadratic form corresponding to Py has the

following shape:
* 0
0 0/’
where * is an 7 X r submatrix
e If ¢ is even the symmetric matrix associated to the polynomial has zero diagonal
entries and therefore can only be of even rank.
Let P, = P7 and
W = Span(Py, ..., P,).
Then the dimension of W is exactly a 4+ 1 since the p; are assumed to be linearly
independent polynomials.

Following the argument of the attack of Sflash’=3 of Ding and Schmidt [12], we have
that

Lemma 4.5. Let r = [log,(D — 1)| + 1. The mazimum rank of the matriz systems
associated to W is less than or equal to: 1) r + a, if q is odd; 2) v+ a, if q is even and
r+a is even; 3) r+a—1, if g is even and r + a is odd.

Proof
First we know that the matrix associated to the quadratic form corresponding to P;
is in the following shape:

O; 0 0
0 « 0],
0O 0 O

where #’ is a submatrix of size r x r and O; is a zero matrix of size ¢ x i. Namely we shift
the position of matrix of Fy by 4 positions down and to the right since the Frobenius
map F(X) = X9 is actually F linear.

Therefore the matrix associated to any elements of W is in the shape of

*// 0
0 0/’
where %" is a submatrix of size (r + a) X (r 4+ a). This gives us the proof.

Proposition 4.6. Let r = [log,(D — 1)| + 1. The minrank of the matriz systems
associated to {Py , Py ,..., P,_} is less than or equal to: 1) r + a, if q is odd; 2) r + a,
if q is even and r + a is even; 8) r+a — 1, if q is even and r + a is odd.

Proof
Since the dimension of W® is a + 1 and the dimension of W~ is n — a, we have that

W (W #0D.
This means that there is a nonzero element of W in W~. Then the lemma above gives

us the proof.
Therefore we have

Theorem 4.7. Letr = |log,(D —1)| + 1. The degree of regularity of the system formed
by
Py, P, .., P,

is less than or equal to
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1)
(g —1)(log,(D—=1)] +1+a)
2 +2
if q is odd or if q is even and r + a is even;

2)

(4= ogP =01+,

if q is even and r + a is odd.
This is the main theorem of this paper.

4.1. Application of the main theorem. Using the main theorem we will discuss the
complexity of attacking some multivariate public key cryptosystems.

First, let us look at the case of the HFE Challenge 2. It is an HFE- system, which is
defined over GF(q) = GF(2*) = GF(16), where n = 36, D = 4352 and a = 4.

Since

D = 4352 = 16* + 162 = 4096 + 256,
we have that
PoX)= Y a XY 3 p x4
1,5,97#35,9"+¢7 <d i<4

which means that the corresponding matrix for Py is in the form:

0 ap1 a2 ao3 aoa
ato 0 a2 ai3 aia
azo a1 0 a3 a4
azo azq asz2 0 asg
ag0 a4 G42 ag3 0O

0 0 0 0 0 O

Therefore r = 4+ 1 = 5 and the degree of regularity of the challenge over GF(16) is
less than or equal to

oSO oo oo

15 x 8/2 +2 = 62,
and the complexity of an algebraic attack is more than 2280 which is worse than an

exhaustive search.
We can also try to solve the system over GF(2). Namely we look at the system

W~ =Span(Py ..., Ps),

as a system over a field which is viewed as a degree 4 x 36 = 144 extension over GF'(2)
instead of a degree 36 extension over GF(2*). Following the same argument of the main
theorem above we conclude that the degree of regularity of the system is less than or
equal to

(2—1)x8/2+2=6.

Remark Here we would like to make a very critical remark, namely we are looking
at the system deduced from the HFE Challenge 2 over the field of GF(2%), which is
very different from the case of a HFE- system over GF(2), where n = 4 x 36 = 144,
D = 4352 and a = 4 x4 = 16, whose corresponding polynomial over the large field would
have much more terms than the one from the original HFE Challenge 2.

In the case of the HFE Challenge 2, we now look at solving a system of 128 equations
with 144 variables with degree of regularity at most 6. Therefore we expect to solve the
system of equations at at most degree 6. Since we can guess 16 variables, this implies
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that the complexity of solving the system of equations is essentially the same as solving
a linear system of size (number of rows) roughly

134Y _ oss
] :

Therefore if we solve it directly, the complexity is estimated to be about
However, there are two ways that might reduce the complexity. If we are able to
reduce the degree of regularity to 5 by guessing a few more variables the matrix size will

be roughly
5

We can also try to use solvers for sparse matrices, e.g., the Wiedemann algorithm, which
have a lower complexity but generate less solutions. This can be done either directly on
the degree 6 system or in combination with further guessing of variables. It is not clear
how much these approaches affect the complexity.

Finally, let us look at the case of Sflash [24], where ¢ = 27, n = 37 and r = 11. If we
follow the same argument as above, we can conclude that

1) the degree of regularity of the system over GF(27) is roughly 127 x 6 + 2 = 764
with 27 variables;

2) the degree of regularity of the system over GF(2) is roughly 6 + 2 = 8 with 189
variables.

This means that the complexity to solve these systems algebraically is extremely high.
The results above show that the claims in [3] about the HFE Challenge 2 and Sflash far
from being correct.

2%,

5. CONCLUSION AND DISCUSSION

Following previous work [9], we prove a closed formula for the degree of regularity for
the family of HFE Minus systems over a finite field of size ¢q. This allows us to obtain an
estimate of the complexity of breaking the HFE Challenge 2: the complexity to break the
HFE Challenge 2 directly using algebraic solvers is about 2°6. The mathematical method
used in this paper is based on the estimate of certain Minrank problems.

In a subsequent paper, we are now working to extend this work to the case of HKFv
and HFEv-, which should lead to much better understanding of the security of related
cryptosystems such as Quartz.
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