
Milder Definitions of Computational Approximability:
The Case of Zero-Knowledge Protocols

Mohammad Sadeq Dousti and Rasool Jalili

Data and Network Security Lab, Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran.
{dousti@ce.,jalili@}sharif.edu

Abstract

Many cryptographic primitives—such as pseudorandom generators, encryption schemes, and zero-knowledge
proofs—center around the notion of approximability. For instance, a pseudorandom generator is an expanding
function which on a random seed, approximates the uniform distribution. In this paper, we classify different
notions of computational approximability in the literature, and provide several new types of approximability.
More specifically, we identify two hierarchies of computational approximability: The first hierarchy ranges from
strong approximability—which is the most common type in the cryptography—to the weak approximability—as
defined by Dwork et al. (FOCS 1999). We define semi-strong, mild, and semi-weak types as well. The
second hierarchy, termed K-approximability, is inspired by the ε-approximability of Dwork et al. (STOC
1998). K-approximability has the same levels as the first hierarchy, ranging from strong K-approximability to
weak K-approximability. While both hierarchies are general and can be used to define various cryptographic
constructs with different levels of security, they are best illustrated in the context of zero-knowledge protocols.

Assuming the existence of (trapdoor) one-way permutations, and exploiting the random oracle model, we
present a separation between two definitions of zero knowledge: one based on strong K-approximability, and the
other based on semi-strong K-approximability. Especially, we present a protocol which is zero knowledge only
in the latter sense. The protocol is interesting in its own right, and can be used for efficient identification. Next,
we show that our model for zero knowledge was not closed under sequential composition, and change the model
to resolve this issue. After proving a composition theorem, we finally provide a version of the identification
protocol which satisfies the requirements of the new model. Some techniques provided in this paper are of
independent interest, such as proving a composition theorem in the presence of both simulator and knowledge
extractor.

Keywords: Approximability, Indistinguishability, Zero Knowledge, Random Oracle, Trapdoor One-Way
Permutation, Sequential Composition.

1 Introduction

The notion of computational approximability can be tracked down to works such as [GM82, Yao82, BM82, GM84,
BM84, GMR85], but it was probably the work of Goldwasser, Micali, and Rackoff on zero-knowledge proofs
[GMR89, Section 3.2] which explicitly defined the notion. Informally, the output of a probabilistic machine
is said to approximate a random variable if no polynomial-size circuit can tell them apart. All works which
use the notion of indistinguishability can be reformulated to use the notion of approximability instead. For
instance, pseudorandom generators, encryption schemes, and witness-hiding proofs can all be defined in terms of
approximability. However, approximability is best illustrated in the context of zero-knowledge protocols. In fact,
our research on approximability was initiated while we were exploring less strict models of zero knowledge.

Let us explain the motivation behind the need for looser models of zero knowledge: Over time, some authors
proved inherent limitations to the accepted notions of zero-knowledge proofs, most of which were imposed on the
round complexity of the proof. For instance, Goldreich, Oren, and Krawczyk [GO94, GK96] proved lower bounds
on the round complexity of auxiliary-input and black-box zero-knowledge proofs (with negligible soundness error).
To overcome these and similar limitations, less strict models of zero knowledge was suggested. To name just a few
examples, Brassard et al. [BCC88] put forward the notion of arguments, Barak [Bar01] advocated a non–black-box
model of zero knowledge, Dwork and Stockmeyer [DS02] proposed a model where the prover’s resources were
limited, Pass [Pas03b] suggested permitting the simulator to run in quasi-polynomial time, and Birrell and Vadhan
[BV10] modeled the verifier as circuits with bounded non-uniformity.

Most relevant to the present work, several researchers argued that the current formulation of approximability
is too strong for some purposes, and consequently proposed weaker notions of approximability. For instance,
Dwork, Naor, Reingold, and Stockmeyer [DNRS99, DNRS99] proposed the notions of weak and ultra-weak

1

approximabilities.1 Let us intuitively compare the current formulation of approximability (which we termed “strong
approximability”) with the weak variant defined by Dwork et al.: Suppose M is a probabilistic polynomial-time
machine which is going to approximate a distribution ensemble {U(x)} indexed by some set L (i.e. x ∈ L).

1. In strong approximability, M should approximate {U(x)}, such that the output of M(x) is indistinguishable
from U(x) by all polynomial-size tests D.

2. In weak approximability, the code of M may depend on both x and D, as if we say: Disclose the index and
the test, and we will exhibit an approximator which beats the test.

The security guarantees provided by the weak approximability is way too low, as M can arbitrarily depend on
the code of the adversary. As a matter of fact, weak approximability was not introduced to serve security purposes
at all. Therefore, we sought milder notions of approximability, which provide better security guarantees than the
weak approximability, yet are not as strict as the strong approximability.

More specifically, we consider a hierarchy of successive weakenings of approximability, and put forward three
notions of semi-strong, mild, and semi-weak approximabilities. Intuitively, the semi-strong variant assumes that the
approximator has black-box access to the distinguisher. Mild approximability requires a universal approximator
which may receive the description of the distinguisher as an auxiliary input. Finally, the semi-weak approximability
allows the approximator to depend arbitrarily on the distinguisher, but not the index (x).

The security guarantees of the semi-strong approximation is still very high: It does not seem that the one-bit
output of the distinguisher is of much help to the approximator.2 The same holds for the mild approximability: Un-
less the approximator can “reverse engineer” the description of the distinguisher, it cannot gain insight significantly
better than an approximator which merely has black-box access to the distinguisher. That said, we successfully
exhibit a separation between the strong and semi-strong approximations in the random-oracle model, assuming the
existence of (trapdoor) one-way permutations.

Another hierarchy of approximability is inspired by the work of Dwork, Naor, and Sahai [DNS98, DNS04].
Failing to demonstrate a concurrent zero-knowledge proof with low round complexity (due to some inherent
limitations), they promoted a new definition which we term ε-approximability. In this definition, the running time
of the approximator can be a polynomial in the running time of the distinguisher, as well as the inverse of the
distinguishing gap (ε−1). Applying the same ideas, we provide another hierarchy termed K-approximability, whose
levels range from strong K-approximability to weak K-approximability. This hierarchy combines approximators
with knowledge extractors, and is somehow weaker than the previous hierarchy. The aforementioned separation
actually separates strong and semi-strong K-approximabilities.

The ideas and techniques offered by this paper might be of independent interest, among them is an efficient
identification protocol used to separate two notions of approximability, and a new technique for proving a composi-
tion theorem in the presence of both simulator and knowledge extractor. However, due to space limitations, most
proofs are omitted from this abstract (though they appear in the appendices).

1.1 Motivation

A natural question that may arise is why we weaken the existing definitions. There are several answers to this
question:

1. The new definitions are not weaker than all the existing ones; rather, they are stronger than definitions like the
weak and ultra weak zero knowledge defined by Dwork et al. [DNRS03]. The weak definitions never found
their way into the practice, because the community felt that they are inadequate for everyday protocols and
applications. However, such weak definitions are important to the theorists, as they are related to selective
commitment and magic functions (see [DNRS03] for more information).

This paper provides definitions which are milder than the existing ones, i.e. they are stronger than some
existing definitions, and weaker than other ones. They might bridge the gap, and provide models which are
of interest to both theorists and practitioners.

1In fact, they proposed models for weak and ultra-weak zero-knowledge, from which we extracted the corresponding definitions for
weak and ultra-weak approximability.

2It must be noted, though, that the importance of a single bit should not be underestimated. For instance, a single bit of advice can help
compute some uncomputable functions [Gol08, Theorem 1.13]. That said, it is hard to conceive of a natural problem in which the one-bit
output of the distinguisher is of much help to the approximator (see [Dou11]). In fact, even this paper does not use the one-bit output of the
distinguisher; rather, it uses the random-oracle model to force the distinguisher make some queries, and then monitors them.

2

2. Before the introduction of the notion of witness-hiding proofs [FS90], no formal proof for the security of the
parallel version of Feige-Fiat-Shamir identification protocol [FFS88] was available. However, the security
guarantee of being “witness hiding” is much weaker than being “zero knowledge.” Consequently, it is
desirable to have definitions based on which a tighter security guarantee is possible. Therefore, weakening
strong definitions of zero knowledge is desirable in some cases.

As a matter of fact, we were able to prove the security of efficient identification protocols (see Protocols
1 and 3) in a rather tight manner. According to previous definitions, these protocols were either deemed
insecure, or their security were proven in a loose manner.

3. In models such as the UC Framework [Can01], no useful protocol can be zero knowledge without trusted par-
ties or setup assumptions [CF01]. Weakening the strong definitions of zero knowledge can be a workaround.

4. As discussed in Section 6, the new definitions shed light on an alternative way of replacing a random oracle
with a new, suitable cryptographic assumption.

1.2 Organization

The rest of this paper is organized as follows: Section 2 provides abbreviations, conventions, and definitions used
in throughout this paper. Section 3 defines two hierarchies of computational approximation. Section 4 exhibits a
separation between strong and semi-strong K-approximations in the context of zero-knowledge protocols. Section
5 shows that the definition of zero knowledge provided in section 4 is not closed under sequential compositions. It
then resolves the issue by providing a new definition, and concludes by illustrating a protocol which satisfies the
new definition. Section 6 provides insights into the future line of research.

2 Preliminaries

2.1 Notions and Abbreviations.

Let N = {0, 1, 2, . . .} denote the set of natural numbers. For a language L and a number n ∈ N, define Ln
def
= L∩{0,

1}n. The expected value of a random variable X is denoted by E[X]. We use the quantifier ∀∞ as a shorthand for
“for all but finitely many.” For instance, (∀∞n ∈ N)[ϕ(n)] means “for all but finitely many natural numbers n, the
predicate ϕ(n) holds.” Formally, (∃n0 ∈ N)(∀n ∈ N)[n ≥ n0 ⇒ ϕ(n)].

Throughout the paper, we use the following abbreviations: RO and ROM are stand for “random oracle” and
“random-oracle model.” TM stands for Turing machine, PPT for probabilistic polynomial-time, PPTM for a PPT
TM, ITM for interactive Turing machine, and OM for oracle machine. These terms might be combined together; for
instance, PPT-OM means a “probabilistic polynomial-time oracle machine.” We also use “ZK” for zero knowledge.
To denote the type of ZK (see Section 2.2), we use prefixes such as AI (auxiliary input) and BB (black box).
Therefore, AIZK means “auxiliary-input zero knowledge.”

A family of circuits C = {Cn} is called polynomial-size if there exist polynomials p(·) and q(·) such that for
all n ∈ N, the size and the number of inputs of Cn are bounded by p(n) and q(n), respectively. We assume that all
circuits are probabilistic.

Convention. When we say a machine is polynomial-time, we mean polynomial in the length of its first input.
We may “pair” two or more inputs and feed them as the first input to a machine. For instance, the first input to
M(〈x, y, z〉, w, t) is 〈x, y, z〉. The same convention holds for polynomial-size circuits.

2.2 Definitions

Definition 1 (Trapdoor One-way Permutation). A family of permutations F = {fn} is called a collection of
trapdoor one-way permutations if there exist four PPT algorithms GEN, SAMP, EVAL, and INV, such that the
following conditions hold:

1. Easy to generate: On input 1n, algorithm GEN generates a description of fn denoted desc(fn), as well as
the associated trapdoor tn. Denote the first (i.e. desc(fn)) and second (i.e. tn) components in the output of
GEN by GEN1 and GEN2, respectively. In order to avoid mentioning 1n explicitly in the inputs of SAMP,
EVAL, and INV, we assume that | desc(fn)| ≥ n.

3

2. Easy to sample the domain: On input desc(fn), algorithm SAMP chooses an element from dom(fn).

3. Easy to evaluate: On inputs desc(fn) and x ∈ dom(fn), the output of the algorithm EVAL is fn(x).

4. Easy to invert with trapdoor: On inputs desc(fn), tn, and y ∈ dom(fn), the output of the algorithm INV

is fn−1(x). (Note that since fn is a permutation, its range is identical to its domain.)

5. Hard to invert without trapdoor: For every family of polynomial-size circuitsA = {An}, for every c ∈ N,
and for all sufficiently large n:

Pr
[
desc (fn)← GEN1 (1n) , x← SAMP (desc (fn)) , y ← EVAL (desc (fn) , x) :

An(y, desc(fn)) = x
]
< n−c , (1)

where the probability is taken over the random coins of GEN, SAMP, EVAL, and A.

Definition 2 (Strong Approximability). A polynomially-bounded distribution ensemble3 {U(x, z)}x∈L,z∈{0,1}∗ is
said to be strongly approximable on the language L, if there exists a PPTM M(·, ·) such that for every family of
polynomial-size circuits D = {Dn}, the following holds:

(∀c ∈ N)(∀∞n ∈ N)(∀x ∈ Ln)(∀z ∈ {0, 1}∗)
|Pr[Dn(x, z,M(x, z)) = 1]− Pr[Dn(x, z, U(x, z)) = 1]| < n−c , (2)

where the first probability is taken over the random coins of M and Dn, and the second probability is taken over
the (implicit) random coins of U and Dn.

Let 〈P ↔ V ∗(z)〉 (x) be a protocol between ITM P and PPT-ITM V ∗, where the common input is x and V ∗ has
an auxiliary input z. Define viewV ∗

def
= viewV ∗(x, z)

def
= viewV ∗ 〈P ↔ V ∗(z)〉 (x) as whatever V ∗ sees during the

interaction with P ; that is, the common input (x), the auxiliary input (z), its random tape (r), and the messages it
sent and received m = (m1,m2, . . .).

Definition 3 (Auxiliary-Input Zero Knowledge (AIZK)). The protocol 〈P ↔ V ∗(z)〉 (x) is AIZK for P on L if for
all PPTM V ∗, there exists a PPTM simulator SV ∗ which strongly approximates the view of V ∗. That is, for every
family of polynomial-size circuits D = {Dn}, the following holds:

(∀c ∈ N)(∀∞n ∈ N)(∀x ∈ Ln)(∀z ∈ {0, 1}∗)
|Pr[Dn(x, z, SV ∗(x, z)) = 1]− Pr[Dn(x, z, viewV ∗(x, z)) = 1]| < n−c , (3)

where the first probability is taken over the random coins of SV ∗ and Dn, and the second probability is taken over
the random coins of P , V ∗ and Dn.

Throughout the paper, we are mostly concerned with the notion of “zero knowledge” rather than the notion of the
“proof.” Therefore, we hardly mention properties such as completeness and soundness, even if the zero-knowledge
protocols provide them. Moreover, while the definitions resemble proofs of language membership [GMR89], they
can be applied to proofs of knowledge [BG93] or proofs of computational ability [BG92] as well.

3 Two Hierarchies of Approximability

3.1 The First Hierarchy

Let us first present the notion of weak approximability, inspired by the weak zero-knowledge definition of Dwork et
al. [DNRS99, DNRS03]:4

3That is, the output length of the distribution ensemble is bounded by a fixed polynomial in the length of its first input. Note that here x
belongs to some language L, while z is arbitrary string, playing the role of an auxiliary input. The order of quantifiers in this definition does
not allow x or z to be hard-coded into M ’s code.

4It must be noted, though, that their definition is based on the uniform zero knowledge [Gol93].

4

Definition 4 (Weak Approximability). A poly-bounded distribution ensemble U = {U(x, z)}x∈L,z∈{0,1}∗ is said
to be weakly approximable on the language L, if for every family of polynomial-size circuits D = {Dn}, the
following holds:

(∀c ∈ N)(∀∞n ∈ N)(∀x ∈ Ln)(∀z ∈ {0, 1}∗)(∃M ∈ PPTM)

|Pr[Dn(x, z,M(x, z)) = 1]− Pr[Dn(x, z, U(x, z)) = 1]| < n−c , (4)

where the first probability is taken over the random coins of M and Dn, and the second probability is taken over
the (implicit) random coins of U and Dn.

Note that in Definition 4, the machine M can depend on x, z, and Dn, as well as U . It can be symbolized as
(∀D)(∀∞x ∈ L)(∀z)(∃M)[D(x, z,M(x, z)) ≈ D(x, z, U(x, z))], which is interpreted: “You name the test (Dn)
and the parameters (x, z), and I will present a machine (M) which approximates U in such a way that the test fails.”
Remark 1. A natural but misleading question is the following: “In the real world, how can the approximator access
the distinguisher?” The important point is that neither approximator nor the distinguisher are real-world entities;
they are just parts of a thought experiment. The right interpretation is the following: Consider a real-world entity
who uses some (internal) procedure to distinguish the distributions. This entity can modify the procedure to produce
the right distribution.

The weak approximability seems to be extremely loose, and it is natural to think of a tighter notion. One such
attempt is made in Definition 5.

Definition 5 (Semi-Weak Approximability). A poly-bounded distribution ensemble U = {U(x, z)}x∈L,z∈{0,1}∗ is
said to be semi-weakly approximable on the language L, if for every family of polynomial-size circuits D = {Dn},
the following holds:

(∀c ∈ N)(∀∞n ∈ N)(∃M ∈ PPTM)(∀x ∈ Ln)(∀z ∈ {0, 1}∗)
|Pr[Dn(x, z,M(x, z)) = 1]− Pr[Dn(x, z, U(x, z)) = 1]| < n−c , (5)

where the first probability is taken over the random coins of M and Dn, and the second probability is taken over
the (implicit) random coins of U and Dn.

Definition 5 allows M to depend on Dn, but not on x or z. It can be interpreted as “You name the test (Dn),
and I will present a machine (M) which approximates U in such a way that the test fails.” This is still too loose: M
is effectively a circuit, not a PPTM. This is because M can depend on the non-uniformity of Dn, and access the
same (or even longer) prefix of z that Dn does.

One way to restrain this power is not to allow M to depend on Dn arbitrarily. To this end, we require that there
exists some universal PPTM M which can approximate U on L, but we let M to have code access or black-box
access to Dn. Definitions 6 and 7 capture the new notions:

Definition 6 (Mild Approximability). A poly-bounded distribution ensemble U = {U(x, z)}x∈L,z∈{0,1}∗ is said to
be mildly approximable on the language L, if there exists a PPTM M , such that for every family of polynomial-size
circuits D = {Dn}, the following holds:

(∀c ∈ N)(∀∞n ∈ N)(∀x ∈ Ln)(∀z ∈ {0, 1}∗)
|Pr[Dn(x, z,M(〈x, desc(Dn)〉, z)) = 1]− Pr[Dn(x, z, U(x, z)) = 1]| < n−c , (6)

where the first probability is taken over the random coins of M and Dn, and the second probability is taken over the
(implicit) random coins of U and Dn. Here, desc(Dn) means the description of the circuit Dn in some canonical
encoding.

Note that since the pair 〈x, desc(Dn)〉 is provided as the first input to M , the machine M has enough time to
simulate the code of Dn.

Definition 7 (Semi-Strong Approximability). A poly-bounded distribution ensemble U = {U(x, z)}x∈L,z∈{0,1}∗
is said to be semi-strongly approximable on the language L, if there exists a PPT-OM M , such that for every family
of polynomial-size circuits D = {Dn}, the following holds:

(∀c ∈ N)(∀∞n ∈ N)(∀x ∈ Ln)(∀z ∈ {0, 1}∗)
|Pr[Dn(x, z,MDn(x, z)) = 1]− Pr[Dn(x, z, U(x, z)) = 1]| < n−c , (7)

where the first probability is taken over the random coins of M and Dn, and the second probability is taken over
the (implicit) random coins of U and Dn.

5

The interpretation of Definition 6 is: “I will provide an approximator M that, given the code of the test, will
approximate U on L such that the test fails.” Definition 7 is interpreted similarly; yet instead of accessing the
description of the test, the machine M is only allowed black-box access to the test.

Theorem 1. Let us denote the “implication” by⇒. Then:

Strong approximability⇒ Semi-strong approximability⇒ Mild approximability⇒
Semi-weak approximability⇒Weak approximability . (8)

Proof. Strong approximability implies semi-strong approximability since, in the latter, the approximator (M) can
have black-box access to the distinguisher. If the approximation is possible without such access (as is the case with
strong approximability), it is a fortiori possible with black-box access.

The same reasoning holds while comparing semi-strong and mild approximabilities: If the approximation is
possible with only black-box access (as is the case with semi-strong approximability), it is a fortiori possible with
code access (as is the case with mild approximability).

Mild approximability implies semi-weak approximability since the order of quantifiers in the definition of the
latter allows the approximator to depend arbitrarily on the distinguisher.

Semi-weak approximability implies weak approximability because the latter allows the approximator to depend
not only on the distinguisher, but also on the common and auxiliary inputs. �

It is easy to take cryptographic primitives which incorporate “strong approximability” and redefine them based
on the new notions of approximability. For instance, consider the definition of “pseudorandom generators”: Let
`(n) > n be a polynomially-bounded function. The function G : {0, 1}n → {0, 1}`(n) is called a pseudorandom
generator if it is polynomial-time computable, and for a randomly selected x ∈ {0, 1}n, the uniform distribution
over {0, 1}`(n) is strongly approximated byG(x).5 It is now easy to define, say, a “mildly pseudorandom generator”:
The function G is called a mildly pseudorandom generator if it is polynomial-time computable, and for a randomly
selected x ∈ {0, 1}n, the uniform distribution over {0, 1}`(n) is mildly approximated by G(x).

Separating Definitions 4–7 from each other and from Definition 2, as well as determining the security im-
plications each provides, seems to be an interesting task. Specifically, it seems hard to separate the semi-strong
approximability (Definition 7) from the strong approximability (Definition 2). On the one hand, the approximator
M of Definition 7 can perform tests based on the non-uniformity of Dn, something that a PPTM cannot do by itself.
On the other hand, the one-bit output of Dn does not seem to offer machine M of Definition 7 any competitive
advantage over the machine M of Definition 2. However, in Section 4 we will see a separation between the
strong approximability and the semi-strong approximability in the random-oracle model. (In fact, we provide such
separation in the context of the second hierarchy; see below.)

3.2 The Second Hierarchy

The second hierarchy we present has more “semantics” attached to it. This hierarchy concerns the knowledge which
might be encoded into the description of a distinguisher, or given as an external advice to it. The models in this
hierarchy allow the approximator to extract the knowledge associated with a particular distinguisher, and then try to
approximate the distribution ensemble.

Informally, a TM/circuit P is said to know something with probability q if there exists a probabilistic TM
K (called the knowledge extractor), which runs in expected time bounded by to 1/q (up to a polynomial factor),
and extracts the knowledge of D. The machine K may have black-box [FFS88, FS90, BG93] or code access
[BGGL01, BL02] to P . Depending on how well K extracts the knowledge, one can define strong proofs of
knowledge [Gol01, Definition 4.7.13], (ordinary) proofs of knowledge [Gol01, Definition 4.7.2], and weak proofs
of knowledge (an adaption of weak proofs of ability defined in [BG92]). The combination of {black-box, code}
access, and {strong, ordinary, weak} models provide us with 6 possible ways of defining a hierarchy. Below we
will present some natural combination; but let us provide an example first.

Consider a cryptographic protocol, such as an identification scheme. In this protocol, the prover P must prove
his knowledge of some secret s (related to his identity) to a verifier V ∗. Assume the protocol is defined in such way
that it has a special behavior:6

5The technicality here is that the selection of x from L is not universally quantified; instead, x is randomly selected from {0, 1}n. One
can easily change the definitions of approximability to cover this case as well.

6In Sections 4–5, we will show that there exist protocols with such behavior.

6

1. Unless V ∗ “knows” s, she cannot distinguish the real execution from a simulated one.

2. If V ∗ gets to “know” s, she might be able to distinguish the real and simulated executions.

The question is: “does the second case harm the security of the identification scheme?” After all, if the adversary
knows the secret, she can simulate the protocol all by herself, without having to resort to the simulator. We may
therefore present an informal definition of simulatable identification schemes, as below:

An identification scheme is simulatable if for every PPTM adversary V ∗, there exists a simulator
SV ∗ which simulates the view of V ∗, in such a way that if the adversary can distinguish the real and
simulated views with probability q, we can conclude that she knows the secret of the prover with
probability roughly q.

This notion of simulatability is closely related to what Dwork, Naor, and Sahai [DNS98, DNS04] called
ε-knowledge, based on which one can define ε-approximability. However, in order to be consistent with the naming
convention of the previous hierarchy, we call it “strong ε-approximability.”

Definition 8 (Strong ε-Approximability). A poly-bounded distribution ensemble U = {U(x, z)}x∈L,z∈{0,1}∗ is
said to be strongly ε-approximable on the language L, if for all functions 0 < ε(·) = o(1), there exists a PPTM M ,
such that for every family of polynomial-size circuits D = {Dn}, the following holds:

(∀c ∈ N)(∀∞n ∈ N)(∀x ∈ Ln)(∀z ∈ {0, 1}∗)
|Pr[Dn(x, z,M(〈x, 11/ε(n), |Dn|〉, z)) = 1]− Pr[Dn(x, z, U(x, z)) = 1]| < n−c + ε(n) , (9)

where the first probability is taken over the random coins of M and Dn, and the second probability is taken over
the (implicit) random coins of U and Dn.

Note that the running time of M can be a polynomial in the size of the distinguisher, as well as the inverse
of the distinguishing gap (ε−1). For several years, it was unknown whether zero-knowledge is a stricter concept
than ε-knowledge. Barak and Lindell [BL02] showed a separation between the two concepts: While there exist
constant-round strict polynomial-time black-box simulator ε-knowledge proofs for NP (with negligible soundness
error), such constant-round strict polynomial-time black-box simulator ZK proofs (with negligible soundness error)
exist only for BPP languages.7

As in the previous section, it is possible to define the hierarchy of weak ε-approximability, semi-weak ε-
approximability, mild ε-approximability, and semi-strong ε-approximability. However, the goal of this section is to
provide a different hierarchy based on the notion of knowledge extraction.

Recall the example about the identification scheme: It was designed such that if the adversary could distinguish
the real and simulated executions with probability q, then it would know the secret of the prover with probability q.
The word “know” is italicized because it is informal. One can formalize this definition by requiring the existence of
a knowledge extractor K, such that K accesses the adversary, extracts her knowledge, and tries to simulate the
protocol. Definitions 9 and 16 formalize this concept.

Definition 9 (Mild K-Approximability). A poly-bounded distribution ensemble U = {U(x, z)}x∈L,z∈{0,1}∗ is
said to be mildly K-approximable on the language L, if there exists a PPTM M and an expected PPTM K, such
that for every family of polynomial-size circuits D = {Dn}, for all n ∈ N, for all x ∈ Ln, and for all z ∈ {0, 1}∗,
if the advantage

Ψ = AdvM,U
Dn

(x, z)
def
= |Pr[Dn(x, z,M(x, z)) = 1]− Pr[Dn(x, z, U(x, z)) = 1]| (10)

is nonzero, then on input (x, z), the following holds:

|Pr[Dn(x, z,K(〈x, 11/Ψ, desc(Dn)〉, z)) = 1]− Pr[Dn(x, z, U(x, z)) = 1]| < n−c , (11)

where the first probability is taken over the random coins of K and Dn, and the second probability is taken over the
(implicit) random coins of U and Dn.

7A very recent treatment of this subject can be found in [Gol10].

7

Definition 10 (Semi-StrongK-Approximability). A poly-bounded distribution ensembleU = {U(x, z)}x∈L,z∈{0,1}∗
is said to be semi-strongly K-approximable on the language L, if there exists a PPTM M and an expected PPT-OM
K, such that for every family of polynomial-size circuits D = {Dn}, for all n ∈ N, for all x ∈ Ln, and for all
z ∈ {0, 1}∗, if Ψ = AdvM,U

Dn
(x, z) (defined in (10)) is nonzero, the following holds:

|Pr[Dn(x, z,KDn(〈x, 11/Ψ〉, z)) = 1]− Pr[Dn(x, z, U(x, z)) = 1]| < n−c , (12)

where the first probability is taken over the random coins of K and Dn, and the second probability is taken over the
(implicit) random coins of U and Dn.

As in the first hierarchy, other levels of theK-approximability (strong, semi-weak, and weakK-approximabilities)
are conceivable as well. See Appendix A

Theorem 2. Each definition of approximability entails the corresponding variant of K-approximability. Moreover,

Strong K-approximability⇒ Semi-strong K-approximability⇒ Mild K-approximability⇒
Semi-weak K-approximability⇒Weak K-approximability . (13)

The proof appears in Appendix B.

4 Separating Semi-Strong Approximability from Strong Approximability

In this section, we present a separation between the semi-strong and strong notions of approximability (and
K-approximability). In particular, we construct a protocol in the random-oracle model (ROM) [BR93], which is
not ZK based on the strong approximability, but is ZK based on the semi-strong approximability. The separation
assumes the existence of (trapdoor) one-way permutations (Definition 1).

Let us recall three definitions of ZK in the ROM (see [Wee09] for a full discussion). These definitions differ in
the ability of the simulator to program the random oracle at specific points, before the distinguisher can query the
random oracle.

Definition 11 (NPRO ZK, EPRO ZK, and FPRO ZK). An interactive protocol 〈P ↔ V ∗(z)〉 (x), where P is an
OM and V ∗ is a PPT-OM, is ZK for P on L in the ROM, if for every PPT-OM V ∗, there exists a PPT-OM SV ∗ ,
such that for all polynomial-size family of (oracle) circuits D = {Dn}, the following holds:

(∀c ∈ N)(∀∞n ∈ N)(∀x ∈ Ln)(∀z ∈ {0, 1}∗)∣∣∣ Pr
RO

[
DO1

n

(
x, z, viewV ∗

〈
PRO ↔ V ∗RO(z)

〉
(x)
)

= 1
]
−

Pr
RO

[
DO2

n

(
x, z, SRO

V ∗ (x, z)
)

= 1
] ∣∣∣ < n−c , (14)

where the first probability is taken over the random coins of SV ∗ , Dn, and the random selection of RO, and the
second probability is taken over the random coins of P , V ∗, Dn, and the random selection of RO. The oracles O1

and O2 are determined based on the type of ZK in question:

• Non-programmable RO (NPRO) ZK model: O1 = O2 = RO.

• Explicitly-programmable RO (EPRO) ZK model: O1 = RO and O2 = RO[`].8

• Fully-programmable RO (FPRO) ZK model: O1 = O2 = ∅.

Remark 2. Definition 11 resembles the auxiliary-input ZK (AIZK) in the Standard Model. However, as shown
by Wee [Wee09], neither NPRO ZK nor EPRO ZK is closed under the sequential compositions (and the status of
FPRO ZK is unknown). This is because in a real interaction, V ∗ can learn auxiliary information which not only
depends on x, but also depends on the RO. As a remedy, Wee suggests using oracle-dependent auxiliary inputs (as
defined by Unruh [Unr07]). We will return to this issue in Section 5; until then, we assume nothing about whether
our definitions are closed under any type of composition.

8RO[`] behaves much like RO, except that it is programmed according to the list `.

8

Remark 3. It might be tempting to define other variants of ZK, such as black-box ZK (BBZK) in the ROM. In fact,
there exist such definitions in the literature [YZ06, Gag08]. However, it should be noted that in the BBZK, the
verifier V ∗ is chosen after the simulator S is fixed, and therefore V ∗ can run much longer than S. In particular,
let p(·) be a polynomial upper-bounding the running time of S. Then, a cheating verifier V ′ can start by asking
p(n) + 1 queries from the RO, and then act as the cheating verifier V ∗. This will exhaust the simulator, since S has
to monitor all queries asked by V ′. Another drawback is pointed to the authors by Boaz Barak [Bar10]:

While a random-oracle model simulator may be efficient, it’s obviously not black-box, because it is
supposed to somehow look at the execution of V ∗ and understand from it when V ∗ is evaluating a
hash function. For this reason, it does not make sense to say that a random-oracle model simulator is
“black-box.”

However, if we neglect this subtle conceptual point, there is still one way to syntactically define BBZK in the ROM.
The point is to define the running time of S as polynomial not only in |x|, but also in the number of queries to RO
made by V ′. (This definition was proposed to the authors by David Cash [Cas10]).

Remark 3 discusses the technicalities one faces when trying to define semi-strong approximability in the
ROM: Since the approximator should have BB access to the distinguisher, the issue mentioned in Remark 3 arises.
Fortunately, there is a conceptual work-around (in addition to the syntactical one), if we consider the semi-strong
K-approximability. Recall idea behind defining semi-strong K-approximability: If Dn “knows” something, the
adversary can use a knowledge extractor to extract this knowledge, and then use it to simulate the protocol by itself.
Informally, we say that the knowledge of Dn does not decrease if it asks more queries from the RO. Therefore, for
and Dn, one can construct another circuit D′n, which:

• If it deems a query made by Dn as dummy, it will answer the query without passing it to the RO.

• Otherwise, it passes the query to the RO and returns the answer.

The statistical independence of RO(q1) and RO(q2) (whenever q1 6= q2) allows D′n to decide upon the status of a
query (dummy or not) independently. Obviously, the number of queries D′n makes to the RO must be determined
before fixing the approximator. Below, we will present a protocol in which D′n makes no more than a single query.
This point is clarified in the proof of Lemma 2.

Having seen many pitfalls along the path, we are now ready to present the definition of RO ZK based on
semi-strong approximability. Here, we use semi-strong K-approximability, because as discussed, it does not suffer
from the issues in Remark 3. To simplify the exposition, we only define the NPRO semi-strong K-ZK. Definitions
for EPRO and FPRO follow easily.

Definition 12 (NPRO Semi-Strong K-ZK). An interactive protocol 〈P ↔ V ∗(z)〉 (x), where P is an OM and V ∗

is a PPT-OM, is ZK for P on L in the ROM, if for every PPT-OM V ∗, there exists a PPT-OM SV ∗ and an expected
PPT-OM K, such that for all polynomial-size family of (oracle) circuits D = {Dn}, for all n ∈ N, for all x ∈ Ln,
and for all z ∈ {0, 1}∗, if the advantage

Ψ = Adv
S,viewV ∗
Dn

(x, z)
def
=∣∣∣ Pr

RO

[
DRO

n

(
x, z, viewV ∗

〈
PRO ↔ V ∗RO(z)

〉
(x)
)

= 1
]
− Pr

RO

[
DRO

n

(
x, z, SRO

V ∗ (x, z)
)

= 1
] ∣∣∣ (15)

is nonzero, then the following holds:∣∣∣ Pr
RO

[
DRO

n

(
x, z, viewV ∗

〈
PRO ↔ V ∗RO(z)

〉
(x)
)

= 1
]
−Pr

RO

[
DRO

n

(
x, z,KDn,RO(〈x, 11/Ψ〉, z)

)
= 1
] ∣∣∣ < n−c ,

(16)

where the first probability is taken over the random coins of P , V ∗, Dn and the random selection of RO, and the
second probability is taken over the random coins of K, Dn, and the random selection of RO.

Theorem 3. Assuming the existence of trapdoor one-way permutations, there exists an efficient-prover protocol in
the ROM, which is not ZK even in the EPRO-ZK sense, but is NPRO semi-strong K-ZK.

For the lack of space, we prove a simpler version of Theorem 3: “Assuming the existence of trapdoor
one-way permutations, there exists an efficient-prover protocol in the ROM, which is not NPRO-ZK, but is
NPRO semi-strong K-ZK.” This simpler form provides the required separation (between strong and semi-strong
approximabilities), and its ideas can be easily extended to prove Theorem 3.

9

Proof. Let F = {fn} be a collection of trapdoor one-way permutations, and t = {tn} be the corresponding
trapdoor set. Consider Protocol 1:

PROTOCOL 1:

• Common Input: Description of fn.

• Prover’s Auxiliary Input: tn.

• Protocol Description:

1. V computes x← SAMP(desc(fn)) and y ← EVAL(desc(fn), x), and sends y to P .

2. The efficient prover P computes x← INV(desc(fn), tn, y), and w ← RO(x), and sends w to V .

• Verification: V accepts if w = RO(x), and rejects otherwise.

Remark 4. Protocol 1 is a proof of computational ability [BG92], and can be used as an efficient identification
scheme if the RO is instantiated properly (where the prover demonstrates his ability of inverting a one-way
permutation to the verifier.) However, as pointed out in Section 5, the ZK property of this protocol is not preserved
under sequential composition. For this reason, we suggest using Protocol 3, which is as efficient as Protocol 1.

We next prove that Protocol 1 is not NPRO ZK, but is NPRO semi-strong K-ZK.

Lemma 1. Assuming F = {fn} is a collection of trapdoor one-way permutations, Protocol 1 is not NPRO ZK.

The proof appears in Appendix C. The proof can be easily modified to prove that Protocol 1 is not EPRO ZK. That
is, even the ability of SV ∗ to program RO at polynomially many points does not help it to strongly approximate the
view of V ∗. This is mainly due to the fact that the PPT-OM SV ∗ cannot compute the right value (i.e. fn−1(y)) at
which RO should be programmed.

Lemma 2. Protocol 1 is NPRO semi-strong K-ZK (as per Definition 12).

The proof appears in Appendix D. Together, Lemmas 1 and 2 prove Theorem 3. �

5 Sequential Composition

Recent works on composition, such as [Wee09, BV10], showed that proving composition theorems is a subtle task.
In this section, we first prove that a variant of Protocol 1 is not closed under sequential compositions, and therefore
rule out the closeness of NPRO semi-strong ZK under such compositions.9 We then provide a model called NPRO
semi-strong ZK with oracle-dependent auxiliary-input, and prove that it is closed under sequential compositions.
Finally, we present Protocol 3—a modification of Protocol 1—which is ZK in this model but not in the EPRO ZK
model.

5.1 Insecurity under Sequential Compositions

Consider Protocol 2, which is a variant of Protocol 1. Note that we made two reasonable assumptions about the
underlying collection of trapdoor one-way permutations (F = {fn}): For the given security parameter,

(1) The range of the random oracle coincides with dom(fn
−1) = dom(fn).

(2) The distribution which SAMP(desc(fn)) induces on dom(fn) is computationally indistinguishable from the
uniform distribution (since by assumption (1), the random oracle induces a uniform distribution on dom(fn)).

Interestingly, these assumptions are those required for the validity of full-domain hash [BR93, BR96]. As
pointed out in [BR93, Section 4], while standard trapdoor permutations (such as RSA) do not possess these
properties, the scheme can be patched nonetheless to provide them as well.

PROTOCOL 2:
9In fact, this is totally expected, because NPRO semi-strong ZK is more general than NPRO ZK, and as proved in [Wee09], NPRO ZK is

not closed under sequential compositions.

10

• Common Input: Description of fn.

• Prover’s Auxiliary Input: tn.

• Protocol Description:

1. V sends some string α to P .

2. Using tn, the efficient prover computes β = RO
(
fn
−1(RO(0n))

)
. If α = β, the prover sends tn to V .

Otherwise, the prover sends β.

• Verification: V always accepts (i.e. the soundness holds vacuously).

Theorem 4. Assuming that F = {fn} is defined as above, Protocol 2 possesses the following properties:

(i) It is EPRO-ZK but not NPRO-ZK.

(ii) It is NPRO semi-strong K-ZK.

(iii) If composed twice (sequentially), it is no longer zero knowledge.

The proof appears in Appendix E.

Remark 5. The reason why Protocol 2 is not ZK under compositions is that that auxiliary input to V ∗ in the second
execution (i.e. β) depends on RO, while the traditional auxiliary input z cannot depend on RO (see Definition 11,
where z is selected before RO is determined). We will resolve this issue in the next section.

5.2 Models with Oracle-Dependent Auxiliary-Input

To devise a sequentially composable model of ZK in the ROM, we have to make compromises. Specifically, if z is
allowed to depend arbitrarily on RO, we will stuck at the proof of the composition theorem, for we cannot use the
averaging argument as in the standard model. (The issue is discussed more clearly during the course of the proof of
Theorem 5; see also [Wee09, footnote 12]).

The compromise is to consider a model where all parties are modeled as PPTMs, and the auxiliary input to V ∗

is generated by a nonuniform PPT-OM which has access to RO. Let us exemplify this model in the definition of
NPRO semi-strong K-ZK with oracle-dependent auxiliary input (cf. Definition 12):

Definition 13 (NPRO Semi-Strong K-ZK with Oracle-Dependent Auxiliary Input). An interactive protocol
〈P (y)↔ V ∗(z)〉(x), where P and V ∗ are a PPT-OMs, is ZK for P on L ⊆ NP in the ROM, if for every PPT-OM
V ∗, there exists a PPT-OM SV ∗ and an expected PPT-OM K, such that for all polynomial-size family of (oracle)
circuits D = {Dn} and Z = {Zn}, for all n ∈ N, for all (x, y) ∈ RLn , and for all ζ ∈ {0, 1}∗, if

Ψ = Adv
S,viewV ∗
Dn,Zn

(x, y, ζ)
def
=

E
RO

[
z ← ZRO

n (ζ) :
∣∣∣Pr

[
DRO

n

(
x, z, viewV ∗〈PRO(y)↔ V ∗RO(z)〉(x)

)
= 1
]
−

Pr
[
DRO

n

(
x, z, SRO

V ∗ (x, z)
)

= 1
] ∣∣∣] (17)

is nonzero, then the following holds:∣∣∣Pr
[
DRO

n

(
x, z, viewV ∗〈PRO(y)↔ V ∗RO(z)〉(x)

)
= 1
]
−

Pr
[
DRO

n

(
x, z,KDn,RO(〈x, 11/Ψ〉, z)

)
= 1
] ∣∣∣ < n−c . (18)

Theorem 5. Definition 13 is closed under sequential compositions.

The proof appears in Appendix F.

11

5.3 A New Protocol

It is easy to show that Protocol 1 is not ZK under Definition 13. An informal proof follows: Let Zn compute x←
SAMP(desc fn) and y ← EVAL(desc fn, x), and output z = y || RO(RO(x)). A cheating verifier V ∗ forwards y
to the prover (or simulator), instead of computing it as prescribed. On receiving the response from the honest prover
(which should be w = RO(x) by definition), V ∗ just queries RO at w, and accepts if RO(w) = RO(RO(x)). (The
right-hand side is extracted from z). On the other hand, to compute x, the simulator must either invert y or invert
RO; yet both tasks are infeasible for it. Let w be the output of the simulator. To check the output, the distinguisher
Dn simply queries RO at w, and compares the answer to the second component in z (i.e. RO(RO(x)). Note that
in this case, Dn does not know the value of x, so its queries does not help any extractor K.

To fix this problem, we propose Protocol 3, which exploits Pass’ commitments [Pas03a]: To commit to a string
x in the ROM, choose a random s, and send (s,RO(x || s)). Note that there is no decommitment phase, since the
prescribed verifier already knows x.

PROTOCOL 3:

• Common Input: Description of fn.

• Prover’s Auxiliary Input: tn.

• Protocol Description:

1. V computes x← SAMP(desc(fn)) and y ← EVAL(desc(fn), x), and sends y to P .

2. The efficient prover P computes x← INV(desc(fn), tn, y), chooses s←R {0, 1}|x|, computes
w ← RO(x || s), and sends (s, w) to V .

• Verification: V accepts if w = RO(x || s), and rejects otherwise.

Theorem 6. Assuming that F = {fn} is defined as above, Protocol 3 possesses the following properties:

(i) It is ZK under Definition 13.

(ii) It is not EPRO ZK.

The proof appears in Appendix G.

6 Future Work

We believe that the most important task is to remove the need for the RO, and replace it with some suitable
assumption. One possible solution is to extract the required properties which the RO satisfies, and try to find
a cryptographic primitive which satisfies these constraints (similar to [Can97, CMR98, CD08]). Specifically,
we believe that a suitable assumption, similar to the knowledge-of-exponent assumption (KEA) [Dam92, HT98,
BP04, CD08] may prove useful. We are currently studying the plausibility of the following assumption (stated
intuitively): For any PPTM D which distinguishes with non-negligible advantage between (fn(x), gr, grx, z) and
(fn(x), gr, gs, z), where p and q = (p− 1)/2 are primes, g ∈ Z∗p has order q, and r and s are uniformly selected
from Zq, there exists another PPTM S which outputs x. This assumption can be seen as a decisional version of the
KEA, and can be used to provide a weak uniform ZK protocol based on Protocol 3, in the standard model.

It is also interesting to study the closedness of the new definitions under other types of compositions. Moreover,
separating various levels of the two hierarchies from each other is desirable.

References

[Bar01] Boaz Barak. How to Go Beyond the Black-Box Simulation Barrier. In Proceedings of the 42nd
Annual IEEE Symposium on Foundations of Computer Science (FOCS ’01), pages 106–115, Las Vegas,
Nevada, USA, 2001. IEEE Computer Society.

12

[Bar10] Boaz Barak. Personal communication, 2010. The transcript is available at http://cstheory.
stackexchange.com/questions/1454/1568#1568.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum Disclosure Proofs of Knowledge.
Journal of Computer and System Sciences (JCSS), 37(2):156–189, 1988.

[BG92] Mihir Bellare and Oded Goldreich. Proving Computational Ability. Available from: http://
cseweb.ucsd.edu/˜mihir/papers/poa.ps or http://www.wisdom.weizmann.ac.
il/˜oded/PS/poa.ps. Published recently in [Gol11], 1992.

[BG93] Mihir Bellare and Oded Goldreich. On Defining Proofs of Knowledge. In Advances in Cryptology—
CRYPTO ’92, pages 390–420, London, UK, 1993. Springer-Verlag.

[BGGL01] Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda Lindell. Resettably-Sound Zero-
Knowledge and Its Applications. In Proceedings of the 42nd IEEE Symposium on Foundations
of Computer Science (FOCS ’01), pages 116–125. IEEE, 2001.

[BL02] Boaz Barak and Yehuda Lindell. Strict Polynomial-Time in Simulation and Extraction. In Proceedings
of the 34th Annual ACM Symposium on Theory of Csomputing (STOC ’02), pages 484–493, New York,
NY, USA, 2002.

[BM82] Manuel Blum and Silvio Micali. How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits. In Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’82), pages 112–117, Washington, DC, USA, 1982. IEEE Computer Society. See
[BM84] for the journal version.

[BM84] Manuel Blum and Silvio Micali. How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits. SIAM Journal on Computing, 13(4):850–864, November 1984. See [BM82] for the
conference version.

[BP04] Mihir Bellare and Adriana Palacio. The Knowledge-of-Exponent Assumptions and 3-Round Zero-
Knowledge Protocols. In Advances in Cryptology—CRYPTO 2004, volume 3152 of Lecture Notes in
Computer Science, pages 227–232. Springer Berlin / Heidelberg, 2004.

[BR93] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols. In Proceedings of the 1st Annual ACM Conference on Computer and Communications
Security, pages 62–73. ACM, 1993.

[BR96] Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Signatures—How to Sign with RSA
and Rabin. In Advances in Cryptology—EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer
Science, pages 399–416. Springer Berlin / Heidelberg, 1996.

[BV10] Eleanor Birrell and Salil Vadhan. Composition of Zero-Knowledge Proofs with Efficient Provers. In
Theory of Cryptography—TCC ’10, volume 5978 of Lecture Notes in Computer Science, pages 572–
587. Springer Berlin / Heidelberg, 2010. Full version is available at http://eprint.iacr.org/
2009/604.

[Can97] Ran Canetti. Towards Realizing Random Oracles: Hash Functions That Hide All Partial Information.
In Proceedings of the 17th Annual International Cryptology Conference on Advances in Cryptology—
Crypto ’97, volume 1294 of Lecture Notes in Computer Science, pages 455–469, Santa Barbara,
California, USA, 1997. Springer-Verlag. See [Can00] for the full version.

[Can00] Ran Canetti. Towards Realizing Random Oracles: Hash Functions that Hide All Partial Infor-
mation, 2000. Unpublished Manuscript. Available from http://www.research.ibm.com/
security/pof-long.ps. See [Can97] for the conference version.

[Can01] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols
(Extended Abstract). In Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’01), page 136, Washington, DC, USA, 2001. IEEE Computer Society. See [Can05]
for the full version.

13

http://cstheory.stackexchange.com/questions/1454/1568#1568
http://cstheory.stackexchange.com/questions/1454/1568#1568
http://cseweb.ucsd.edu/~mihir/papers/poa.ps
http://cseweb.ucsd.edu/~mihir/papers/poa.ps
http://www.wisdom.weizmann.ac.il/~oded/PS/poa.ps
http://www.wisdom.weizmann.ac.il/~oded/PS/poa.ps
http://eprint.iacr.org/2009/604
http://eprint.iacr.org/2009/604
http://www.research.ibm.com/security/pof-long.ps
http://www.research.ibm.com/security/pof-long.ps

[Can05] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.
Cryptology ePrint Archive, Report 2000/067, 2005. Available from http://eprint.iacr.org/
2000/067. See [Can01] for the conference version.

[Cas10] David Cash. Personal communication, 2010. The transcript is available at http://cstheory.
stackexchange.com/questions/1454/1509#1509.

[CD08] Ran Canetti and Ronny Ramzi Dakdouk. Extractable Perfectly One-Way Functions. In International
Colloquium on Automata, Languages and Programming—ICALP ’08, volume 5126 of Lecture Notes
in Computer Science, pages 449–460. Springer Berlin / Heidelberg, 2008. See [Dak09] for the full
version.

[CF01] Ran Canetti and Marc Fischlin. Universally Composable Commitments. In Proceedings of the 21st
Annual International Cryptology Conference on Advances in Cryptology—CRYPTO ’01, volume
2045 of Lecture Notes in Computer Science, pages 19–40, Santa Barbara, California, USA, 2001.
Springer-Verlag.

[CMR98] Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly One-Way Probabilistic Hash Functions
(Preliminary Version). In Proceedings of the 30th Annual ACM Symposium on Theory of Computing
(STOC ’98), pages 131–140, New York, NY, USA, 1998. ACM.

[Dak09] Ronny Ramzi Dakdouk. Theory and Application of Extractable Functions. PhD thesis, Yale Univer-
sity, New Haven, Connecticut, USA, 2009. Available from http://www.cs.yale.edu/˜jf/
Ronny-thesis.pdf.

[Dam92] Ivan Damgård. Towards Practical Public Key Systems Secure Against Chosen Ciphertext Attacks. In
Advances in Cryptology—CRYPTO ’91, volume 576 of Lecture Notes in Computer Science, pages
445–456. Springer Berlin / Heidelberg, 1992.

[DNRS99] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic Functions. In Proceedings
of the 40th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’99), pages 523–534,
New York, NY, USA, 1999. IEEE Computer Society. See [DNRS03] for the full version.

[DNRS03] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic Functions. Journal of
the ACM (JACM), 50(6):852–921, November 2003. See [DNRS99] for the conference version.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In Proceedings of the 30th
Annual ACM Symposium on Theory of Csomputing (STOC ’98), pages 409–418, New York, NY, USA,
1998. See [DNS04] for the conference version.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent Zero-Knowledge. Journal of the ACM
(JACM), 51(6):851–898, November 2004. See [DNS98] for the conference version.

[Dou11] Mohammad Sadeq Dousti. Beating Nonuniformity by Oracle Access, 2011. The transcript is available
at http://cstheory.stackexchange.com/q/4796/873.

[DS02] Cynthia Dwork and Larry Stockmeyer. 2-Round Zero Knowledge and Proof Auditors. In Proceedings
of the 34th Annual ACM Symposium on Theory of Computing (STOC ’02), pages 322–331, Montréal,
Quebec, Canada, 2002. ACM.

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-Knowledge Proofs of Identity. Journal of Cryptology,
1(2):77–94, 1988.

[FS90] Uriel Feige and Adi Shamir. Witness Indistinguishable and Witness Hiding Protocols. In Proceedings
of the 22nd Annual ACM Symposium on Theory of Computing (STOC ’90), pages 416–426, New York,
NY, USA, 1990. ACM.

[Gag08] Martin Gagné. A Study of the Random Oracle Model. PhD thesis, University of California at Davis,
CA, USA, 2008. Available from http://wwwlib.umi.com/dissertations/fullcit/
3336254.

14

http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
http://cstheory.stackexchange.com/questions/1454/1509#1509
http://cstheory.stackexchange.com/questions/1454/1509#1509
http://www.cs.yale.edu/~jf/Ronny-thesis.pdf
http://www.cs.yale.edu/~jf/Ronny-thesis.pdf
http://cstheory.stackexchange.com/q/4796/873
http://wwwlib.umi.com/dissertations/fullcit/3336254
http://wwwlib.umi.com/dissertations/fullcit/3336254

[GK90] Oded Goldreich and Hugo Krawczyk. On the Composition of Zero-Knowledge Proof Systems. In
Mike Paterson, editor, Proceedings of the 17th International Colloquium on Automata, Languages
and Programming (ICALP ’90), volume 443 of Lecture Notes in Computer Science, pages 268–282,
Warwick University, England, 1990. Springer. See [GK96] for the journal version.

[GK96] Oded Goldreich and Hugo Krawczyk. On the Composition of Zero-Knowledge Proof Systems. SIAM
Journal on Computing, 25(1):169–192, 1996. See [GK90] for the conference version.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption & How to Play Mental Poker Keeping
Secret All Partial Information. In Proceedings of the 14th Annual ACM Symposium on Theory of
Csomputing (STOC ’82), pages 365–377, New York, NY, USA, 1982. See [GM84] for the journal
version.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. Journal of Computer and System
Sciences (JCSS), 28(2):270–299, 1984. See [GM82] for the conference version.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of Interactive Proof
Systems. In Proceedings of the 17th Annual ACM Symposium on Theory of Computing, pages 291–304,
1985.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GO94] Oded Goldreich and Yair Oren. Definitions and Properties of Zero-Knowledge Proof Systems. Journal
of Cryptology, 7:1–32, 1994. See [Ore87] for the conference version.

[Gol93] Oded Goldreich. A Uniform-Complexity Treatment of Encryption and Zero-Knowledge. Journal of
Cryptology, 6(1):21–53, 1993.

[Gol01] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University Press,
2001.

[Gol07] Oded Goldreich. On Expected Probabilistic Polynomial-Time Adversaries: A Suggestion for Restricted
Definitions and Their Benefits. In Theory of Cryptography—TCC ’07, volume 4392 of Lecture Notes
in Computer Science, pages 174–193. Springer Berlin / Heidelberg, 2007. See [Gol10] for the journal
version.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University Press,
1st edition, 2008.

[Gol10] Oded Goldreich. On Expected Probabilistic Polynomial-Time Adversaries: A Suggestion for Restricted
Definitions and Their Benefits. Journal of Cryptology, 23(1):1–36, 2010. See [Gol07] for the conference
version.

[Gol11] Oded Goldreich. Studies in Complexity and Cryptography: Miscellanea on the Interplay between
Randomness and Computation, volume 6650 of LNCS, chapter Proving Computational Ability, pages
6–12. Springer, 2011.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the Existence of 3-Round Zero-Knowledge Protocols. In
Advances in Cryptology—CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science, pages
197–202. Springer Berlin / Heidelberg, 1998. See http://eprint.iacr.org/1999/009 for
the full and corrected version.

[Ore87] Yair Oren. On the Cunning Power of Cheating Verifiers: Some Observations about Zero Knowledge
Proofs (Extended Abstract). In Ashok K. Chandra, editor, Proceedings of the 28th Annual IEEE
Symposium on Foundations of Computer Science (FOCS ’87), pages 462–471, Los Angeles, California,
USA, 1987. IEEE Computer Society Press. See [GO94] for the journal version.

[Pas03a] Rafael Pass. On Deniability in the Common Reference String and Random Oracle Model. In Advances
in Cryptology—CRYPTO 2003, pages 316–337. Springer-Verlag, 2003.

15

http://eprint.iacr.org/1999/009

[Pas03b] Rafael Pass. Simulation in Quasi-Polynomial Time, and Its Application to Protocol Composition. In
Advances in Cryptology—EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science,
pages 642–643. Springer Berlin / Heidelberg, 2003.

[Unr07] Dominique Unruh. Random Oracles and Auxiliary Input. In Advances in Cryptology—CRYPTO 2007,
pages 205–223. Springer-Verlag, 2007.

[Wee09] Hoeteck Wee. Zero Knowledge in the Random Oracle Model, Revisited. In Advances in Cryptology—
ASIACRYPT 2009, pages 417–434. Springer-Verlag, 2009.

[Yao82] Andrew Chi-Chih Yao. Theory and Applications of Trapdoor Functions (extended abstract). In
Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science (FOCS ’82),
pages 80–91. IEEE, 1982.

[YZ06] Moti Yung and Yunlei Zhao. Interactive Zero-Knowledge with Restricted Random Oracles. In Theory
of Cryptography—TCC ’06, volume 3876 of Lecture Notes in Computer Science, pages 21–40. Springer
Berlin / Heidelberg, 2006.

16

Appendices
A Some Omitted Definitions

Definition 14 (Strong K-Approximability). A poly-bounded distribution ensemble U = {U(x, z)}x∈L,z∈{0,1}∗ is
said to be strongly K-approximable on the language L, if there exists a PPTM M and an expected PPTM K, such
that for every family of polynomial-size circuits D = {Dn}, for all n ∈ N, for all x ∈ Ln, and for all z ∈ {0, 1}∗,
if Ψ = AdvM,U

Dn
(x, z) (defined in (10)) is nonzero, then the following holds:

|Pr[Dn(x, z,K(〈x, 11/Ψ〉, z)) = 1]− Pr[Dn(x, z, U(x, z)) = 1]| < n−c , (19)

where the first probability is taken over the random coins of K and Dn, and the second probability is taken over the
(implicit) random coins of U and Dn.

Definition 15 (Semi-WeakK-Approximability). A poly-bounded distribution ensembleU = {U(x, z)}x∈L,z∈{0,1}∗
is said to be semi-weakly K-approximable on the language L, if for every family of polynomial-size circuits
D = {Dn}, for all n ∈ N, there exists a PPTM M and an expected PPTM K, such that for all x ∈ Ln, and for all
z ∈ {0, 1}∗, if Ψ = AdvM,U

Dn
(x, z) (defined in (10)) is nonzero, the following holds:

|Pr[Dn(x, z,K(〈x, 11/Ψ〉, z)) = 1]− Pr[Dn(x, z, U(x, z)) = 1]| < n−c , (20)

where the first probability is taken over the random coins of K and Dn, and the second probability is taken over the
(implicit) random coins of U and Dn.

Definition 16 (Weak K-Approximability). A poly-bounded distribution ensemble U = {U(x, z)}x∈L,z∈{0,1}∗ is
said to be weakly K-approximable on the language L, if for every family of polynomial-size circuits D = {Dn},
for all n ∈ N, for every x ∈ Ln, and for all z ∈ {0, 1}∗, there exists a PPTM M and an expected PPTM K, such
that if Ψ = AdvM,U

Dn
(x, z) (defined in (10)) is nonzero, the following holds:

|Pr[Dn(x, z,K(〈x, 11/Ψ〉, z)) = 1]− Pr[Dn(x, z, U(x, z)) = 1]| < n−c , (21)

where the first probability is taken over the random coins of K and Dn, and the second probability is taken over the
(implicit) random coins of U and Dn.

B Proof of Theorem 2

In the definitions of K-approximability, the knowledge extractor has more freedom over the approximator, since its
running time may depend on the distinguishing advantage. Therefore, if some distribution ensemble is approximable,
it is a fortiori K-approximable.

The entailments in (13) can be proven similar to the proof of Theorem 1:
Strong K-approximability implies semi-strong K-approximability since, in the latter, the knowledge extractor

(K) can have black-box access to the distinguisher. If the approximation is possible without such access (as is the
case with strong approximability), it is a fortiori possible with black-box access.

The same reasoning holds while comparing semi-strong and mild approximabilities: If the approximation is
possible with only black-box access (as is the case with semi-strong approximability), it is a fortiori possible with
code access (as is the case with mild approximability).

Mild approximability implies semi-weak approximability since the order of quantifiers in the definition of the
latter allows the knowledge extractor to depend arbitrarily on the distinguisher.

Semi-weak approximability implies weak approximability because the latter allows the knowledge extractor to
depend not only on the distinguisher, but also on the common and auxiliary inputs.

C Proof of Lemma 1

Assume, towards contradiction, that there exists a PPT-OM simulator SV ∗ for Protocol 1, which satisfies the
NPRO-ZK requirement of Definition 11. Assume that the running time of SV ∗ is bounded by a polynomial m(·).

17

With no loss of generality, we assume that m(·) dominates the running time of V ∗ (this is due to the order of
quantifiers in Definition 11, which allows SV ∗ to depend on V ∗).

For the common input desc(fn), define the auxiliary input of V ∗ as z = 〈y || 1m(n) || tn〉, where || denotes
concatenation, and y ← EVAL(desc(fn), SAMP(desc(fn))). The cheating V ∗ reads the prefix y of z, and forwards
it to SV ∗ (instead of computing it via SAMP and EVAL). This way, we are assured (with overwhelming probability)
that V ∗ does not know x = f−1

n (y).10 When V ∗ receives the answer, it halts the protocol and tries to process its
view to increase its knowledge. In other words, the cheating verifier does not make any queries to the RO, and
does not produce any outputs.

Claim 1. Assuming F = {fn} is a collection of trapdoor one-way permutations, the probability that SV ∗ queries
RO at x = f−1

n (y) is negligible.

Proof. Obviously, SV ∗ cannot read the suffix tn of z, since its running time is limited to m(n). Assume towards
contradiction that the probability that SV ∗ queries RO at x = f−1

n (y) is not negligible. We present a PPTM A
which uses SV ∗ as a subroutine to invert F on infinitely many n’s with non-negligible probability.

By hypothesis, the probability that SV ∗ queries RO at x = f−1
n (y) is not negligible. In other words, that there

exist infinitely many n’s, for which on common input desc(fn) and auxiliary input z defined above, the simulator
queries RO at x = f−1

n (y) with non-negligible.
A does the following: On input y and desc(fn), it simply runs SV ∗ on common input desc(fn) and auxiliary

input z = 〈y || 1m(n) || tn〉, monitors its queries to RO. Every time SV ∗ queries RO at some point x̂, A checks
the condition y = fn(x), and halts and outputs x = x̂ if the condition holds. Otherwise, A answers the query
consistently at random11

It is evident that the running time of A is polynomial, and the probability that A outputs x = f−1
n (y) equals the

probability that SV ∗ queries RO at x = f−1
n (y), which is not negligible by hypothesis. Therefore, if y is chosen

according to Definition 1, i.e.

x← SAMP (desc (fn)) , y ← EVAL (desc (fn) , x) ,

A manages to invert fn with probability that is not negligible, contradicting the assumption that F = {fn} is a
collection of trapdoor one-way permutations. �

Claim 2. If SV ∗ does not query RO at x = f−1
n (y), its output is distinguishable from the view of V ∗ with

overwhelming probability.

Proof. Assume that SV ∗ makes several queries to RO, none of which occurs at x = f−1
n (y). It then outputs the

(simulated) view of V ∗, including the transcript (y, w).
There exists a family of polynomial-size circuits whose members are sufficiently large to read the suffix tn out

of z. Let D = {Dn} be one such family, in which the circuit Dn just computes x ← INV(desc(fn), tn, y), and
compares RO(x) with w. It outputs 1 if and only if the equality holds.

If SV ∗ has not queried RO at x = f−1
n (y), the probability that Dn outputs 1 on the simulated view is

Pr[w = RO(x)] = 2−n. This is an information-theoretic result, and does not rely on any complexity-theoretic
assumption.

On the other hand, the probability that Dn outputs 1 on the real view is 1. Therefore, in this case, the simulated
and real views are distinguishable with probability 1− 2−n, which is overwhelming. �

Define E1 and E2 as the following events:

• E1: The event that SV ∗ queries RO at x = f−1
n (y).

• E2: The event that the real view is distinguishable from the simulated view.
10This is just a conceptual observation, and we do not need it for the rest of the proof. It is proven by showing that V ∗ cannot compute x,

as is shown next for SV ∗ .
11The term consistently at random requires elaboration. It means that A keeps a table of all previous queries and answers. If a query

has already been asked, the table is looked-up, and the same answer is returned (consistency). Otherwise, a random answer is picked and
returned, and the table is updated.

18

By Claims 1, we have Pr[E1] ≤ ε1(n), for some negligible function ε1(·). By Claims 2, we have Pr[E2 |
¬E1] ≥ ε2(n), for some negligible function ε2(·). Moreover, we can assume that SV ∗ is intelligible enough to
output the right distribution if it somehow manages to query RO at x = f−1

n (y). Hence Pr[E2 | E1] = 0.
Now we can prove the following:

Pr[E2] = Pr[E2 | E1] · Pr[E1] + Pr[E2 | ¬E1] · Pr[¬E1]

≥ 0 · ε1(n) + (1− ε2(n)) · (1− ε1(n))

≥ 1− ε1(n)− ε2(n) + ε1(n)ε2(n) ,

which is an overwhelming quantity. This shows that no simulator can output the right distribution, and Lemma 1
follows.

D Proof of Lemma 2

The verification stage of Protocol 1 requires only a single query. Therefore, we may assume that D = {Dn}
is a family of single-query circuits. (See Remark 3 for more information.) Otherwise, we construct a family of
single-query circuits D′ = {D′n} from D, which performs as D, but passes the query to the RO only if the query y
satisfies y = fn(x), and this is the first time the query y is asked. Otherwise, D′ answers the query consistently at
random (see Footnote 11). Due to the independence of RO(α) and RO(α′) for any α 6= α′, the output distribution
of D′ is identical to that of D, and therefore single-query circuits perform as well as multi-query circuits in this
experiment, and there is no loss of generality in assuming that the distinguishers are single-query circuits.

Consider a simulator SV ∗ which receives the input (desc(fn), z). Let y be computed in the same way as V ∗

computes y. The simulator simply computes a consistently random value w, and outputs (desc(fn), y, w, r, z).
Here, r is the random tape of V ∗.

Now consider any family of single-query circuits D′ = {D′n}, and perform the following experiment:

1. Let b←R {0, 1}.

2. IF b = 0 THEN

3. Let τ ← SRO
V ∗ (desc(fn), z).

4. ELSE

5. Let τ ← viewV ∗RO(desc(fn), z).

6. Let b′ ← D′n
RO(τ).

7. IF b = b′ THEN output 1; ELSE output 0.

Let E1 be the event that D′n queries RO at x = fn
−1(y), and E2 be the event that the output of the experiment is 1.

Assume that Pr[E2] ≥ 1
2 ; otherwise, negate the verdict of D′n, and this inequality holds. Note that if D′n does not

query RO at x, the probability that it announces the correct verdict is 1
2 ; in other words, Pr[E2 | ¬E1] = 1

2 . This is
because D′n cannot distinguish a consistently random w from RO(x) without first querying RO at x.

Now, by the “law of total probability”:

Pr[E2] = Pr[E1] · Pr[E2 | E1] + Pr[¬E1] · Pr[E2 | ¬E1]

≤ Pr[E1] + Pr[E2 | ¬E1] = Pr[E1] +
1

2
. (22)

We deduce that Pr[E1] ≥ Pr[E2] − 1
2 . Next, it is shown that Pr[E2] − 1

2 = Ψ/2, where Ψ is the advantage of
D′n

RO in distinguishing the real and simulated views (see (15)). For i, j ∈ {0, 1}, define

Pij
def
= Pr

[
D′n

RO
(τ) = i

∣∣∣ b = j
]
. (23)

19

We therefore have P1j = 1− P0j , and:

Pr[E2]− 1

2
=

(
1

2
· P00 +

1

2
· P11

)
− 1

2

=
1

2
· (−P10 + P11)

=
1

2
· | − P10 + P11|

= Ψ/2 . (24)

The third equality follows from the fact that we assumed the left-hand side is positive. Combining (22) and (24),
we infer that Pr[E1] ≥ Ψ/2. That is, D′n

RO queries RO at x with probability at least half of its distinguishing
advantage.

We are now ready to present the algorithm of the knowledge extractor K required by the Definition 12. Note
that K has black-box access to both D′n and RO, and it is run on input

(
〈desc(fn), 11/Ψ〉, z

)
.

1. REPEAT 2n
Ψ times:

2. Let τ ← SRO
V ∗ (desc(fn), z).

3. Let q be the (single) query D′n(τ) makes to RO (if any).

4. IF y = fn(q) output (desc(fn), y,RO(q), r, z) and HALT.

5. Find x = fn
−1(y) by exhaustive search.

6. Output (desc(fn), y,RO(x), r, z).

The probability of HALT at each iteration is Pr[E1] ≥ Ψ/2. Therefore, the probability of running exhaustive search
is less than (1− Ψ/2)2n/Ψ < e−n. The cost of exhaustive search is 2n. Therefore, the contribution of Step 5 to the
expected running time of K is bounded by e−n · 2n, which is negligible in n.

We showed that K runs in expected polynomial time, and can successfully simulate the protocol by finding x.

E Proof of Theorem 4

(i) Protocol 2 is EPRO-ZK because the simulator can compute x← SAMP(desc(fn)) and y ← EVAL(desc(fn),
x). It then programs RO so that RO(0n) = y. This way, β = RO(f−1

n (RO(0n))) equals RO(f−1
n (y)) =

RO(x).

In the unlikely event that α = β, the simulator just starts over; since as opposed to the real prover, it
cannot output tn. If even after n retries the simulator fails, it outputs the special failure symbol ⊥. This
happens if after sampling n points x1, . . . , xn (not necessarily distinct) from the domain of fn, we have
RO(x1) = · · · = RO(xn). This happens with probability 2−n

2
.

On the other hand, if the simulator finds some xi for which βi = RO(xi) 6= α, it outputs (desc(fn), α, βi, r,
z), where α is chosen by V ∗ and r and z are the V ∗’s random tape and auxiliary input, respectively. Note
that since SV ∗ has programmed RO, the output is perfectly indistinguishable from the real view, unless the
output is⊥. The probability of outputting⊥ is negligible and independent of the computing power of V ∗. We
conclude that the output of the simulator is statistically indistinguishable from the view of V ∗, and therefore
the protocol is EPRO-ZK.

Quite contrary, Protocol 2 is not NPRO-ZK. The proof is similar to the proof of Lemma 1. Let m(·) be a
polynomial which upper-bounds the running time of SV ∗ , and assume z = 〈0m(n) || tn〉. The simulator
cannot read tn, while there exists a family of poly-size circuits D = {Dn} sufficiently large to read z in its
entirety. Therefore, in order for SV ∗ to approximate the real view, it must be able to produce either tn or β
(whichever applies). A reducibility argument can show that in both cases, SV ∗ can be used (as a black-box)
to invert fn, contradicting its one-wayness.

20

(ii) The proof is similar to that of Lemma 2. Specifically, instead of β, the simulator outputs some value β∗

chosen consistently at random. Let us confine ourselves to single-query distinguishers D′ = {D′n}, as in the
proof of Lemma 2. Let E1 be the event that D′n queries RO at x = fn

−1(RO(0n)).

In a completely similar way to the proof of Lemma 2, one can demonstrate that Pr[E1] ≥ Ψ/2, where Ψ is
the distinguishing advantage of D′n. Consequently, a knowledge extractor can compute β in expected time
poly(n,Ψ−1), and generate a valid simulation thereafter.

(iii) A cheating verifier V ∗ can send some junk as α∗ in the first step, and get β = RO
(
fn
−1(RO(0n))

)
from

the honest prover. In the next execution of the protocol, the verifier sets α← β, sends α to the honest prover,
and receives tn. Since V ∗ could not compute tn, we conclude that the sequential composition of Protocol 2
is not zero knowledge.

Remark 6. It is instrumental to construct a protocol which satisfies the conditions of Theorem 4, except that it is not
EPRO-ZK. To this end, we must replace RO(0n) in Protocol 2 with some value which SV ∗ cannot program. One
possible solution is to let the verifier choose a random r from dom(fn

−1) (possibly using algorithms SAMP and
EVAL), compute α, and send (α, r) to the prover. The prover then uses the value β̂ = RO

(
fn
−1
(
RO

(
fn
−1 (r)

)))
instead of the β used in Protocol 2. The reason for using a random r instead of 0n is to prevent SV ∗ from guessing
the point at which RO should be programmed. The reason of incorporating two layers of fn−1 and two layers of
RO is to prevent a cheating V ∗ from choosing r in a special way so that she can compute β.

It can be proven that the new protocol satisfies all of the conditions of Theorem 4, except that it is not EPRO-ZK.
The proof is omitted.

F Proof of Theorem 5

For simplicity, we only prove the case of sequential repetition, where a single protocol 〈P (y) ↔ V ∗(z)〉(x) is
repeated Q def

= Q(|x|) times (Q is a polynomial): In each run, (x, y) ∈ RLn is fixed, P uses independent random
coins, and the auxiliary input to the cheating verifier includes the history of all previous runs.

Define Q + 1 hybrids H0, H1, . . . ,HQ: The ith hybrid is defined as the output of the following Gedanken-
(thought-) experiment:

• Let z ← ZRO
n (ζ) and h0 ← z.

• Allow the cheating verifier and the honest prover interact i times; for j ∈ {1, 2, . . . , i} define
hj ← viewV ∗〈PRO(y)↔ V ∗RO(hj−1)〉(x).

• Run the simulator Q− i times, and let hj ← SRO
V ∗ (x, hj−1) for j ∈ {i+ 1, i+ 2, . . . , Q}.

• Output (x, z, hQ).

Note that the extreme hybrids H0 and HQ denote the simulated and the real views, respectively. Now assume,
contrary to the theorem, that Dn can distinguish the extreme hybrids with non-negligible advantage Ψ. Then, by a
hybrid argument, there exists some i ∈ {0, 1, . . . , Q− 1} such that Dn distinguishes Hi from Hi+1 with advantage
at least Ψ/Q, which is non-negligible. Let Zn,i be a circuit which computes a prefix of the above experiment up to
the ith execution; i.e. Zn,i is defined as below:

• Let z ← ZRO
n (ζ) and h0 ← z.

• Allow the cheating verifier and the honest prover interact i times; for j ∈ {1, 2, . . . , i} define
hj ← viewV ∗〈PRO(y)↔ V ∗RO(hj−1)〉(x).

• Output (x, z, hi).

Note that Zn,i can be realized by a poly-size circuit, since Zn is a poly-size circuit, and the order of quantifiers in
Definition 13 allows ζ to include y as well as the code of P (since the prover is assumed to be polynomial). Looking
ahead, this is the reason we made the compromise discussed at the beginning of Section 5.2: In the standard model,
a simple averaging argument can be used to fix the auxiliary input; however, the auxiliary input of our model

21

depends on the RO and cannot be fixed before RO is chosen. Therefore, some variation of Zn must be incorporated
into the code of the distinguisher (see below).

Using Zn,i, rewrite the Hi and Hi+1 as follows:

• (x, z, hi)← ZRO
n,i (ζ).

• hi+1 ← SRO
V ∗ (x, hi).

• For j ∈ {i+ 2, . . . , Q}, let hk ← SRO
V ∗ (x, hk−1).

• Output (x, z, hQ).

• (x, z, hi)← ZRO
n,i (ζ).

• h′i+1 ← viewV ∗〈PRO(y)↔ V ∗RO(hi)〉(x).

• For j ∈ {i+ 2, . . . , Q}, let h′k ← SRO
V ∗ (x, h′k−1).

• Output (x, z, h′Q).

Since we assumed that Dn can distinguish the hybrids Hi and Hi+1 with non-negligible advantage Ψ/Q, there
exists an advice ζ, a poly-size circuit Zn,i and a poly-size distinguisher D′n which—using the oracle-dependent
auxiliary input generated by Zn,i on ζ (i.e. hi)— distinguishes between hi+1 and h′i+1 with the same advantage:
Just simulate SV ∗ for Q− i− 1 rounds (as above) to obtain either hQ or h′Q, and then output as Dn does.

Now we exploit the K whose existence is guaranteed by Definition 13: KD′n,RO runs in (expected) time
poly(Q(n),Ψ−1), and generates an output so that D′n can merely distinguish between hybrids Hi and Hi+1 with
negligible probability. Along the same line of reasoning, if a poly-size circuit D′′n distinguishes between any two
adjacent hybrids, KD′′n,RO can fill the distinguishing gap. Therefore, all hybrids H ′i and H ′i+1 (generated by K
instead of SV ∗) are computationally indistinguishable. We conclude that the extreme hybrids H ′0 and H ′n are
computationally indistinguishable, and the theorem follows.

G Proof of Theorem 6

(i) Let Z = {Zn} be as in Definition 13. On common and auxiliary inputs (desc(fn), ζ), let ZRO
n output the

string z. This string might include, among other things, a list ` = {(qi, ai)} of queries qi to the RO, along
with the corresponding answer ai = RO(qi).12 We call a query fresh if it does not belong to `. Note that z
(and in particular, `) might be encoded in such a way that it can be understood only by Z, V ∗, and D, but it
is incomprehensible by SV ∗ or K.

On input (desc(fn), z), the simulator first obtains y from V ∗. It then computes x′ ← SAMP(desc(fn)),
and s′ ←R {0, 1}|x

′|. It then computes w′ ← RO(x′ || s′), and outputs (desc(fn), y, s′, w′, r, z). (Here, r
denotes the random tape of V ∗.)

If the list ` contains T queries (which is a polynomial in n since Zn is a poly-size circuit), the probability that
x′||s′ is a fresh query is 1− T

22|x| , which is an overwhelming quantity assuming that |x| is super-logarithmic
in n. This is indeed the case, because otherwise it would be easy to invert fn for all n.

Now, if the query x′ || s′ is actually fresh, the oracle-dependent auxiliary input does not helpDn to distinguish
the real and simulated view without first making query to RO. In this case, we can prove—similar to the
proof of Lemma 2—that if Dn distinguishes the two distributions, there exists a knowledge extractor K
which can output x by monitoring the queries of Dn.

However, if the query x′ || s′ is not fresh, Dn can distinguish the two distributions without making any
queries to RO. In this case, K may resort to exhaustive search, which is justifiable because the probability of
SV ∗ query not being is negligible. Alternatively, K might test any T + 1 new queries, among which one will
be certainly fresh (the size of z can be used to obtain an upper bound for the value of T).

(ii) To be EPRO ZK, the simulator should output a list L at which RO is programmed. It must also output a pair
(r,RO[L](x || r)), where RO[L] denotes RO programmed according to the pairs in L.

There are two possible ways for the simulated view to be accepted:

(a) The list L includes the query x || r. The probability of this event happening for infinitely many n’s is
negligible, because it means SV ∗ managed to invert fn(y) and obtain x.

12An ai might be a function applied to several other answers. However, as such functions can later be computed by both V ∗ and D, there
is no loss of generality in ignoring them.

22

(b) L does not include the query x || r, but the simulator manages to query RO at point x || r. Again, this
happens with negligible probability for infinitely many n’s, since otherwise we could exhibit an inverter
for F (see Appendix C for a similar proof).

Therefore, Protocol 3 is not EPRO ZK.

23

	Introduction
	Motivation
	Organization

	Preliminaries
	Notions and Abbreviations.
	Definitions

	Two Hierarchies of Approximability
	The First Hierarchy
	The Second Hierarchy

	Separating Semi-Strong Approximability from Strong Approximability
	Sequential Composition
	Insecurity under Sequential Compositions
	Models with Oracle-Dependent Auxiliary-Input
	A New Protocol

	Future Work
	Some Omitted Definitions
	Proof of Theorem 2
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6

