
Two 1-Round Protocols for Delegation of Computation

Ran Canetti∗ Ben Riva† Guy N. Rothblum‡

September 21, 2011

Abstract

Consider a weak client that wishes to delegate computation to an untrusted server and be able to
succinctly verify the correctness of the result, all within one round of interaction. We provide solutions
for two relaxed variants of this problem. Specifically:

• We consider a model where the client delegates the computation to two or more servers, and is
guaranteed to output the correct answer as long as even a single server is honest. We call this model
Refereed Delegation of Computation (RDoC). In this model, we show a 1-round unconditionally
statistically sound protocol for any log-space uniform NC circuit. In contrast, all known one-
round delegation protocols with a single server are only computationally sound.

• We consider a model with a non-succinct offline stage and pubic verifiability. (Previously, this
model was considered only with private verifiability, namely the client has to maintain some secret
local information pertaining to the offline stage [Gennaro et al., CRYPTO 2010]). Public verifia-
bility does away with the secret state, and so allows delegating the offline stage to a “semi-trusted”
external third party that is potentially used by many clients, even mutually suspicious ones. It also
allows for a stronger, more adaptive notion of soundness.
In this model we show a 1-round computationally-sound protocol for any circuit C, even a non-
uniform one. The client runs in time poly(log(size(C)), depth(C)), and soundness is guaranteed
assuming the existence of collisions resistant hashing and poly-logarithmic PIR. Previously, pub-
licly verifiable one round delegation protocols were known only for functions in log-space uniform
NC.

∗Boston University and Tel Aviv University, canetti@tau.ac.il.
†Tel Aviv University, benriva@tau.ac.il.
‡Microsoft Research, Silicon Valley Campus, rothblum@alum.mit.edu.

Contents

1 Introduction 1
1.1 Our Contributions . 1
1.2 Organization . 3

2 Prior Work 3

3 The Protocols of [GKR08, KR09] 4
3.1 Preliminaries: Low Degree Extension (LDE) . 4
3.2 The Bare-Bones Protocol, Given a Circuit Specification Oracle 4
3.3 Realizing the Oracle for L-uniform NC Circuits . 6
3.4 The Transformation of [KR09] . 6

4 Refereed Delegation of Computation 6
4.1 The Model . 6

4.1.1 Parallel Repetition for RDoC . 7
4.1.2 From Two Servers to N Servers . 7

4.2 One-round RDoC for Any L-uniform NC Computation . 7
4.2.1 The Protocol of [FK97] . 7
4.2.2 The Protocol, Given a Circuit Specification Oracle 10
4.2.3 Realizing the Oracle for L-uniform NC Circuits 14

5 Publicly Verifiable Delegation of Computation (PVDoC) 15
5.1 The Model . 16
5.2 One-round PVDoC for More Than L-uniform NC . 17

1 Introduction
An emerging paradigm in modern computing is pay-per-use Cloud Computing. As companies and users
reduce their computing assets and turn to weaker computing devices, an increasing number and variety of
computations are being performed remotely by untrusted parties that may be error-prone or even malicious.

This shift motivates exploring methods for delegating computations reliably: a weak client delegates his
computation to a powerful server. After the server returns the result of the computation, the client should
be able to verify the correctness of that result using considerably less resources than required to actually
perform the computation from scratch.

Prior work has considered using an interactive protocol for delegating computation from a client to an
untrusted server. These works ask for protocols where the client does not work too much (ideally, the client
will only have to do work that is quasilinear in the input length). There has been a rich body of work on
this question. Kilian [Kil92] proposes a protocol that uses two rounds of interaction for delegating any
polynomial-time computation. Micali [Mic00] “squashes” the Kilian protocol to one round in the Ran-
dom Oracle model. These protocols enjoy public verifiability, namely the client keeps no private state. A
non publicly verifiable, one round version of these protocols is shown to be sound based on non-standard
extractability assumptions [CL08, BCCT11, GLR11]. The soundness guarantee of these protocols is only
computational.

Goldwasser, Kalai and Rothblum [GKR08] propose a delegation protocol with statistical soundness.
However, the protocol works only for log-space uniformNC circuits, and the number of rounds is quasilin-
ear in the depth of the circuit.

A relaxation of the model, suggested by [GGP10], considers two stages of the protocol, offline and
online. In the offline stage we fix a function (or a circuit) f and allow the client to work harder (e.g.,
proportional to the size of f). In the 1-round online stage, the client can delegate the computation of f(x)
for any input x, and can verify the result in time much smaller than the size of f . However, in all the recent
works in this model (i.e. [GGP10, CKV10, AIK10, Chu11, Ben11]), the result of the offline stage must be
kept secret from the server — or else, a malicious server can cheat. This forces the client to perform the
expensive offline stage by herself (or by a completely trusted entity).

1.1 Our Contributions

We present two natural extensions of the existing models. In each one of these extended models we show a
protocol with properties that are not known to be achievable by previous constructions. More specifically:

Refereed Delegation of Computation (RDoC) Model. Instead of delegating the computation to a single
server, we let the client interact with two or more servers, and require that the client outputs the right value
as long as there exists one server that follows the protocol. That is, the client asks for the value of f(x)
from several servers. In case they make contradictory claims about f(x), they “play” against each other in a
protocol where the weak client can efficiently determine the true claim as long as there is at least one honest
server. As for the efficiency, we require that the computational requirements from an honest server are not
much more than those required to compute the function in the first place, and that the client’s running time
would be much smaller than required to compute the function. (If the client interacts with three servers,
at least a majority of them follow their protocols, then it suffices to simply ask each server for the answer
and take the majority answer. Even if we assume there is only one honest server, the client can still detect
inconsistency and compute the problem on its own. However, these solutions are not satisfactory for us.)

A closely related model to ours is the Refereed Games (RG) model of Feige and Kilian [FK97] where
they focus on two unbounded competing servers and polynomial time referee/client. However, here we are
faced with the additional challenges of building protocols with efficient honest servers, with super-efficient
client and for any number of servers. Indeed, our model can be considered also as refereed games with
efficient servers and super-efficient clients.

1

Another related model is the multi-prover model (MIP). Here a verifier/client interacts with two or more
provers. However, in the MIP model, soundness is guaranteed only if no two malicious provers/servers can
communicate or coordinate their strategies during the protocol. This assumption is arguably less realistic for
cloud computing. Moreover, the definition of MIP allows cases where even a single malicious prover/server
can cause the verifier/client to reject the proof of valid statements.

A 1-round unconditionally-sound RDoC for any circuit computable in L-uniform NC. We show a
one-round delegation of computation (RDoC) protocol in this model with statistical soundness. The protocol
adapts techniques from the work of Feige and Kilian [FK97], who construct a RDoC protocol where the
servers are inefficient even for log-space computations, together with ideas and techniques from the work of
Goldwasser, Kalai and Rothblum [GKR08], and some new techniques.

We provide a brief overview of the protocol. For the description here we restrict attention to the case
when there are exactly two servers, one honest and one malicious (but the referee/client does not know
which is honest). We later show how to extend our protocols to more than two servers.

In high level, our protocol follows the structure of the [GKR08] interactive proof. We view the compu-
tation as a circuit. The servers make claims about the output layer of the circuit, and we use a (very efficient)
sum-check protocol to reduce a claim about a high layer in the circuit, which we call an input claim, into a
claim about a lower layer (closer to the circuit’s input layer), we call this an output claim. The guarantee is
that if the input claim is false, then w.h.p. over the referee’s coins the output claim will also be false. They
use this sub-protocol to reduce the claim about the circuit’s output layer into a claim about the circuit’s input
layer, and complete the protocol by noting that claims about the input layer can be verified by the referee in
quasi-linear time.

However, the [GKR08] protocol is highly interactive: First, each sum-check sub-protocol requires a
logarithmic number of rounds. Second, the claim for each layer in the circuit depends on the coins chosen
by the referee in the sum-check for the layer above it, so all of these sum check protocols must be run
sequentially from the top circuit output layer to the bottom circuit input layer. To eliminate the first source
of interaction, we use a variant of the one-round refereed game for the sum check test from [FK97]. This
still leaves us with a significant technical obstacle: How can we collapse all of sum-check protocols from
the different layers into just one round of interaction? The difficulty comes from the fact that, in order to
run the [FK97] protocol, both servers need to know the claim being debated. This claim, however, depends
on the referee’s (non-public) coins in the sum check for the layer above. Revealing all of those coins to both
servers ahead of time would compromise soundness.

We overcome this obstacle (and additional lower-level ones) using techniques tailored to our setting. In
a nutshell, the claim for each layer is the value of a low-degree multi-variate polynomial (say p) on a certain
secret point (say z) that is known only to the referee. The referee sends to each server a different low-degree
parametric curve passing through the point z (but also through many others), and asks for the (low-degree)
polynomial q describing p restricted to that server’s curve. Essentially, soundness follows because each
server (on its own) cannot tell which of the points on its curve is the one that the referee will be checking. If
the server cheats and sends q′ 6= q, then (since q and q′ are low degree polynomials over a larger field) with
high probability the server must be cheating on the point z that the referee is checking on.

In September 2011 Kol and Raz have posted an alternative exposition of this protocol [KR11]. That
paper contains also an extension of this protocol that somewhat reduces the workload of the client at the
price of a comparable increase in the number of rounds. We note that our protocol was posted at [CRR11b]
and described at [CRR11c].

Another protocol in this model is described in [CRR11a]. That protocol has computational soundness
and takes a logarithmic number of rounds.

Publicly Verifiable Delegation of Computation (PCDoC). The recently used model for offline/online
delegation of computation [GGP10,CKV10,AIK10,Chu11,Ben11] assumes that the client can work “hard”

2

during the offline stage, or alternatively rely on the assistance of a trusted party that will perform the offline
stage on the client’s behalf. However, all the recent protocols in this model require the client to keep some
secret information that pertains to the offline stage. This secret information is then used in the verification
process. Having such secret information is a serious impediment. First, it requires the client to put complete
trust in the entity that participates in the offline stage. Furthermore, in some of the protocols soundness is
only guaranteed as long as the server does not know which past interactions convinced the client.

We define a similar model in which avoids these impediments. Instead of an offline stage that ends with
a secret key, the offline stage ends with a public data that: (1) can be verified by anyone, and, (2) can be
used by anyone to verify the computation of any input (in the online stage).

Imagine that some well-known company (e.g., Microsoft, Google) publishes short public keys for a
set of different circuits. (Or, Microsoft ships these keys as part of its products, as is currently done with
Certificate Authorities.) Any interested party can also check these values and verify that they are correct.
Later on, a (weak) client can take these values and delegate its computation to any server, without running
the offline stage by itself.

A 1-round computationally-sound PVDoC for non-uniform circuits. We give a brief overview of the
protocol. Our starting point is again the [GKR08] protocol, squashed by [KR09] to a single round trip. The
difficulty that prevents this protocol from working for larger circuits is that the client cannot verify claims
about the circuit structure because the explicit circuit was too large (larger than the client running time) and
(for general non-uniform circuits) there was no shorter implicit representation. We solve this difficulty by
adding the following offline stage: First, all possible queries on the structure of the circuit to be evaluated
are computed in advance. Next, the answers to all these queries are Merkle tree hashed using a function that
is chosen from a family of collision resistant hash functions. The output of the offline stage is the root of
the Merkle tree hashing. Notice that the same root can be reused in an online stage by any interested client
delegating a computation to any server. (These values do not depend on the input, but only on the circuit
itself.) Since the circuit is publicly known, anyone can re-compute the root and publicly verify that it is
indeed the correct value. In the online stage, the client runs in time poly(log(size(C)), depth(C)).

We remark that the same techniques can be also applied directly on the [GKR08] protocol (i.e., without
using the [KR09] transformation). In addition to supporting more general circuits, the resulting protocol
is (arguably) simpler to understand and potentially easier to implement than the full [GKR08] protocol.
Furthermore, although the resulting protocol requires poly(log(size(C)), depth(C)) number of rounds, the
practicality of each sub-protocol ([GKR08] and Merkle Tree) is fairly reasonable compared to previous
constructions (e.g., that use fully homomorphic encryption or PIR with huge databases).

1.2 Organization

Section 2 reviews prior work. Section 3 describes the protocol of [GKR08] which we will use extensively
in our constructions. Section 4 defines the model of refereed delegation of computation, shows a “parallel
repetition” theorem of RDoC protocols and describes how to extend RDoC with two servers to any number
of servers. Furthermore, it reviews the protocol of [FK97] which we use in our construction and presents
the construction of one-round RDoC for any L-uniform NC computation. Section 5 defines the model of
publicly verifiable delegation of computation, and presents the construction of one-round computationally
sound PVDoC for any circuit.

2 Prior Work
Prior work has studied the question of proving the correctness of general computations. (Most previous
works focused on interactive proofs between a verifier and a prover. However, given an interactive protocol
for proving the correctness of a computation of f , one can easily get verifiable delegation of computation
by asking the server for y = f(x) and a proof that y is the correct result.) Babai et al. [BFLS91] consider
this question in a setting where the prover is a non-adaptive oracle. Kilian [Kil92] and Micali [Mic00] build

3

on their techniques and show efficient computationally sound protocols, whose security is based on crypto-
graphic assumptions and where soundness holds only against computationally bounded cheating provers.
Micali gets a non-interactive computationally sound proof based on the existence of a Random Oracle
whereas Kilian gets a two-round interactive computationally sound proof assuming the existence of col-
lision resistance hash family.

Goldwasser et. al. [GKR08] present an information theoretically sound interactive proof protocol for
verifiable computation for any language in L-uniform NC. The number of rounds between the prover and
the verifier is poly-logarithmic in the size of the computation. Using the technique of Kalai and Raz [KR09]
this protocol can be transformed into a one-round protocol, assuming the existence of a computational
Private Information Retrieval scheme with poly-log communication.

Gennaro et al. [GGP10], Chung et. al. [CKV10] and Applebaum et al. [AIK10] consider a model with
an offline stage. Based on the existence of a fully homomorphic encryption, they construct computationally
sound protocols, where in the offline stage the verifier runs in time proportional to the size of the compu-
tation. Afterwards, in an online stage, the verifier (using the secret result of the online stage) runs in time
proportional to the size of its inputs and the computation results. In these works, as long as the verifier
does not encounter cheating provers, the same pre-processing information can be used in multiple rounds,
yielding improved amortized complexity. Recently, Benabbas et al. [Ben11] and Chung et al. [Chu11] show
protocols in which security is preserved even if the verifier encounter cheating provers. We stress that in all
the above works, the offline stage ends with a secret key that is known only to the verifier.

A related proof model with several provers is the model of Multi-Prover Interactive Proofs, suggested
by Ben-Or et al. [BOGKW88]. In this model, even if all of the provers cheat, the verifier will detect that
they are cheating. However, soundness is guaranteed assuming that malicious provers cannot communicate
or coordinate their strategies during the protocol. This is in contrast to the refereed games of Feige and
Kilian [FK97] and to our RDoC model, where soundness is guaranteed as long as one server is honest, even
if some group of malicious servers communicate during the protocol. In addition, the referee learns who are
the cheating provers.

3 The Protocols of [GKR08, KR09]
Given that our protocols rely heavily on the structure of the [GKR08,KR09] protocols, we start with a brief
exposition of them.

3.1 Preliminaries: Low Degree Extension (LDE)

Given a field F , a subsetH ⊆ F and a function f : Hm → F , we let the low degree extension of f , denoted
f̃ = LDE(f), be the unique multi-variate polynomial f̃ : Fm → F that satisfies:

• (low-degree) deg(f̃) < |H| for each variable.

• (extension) f(x) = f̃(x) for all x ∈ Hm.

Such polynomials can be constructed using Lagrange Interpolation.
Similarly we define the low degree extension of a vector. Let α : Hm → {0, . . . |H|m − 1} be the

lexicographic order of Hm. Given a vector ~w = (w0, . . . wk−1) ∈ F k, where k ≤ |H|m, we can view this
vector as a function f~w : Hm → F such that f~w(z) = wα(z) when α(z) ≤ k − 1 and f~w(z) = 0 otherwise.
We define the low degree extension of the vector ~w to be LDE(f~w).

3.2 The Bare-Bones Protocol, Given a Circuit Specification Oracle

Notations and Parameters: The protocol is between a server and a client, where both know the input x
of length k.

Given an arithmetic circuit C : {0, 1}k → {0, 1} of fan-in 2 gates, size S and depth d, the players
choose the following parameters: 1) An extension field H of GF [2] such that max(d, log(S)) ≤ |H| ≤

4

poly(d, log(S)), 2) An integer m such that S ≤ |H|m ≤ poly(S), 3) An extension field F of H such that
|F | ≤ poly(|H|). (The size of F influences the soundness of the protocol.).

Using standard techniques, we can transform the arithmetic circuit C to a new arithmetic circuit C ′ :
F k → FS over the field F with the following properties: 1) C ′ is of size poly(S) and depth d, with fan-in
2 gates, 2) Each layer, except for the input layer, is of size S (simply by adding dummy gates), 3) For every
(x1, . . . , xk) ∈ {0, 1}k, C ′(x1, . . . , xk) = (C(x1, . . . , xk), 0, . . . , 0).

Let specc() be the predicate describing a circuit C. That is, specc(i, b, w1, w2, w3) returns 1 if in the
i-th layer of C there is a gate that connects wires w2 and w3 to wire w1, and this gate is a b-gate where
b ∈ {0 = add, 1 = mult}.1 Let s̃pecc(i) be the low degree extension of specc(i, ·, ·, ·, ·) with respect to
H,F and m, of degree δ (that depends on specc()) in each variable. In this section we assume the client has
an oracle access to s̃pecc′(i).

We denote the output layer as the 0 layer and the other layers according to their distance from the output
layer. The input layer is the d-th layer. For 0 ≤ i ≤ d we associate a vector vi = (vi,0, . . . , vi,S−1) ∈ FS
with the values of all gates of the i-th layer in the computation of C ′(x1, . . . , xk). v0 is the circuit result
(C(x1, . . . , xk), 0, . . . , 0) and vd is the circuit input (x1, . . . , xk). Let Ṽi : Fm → F be the low degree
extension of the vector vi with respect to H,F and m. This polynomial is of degree ≤ |H| − 1 in each of
its variables, and given vi can be computed in time ≤ poly(|F |m) = poly(S). Since vd is of length k, Ṽd
can be computed in time ≤ k · poly(|H|,m).

The Protocol: The server claims that C ′(x1, . . . , xk) = (0, . . . , 0). An interactive protocol is executed
between the server and the client. In each step the server reduces the correctness of the computation of
layer i to the correctness of the computation of layer i + 1. Concretely, for layer i, the server claims that
Ṽi(ui) = ri for some randomly chosen ui that the client picked and sent to the server. Then, the server
reduces the correctness of this claim to the correctness of Ṽi+1(ui+1) = ri+1 for some randomly chosen
ui+1 that the client picked. This process continues until they reach the input layer and then the client verifies
the correctness of this layer by himself (as Ṽd is small and known to the client).

We now describe in detail the reduction between the layers. Let f (i)
u : (Fm)3 → F be the a 3m-variate

polynomial of size ≤ poly(S) and degree ≤ 2δ defined by

f (i)
u (p, w,w′) =

β̃(u, p) · [s̃pecc′(i+1)(0, p, w,w
′)(Ṽi+1(w) + Ṽi+1(w′)) + s̃pecc′(i+1)(1, p, w,w

′)(Ṽi+1(w) · Ṽi+1(w′))]

where β̃(u, p) is a |H| − 1 degree polynomial that depends only on F,H and m, and, can be computed in
time poly(|H|,m) (see [Rot09]). Note that given an oracle access to s̃pecc′(i) and the values of Ṽi+1(w)

and Ṽi+1(w′), the polynomial f (i)
u (p, w,w′) can be evaluated in time poly(|H|,m).

Now, given a claim for layer i that Ṽi(ui) = ri for some randomly chosen ui that the client picked and
sent to the server, it can be shown that Ṽi(ui) =

∑
p,w,w′∈Hm f

(i)
ui (p, w,w′). Thus, proving that Ṽi(ui) = ri

is equivalent to proving that ri =
∑

p,w,w′∈Hm f
(i)
ui (p, w,w′).

This part is done by a standard sum-check interactive protocol between the two players. For each layer
of the circuit, the client and the server execute a sum-check interactive protocol that consists of 3m rounds.
The last step of the sum-check requires a computation of f (i)

ui (p, w,w′) by the client. In order to do that, the
server sends a low degree polynomial Ṽi+1(γ(t)) where γ(t) is the 1-degree curve that passes through w and
w′. Using this polynomial, the client computes Ṽi+1(w) and Ṽi+1(w′) and uses that to compute and verify
f

(i)
ui (p, w,w′). Then, the client picks a random point t′ on the curve γ(t) and continues to the correctness

proof of the claimed value of Ṽi+1(γ(t′)) (where ui+1 = γ(t′) in the next round).

1It is possible to use any gate that can be expressed as a polynomial of its inputs.

5

Complexity: It is shown in [Rot09] that by taking F such that |F | ≥ 700mdδ = poly(|H|) we get
soundness of 1

100 . In addition, the overall running time of the server is poly(|F |m) = poly(S), the running
time of the client is poly(|F |,m)+k·poly(|H|,m) = k·poly(d, log(S)) and the communication complexity
is poly(|F |,m) = poly(d, log(S)).

3.3 Realizing the Oracle for L-uniform NC Circuits

The above protocol is presented for any circuit given an oracle access to s̃pecc′(i). [GKR08] shows how to
realize the protocol without an oracle access but for a more restricted class of languages, L-uniform NC,
which is the class of languages that can be computed by circuits of poly-size and poly-logarithmic depth
where there is a log-space Turing Machine that generates those circuits.

Specifically, [GKR08] shows the following:

1. For a language L in NL (i.e., L has a non-deterministic log-space Turing Machine), it is possible to
compute the s̃pecc(i) (where c is the circuit that computes L) in time poly(log(k)). Thus, the client
can compute it by himself and, as a result, realize the bare-bones protocol.

2. For a language L in L-uniform NC, the client delegates also the computation of the oracle answers
to the server. More specifically, let C be the circuit that computes L and let TMspec(c) the Turing
Machine that computes s̃pecc(i). Since L is L-uniform, TMspec(c) is also non-deterministic log-
space Turing Machine, and therefore the computation of TMspec(c) can be delegated to the server.
As a result, the bare-bones protocol is executed once for the delegation of C, and d times for the
delegations of TMspec(c). Hence, the running time of the client is still k · poly(d, log(S)).

3.4 The Transformation of [KR09]

Assuming the existence of a poly-logarithmic cPIR scheme, [KR09] presents a transformation from any
public-coin unconditionally-sound proof system into a one-round computationally-sound proof system. In
high level the transformation is as follows. The verifier sends all the random coins together in the same
round, hidden inside different cPIR queries. The (honest) prover prepares a database with all the possible
answers, and returns the answers to the verifier queries all together. Then, the verifier peels the cPIR answers
and feeds the original verifier with the results.

The exact transformation is more subtle, and we refer the reader to [KR09] for more details. We note
that the transformation does not change the expressiveness of the underlying protocol, and in particular,
transforming the protocol of [GKR08] results in a protocol for L-uniform NC circuits.

We denote the verifier’s message in this protocol by GKR-KRv(S, d, λ) given the circuit size S, depth
d and security parameter λ. Similarly, we denote the verifier’s response by GKR-KRp(C, x, q) for a given
circuit C, input x and queries q =GKR-KRv(S, d, λ).

4 Refereed Delegation of Computation
4.1 The Model

A refereed delegation of computation for a function f is a protocol between a referee/clientR andN servers
P1, P2, . . . , PN . All parties may use local randomness. The referee and the servers receive an input x. The
servers claim different results for the computation of f(x) and the referee should be able to determine the
correct answer with high probability. We assume that at least one of the servers is honest.

Definition 1 (Refereed Delegation of Computation). Let (P1, P2, . . . , PN , R) be an ε-RDoC withN servers
for a function f if the following holds:

• For any input x and any i, if server Pi is honest then for any P ∗1 , . . . , P
∗
i−1, P

∗
i+1, . . . , P

∗
N the output

of R is f(x) w.p. at least 1− ε.

6

• The complexity of the referee is at most quasi-linear in |x| and the complexity of the (honest) servers
is polynomial in the complexity of evaluating f .

For completeness of the description, we briefly review the model of Refereed Games [FK97]. A refereed
game (RG) for a language L is a protocol between a refereeR and two competing unbounded servers P1 and
P2. All three parties may use local randomness. The referee and the servers receive x ∈ {0, 1}∗. Without
loss of generality we can assume P1 claims that x ∈ L and P2 claims that x /∈ L, and the referee should be
able to determine the correct answer with probability at least 2/3.

4.1.1 Parallel Repetition for RDoC

We have the following “parallel repetition” theorem for RDoC for boolean functions.

Theorem 2 (Parallel Repetition for RDoC). Let (P1, P2, . . . , PN , R) be a ε-RDoC for a boolean function f ,
and let (P k1 , P

k
2 , . . . , P

k
N , R

k) be a RDoC obtained by running (P1, P2, . . . , PN , R) k times in parallel and
in whichRk accepts if and only ifR accepted in the majority of the executions. Then, (P k1 , P

k
2 , . . . , P

k
N , R

k)
is a RDoC with error probability εpoly(k).

Proof (sketch). We use the fact that parallel repetition reduces the error probability of any interactive proof
system, and we build an interactive proof system (P, V) for the language L = { x | f(x) = 1 } from our
RDoC (P1, P2, . . . , PN , R). Without loss of generality, we assume x ∈ L and P1 is an honest server. We
view the refereeR and the honest server P1 as the verifier V , and the other servers as the prover P . Similarly,
we view P k1 andRk as the verifier V k in the parallel repetition version of (P, V). Since (P1, P2, . . . , PN , R)
is a RDoC, the soundness of (P, V) is bounded by ε. Now, if we assume there are malicious servers
P k2 , . . . , P

k
N that convince the referee in (P k1 , P

k
2 , . . . , P

k
N , R

k) with probability p, it means there is a prover
P k that can convince V k with probability p. However, since the parallel repetition of interactive proofs
reduced the error probability to εpoly(l), p is negligible.

4.1.2 From Two Servers to N Servers

In the next section we show a protocol for RDoC with two servers. Here we show how, given a RDoC with
two servers and negligible error probability, one can construct a RDoC with N servers and negligible error
probability, where we only need to assume that at least one of them is honest. The idea is to execute the
RDoC with two servers between each pair of servers. By the soundness of the RDoC with two servers, with
high probability there exists an honest server Pi that convinces the referee in all of his “games”. The referee
outputs the claimed result of Pi.

This solution can be executed in parallel for all pairs, and therefore keeps the number of rounds the
same. However, it requires N ·(N−1)

2 different executions of the protocol.

4.2 One-round RDoC for Any L-uniform NC Computation

We start by describing the one-round refereed game for the sum-check task of [FK97].

4.2.1 The Protocol of [FK97]

Intuition. We present a variant of the one-round refereed game from [FK97] for the sum-check task. In
this task we have a finite field F , a subset of F denoted byH , a fixed number k and a multivariate polynomial
f : F k → F of degree ≤ d in each variable.2 The referee can evaluate f by himself in polynomial time in
the size of f . Server 1 claims that ∑

x1,x2,...,xk∈H
f(x1, x2, . . . , xk) = N0

2The [FK97] protocol considers f : {0, 1}k → F . We extend it to f : F k → F .

7

for some value N0 and Server 2 claims otherwise (denote this value by N ′0).
Lund et al. [LFKN92] show an interactive proof with one server for the sum-check task. Their protocol

requires k rounds. In the first round, the server sends to the client the univariate polynomial g1(x) =∑
x2,...,xk∈H

f(x, x2, . . . , xk) and the client checks if
∑
x∈H

g1(x) = N0. Then, the client chooses a random

element c1 ∈ F and sends it to the server. The protocol continues to the next rounds, where in round i (for
i ∈ [2..k]) the server sends to the client gi(x) =

∑
xi,...,xk∈H

f(c1, . . . , ci−1, x, xi+1 . . . , xk) and client checks

if
∑
x∈H

gi(x) = gi−1(ci−1). Then, the client chooses another random element ci ∈ F and sends it to the

server. In the last round, the client does not send ck to the server. Instead, he computes f(c1, . . . , ck) by
himself, and checks whether it equals to gk(ck). Note that the correctness of the protocol requires that the
server cannot guess the ci-s in advance as they are randomly chosen by the client. Actually, this is why the
protocol requires k rounds. If the client would have send all the ci-s in one round, the server could easily
cheat.

In order to reduce the number of rounds, the protocol of [FK97] uses information from both servers.
Intuitively, instead of asking the server for a fixed prefix along the rounds (i.e., c1, c2, . . . ci−1 is the prefix
for round i), for each i ∈ [1..k] the referee asks on many random prefixes of length i. This allows the referee
to send all those prefixes in a single round. However now, since the prefixes are not fixed, the referee cannot
efficiently do the consistency check between gi(x) and gi−1(x) (i.e., checking that

∑
x∈H

gi(x) = gi−1(ci−1)).

So, the referee uses the second server for that. The consistency check is done by asking both servers for the
polynomials gi-s for random prefixes, such that for each length i there is one prefix that both servers receive
from the referee. If both servers answer the same for that specific prefix, then by the assumption that one of
the servers is honest, this answer is correct.

The Protocol. Following the intuition behind the protocol, we now describe the protocol in detail. Recall
that we have a finite field F , a subset of F denoted by H , a fixed number k and a multivariate polynomial
f : F k → F of degree ≤ d in each variable. Server 1 claims that∑

x1,x2,...,xk∈H
f(x1, x2, . . . , xk) = N0

for some value N0 and Server 2 claims otherwise (denote this value by N ′0).
For simplicity, we use the shorthand a ◦ b for a vector that is a concatenation of a and b (where a, b

are vectors or single elements). We assume the elements of H are 0, 1, . . . , |H| − 1. Instead of working
with prefixes, all computations are done using low degree parametric curves, which is a more compact
representation. (A parametric curve of degree d in F [t]j is a tuple of j one-parameter polynomials over the
field F , each one of degree ≤ d.)
The protocol is as presented in Figure 1.

Theorem 3. Let F be a finite field and H subset of F . Let f : F k → F be a multivariate polynomial of
degree ≤ d in each variable and let N =

∑
x1,x2,...,xk∈H

f(x1, x2, . . . , xk). The above protocol is a refereed

game with the following properties:

• If P1 claims that N0 = N , then he will be declared as the winner with probability ≥ 1− |H|·2k
2·d

|F | .

• If P1 claims that N0 6= N , then he will be declared as the winner with probability ≤ |H|·2k
2·d

|F |

8

R’s computations: For 1 ≤ j ≤ k, R chooses random vectors Aj , Bj ∈ F j and random elements aj , bj ∈ F .
Let Cj(t) ∈ F [t]j be the unique degree-|H| parametric curve going through

(0, Aj−1 ◦ 0), . . . , (|H| − 1, Aj−1 ◦ (|H| − 1)), (|H|, Bj)

and let Dj(t) ∈ F [t]j be the canonical representation of the unique degree-1 parametric curve going
though

(aj , Cj(aj)), (bj , Aj).

For j = 1 . . . k we define the functions

Φj(x1, . . . , xj) =
∑

xj+1,...,xk∈H
f(x1, . . . , xj , xj+1 . . . , xk).

Note that
Φj(x1, . . . , xj) =

∑
xj+1∈H

Φj+1(x1, . . . , xj+1).

R sends to P1: A1, . . . , Ak, B1, . . . , Bk.

P1 sends to R: N0, N1, . . . , Nk, F1(t), . . . , Fk(t), where Nj = Φj(Aj) and Fj(t) = Φj(Cj(t)) for j ≥ 1.

R sends to P2: D1(t), . . . , Dk(t).

P2 sends to R: N ′0, G1(t), . . . , Gk(t), where Gj(t) = Φj(Dj(t)).

R declares the winner: R chooses random r ∈ F . P1 losses immediately if: 1) Nk 6= f(Ak), or 2) Fk(r) 6=

f(Ck(r)), or 3) For some j, Fj(t) has degree greater than |H| · j · d or
|H|−1∑
i=0

Fj(i) 6= Nj−1.

P2 losses immediately if for some j, Gj(t) has degree greater than j · d, or, Gk(r) 6= f(Dk(r)).
Let’s denote by j the smallest number such that Gj(bj) = Ni. If Gj(aj) = Fj(aj) then P1 is declared as
the winner, otherwise P2.

Figure 1: One-round refereed game for the sum-check task

The referee is polynomial in |H| and k, the (honest) servers are polynomial in |F |k and the communi-
cation complexity is polynomial in |F | and k.

Proof (sketch). Let S1 be the event that∑
x1,x2,...,xk∈H

f(x1, x2, . . . , xk) 6= N0

but P1 is declared as the winner (i.e., P2 is the honest server). Let Ui be the event that Fi(t) is indeed
Φi(Ci(t)), let Ei be the event that Fi(ai) is indeed Φi(Ci(ai)) and let E′ be the event that Fk(r) is indeed
f(Ck(r)).

Pr[S1] ≤ Pr[E′ ∧ ¬Uk] + Pr[∃i ∈ [1..k] s.t. Ei ∧ ¬Ui] ≤ Pr[E′ ∧ ¬Uk] +
k∑
i=1

Pr[Ei ∧ ¬Ui].

By the fact that two distinct univariate degree-t polynomials agree on at most t points we get that

Pr[E′ ∧ ¬Uk] ≤
|H| · k · d
|F |

,

9

and that

Pr[Ei ∧ ¬Ui] ≤
|H| · i · d
|F |

≤ |H| · k · d
|F |

.

Thus,

Pr[S1] ≤ |H| · k · d
|F |

+ k · |H| · k · d
|F |

≤ (k + 1) · |H| · k · d
|F |

.

Let S2 be the event that P1 is the honest server but P2 is declared to be the winner. Using a similar proof,
we have that

Pr[S2] ≤ (k + 1) · k · d
|F |

.

The only difference is that in this case the degrees of Gj(t) are smaller than the degrees of Fj(t) by a factor
of |H|.

Therefore, the soundness of the protocol is bounded by |H|·2k
2·d

|F | .

We remark that our protocol from Section 4.2.2 has another difference compared to the above protocol.
We increase by one the degrees of the curves Ck and Dk. Using a similar argument to the above it can be
shown that the soundness of that protocol is bounded by (|H|+1)·2k2·d

|F | .

4.2.2 The Protocol, Given a Circuit Specification Oracle

The intuition behind our protocol is as follows. We assume the referee has an oracle access to s̃pecc′(i). We
use the idea of [GKR08] to check the entire computation by checking the sum-checks between each two
consecutive layers. We use the protocol of [FK97] to run each sum-check in a single round of communica-
tion. Ideally, we would like to execute all the sum-checks in parallel, in a single round. But, we cannot do
that directly since the security of the [GKR08] protocol requires that the referee sends the random ui to the
server only after the execution of the (i− 1)-th sum-check. Still, in order to use the protocol of [FK97], the
servers have to know ui since this value determines the function for the sum-check test. Thus, we change
the “linking” between the layers.

For simplicity, we now describe the protocol as a sequential protocol with several rounds. However,
since we want a one-round protocol, all servers actually execute all rounds of the this protocol together, in
a single round. The referee chooses his messages for all rounds together and sends them to the servers in
one message. Then, the servers answer all rounds together. Last, the referee reads all answers, starting from
the input layer towards the output layer, and checks the servers’ answers until he finds who is the honest
server. (In our protocol the direction of the “linking” reductions is different than in [GKR08].) We denote
this protocol by (P1, P2, R).

Given an input x, for each layer i the referee chooses two random parametric curves γi(t), ϕi(t) that
intersect at point zi (γi(zi) corresponds to the point ui of [GKR08]). The referee sends γi(t), ϕi(t) to P1 and
P2, respectively, and asks the servers for the polynomials Ṽi(γi(t)) and Ṽi(ϕi(t)). Next, he checks whether
those polynomials agree on zi. If they agree, then he assumes both answers are correct and continues to
checking the next layer, i − 1. Otherwise, he executes a one-round sum-check protocol a la. [FK97] to
determine the correct value of Ṽi(γi(zi)). (Actually, we use a variation of the protocol of [FK97] which
we describe in Section 4.2.1.) But, as we mentioned before, we do not want to explicitly give the servers
the value of zi. Instead, the servers answer the sum-check challenges for all the points on γi(t) and ϕi(t),
including the value at zi. Then, the referee uses the referee of the one-round sum-check protocol of [FK97]
to determine who is the honest server.

A subtle issue here is how the referee checks the correctness of the sum-checks without being able to
compute f (i)

zi by himself. The protocol of [FK97] assumes the referee can compute f (i)
zi by himself for any

point, but here, f (i)
zi itself is too complex for the referee to compute. Specifically, in the protocol of [FK97]

10

the referee needs to compute f (i)
zi on three points: two points that are known only to P1 and one point

that is known only to P2. In order to solve this problem we again use the point-on-a-line technique to
get those values “implicitly” from the servers themselves. When the referee believes that the answers on
Ṽi+1(γi+1(t)) and Ṽi+1(ϕi+1(t)) for layer i+1 are correct, he takes few random points on those polynomials
and uses that to compute the values of f (i)

zi on those three points. The solution requires increasing by one
the degrees of the polynomials of the protocol of [FK97] in order to keep the added points secret (see
Section 4.2.1).

The detailed protocol (P1, P2, R) is presented in Figures 2 and 3. Since some of the polynomials conceal
secret intersection points, when the referee sends some polynomial to the servers, we require that he sends
the canonical representation of that polynomial.

The referee’s running time is poly(|F |,m, d, |H|) + k · poly(|H|,m) = k · poly(d, log(S)), the servers
running time is poly(S, |F |,m, d) = poly(S) and the communication complexity is poly(|F |,m, d) =
poly(d, log(S)).

Theorem 4. Let L be a language inNC and let CL be the circuit that decides on L. For any input x and for
any constant error probability ε, given a circuit specification oracle forCL, the protocol (P1(x), P2(x), R(x))
is ε-RDoC with two servers for the circuit CL.

The crucial point of the proof is that a server can cheat with high probability only if he knows the curves’
intersection points. Let’s see what information each server has about the other server’s curves.

Lemma 5. Let V1 be the view of P1 and let i be a round in the protocol. For all α, α′, β, β′, γ, γ′ ∈ F and
j ∈ [1 . . . 3m]

Pr[zi = α|V1] = Pr[zi = α′|V1] (1)

Pr[aj = β|V1] = Pr[aj = β′|V1] (2)

Pr[r = γ|V1] = Pr[r = γ′|V1]. (3)

Let V2 be the view of P2 and let i be a round in the protocol. For all α, α′, β, β′, γ, γ′, ζ, ζ ′ ∈ F and
j ∈ [1 . . . 3m]

Pr[zi = α|V2] = Pr[zi = α′|V2] (4)

Pr[aj = β|V2] = Pr[aj = β′|V2] (5)

Pr[bj = γ|V2] = Pr[bj = γ′|V2] (6)

Pr[r = ζ|V2] = Pr[r = ζ ′|V2]. (7)

Proof. The lemma follows from inspecting the protocol.

1. ϕi(t) is of degree-2. Even if we give P1 the exact values of w1, w
′
1 (and not only implicitly as part

of C3m), there is still one degree of secret information, and therefore ϕi(t) can still go through any
possible point (zi, γi(zi)) for all zi ∈ F .

2. Dj(t) is of degree at least 1. Even if we give P1 the value of bj , he does not have enough information
to recover Dj(t), so any (aj , Cj(aj)) is a possible intersection point.

3. Since P1 has no information on w1, w
′
1 besides from the curve C3m, r is simply a random point on

the curve from his point of view.

4. γi(t) is of degree-4. Even if we give P2 the exact values of w0, w
′
0, w2, w

′
2 (and not only implicitly as

part of D3m), there is still one degree of secret information, and therefore γi(t) can still go through
any possible point (zi, ϕi(zi)).

11

Publicly known parameters
H,F,m, d, S, k, δ as in Section 3.

Initialization
For i = 1, . . . d, R randomly picks zi ∈ F , a random degree-4 parametric curve γi(t) ∈ F [t]m, and a random
degree-2 parametric curve ϕi(t) ∈ F [t]m going through (zi, γi(zi)).
He also sets γ0 = ϕ0 ≡ 0 and z0 = 0, and computes Md(t) = Ṽd(γd(t)) and Qd(t) = Ṽd(ϕd(t)).

For i = d, . . . , 1

R’s computations :
R setsw0 = γi(0), w′0 = γi(1), w1 = ϕi(0), w′1 = ϕi(1), w2 = γi(2), w′2 = γi(3) and randomly chooses
p0, p1, p2 ∈ F .
For 1 ≤ j ≤ 3m, R chooses random vectors Aj , Bj ∈ F j and random elements aj , bj ∈ F . R sets A3m

to p0 ◦ w0, ◦w′0 and chooses a random r ∈ F .
For 1 ≤ j ≤ 3m− 1 let Cj(t) ∈ F [t]j be the unique degree-|H| parametric curve going through

(0, Aj−1 ◦ 0), . . . , (|H| − 1, Aj−1 ◦ (|H| − 1)), (|H|, Bj)

and let C3m(t) ∈ F [t]3m be the unique degree-(|H|+ 1) parametric curve going through

(0, A3m−1 ◦ 0), . . . , (|H| − 1, A3m−1 ◦ (|H| − 1)), (|H|, B3m), (r, p1 ◦ w1 ◦ w′1).

For 1 ≤ j ≤ 3m− 1, let Dj(t) ∈ F [t]j be the unique degree-1 parametric curve going through

(aj , Cj(aj)), (bj , Aj)

and let D3m(t) ∈ F [t]3m be the unique degree-2 parametric curve going through

(r, p2 ◦ w2 ◦ w′2), (a3m, C3m(a3m)), (b3m, A3m).

We define
Φq,j(x1, . . . , xj) =

∑
xj+1,...,x3m∈H

f (i−1)
q (x1, . . . , xj , xj+1, . . . , xk).

R sends to P1 :
Cj(t), Aj , for 1 ≤ j ≤ 3m, and the curve γi−1(t).

P1 sends to R :
For all q ∈ F define Nj,q = Φγi−1(q),j(Aj) and Fj,q(t) = Φγi−1(q),j(Cj(t)).

P1 sends Nj,q, Fj,q(t) for 1 ≤ j ≤ 3m and all q ∈ F , and, Mi−1(t) where Mi−1(t) = Ṽi−1(γi−1(t)).

R sends to P2 :
Dj(t) for 1 ≤ j ≤ 3m, and the curve ϕi−1(t).

P2 sends to R :
For all q ∈ F define Gj,q(t) = Φϕi−1(q),j(t)).

P2 sends Gj,q(t) for 1 ≤ j ≤ 3m and all q ∈ F , and, Qi−1(t) where Qi−1(t) = Ṽi−1(ϕi−1(t)).

Figure 2: One-round RDoC protocol: initialization and interactive phase

5. Cj(t) is of degree at least |H|. Even if we give P2 the value of bj , he does not have enough information
to recover Cj(t), so any (aj , Dj(aj)) is a possible intersection point.

12

Checking layer i for i = d, . . . , 1
P1 is declared as the cheater if Mi−1(t) has degree bigger than 4 ·m · (|H| − 1). P2 is declared as the cheater if
Qi−1(t) has degree bigger than 2 ·m · (|H| − 1).

If Mi−1(zi−1) = Qi−1(zi−1) the referee continues to the proof of layer i − 1. Otherwise, he continues as
follows.

Given Mi(t), R computes:

• f (i−1)
zi−1 (Ai,3m) and f (i−1)

zi−1 (p2 ◦ w2 ◦ w′2) using Mi(0),Mi(1), and Mi(2),Mi(3) (and the oracle).

• f (i−1)
zi−1 (p1 ◦ w1 ◦ w′1) using Qi(0), Qi(1) (and the oracle).

Now, R verifies the sum-check of Mi−1(zi−1) =
∑

p,w,w′∈Hm

f (i−1)
zi−1

(p, w,w′) using the referee from [FK97].

Concretely:

• The referee sets N0,zi−1 = Mi−1(zi−1).

• P1 is declared as the cheater if: 1) N3m,zi−1 6= f
(i−1)
zi−1 (A3m), or 2) F3m,zi−1(r) 6= f

(i−1)
zi−1 (p1 ◦ w1 ◦ w′1),

or 3) For some j, Fj,zi−1(t) has degree greater than deg(Cj) · j · 2δ or
|H|−1∑
m=0

Fj,zi−1(m) 6= Nj−1,zi−1 .

• P2 is declared as the cheater if for some j, Gj,zi−1(t) has degree greater than deg(Dj) · j · 2δ, or,
G3m,zi−1(r) 6= f

(i−1)
zi−1 (p2 ◦ w2 ◦ w′2).

• Let’s denote by j the smallest number such that Gj,zi−1(bj) = Nj,zi−1 . If Gj,zi−1(aj) = Fj,zi−1(aj)
then P1 is declared as the honest, otherwise P2 is declared as the honest.

Outputting the result
If P1 was declared as the honest server or P2 was declared as the cheater, R outputs M0(0), otherwise he outputs
Q0(0). (Recall that M0(0) is the claimed result of P1 and Q0(0) is the claimed result of P2.)

Figure 3: One-round RDoC protocol: verification of answers

6. Similar argument as in (5) goes for bj .

7. Since P2 has no information on w2, w
′
2 besides from the curve D3m, r is simply a random point on

the curve from his point of view.

Proof of Theorem 4. Using Lemma 5, let’s see how much a malicious server can cheat without knowing the
intersection points (zi, aj , bj). For a fixed input x and a fixed circuit C, let S1 be the event that although P1

is the malicious server and the referee outputs a wrong result (i.e., M0(0) that is not equal to C(x)). Let Ti
be the event that Mi(t) is indeed Ṽi(γi(t)), and let Ei be the event that Mi(zi) is indeed Ṽi(γi(zi)). Then,

Pr[S1] ≤ Pr[¬T0 ∧ Td−1] ≤ Pr[∃i ∈ [d− 1] s.t. ¬Ti ∧ Ti+1] ≤
d−1∑
i=0

Pr[¬Ti ∧ Ti+1].

For every i ∈ [d− 1],

Pr[¬Ti ∧ Ti+1] = Pr[¬Ti ∧ Ti+1 ∧ Ei] + Pr[¬Ti ∧ Ti+1 ∧ ¬Ei].

By the soundness property of the protocol from [FK97] (see Section 4.2.1), we have that

Pr[¬Ti ∧ Ti+1 ∧ ¬Ei] ≤ Pr[Ti+1 ∧ ¬Ei] ≤
(|H|+ 1) · 2(3m)2 · 2δ

|F |
=

(|H|+ 1) · 36m2 · δ
|F |

.

13

By the fact that two distinct univariate degree-t polynomials agree on at most t points we get that

Pr[¬Ti ∧ Ti+1 ∧ Ei] ≤ Pr[¬Ti ∧ Ei] ≤
4m · (|H| − 1)

|F |
.

Therefore, we get that (assuming m > 4)

Pr[¬Ti ∧ Ti+1] ≤ (|H|+ 1) · 36m2 · δ
|F |

+
4m · (|H| − 1)

|F |
≤ (|H|+ 1) · 37m2 · δ

|F |
.

Thus, summing the error probabilities for all layers, we get

Pr[S1] ≤ d · (|H|+ 1) · 37m2 · δ
|F |

.

Let S2 be the event that although P2 is the malicious server the referee outputs a wrong result (i.e.,
Q0(0) that is not equal to C(x)). Using a similar proof, we have that Pr[S2] is also bounded by the same
probability. The only difference is that in this case the degrees ofQi(t) are smaller than the degrees ofMi(t)
by a factor of 2.

Thus, for any constant soundness εwe can take F to be of size≥ (|H|+1)·37m2·δ
ε which is poly(|H|).

4.2.3 Realizing the Oracle for L-uniform NC Circuits

For any language L ∈ L-uniform NC there exists a circuit CL of poly-size and polylogarithmic-depth that
computesL. Furthermore, the polynomials s̃pecc(i) ofCL can be computed by a log-space TM, which means
that s̃pecc(i) can be computed by an NL circuit, Cspec(L). As shown in [GKR08], the circuit specification
function s̃pecc(i) of circuits in NL can be computed in poly-logarithmic time. This means that the referee
can compute s̃pecc(i) of Cspec(L) by himself, and execute the protocol from Section 4.2.2 without an oracle
assistance.

Recall the idea of [GKR08] for extending the bare-bones protocol to L-uniform NC circuits. In order
to verify the computation of the circuit CL, the client runs the bare-bones protocol for verifying CL, and
asks the server for the required values of the circuit specification function s̃pecc(i) (i.e. the server acts as the
oracle). Then, the client checks each of those claimed values by executing the bare-bones protocol for the
circuit Cspec(L) (for which he can compute the oracle answers by himself).

Now, if we try to follow this idea for extending the protocol from Section 4.2.2 to work with L-uniform
NC circuits, and try to run in parallel the protocol also for verification of Cspec(L), we get contradicting
requirements. On the one hand, for verification of Cspec(L), both servers have to know pj , wj , w

′
j for j =

0, 1, 2 as those are the inputs for the specification circuit (and the protocol assumes those inputs are known
to both servers), but on the other hand, for verification of CL, the soundness of the protocol requires that
those values will not be known to both servers.

In order to tackle this problem, we use a similar idea to the one used in the previous protocol. The
referee asks the servers to answer on many points, without revealing the actual pj , wj , w′j . Note that each
one of pj , wj , w′j is at least “implicitly” known to both servers. E.g., p0, w0, w

′
0 is implicitly known to P2

from D3k(t) (and is explicitly known to P1 by A3m). Also, we can explicitly send the values of p0 and p2

to P1, and the values of p1 to P2, without ruining the soundness of the previous protocol.
Using those two observations, we construct a protocol (P ′1, P

′
2, R

′) for any language in L-uniform NC.
For verification of the output of CL, the referee executes the protocol from Section 4.2.2 with two modifica-
tions: 1) The referee sends to P ′1 also the values of p0, p2 and to P ′2 also the values of p1 for all layers, and,
2) P ′1 sends the (claimed) values of s̃pecc(i)(b, p0, w0, w

′
0) and s̃pecc(i)(b, p2, w2, w

′
2) for all layers, and P ′2

sends the (claimed) values of s̃pecc(i)(b, p1, w1, w
′
1) for all layers.

14

For each of the answers s̃pecc(i)(b, pj , wj , w′j), the referee executes the protocol from Section 4.2.2
for verification of those claimed values using the circuit Cspec(L) (for which he can compute the circuit
specification by himself). As we mentioned before, neither of pj , wj , w′j (for j = 0, 1, 2) is explicitly known
to both servers. So instead we ask one of the servers to answer on many points instead of the specific
pj , wj , w

′
j . Specifically, for verification of s̃pecc(i)(b, p0, w0, w

′
0) of layer i of CL, we execute the protocol

from Section 4.2.2, where P ′1 plays the role of P1 and knows p0, w0, w
′
0, and P ′2 plays the role of P2 for

all the points on the curve D3m(t) as the possible inputs for Cspec(L). (There are at most |F | points on this
curve). This means that P ′2 does not know the specific p0, w0, w

′
0. However, since D3m(t) passes through

p0, w0, w
′
0, one of those answers will be the needed P ′2’s answer for the input p0, w0, w

′
0. Similarly, the same

roles go for p2, w2, w
′
2 (which is also included in D3m(t)). For p1, w1, w

′
1 for all layers of CL, P ′2 plays the

role of P1 in the protocol of Section 4.2.2 and P ′1 plays the role of P2 for all the points on the curve C3m(t)
(which includes p1, w1, w

′
1).

When the referee receives the messages from both servers (for verification of Cspec(L) and of CL), he
checks if they agree on all the values of s̃pecc(i)(b, pj , wj , w′j). If they disagree on some of the values, then
the referee checks one of those disagreements using the referee R from Section 4.2.2 and outputs according
to its answer. If the servers agree on all the values of s̃pecc(i), then by the assumption that one of them
is honest, those values are correct. Then, the referee verifies the computation of the circuit CL given the
values of s̃pecc(i) he got before. He runs the checking phase of the referee from Section 4.2.2 and outputs
according to its answer.

The overhead of this solution is only polynomial in all parameters. For each layer we have three in-
vocations of the protocol form Section 4.2.2 where one of the servers executes the protocol for |F | points.
Summing over all layers, the total overhead is ≤ 3 · d · |F | · depth(Cspec(L)) which is still poly-logarithmic
in the size of the input.

Theorem 6. Let L be a language in L-uniform NC. For any input x and for any constant error probability
ε, the protocol (P ′1(x), P ′2(x), R′(x)) is ε-RDoC with two servers for the circuit CL.

Proof. Note that the information that the referee sends for the verification of Cspec(L) is independent of
the messages for the verification of CL. Those proofs share only one piece of information, the values of
pj , wj , w

′
j as the inputs for the circuit Cspec(L).

Let’s assume P ′1 is the cheater. He can cheat either on some value of s̃pecc(i) or on the computation of
CL. In the first case, he will be caught with high probability by the soundness of the protocol from Section
4.2.2. For the second case, if P ′1 cheats on the computation of CL (while the values of s̃pecc(i) are correct),
then it means he can cheat in the protocol from Section 4.2.2 in the case where he has an oracle access to
s̃pecc(i).

By a union bound of the cheating probabilities of the 3d+ 1 invocations of the protocol, we can bound
the probability of cheating by (3d+ 1) · d · (|H|+1)·37m2·δ

|F | . Thus, for any constant soundness ε we can take

F to be of size ≥ (3d+ 1) · d · (|H|+1)·37m2·δ
ε which is poly(|H|).

5 Publicly Verifiable Delegation of Computation (PVDoC)
Previous constructions and definitions (e.g., [GGP10, CKV10, AIK10, Chu11, Ben11]) allow the client to
work longer in the offline stage, and compute some secret key which he could later use in the online stage.
This assumes that at some point in time, the client can work harder or has access to a trusted third-party.
Furthermore, the server must not learn any information about this key, so if the client uses the assistance of
a trusted third-party he has to get a unique secret key, for his use only.

We present a natural extension of this model, where instead of generating a secret key in the offline
stage, the computing party outputs a public key that can be used by anyone. In addition, any (powerful

15

enough) player can verify that key. An example for a real-world scenario is the following:

• Google publishes a (singed) set of public keys that corresponds to a set of functions.

• Google’s competitors (or anyone in that matter) can verify these keys and in particular publish an
accusation proof in case some of the keys are invalid.

• A client can delegate his computation to any server, using the published public keys. He does not have
to run the offline stage by himself.

• In case the proof of the server is invalid, the client can publish the transcript and its own coins, and
prove that the server is a cheater. We stress that by publishing his coins, the client does not loss privacy
of any other key (as happens with some of the previous constructions).

5.1 The Model

A Publicly Verifiable Delegation of Computation (PVDoC) scheme consists of offline and online stages.
The offline stage is executed only once before the online stage whereas the online stage can be executed
many times. The algorithms are as following:

• KeyGen(F, λ)→ PK: Based on the security parameter λ, the deterministic key generation algorithm
generates a public key that encodes the function F , which is used by a client to verify delegations of
F .

Let T (F) be the time bound required to compute F on any input. We require that the running time of
the algorithm will be ≤ poly(T (F), λ).

• ProbGen(x, PK, λ)→ (kx, cx): The problem generation algorithm uses the public key and the input
x to generate a challenge cx that is given to the server, and a secret key kx that is kept private by the
client.

• Compute(x, PK, cx) → (y, πy): Using the public key and the input, the server computes the func-
tion’s output y = F (x) along with a proof of correctness πy given the challenge cx.

We require that the running time of the algorithm will be ≤ poly(T (F), λ).

• VerifyResult(PK, kx, y, πy)→ y ∪⊥: Using the secret key kx, the verification algorithm verifies the
server’s proof πy and if succussed outputs y. Otherwise it outputs ⊥.

We require that the sum of the running times of this algorithm and ProbGen() for the same input, will
be o(T (F), λ).

Note that since KeyGen() is deterministic, anyone can verify (in poly(T (F), λ) time) whether PK is a
valid encoding of the target function F .

As for completeness and soundness, we require the following:

Definition 7 (ε-secure PVDoC). We say that a scheme is a ε-secure PVDoC for a circuitC if after the offline
stage (and given a valid PK) the following holds for any input x and (kx, cx) = ProbGen(x, PK, λ):

• (Completeness) If (y, πy) = Compute(x, PK, cx) then VerifyResult(PK, kx, y, πy) = y.

• (Soundness) For any y∗ 6= C(x) and πy∗ , Pr[VerifyResult(PK, kx, y∗, πy∗) = ⊥] ≥ 1− ε.

16

5.2 One-round PVDoC for More Than L-uniform NC
Given a circuit specification oracle, the bare-bones protocol from Section 3.2 requires the client to run in time
proportional to max(d, log(S)). However, it remains to see how to realize the oracle. As discussed above,
[GKR08] shows a way to realize the oracle for L-uniform NC languages, and using the transformation
of [KR09] one can get a one-round computational sound PVDoC protocol for these languages.

If we are interested in a larger class of languages, we can use the next technique. Given a circuit C, in
the offline stage, the client (or some other third party) computes the polynomials s̃pecc(i) and the evaluation
of these polynomials on all their domains. Then, the client computes the root of the Merkle Hash Tree on
these values (i.e., the tree leaves are the values of the polynomials).

Later on, in the online stage, the client and the server run the bare-bones protocol under cPIR queries.
However, instead of delegating also the computation of the circuit specification predicate, the client asks
this value from the server, along with a proof of consistency with the root of the Merkle Hash Tree.

A useful property of this protocol is that the information computed in the offline stage can be used by
any interested client, and, as such, the protocol is secure also against adaptive adversaries. It is publicly
verifiable as opposed to previous solutions in the offline/online model.

Figure 4 presents the detailed protocol.

Theorem 8. For any circuit C and for any constant error probability ε, the protocol from Figure 4 is ε-
secure PVDoC for the circuit C. In the online stage, the client runs in poly(depth(C), log(size(C))) time
and the server in poly(size(C)) time.

Proof. Completeness follows from inspecting the protocol.
As for soundness, we will look on the protocol as a composition of two different protocols. The first is

the protocol of GKR-KR where the verification of C(x) is reduced to the correctness of a random point on
the low degree extension of the input x, given a circuit specification oracle. We denote by s1 the soundness
of GKR-KR (can be arbitrarily small, see [GKR08, KR09]). The second protocol is the cPIR queries on
a database which includes the circuit specification truth table augmented with proofs of consistency. The
soundness of this protocol s2 is negligible from the collision resistancy of the hash function

Since we hide the queries using cPIR queries, the requested bi, wi1, w
i
2, w

i
3 in the second protocol are

computationally indistinguishable, and therefore, the server in the first protocol does not get useful informa-
tion about it (otherwise, we can break the security of the cPIR).

We claim that the soundness of the composition is bounded by s1 + s2 + neg(λ). Suppose there is an
adversary A that breaks the protocol with probability p ≥ s1 + s2 + neg(λ) + c where c > 0 is a constant.
In order to cheat, the adversary has to cheat (at least) in either the first or the second protocol. Let A1 be an
adversary for the GKR-KR protocol that simulates the second protocol and executesA on both the GKR-KR
messages and the simulated ones and let p1 be the probability it cheats. Similarly, let A2 be an adversary for
the second protocol where it simulates the GKR-KR messages, and let p2 be its cheating probability. Since
Pr[A cheats] ≤ Pr[A1 cheats] + Pr[A2 cheats] we get that p1 + p2 ≥ p ≥ s1 + s2 + neg(λ) + c. Hence,
one of pi is at least si + c/2 +neg(λ), which contradicts the assumption about the soundness of the original
protocols.

By carefully picking the parameters of the GKR-KR protocol and the hash function we use, it is possible
to get any constant soundness.

By parallel repetition the error probability can be reduced exponentially (using the results of Bellare et
al. [BIN97] and Canetti et al. [CHS05]).

17

KeyGen(F, λ):
This algorithm is called in the offline stage. Let C be the circuit that computes the function F , and let h be a
collision resistant hash function given the security parameter λ. Also, define the GKR-KR protocol parameters
as in Section 3.2.

• Compute the polynomials s̃pecc(i) and the values of s̃pecc(i)(b, w1, w2, w3) for all b ∈ {0, 1} and
w1, w2, w3 ∈ Fm.

• Construct a Merkle Hash Tree where the leaves of the tree are the values h(s̃pecc(i)(b, w1, w2, w3)).

• Return PK = [IDF , size(C), depth(C), λ, h, root)] where IDF is a short string that identifies the
function F , and root is the root of the merkle hash tree.

Note that any player can compute all the above values. In particular, once PK is published, other players can
verify it. However, this computation requires polynomial time (in the size of C).

ProbGen(x, PK):
When the client wants to delegate a computation (in the online stage), he computes the following:

• Let m1 = GKR-KRc(size(C), depth(C), λ) be the first message sent by the client in the GKR-KR
protocol for the bare-bones protocol only (i.e., for verification of the computation of C only), and let
(b(i), w(i)

1 , w
(i)
2 , w

(i)
3) (for i = 0 . . . depth(C)) be the quadruplets that the protocol queries for their

s̃pecc(i) values.

• Compute cPIR queries for each quadruplet (b(i), w(i)
1 , w

(i)
2 , w

(i)
3). Denote the resulting set of queries by

m2.

• Let kx be the random coins used for the computation of GKR-KRc and the cPIR queries. Return cx =
[m1,m2] and kx.

Note that the above steps do not depend on the input x.

Compute(x, PK, cx):
The server receives the input x, the public key and the challenge, and does the following:

• Evaluate y = C(x).

• Prepare two databases. The first is a database with the answers to the GKR-KR protocol, and the second is
a database that includes the values of s̃pecc(i)(b, w1, w2, w3) augmented with the Merkle Hash Tree proofs
of consistency. I.e., the database consists of 2|F |3m = poly(size(C)) entries, where in the (a, b, c, d)
entry there is the value of s̃pecc(i)(a, b, c, d) and the path in Merkle Hash Tree from h(s̃pecc(i)(a, b, c, d))
to the root.

• Let (m1,m2) = cx. Compute m′1 = GKR-KRp(C, x,m1) (i.e. the answers according to the GKR-KR
protocol and the first database).

• Compute the cPIR answers for the queries m2 and the second database. Denote the results by m′2.

• Return y, [m′1,m
′
2].

VerifyResult(PK, kx, y, πy):
Let (m′1,m

′
2) = πy . Using the secret key kx, the client does the following:

• Verify that the answers in m′2 are consistent with the root from PK.

• Run the verifier of the GKR-KR protocol on m′1 where each time a value of s̃pecc(i) is needed, use the
answers from m′2.

If both checks succussed, output y. Otherwise, output ⊥.

Figure 4: One-round PVDoC protocol

18

References
[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz, From secrecy to soundness: efficient verification

via secure computation, Proceedings of the 37th international colloquium conference on Automata,
languages and programming, Springer-Verlag, 2010, pp. 152–163.

[BCCT11] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer, From extractable collision resistance
to succinct non-interactive arguments of knowledge, and back again, Cryptology ePrint Archive, Report
2011/443, 2011, http://eprint.iacr.org/.

[Ben11] Verifiable delegation of computation over large datasets, CRYPTO, vol. 6841, 2011, p. 110.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy, Checking computations in poly-
logarithmic time, Proceedings of the twenty-third annual ACM symposium on Theory of computing,
ACM, 1991, pp. 21–32.

[BIN97] Mihir Bellare, Russell Impagliazzo, and Moni Naor, Does parallel repetition lower the error in compu-
tationally sound protocols?, Proceedings of the 38th Annual Symposium on Foundations of Computer
Science, IEEE Computer Society, 1997, pp. 374–383.

[BOGKW88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson, Multi-prover interactive proofs:
how to remove intractability assumptions, Proceedings of the twentieth annual ACM symposium on
Theory of computing, ACM, 1988, pp. 113–131.

[CHS05] Ran Canetti, Shai Halevi, and Michael Steiner, Hardness amplification of weakly verifiable puzzles,
Proceedings of the second Theory of Cryptography Conference, Springer-Verlag, 2005, pp. 17–33.

[Chu11] Memory delegation, CRYPTO, vol. 6841, 2011, p. 147.

[CKV10] Kai Min Chung, Yael Kalai, and Salil Vadhan, Improved delegation of computation using fully homo-
morphic encryption, Proceedings of the 30th annual conference on Advances in cryptology, Springer-
Verlag, 2010, pp. 483–501.

[CL08] Giovanni Crescenzo and Helger Lipmaa, Succinct NP proofs from an extractability assumption, Pro-
ceedings of the 4th conference on Computability in Europe: Logic and Theory of Algorithms, Springer-
Verlag, 2008, pp. 175–185.

[CRR11a] Ran Canetti, Ben Riva, and Guy N. Rothblum, QUIN: Practical delegation of computation using mul-
tiple clouds (to appear), Proceedings of the 18th ACM Conference on Computer and Communications
Security, 2011.

[CRR11b] Ran Canetti, Ben Riva, and Guy N. Rothblum, Refereed delegation of computation, 2011, http:
//www.cs.tau.ac.il/˜canetti/CRR11.pdf.

[CRR11c] Ran Canetti, Ben Riva, and Guy N. Rothblum, Verifiable computation with two or more clouds, Work-
shop on Cryptography and Security in Clouds, 2011, http://www.zurich.ibm.com/˜cca/
csc2011/submissions/riva.pdf.

[FK97] Uriel Feige and Joe Kilian, Making games short (extended abstract), Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, ACM, 1997, pp. 506–516.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno, Non-interactive verifiable computing: outsourcing
computation to untrusted workers, Proceedings of the 30th annual conference on Advances in cryptol-
ogy, Springer-Verlag, 2010, pp. 465–482.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum, Delegating computation: interactive
proofs for muggles, Proceedings of the 40th annual ACM symposium on Theory of computing, ACM,
2008, pp. 113–122.

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein, Delegation of computation without rejection prob-
lem from designated verifier cs-proofs, Cryptology ePrint Archive, Report 2011/456, 2011, http:
//eprint.iacr.org/.

19

http://eprint.iacr.org/
http://www.cs.tau.ac.il/~canetti/CRR11.pdf
http://www.cs.tau.ac.il/~canetti/CRR11.pdf
http://www.zurich.ibm.com/~cca/csc2011/submissions/riva.pdf
http://www.zurich.ibm.com/~cca/csc2011/submissions/riva.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/

[Kil92] Joe Kilian, A note on efficient zero-knowledge proofs and arguments (extended abstract), Proceedings
of the twenty-fourth annual ACM symposium on Theory of computing, ACM, 1992, pp. 723–732.

[KR09] Yael Tauman Kalai and Ran Raz, Probabilistically checkable arguments, Proceedings of the 29th An-
nual International Cryptology Conference on Advances in Cryptology, Springer-Verlag, 2009, pp. 143–
159.

[KR11] Gillat Kol and Ran Raz, Competing provers protocols for circuit evaluation, Tech. Report TR11-
122, Electronic Colloquium on Computational Complexity, September 14 2011, http://eccc.
hpi-web.de/.

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan, Algebraic methods for interactive
proof systems, J. ACM 39 (1992), 859–868.

[Mic00] Silvio Micali, Computationally sound proofs, SIAM J. Comput. 30 (2000), 1253–1298.

[Rot09] Guy N. Rothblum, Delegating computation reliably: paradigms and constructions, Ph.D. Thesis, Mas-
sachusetts Institute of Technology, 2009.

20

http://eccc.hpi-web.de/
http://eccc.hpi-web.de/

	Introduction
	Our Contributions
	Organization

	Prior Work
	The Protocols of GKR08,KR09
	Preliminaries: Low Degree Extension (LDE)
	The Bare-Bones Protocol, Given a Circuit Specification Oracle
	Realizing the Oracle for L-uniform NC Circuits
	The Transformation of KR09

	Refereed Delegation of Computation
	The Model
	Parallel Repetition for RDoC
	From Two Servers to N Servers

	One-round RDoC for Any L-uniform NCComputation
	The Protocol of FK97
	The Protocol, Given a Circuit Specification Oracle
	Realizing the Oracle for L-uniform NC Circuits

	Publicly Verifiable Delegation of Computation (PVDoC)
	The Model
	One-round PVDoC for More Than L-uniform NC

