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Abstract

We define a new notion of relatively-sound non-interactive zero-knowledge (NIZK) proofs,

where a private verifier with access to a trapdoor continues to be sound even when the Adversary

has access to simulated proofs and common reference strings. It is likely that this weaker notion

of relative-soundness suffices in most applications that need simulation-soundness. We show

that for certain languages which are diverse groups, and hence allow smooth projective hash

functions, one can obtain more efficient single-theorem relatively-sound NIZKs as opposed to

simulation-sound NIZKs. We also show that such relatively-sound NIZKs can be used to build

rather efficient publicly-verifiable CCA2-encryption schemes.

By employing this new publicly-verifiable encryption scheme along with an associated smooth

projective-hash, we show that a recent PAK-model single-round password-based key exchange

protocol of Katz and Vaikuntanathan, Proc. TCC 2011, can be made much more efficient. We

also show a new single round UC-secure password-based key exchange protocol with only a

constant number of group elements as communication cost, whereas the previous single round

UC-protocol required Ω(k) group elements, where k is the security parameter.

Keywords: NIZK, simulation-sound, PAKE, UC, smooth hash, pairings, DLIN.
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1 Introduction

Authentication based on passwords is a significant security paradigm in today’s world. Security

in this scenario has been a challenging problem to solve because passwords typically come from

low-entropy domains which results in insufficient randomness to generate cryptographically secure

keys. Gong et al [14] raised the problem of designing protocols resistant to offline password guessing

attacks. Roughly, the goal of security should be that other than guessing the low-entropy pass-

word by an online attack, the protocol must otherwise provide strong security based on a security

parameter. Halevi and Krawczyk [17] formalized this definition and gave proofs of security where

one of the party has a public key.

The setting in which only passwords are shared by the peers was first considered by Bellovin

and Merritt [3]. Formal definitions in this setting were given by [2, 5, 22], now referred to as

the PAK-security model. They also proved the Bellovin and Merritt protocol secure in the ideal-

cipher model. Goldreich and Lindell [13] introduced a third security definition and also gave the

first provably secure protocol in the standard model. A practical and provably secure three round

protocol in the common reference string setting was first developed by Katz et al [18], which was

subsequently generalized by Gennaro and Lindell [12]. Starting with [18], these protocols employ

smooth projective hash functions which have been a standard tool in cryptography ever since

Cramer and Shoup defined them to give an efficient chosen ciphertext secure (CCA2) encryption

scheme [10].

As illustrated by Gennaro and Lindell [12], who call this the non-malleable commitment paradigm,

these protocols require the two peers A and B to non-malleably commit to their password to their

peer (say B), e.g. by CCA2-encrypting the password under a public key given as a common refer-

ence string (CRS). While, the peer B cannot decrypt this commitment, it might be able to compute

a smooth projective-hash on this commitment using a smooth hash key that it generates. The pro-

jection of this smooth hash key is sent to peer A, and peer A can compute the same smooth hash

using the witness it has for the commitment. The two peers then output a product of two such

smooth hashes, one for its own commitment and one for its peer. The problem, however, is that

smooth projective-hash for the language, which in this case is the CCA2-ciphertext encrypting a

password, is not easy to define, and [12] require an adaptive smooth hash key, which makes the

key-exchange protocol a multi-round protocol.

Recently, Katz and Vaikuntanathan [19] gave a single round protocol for password-based au-

thenticated key exchange, by utilizing a publicly-verifiable CCA2-encryption scheme of Sahai [26]. A

publicly-verifiable encryption scheme allows a (non-interactive) public verification of well-formedness

of the ciphertext, i.e. it returns TRUE if and only if the decryption oracle will not return an ’invalid

ciphertext’ response when queried with this ciphertext1. The public verification allows the smooth

hash to be defined on only a projection of the ciphertext, which in their case happens to be two

El-Gamal encryptions of the password. Such smooth hashes are easy to define and compute.

While the resulting protocol requires only a constant number of group elements, as it employs

1[21] describe a publicly verifiable CCA scheme under a dynamic assumption q-BDHI, whereas in this paper we are

interested in proving results under static assumptions, e.g. SXDH, DLIN. More general verifiable encryption schemes

have been considered in [6] which verify additional properties of the underlying message, but that verification is only

non-interactive in the Random Oracle model.
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simulation-sound Groth-Sahai NIZKs [16], under the decisional-linear assumption (DLIN [4]) it still

requires each party to send 65 group elements (and the run-time is proportionately high).

In this paper we show that more efficient publicly-verifiable CCA2-encryption schemes can be

obtained by using a novel concept of relatively-sound NIZKs rather than using simulation-sound

NIZKs. Simulation-Sound NIZKs were first defined in [26], where it was used to convert Naor-

Yung [24] CCA1-encryption scheme into a CCA2 encryption scheme. In simulation-sound NIZKs

the NIZK (public) verifier continues to be sound even when the Adversary is given the simulated

CRS and proofs. We notice that in most applications what is really required is that a (private)

verifier with access to a trapdoor continues to be sound in the simulated world, as long as this

private verifier is equivalent to the public verifier in the real-world2.

We next show that an augmented El-Gamal encryption scheme (reminiscent of [11]), along

with a labeled single theorem relatively-sound NIZK leads to a publicly-verifiable CCA2-encryption

scheme. In the augmented El-Gamal scheme the public key (under the DDH or SXDH assumptions)

consists of g, ga, gk, and the encryption of m with randomness x is gx, gax,m · gkx. The labeled

relatively-sound NIZK proves that the first two elements of the ciphertext use the same randomness

x, with the third element used as label.

While a single theorem simulation-sound NIZK could also have been used above, we show

that one can obtain single theorem relatively-sound NIZK far more cheaply than simulation-sound

NIZK for this language. We use the fact that the language is a finite diverse group, and hence

allows simple 2-universal projective hash functions [10], which allows us to build a private verifier.

Under the SXDH assumption [16], converting a NIZK for this language to a relatively-sound NIZK

only requires two more group elements, whereas the best-known simulation-sound extension would

require nine group elements. Similarly, under the DLIN assumption, our extension requires only

three more elements, whereas a simulation-sound extension requires at least 18 more elements [19].

Overall under the DLIN assumption, our publicly-verifiable CCA2 ciphertexts have only 19 group

elements versus the 47 group elements in the Sahai scheme [26].

We show that using the new encryption scheme in the PAKE protocol of [19], leads to a new

protocol which is two to three times more efficient (under both SXDH and DLIN assumptions),

with the SXDH-based scheme requiring only 10 group elements to be communicated.

UC Security. Canetti et al [8] proposed a definition of security for password-based key exchange

protocols within the Universally Composable (UC) security framework [7], which has the benefit

of the universal composition theorem and as such can be deployed as a part of larger security

contexts. In addition, their definition of security considers the case of arbitrary and unknown

password distributions.

Katz and Vaikuntanathan [19] also gave a single round UC-secure protocol for password-based

authenticated key exchange. However, their single round UC protocol is still inefficient as it uses

general purpose NIZKs (for NP languages), and further requires proof of knowledge NIZKs. Even

if the language for which zero knowledge proofs are required can be made to be given by simple

algebraic relations in bilinear groups, the proof of knowledge for exponents of elements as required

2This verification trapdoor should not be same as the simulation trapdoor, as for this definition to be useful,

the simulated proofs should be indistinguishable from the real proofs even when the Adversary has access to the

verification trapdoor.
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in their protocol makes it rather expensive3.

A second main contribution of this paper is an efficient UC-secure single-round protocol for

password based key exchange. The main new ideas required for this efficient protocol are as

follows: (a) The shared secret key is obtained in the target group of the bilinear pairings used

in the NIZKs which allows for efficient simulator-extraction of group elements corresponding to

the smooth-hash trapdoor keys. Such an extraction is required for UC-simulatability. (b) The

NIZK proof of knowledge (for extraction) requires the NIZKs to be unbounded simulation-sound.

A general construction for unbounded simulation-soundness was given in [6] which is based on a

construction due to Groth [15], both of which can be seen to be using relative-soundness implicitly.

This leads us to give an optimized version of this general construction. (c) We continue to use the

Damgard style [11] encryption scheme, which allows for even more optimization of the unbounded

simulation-sound construction for this specific language.

As a result, we get a single-round UC-secure protocol, where under the DLIN-assumption,

each party only communicates 63 group elements, which is as efficient as the PAK-model protocol

described in [19]. Under the SXDH assumption, our UC-secure protocol only requires 33 group

elements.

For sake of exposition, we focus on giving complete proofs only under the SXDH assumption.

All of the protocols are also given under the DLIN assumption in the Appendix. The proofs extend

naturally to DLIN, as has been demonstrated for the Cramer-Shoup CCA2-encryption scheme

in [6].

2 NIZK Definitions

In this section we give some definitions related to Non Interactive Zero Knowledge (NIZK) proofs.

We will assume familiarity with usual definitions of NIZKs (see e.g. [26, 16]). A proof for a relation

R consists of a key generation algorithm K which produces the CRS ψ, a probabilistic polynomial

time (PPT) prover P and a PPT verifier V .

Zero-Knowledge. We call (K,P, V ) a NIZK proof for R if there exists a polynomial time

simulator (S1, S2), such that for all non-uniform PPT adversaries A we have

Pr[ψ ← K(1m) : AP (ψ,·,·)(ψ) = 1] ≈ Pr[(σ, τ)← S1(1
m) : AS(σ,τ,·,·)(σ) = 1],

where S(σ, τ, x,w) = S2(σ, τ, x) for (x,w) ∈ R and both oracles output failure if (x,w) 6∈ R.

One-time Simulation Soundness A NIZK proof is one-time simulation sound NIZK if for all

non-uniform PPT adversaries A = (A1,A2) we have

Pr[(σ, τ)← S1(1
m); (x, s)← A1(σ);π ← S2(σ, τ, x); (x

′, π′)← A2(x, π, σ, s) :

((x′, π′) 6= (x, π)) and ¬∃w′ s.t. (x′, w′) ∈ R, and V (σ, x′, π′) = 1] ≈ 0.

Labeled One-time Simulation Soundness. In a labeled NIZK, the prover takes an input label,

in addition to the statement to be proven. Thus, the label acts as a context. The verifier takes a

3There are no known efficient NIZK proof of knowledge of exponents in the standard model, i.e. logarithms,

including the Groth-Sahai system [23].
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proof, a statement and a label. A labeled NIZK is one-time simulation sound if we have

Pr[(σ, τ)← S1(1
m); (x, label, s)← A1(σ);π ← S2(σ, τ, x, label); (x

′, label′, π′)← A2(x, label, π, σ, s) :

((x′, π′, label′) 6= (x, π, label)) and ¬∃w′ s.t. (x′, w′) ∈ R, and V (σ, x′, label′, π′) = 1] ≈ 0.

Unbounded Simulation Sound Extractability (uSS-NIZK). Consider a NIZK proof (K,P, V, S1, S2)

along with an initialization algorithm SE1 and a knowledge extractor E2, such that SE1 outputs

(σ, τ, ξ) with (σ, τ) identical to values output by S1. Such a proof is said to have the Unbounded

Simulation Sound Extractability property if for all non-uniform PPT adversaries A we have

Pr[(σ, τ, ξ)← SE1(1
k); (x, π)← AS2(σ,τ,·)(σ);w ← E2(σ, ξ, x, π) :

(x, π) /∈ Q and (x,w) /∈ R and V (σ, x, π) = 1] ≈ 0

where Q is the set of simulation queries and responses (xi, πi). For some subset of witnesses the

extractor E2 may extract witnesses in polynomial time, which will be the focus in this paper. For

example, in Groth-Sahai NIZKs, bilinear group elements may be extractable in polynomial time.

2.1 Relative Soundness

We now define a novel weaker notion of simulation soundness, which might suffice for most appli-

cations, especially in the case of single theorem (or one-time) simulation. It is possible that this

weaker notion may be more efficient to implement, as we demonstrate later for a particularly impor-

tant language, where we also show that the weaker notion suffices for the application at hand. In a

nutshell, the weaker notion allows for the simulator to have a private verifier of its own, with access

to a trapdoor. Simulation soundness is now defined with respect to this simulator’s private verifier,

and hence the name relative-soundness. There is a further stipulation in the definition which states

that in a hybrid world where the common reference string is same as in the real world but with the

simulator having access to a private verification trapdoor, the public verifier is equivalent to the

private verifier. In addition the zero-knowledge property should hold even when the Adversary is

given the private verification trapdoor.

Single Theorem Relatively-Sound NIZK (1-SRS-NIZK). Consider a sound and complete

proof (K,P, V ) for a relation R along with a PPT private-verifier (W1,W2) and a PPT simulator

(S1, S2), such that W1(1
m) outputs (ψ, ξ) with ψ identically distributed4 to K(1m). Suppose V and

W2 are deterministic TMs. Such a proof is called a single theorem relatively-sound NIZK for

R if for all non-uniform PPT adversaries A = (A0,A1,A2,A3,A4) we have

• Pr[(ψ, ξ)←W1(1
m); (x, π)← A0(ψ) : V (ψ, x, π) ≡W2(ψ, ξ, x, π)] ≈ 1, and

• Pr[(ψ, ξ) ← W1(1
m); (x,w, s) ← A1(ψ);π ← P (ψ, x,w) : A2(ξ, π, s) = 1] ≈

Pr[(σ, τ, ξ)← S1(1
m); (x,w, s) ← A1(σ);π ← S2(σ, τ, x) : A2(ξ, π, s) = 1],

where A1 is restricted to producing (x,w) in R, and

• Pr[(σ, τ, ξ)← S1(1
m); (x, s)← A3(σ);π ← S2(σ, τ, x); (x

′, π′)← A4(x, π, σ, s) :

((x′, π′) 6= (x, π)) and ¬∃w′ s.t. (x′, w′) ∈ R, and W2(σ, ξ, x
′, π′) = 1] ≈ 0.

4This can be generalized to computational indistinguishability.
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The variable s in the definitions designates a local state that the Adversary may maintain. The

second condition says that the (one-time or single-theorem) zero-knowledge property5 holds even

when the Adversary is given the private-verifier trapdoor ξ. It is worth noting that the defini-

tion does not preclude the private-verifier trapdoor ξ and the simulation trapdoor τ from being

dependent. Further, the verification trapdoor ξ produced by W1 and S1 need not be identically

distributed, but just computationally indistinguishable to A2.

The above definition is only accurate when the Verifiers V and W2 are deterministic. When the

verifiers are probabilistic, the first requirement should be

Pr
(ψ,ξ)←W1(1m);(x,π)←A0(ψ)

[|Pr[V (ψ, x, π)] ≈W2(ψ, ξ, x, π)|] ≈ 1,

where the inner probabilities are over the local coins of the Verifiers. However, see the next sub-

section for an even weaker definition.

A labeled version of single theorem relative-soundness can also be defined just as above.

2.1.1 Alternate (weaker) definition of Relative Soundness

One can consider an even weaker definition of relatively-sound NIZKs which might suffice for most

applications. In this definition, the Adversary A2 is not given the verification trapdoor, but is

given oracle access to the verifiers. Thus, zero-knowledge is now defined as indistinuishability of a

real proof (cum real CRS) from a simulated proof (cum simulated CRS) even when the adversary

has oracle access to the respective verifiers. This definition has the advantage that one does not

need bullet one of the earlier definition. However, it is quite possible that for many languages the

only way to go about proving this alternate relative-soundness property is to go via a hybrid W1

as in the previous definition. On the other hand, it is also possible that there are efficient proofs

for languages for which only this alternate definition can be proven (and a likely candidate is the

dual-system concept of Waters [27]).

Alternate Definition. Consider a sound and complete proof (K,P, V ) for a relation R along with

a PPT private-verifier W2 and a PPT simulator (S1, S2). Such a proof is called a single theorem

relatively-sound NIZK for R if for all non-uniform PPT adversaries A = (A1,A2,A3,A4) we

have

• Pr[(ψ) ← K(1m); (x,w, s) ← A1(ψ);π ← P (ψ, x,w) : A
V (ψ,·,·)
2 (π, s) = 1] ≈

Pr[(σ, τ)← S1(1
m); (x,w, s) ← A1(σ);π ← S2(σ, τ, x) : A

W2(σ,τ,·,·)
2 (π, s) = 1],

where A1 is restricted to producing (x,w) in R, and

• Pr[(σ, τ)← S1(1
m); (x, s)← A3(σ);π ← S2(σ, τ, x); (x

′, π′)← A4(x, π, σ, s) :

((x′, π′) 6= (x, π)) and ¬∃w′ s.t. (x′, w′) ∈ R, and W2(σ, τ, x
′, π′) = 1] ≈ 0.

Note that the verification trapdoor and the simulation trapdoor have been integrated into a

single trapdoor τ .

5One may also consider generalizations where the zero-knowledge property is multi-theorem.
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3 Smooth Projective Hash Functions

Fix a cyclic group G = 〈g, ·〉 of prime order q, such that 1/q is a negligible function of the security

parameter. We define the El-Gamal encryption function. For A,K,m in G, and x, define

enc
eg
K (m;x) = 〈gx,Kx ·m〉

For K and pwd in G, define LK,pwd = {c = 〈R,P 〉 | ∃x : c = enc
eg
K (pwd;x)} ∩G×G.

A projective hash function [10] is a keyed family of functions mapping elements in some

message space X to the group G, and is associated with a language. Further, it comes with a

projection function α : K → S, where K is the key space and S is the projected key space.

For our hash family, the key space is Z
∗
q × Z

∗
q, and the projected key space is G. The message

space X is the space of ciphertexts. For n, n̂ in Z
∗
q, c in G2, and K, pwd in G, define the hash

family HK,pwd associated with LK,pwd by

H
pwd
n,n̂ (c = 〈R,P 〉) = (P/pwd)n̂ ·Rn αK,pwd(n, n̂) = gn · (K)n̂.

It is straightforward to see that, if c = enc
eg
K (pwd;x) for some x, then H

pwd
n,n̂ (c) = αK,pwd(n, n̂)x.

For any K and pwd in G, HK,pwd is said to be smooth [10] w.r.t. L = LK,pwd, if for any c′ in

G2, but not in L, the statistical distance between the distribution of the pair (H
K,pwd
n,n̂ (c′), αK,pwd(n.n̂))

and the pair (gd1, gd2) is negligible, where n, n̂, d1, d2 are chosen randomly and independently from

Z∗q . It is a simple exercise to see that HK,pwd is smooth with respect to LK,pwd.

We also define a projective hash function family associated with language L to be 2-universal [10]

if for all s ∈ S, x, x′ ∈ X, and π, π′ ∈ G with x 6∈ L ∪ {x′}, it holds that

Pr
k

[Hk(x) = π | Hk(x
′) = π′ ∧ α(k) = s] ≤ 1/q.

4 Bilinear Assumptions

Throughout the paper, we use (bilinear) groups G1, G2, GT each of prime order p, which allow

efficiently computable Zq-bilinear pairing maps e : G1 ×G2 → GT .

SXDH: [16] The symmetric external decisional Diffie-Hellman (SXDH) assumption states that the

decisional Diffie-Hellman (DDH) problem is hard in both groups G1 and G2. Since an efficiently-

computable isomorphism between the two groups, along with the bilinear pairing, renders the DDH

problem easy, it must be assumed that there is no such isomorphism between the groups.

DLIN: [4] In groups such that G1 is same as G2, the decisional linear (DLIN) assumption states

that given (αP, βP, rαP, sβP, tP) for random α, β, r, s ∈ Zp, and arbitrary generator P of G1, it

is hard to distinguish between t = r + s and a random t.

It is an easy exercise to see that both these assumptions imply the standard computational

Diffie-Hallman (CDH) assumption in both G1 and G2.
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5 A Publicly-Verifiable CCA2-Encryption Scheme

In this section we describe a CCA2-Encryption scheme [25] that has the property that a potential

ciphertext can be publicly verified to be a valid ciphertext of some message. Note that Sahai [26] had

previously given a publicly-verifiable CCA2-encryption scheme employing the Naor-Yung CCA1-

scheme [24], but our scheme is simpler and more efficient.

One might be tempted to take the Cramer-Shoup encryption scheme, and extend the ciphertext

by including a NIZK proof that the 2-universal smooth projective-hash [10] was correctly computed.

However, since the NIZK scheme by itself maybe malleable, this may render the scheme insecure

in the CCA2-model. There are two potential fixes to this: (a) make the NIZK single theorem

simulation-sound, or (b) include the NIZK commitments to the witness in the projective-hash.

While it is not that difficult to see that (a) may lead to a correct publicly-verifiable CCA2-scheme

(just as in [26]), the second idea (b) may seem far-fetched.

We now show that it suffices to make the NIZK proof a labeled single-theorem relatively-sound

NIZK, and further one just needs to prove in this NIZK that the Diffie-Hellman tuple in the

ciphertext is well-formed, i.e. it is of the form gx, gax. We later show that there exists a very

efficient way to extend a single-theorem Groth-Sahai NIZK of this statement to be a relatively-

sound proof, such that the resulting publicly-verifiable CCA2-scheme is just the idea (b) mentioned

above.

To formally define publicly-verifiable CCA2-encryption schemes, one just extends the standard

IND-CCA2 definition of encryption [1] with a public verification function V which takes the public

key and a potential ciphertext as arguments, and it returns true iff the decryption function when

supplied with the same ciphertext does not return “invalid ciphertext”.

For given g,A, let the relation R = {((ρ, ρ̂), x) | ρ = gx, ρ̂ = Ax}. We now define a labeled

publicly-verifiable public-key encryption scheme DHENC as follows:

Key Generation: Generate g,A
$
←− G, and k

$
←− Z

∗
q. Let K = gk. Let ψ be the CRS for a Labeled

1-SRS-NIZK. The public key is (g,A,K,ψ) and the private key is k.

Encrypt: Given plaintext m ∈ G, and label l. Choose x
$
←− Z

∗
q. Let the triple 〈ρ, ρ̂, γ〉 be

〈gx, Ax,mKx〉. Let π be a 1-SRS-NIZK proof of ((ρ, ρ̂), x) ∈ R with label γ, l. The ciphertext

is (ρ, ρ̂, γ, π).

Decrypt: Given ciphertext c = (ρ, ρ̂, γ, π) and label l. Verify if π is a 1-SRS-NIZK proof for (ρ, ρ̂)

and label γ, l. If verification fails output ⊥. Otherwise output m = γ
ρk .

Verify: Given ciphertext c = (ρ, ρ̂, γ, π) and label l. Verify if π is a 1-SRS-NIZK proof for (ρ, ρ̂)

and label γ, l. If verification fails output false else output true.

Theorem 1 The scheme DHENC is publicly-verifiable (labeled) IND-CCA2 secure.

The full proof of this theorem can be found in Appendix A, but the main idea is that the decryp-

tion can be done as either γ/ρk, or as γ/(ρk
′

ρ̂k
′′

), where the Simulator chooses the public key K as

gk
′

Ak
′′

. The encryption oracle hides the message by employing DDH as follows: (1) The NIZK CRS

in the original experiment is the binding-CRS, but now the simulator retains a private-verification
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trapdoor. (2) The decryption oracle in the original experiment does a public verification of proofs

in each adversarially supplied ciphertext, but now the simulator replaces them with private verifi-

cations, as they are equivalent in this setting by definition. (3) The NIZK CRS is switched to be

the hiding CRS, and proof switched to a simulator generated proof. This is an indistinguishable

change by definition of 1-SRS-NIZK, even though the decryption oracle uses the verification trap-

door. Note, x is no more used in the simulated proof. (4) The decryption is done as γ/(ρk
′

ρ̂k
′′

),

which is equivalent because of single theorem relative-soundness. (5) DDH is employed, as only

ga instead of a is being used in simulation. (6) The decryption is done as γ/ρk, which is again

equivalent by relative-soundness. (7) the message in the encryption can be switched by pairwise

independence in k. (8) Next we do all the above steps (2)-(6) in reverse.

6 Single Theorem Relatively-Sound NIZK for the DDH Language

Let G1 and G2 be two groups with a bilinear pairing e : G1×G2 → GT and |G1| = |G2| = |GT | = q,

a prime number. Also assume that DDH is hard for both G1 and G2. Recall that this is the SXDH

assumption. Let Lg,A be the language: {(ρ, ρ̂) ∈ G1
2 | ∃x. ρ = gx ∧ ρ̂ = Ax}, with g,A in G1.

Note that this language is actually a cyclic group with generator 〈g,A〉, and forms a diverse

group system [10]. In [10], Cramer and Shoup show how to obtain 2-univeral projective hash

functions for such languages, and we use these hash functions for private-verification.

We construct a single-theorem NIZK proof system, with a private verification function for Lg,A,

which is relatively-sound, as follows:

CRS Generation: Generate P
$
←− G2 and u, v, d1, d2, e1, e2

$
←− Zp. Compute (P,Q,R, S,d, e) =

(P,Pu,Pv ,Puv+1, gd1Ad2 , ge1Ae2). The CRS is ψ = (P,Q,R, S,d, e). The first four elements

are as in the Groth-Sahai NIZK for SXDH, and the last two are the projection keys for a

2-universal projective-hash for the DDH language (just as [10]), to be used in the relatively-

sound system. The private verification trapdoor key is ξ = (d1, d2, e1, e2).

Prover: Given witness x and candidate (gx, Ax), construct proof as follows. Generate s
$
←−

Zp. Compute t ← H(gx, Ax, QxP s, SxRs), where H is a collision resistant hash function.

Then compute: (β, c1, c2, θ, φ, χ) ←
(
(det)x, QxP s, SxRs, gs, As, (det)s

)
. Output proof π =

(β, c1, c2, θ, φ, χ). The first element is a 2-universal projective-hash computed on the candidate

with witness x. The last five elements can be interpreted as generated by the Groth-Sahai

NIWI proof (which also happens to be a NIZK proof) for the language {ρ, ρ̂, h | ∃x : ρ =

gx, ρ̂ = Ax, h = (det)x}, where t is a hash of ρ, ρ̂, and the commitment to x in the NIWI

system, i.e. QxP s, SxRs.

Public Verify: Given π = (β, c1, c2, θ, φ, χ) as a candidate proof of (ρ, ρ̂), compute t← H(ρ, ρ̂, c1, c2).

Then check the following equations:




e(g, c1)
?
= e(ρ,Q) · e(θ, P ), e(g, c2)

?
= e(ρ, S) · e(θ,R)

e(A, c1)
?
= e(ρ̂, Q) · e(φ, P ), e(A, c2)

?
= e(ρ̂, S) · e(φ,R)

e(det, c1)
?
= e(β,Q) · e(χ,P ), e(det, c2)

?
= e(β, S) · e(χ,R)




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Private Verify: Given π = (β, c1, c2, θ, φ, χ) as a candidate proof of (ρ, ρ̂), compute t← H(ρ, ρ̂, c1, c2).

Then first do public verification and if that succeeds then check the following equation:

β
?
= ρd1 ρ̂d2(ρe1 ρ̂e2)t.

Theorem 2 The above system is a single-theorem relatively-sound NIZK proof system for Lg,A.

The theorem is proven in detail in Appendix B, but it is worth pointing out here that we use

the fact that in Groth-Sahai NIZKs, once the commitments to the witnesses are fixed, there is a

unique proof satisfying the linear equations of the type used in the above NIZK proof. This holds

for both the SXDH and the DLIN assumptions.

It is easy to extend this proof system to a labeled version in the following way. Compute t as

before, but additionally include the label. That is, compute t as H(ρ, ρ̂, c1, c2, label).

The 1-SRS-NIZK proof for DDH language above consists of six group elements. The 1-SRS-

NIZK proof for the DLIN language (and under the DLIN assumption) given in Appendix F.1

consists of 15 group elements.

7 Secure Protocol in the PAK Model

In this section we present a password-based key exchange protocol secure in the PAK model of

security due to Bellare, Pointcheval and Rogaway [2]. The model is described in detail in Ap-

pendix C.1.

7.1 A Single Round Protocol in the PAK Model

We instantiate the single-round scheme due to Katz and Vaikuntanathan [19] which is described

in Figure 1, with a more efficient publicly-verifiable CCA-secure encryption scheme, which enables

a more efficient hash proof as well. The CRS, the projective-hash private key (ki) generation, the

projected key (α) generation, the encryption function enc(·, ·), the public verification function, the

public projective-hash (H) computation, and the private-hash computation used in the protocol in

Figure 1 are described below.

We instantiate the encryption to be the labeled publicly-verifiable CCA2-Encryption that we

propose in this paper. Concretely, based on the SXDH assumption, we let the CRS, encryption

and public verification functions be the same as the scheme DHENC.

CRS: Generate public key (g,A,K,P,Q,R, S,d, e) for the publicly-verifiable CCA2-Encryption

scheme DHENC. Set pk ← (g,A,K,P,Q,R, S,d, e).

Encryption: Given plaintext m and label label, encrypt using the labeled encryption function

of DHENC. That is, generate x, s
$
←− Z

∗
q. Then compute t ← H(gx, Ax, QxP s, SxRs,Kx ·

m, label). The ciphertext then is
〈
gx, Ax,Kx ·m, (det)x, QxP s, SxRs, gs, As, (det)s

〉

Public Verification: Given ciphertext c = 〈ρ, ρ̂, γ, β, c1, c2, θ, φ, χ〉 and label label, first compute

t ← H(ρ, ρ̂, c1, c2, γ, label). Then check the six equations exactly as in the public verify of

DHENC scheme.

11



PAK Protocol for Password-based Key Exchange.

CRS = pk

Party Pi A Party Pj

ki
$
←− Hash-K; si ← α(ki)

labeli,Ci
−−−−−→

labelj ,Cj

←−−−−−−

kj
$
←− Hash-K; sj ← α(kj)

labeli ← (Pi, Pj , si) labelj ← (Pj , Pi, sj)

Ci ← encpk(labeli, pw) Cj ← encpk(labelj, pw)
label′j ,C′

j

←−−−−−−
label′i,C

′

i−−−−−→

Reject if C′

j is not a valid Reject if C′

i is not a valid

ciphertext with label label′j. ciphertext with label label′i.

ski ← Hki
(label′j, C

′

j , pw) skj ← Hkj
(label′i, C

′

i, pw)

·Hkj
(labeli, Ci, pw) ·Hki

(labelj, Cj , pw)

Figure 1: Single-round PAK-Model Secure Password-based Authenticated Key Exchange

The projective-hash family used in this scheme is Hpw along with the projection function αK,pw

defined in Section 3, where K is from the public-key in the CRS above. Note that the input label

to the hash function is ignored in Hpw. Also, α does not depend on pw.

Theorem 3 Assume the existence of SXDH-hard groups G1 and G2. Then the protocol in Figure 1

is secure in the PAK model.

The proof of this theorem is same as the proof in [19], as we have modularized the various

constructs required in that proof. The main idea is that once the CCA2-encryption scheme is

publicly verifiable, then the smooth hash needs to be just over the language LK,pw, which are CPA

encryptions of password.

8 Secure Protocol in the UC Model

8.1 UC Functionality for password-based key exchange

The essential elements of the Universal Composability framework are summarized in Appendix D.1.

We adopt the definition for password-based key exchange from Canetti et al [8]. The following

description is a summary from [8]. The formal description is given in Figure 3 in Appendix D.1.

Like the key exchange functionality, if both participating parties are not corrupted, then they

receive the same uniformly distributed session key and the adversary learns nothing of the key

except that it was generated. However, if one of the parties is corrupted, then the adversary

determines the session key. This power to the adversary is also given in case it succeeds in guessing

the parties’ shared password. Participants also detect when the adversary makes an unsuccessful

attempt. If the adversary makes a wrong password guess in a given session, then the session is

marked interrupted and the parties are provided random and independent session keys. If the
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adversary makes a successful guess, then the session is marked compromised. If a session is marked

fresh, this means that it is neither interrupted nor compromised. Such sessions between uncorrupted

parties conclude with both parties receiving the same, uniformly distributed session key.

Joint state and multi-session extension. In practical scenarios, different sessions might use

the same common reference string. Canetti and Rabin [9] introduced the formalism of “universal

composability with joint state” to address this problem. In this formalism, a multi-session extension

F̂ of the given functionality F has to be defined as follows: F̂ runs multiple independent copies

of F , where the copies are distinguished via sub-session IDs (SSIDs). F̂ expects every incoming

message to have an ssid in addition to the regular sid. The JUC theorem [9] asserts that composing

a protocol π that uses several independent instances of F , with a single copy of a protocol ρ that

realizes F̂ , preserves the security of π.

UC Protocol for Password-based Key Exchange in SXDH Groups

CRS = g,P, A,K, ψ : g, A,K
$
←− G1 P

$
←− G2 ψ = uSS-NIZK CRS

Party Pi Adversary A

Input (NewSession, sid, ssid, Pi, Pj, pwd, initiator/responder)

Choose x1, n1, n̂1
$
←− Z

∗
q.

c1,η1,π1

−−−−→ A
Set ρ1 = gx1, ρ̂1 = (A)x1, γ1 = pwd ·Kx1 , η1 = gn1(K)n̂1 ,
Let c1 = 〈ρ1, ρ̂1, γ1〉, and
π1 = uSS-NIZKψ(ρ1, ρ̂1, η1; x1,P

n1 ,P n̂1) with label 〈Pi, Pj, ssid〉.

c′
2
,η′

2
,π′

2←−−−− A
Let c′2 = 〈ρ′2, ρ̂

′
2, γ
′
2〉.

If any of ρ′2, ρ̂
′
2, γ
′
2, η
′
2 is not in G1\{1}, or

not uSS-NIZK-Verify(π2; ρ
′
2, ρ̂
′
2, η
′
2) with label 〈Pj , Pi, ssid〉

set sk1
$
←− GT ,

else compute h′2 = (
γ′
2

pwd
)n̂1(ρ′2)

n1, h1 = (η′2)
x1, set sk1 = e(h′2 · h1,P).

Output (sid, ssid, sk1).

Figure 2: Single round UC-secure Password-based Authenticated Key Exchange under SXDH

Assumption. It assumes two different groups G1 and G2 of prime order q, with a Zq-bilinear

map e from G1 × G2 to GT , another group of order q. Let g and P be generators of G1 and

G2 resp. The shared password pwd is assumed to be in G1, and ssid is assumed to be in Z
∗
q.

The uSS-NIZK(ρ, ρ̂, η;x,N, N̂ ) is a labeled unbounded-simulation G2-extractable NIZK proof of

membership in the language L = {ρ, ρ̂, η | ∃x,N, N̂ : ρ = gx, ρ̂ = Ax, e(η,P) = e(g,N)e(K, N̂ )}

13



8.2 A Single Round UC-Secure Password-Based Key Exchange Protocol

For sake of exposition, we describe the protocol based on the SXDH (symmetric external Diffie-

Hellman) assumption. In the appendix, we give the protocol under the Decisional Linear assumption

(DLIN). The SXDH based protocol is given in Fig 2, and more details can be found in Appendix D.2.

The protocol uses labeled unbounded simulation sound G2-extractable NIZKs. A more opti-

mized version of such a general NIZK [10] is given in the Appendix in Section E. In fact, for

the language for which a NIZK is required in the protocol, i.e. L = {ρ, ρ̂, η | ∃x,N, N̂ : ρ = gx,

ρ̂ = Ax, e(η,P) = e(g,N)e(K, N̂ )}, we give a further optimization in Appendix E.1. Based on this

optimized construction, the uSS-NIZK requires 29 group elements. A similar construction under

the DLIN assumption, and for the DLIN based UC-secure PWKE-construction (see Appendix F.4)

requires 54 group elements.

Theorem 4 Assume the existence of a SXDH-hard group, a labeled unbounded simulation-sound

G2-extractable NIZK proof system. Then the protocol in Figure 2 securely realizes the F̂pwKE

functionality in the F crs hybrid model, in the presence of static corruption adversaries.

In the next section we demonstrate a simulator which uses F̂pwKE to simulate the protocol to

an adversary, thus proving Theorem 4.

8.3 The Simulator for the UC Protocol

The trapdoor keys a, k for the CRS are chosen differently by the simulator. Instead of choosing

a, k randomly from Z
∗
q, the simulator chooses a, k′, k′′ from Z

∗
q and sets k = k′ + a · k′′. It outputs

A = ga and K = gk = gk
′

(ga)k
′′

as before. Note that this does not change the distribution of A

and K, as Z
∗
q is a field. (We will continue to write k for k′ + ak′′, except when the simulation in

some experiments needs to be done with ga, instead of a).

Simulator S also invokes the initialization phase SE1 of the labeled uSS-NIZK (with security

parameter m) to obtain (σ, τ, ξ). S then gives A, K, and σ to the real world adversary A as

the common reference string. Thereafter, the simulator S interacts with the environment Z, the

functionality F̂pwKE, and uses A as a subroutine. The messages between Z and A are just forwarded

by S.

The main difference in the simulation of the real world parties is that S uses a dummy message

µ instead of the real password which it does not have access to. Further, it generates all proofs

using the NIZK simulator S2 instead of real prover.

8.3.1 New Session: Sending a message to A

On message (NewSession, sid, ssid, i, j, role) from F̂pwKE, S starts simulating a new session of the

protocol Π for party Pi, peer Pj , session identifier ssid, and CRS = (A,K,ψ). We will denote this

session by (Pi, ssid). To simulate this session, S chooses x1 at random, and sets c1 ( = 〈ρ1, ρ̂1, γ1〉)

to 〈gx1 , Ax1 , µ ·Kx1〉. It also chooses hash keys n1, n̂1 at random, and computes the smooth-hash

projected key η1 as in the real protocol as well. S obtains a fake NIZK proof π1 using the simulator

S2 of the NIZK, and the CRS σ, and simulation trapdoor τ . It then hands c1, η1, π1 to A on behalf

of this session.
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More succinctly, the simulator behavior is as follows:

x1, n1, n̂1,
$
←− Z

∗
q (1)

c1 ( = 〈ρ1, ρ̂1, γ1〉) = 〈gx1 , Ax1 , µ ·Kx1〉 (2)

η1 = αK,µ(n1, n̂1) = gn1+kn̂1 (3)

π1 = uSS-NIZK-SIMψ(ρ1, ρ̂1, η1) with label 〈Pi, Pj , ssid〉. (4)

8.3.2 On Receiving a Message from A

On receiving a message c′2, η
′
2, π
′
2 from A intended for this session (Pi, ssid), the simulator S makes

the real world protocol checks including verifying the NIZK proof using the NIZK-verifier. If any of

the checks fail, it issues a TestPwd call to F̂pwKE with the dummy password µ, followed by a NewKey

call with a random session key, which leads to the functionality issuing a random and independent

session key to the party Pi (regardless of whether the session was interrupted or compromised).

Otherwise, it computes pwd′ by decrypting c′2, i.e. setting it to γ′2/(ρ
′
2)
k. If the message received

from A is same as message sent by S on behalf of peer Pj in session ssid, then S just issues a NewKey

call for Pi. Otherwise, S calls F̂pwKE with (TestPwd, ssid, Pi, pwd′). Regardless of the reply from

F , it then issues a NewKey call for Pi with key computed as follows (this is different from the

real-world protocol.). This has the effect that if the pwd′ was same as the actual pwd in F̂pwKE

then the session key is determined by the Simulator, otherwise the session key is set to a random

and independent value. Here is the complete simulator code (stated as it’s overall experiment with

Z, including F ’s communication with Z):

1. Let c′2 = 〈ρ′2, ρ̂
′
2, γ
′
2〉.

2. If any of ρ′2, ρ̂
′
2, γ
′
2, η
′
2 is not in G1\{1}, or not uSS-NIZK-Verify(π′2; ρ

′
2, ρ̂
′
2, η
′
2) with label

〈Pj , Pi, ssid〉, output sk1
$
←− GT , else compute as follows.

3. If msg rcvd == msg sent in same session (same SSID) by peer, set sk1
$
←− GT , unless the peer

also received a legitimate message and its key has already been set, in which case that same

key is used to set sk1.

4. Else, compute N ′2, N̂
′
2 from the proof π′2, using the G2-extraction trapdoor ξ.

5. Compute pwd′ = γ′2/(ρ
′
2)
k. If (pwd′ 6= pwd) then sk1

$
←− GT , else

6. h′2 = (
γ′
2

pwd′ )n̂1(ρ′2)
n1 , h1 = (η′2)

x1; set sk1 = e(h′2,P) · e(h1,P) · e(µ/pwd, N̂ ′2).

Note that the main difference is the additional factor e(µ/pwd, N̂ ′2).

In Appendix D.3, we describe a series of experiments between the Simulator and the environ-

ment, starting with Expt0 which is the same as the experiment described as the Simulator in this

section, and ending with an experiment which is identical to the real world execution of the proto-

col. We will show that the environment has negligible advantage in distinguishing between these

experiments, leading to a proof of Theorem 4.
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A Appendix: Publicly-Verifiable CCA2 Encryption

Theorem 1 The scheme DHENC is publicly-verifiable IND-CCA2 secure.

The definition of IND-CCA2 security is now standard and can be found in [1]. In the labeled

version [20], the Adversary calls the encryption oracle with two messages m0, and m1 and a label

l. The encryption oracle returns c, an encryption of mb with label l, with b chosen randomly.

The Adversary can make arbitrary decryption calls, except that after receiving the encryption c,

it cannot call the decryption oracle with c and the same label l. It is however allowed to call the

decryption oracle with the same ciphertext c, but a different label l′. The notion of security is the

advantage of the adversary in guessing b.

Proof: The public-verification part is straightforward, and we focus on the IND-CCA2 security

part. We demonstrate a sequence of experiments showing indistinguishability of an encryption of

an arbitrary m with an encryption of a fixed dummy message µ also in the message space. All

experiments are identical to the previous experiment except for the noted modifications.

Expt0: This is the same as the real protocol, where if a ciphertext and label pair, i.e. (ρ, ρ̂, γ, π, l)

is same as encryption query output and encryption query input label pair, then decryption oracle

does not decrypt. Otherwise, decryption of a message (ρ, ρ̂, γ, π) with label l, after verifying the

1-SRS-NIZK proof π with label (γ, l), is m = γ
ρk .

Expt1: In this experiment, the simulator generates the 1-SRS-NIZK CRS using W1 and retains

the verification-trapdoor ξ.

Expt1 is indistinguishable from Expt0 as W1 generates the same CRS as real-world CRS

generator K.

Expt2: In this experiment, the simulator chooses k′, k′′
$
←− Z

∗
q and sets K = gk

′

Ak
′′

in the public

key. It decrypts a message (ρ, ρ̂, γ, π), after verifying π with label (γ, l), as m = γ

ρk′ ρ̂k′′
.

The soundness of the 1-SRS-NIZK implies that ρ̂ = ρa whp and hence ρk = ρk
′

ρ̂k
′′

. Also the

distribution of k remains the same. Expt2 is therefore indistinguishable from Expt1.

Expt3: This is same as Expt2, except that the simulator now uses the private verification function

for proofs produced by the adversary. By the 1-SRS-NIZK property, private verification is equivalent

to the public verification function. Expt3 is therefore indistinguishable from Expt2.

Expt4: In this experiment, the simulator switches to a CRS generated by S1 and simulated proof

of membership of (gx, Ax) generated by S2. That is, given challenge plaintext m, it returns the

ciphertext c =
(
gx, Ax, gk

′xAk
′′x ·m,Simulated π

)
. Because of the switching, x is not needed as a

witness in the 1-SRS-NIZK proof. Decryption query handling remains the same.

Expt3 is indistinguishable from Expt4, since the Adversary and the decryption simulation

using the private verifier W2 are polynomial time. Further, 1-SRS-NIZK requires that simulation is

indistinguishable even if the Adversary has the verification trapdoor (which W2 does indeed have,

and in this game the decryption procedure is treated as part of the Adversary).
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Expt5: In this experiment, the simulator replaces Ax by the DDH challenge Ax
′

. Therefore the

response to the encryption challenge m becomes

c =
(
gx, Ax

′

, gk
′xAk

′′x′ ·m,Simulated π
)
.

Expt5 is computationally indistinguishable from Expt4 due to the DDH assumption.

Expt6: In this experiment, the simulator decrypts as follows: on a message (ρ, ρ̂, γ, π) and label

l, after private-verifying the 1-SRS-NIZK π with label (γ, l), output m = γ
ρk .

Note that the Experiment continues to ignore decryption queries if (ρ, ρ̂, γ, π, l) is same as

encryption query output and encryption query input label pair. Thus, the 1-SRS-NIZK relative-

soundness property implies that ρ̂ = ρa whp and hence ρk = ρk
′

ρ̂k
′′

. Hence, Expt6 is indistinguish-

able from Expt5.

Expt7: In this experiment, the simulator transforms k′, k′′ to k̃′, k̃′′, such that K remains same,

that is, k′ + ak′′ = k̃′ + ak̃′′ (= k), but at the same time gk
′x+ak′′x′ ·m = gk̃

′x+ak̃′′x′ · µ. This is

always possible if x 6= x′, which is true with probability 1/q.

Therefore the response to the encryption challenge m becomes

c =
(
gx, Ax

′

, gk̃
′xAk̃

′′x′ · µ,Simulated π
)
.

Decryption of a message (ρ, ρ̂, γ, π), after verifying the 1-SRS-NIZK, is m = γ
ρk .

Expt7 is indistinguishable from Expt6 information theoretically.

Expt8: In this experiment, the simulator decrypts as follows: On a message (ρ, ρ̂, γ, π) and label

l, after private-verifying the 1-SRS-NIZK with label γ, l, output m = γ

ρk̃′ ρ̂k̃′′
.

Note that the Experiment continues to ignore decryption queries if (ρ, ρ̂, γ, π, l) is same as

encryption query output and encryption query input label pair. Say, the encryption query out-

put on input label l∗ is (ρ∗, ρ̂∗, γ∗, π∗). Let the i-th decryption query be (ρi, ρ̂i, γi, πi, li). If

(ρi, ρ̂i, πi, 〈γi, l1〉) is same as (ρ∗, ρ̂∗, π∗, 〈γ∗, l∗〉) then the deccryption query ignores this decryption

request. Since 〈γ, l〉 was the label used in the NIZK proof generation, it follows from the 1-SRS-

NIZK relative-soundness property that ρ̂ = ρa whp and hence ρk = ρk̃
′

ρ̂k̃
′′

. Also the distribution

of k remains the same. Expt8 is therefore indistinguishable from Expt7.

Expt9: In this experiment, the simulator replaces Ax
′

back by Ax. Therefore the response to the

encryption challenge m becomes

c =
(
gx, Ax, gk̃

′xAk̃
′′x · µ,Simulated π

)
.

Expt9 is indistinguishable from Expt8 due to the DDH assumption.

Expt10: In this experiment, the simulator switches back to the CRS generated by W1, and proofs

generated by real prover with witness x. Therefore the response to the encryption challenge m

becomes

c =
(
gx, Ax, gk̃

′xAk̃
′′x · µ, π

)
.
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Expt10 is indistinguishable form Expt9 by the zero-knowledge property of 1-SRS-NIZK, even

though the private-verifier (and hence the Adversary in this game) has access to verification trap-

door.

Expt11: This is same as Expt10, except that the simulator now uses the public verification

function for proofs produced by the adversary. By the relative soundness property of the NIZK, this

is equivalent to the result of the private verification function. Expt10 is therefore indistinguishable

from Expt11.

Expt12: In this experiment, the simulator just uses k instead of k̃′, k̃′′. Therefore the response to

the encryption challenge m becomes c = (gx, Ax,Kx · µ, π). Decryption of a message (ρ, ρ̂, γ, π),

after verifying the 1-SRS-NIZK, is m = γ
ρk .

The soundness of the 1-SRS-NIZK implies that ρ̂ = ρa whp and hence ρk = ρk̃
′

ρ̂k̃
′′

. Also the

distribution of k remains the same. Expt12 is therefore indistinguishable from Expt11.

Expt13: In this experiment, the simulator generates the NIZK CRS using K instead of W1.

Since the two CRS are same, Expt13 is indistinguishable from Expt12.

This proves that DHENC is CCA2 secure because the protocol is indistinguishable from Ex-

periment 13, in which everything is same except that in the response to an encryption request a

constant message is encrypted, instead of the request message.

�

B Appendix: Proof of Relatively-Sound NIZK

Theorem 2: The system in Section 6 is a single-theorem relatively-sound NIZK proof system for

Lg,A.

Proof:

Completeness and Soundness. Since the first four tests in the Public Verification above are same

as the tests in the Groth-Sahai NIWI for the language Lg,A, soundness follows from soundness of

the NIWI system [16]. Completeness follows by simple verification.

Zero Knowledge. We construct a simulator as follows. Generate P
$
←− G2; and u, v, d1, d2, e1, e2

$
←−

Zp. Set CRS σ = (P,Q,R, S,d, e) = (P,Pu,Pv , Puv, gd1Ad2 , ge1Ae2 ). The simulation trapdoor τ

is u, d1, d2, e1, e2 . Note that this trapdoor and the private-verifier trapdoor ξ share the smooth-

hash keys.

Given a candidate (ρ, ρ̂), generate the proof as follows. Generate s
$
←− Zp and compute t ←

H(ρ, ρ̂, P s, Rs). Then compute

π = (β, c1, c2, θ, φ, χ) =
(
ρd1 ρ̂d2(ρe1 ρ̂e2)t, P s, Rs, ρ−ugs, ρ̂−uAs, β−u(det)s

)

We now show that this CRS and a proof for (ρ, ρ̂) = (gx, Ax) ∈ Lg,A is computationally indis-

tinguishable from a real CRS and a real proof for the same candidate, given the DDH assumption
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for G2, even when the Adversary has access to the private verification trapdoor ξ. To this end, we

enumerate a sequence of games each indistinguishable from the previous starting from a real CRS

and a real proof and ending at the simulated CRS and a simulated proof:

Game 1: This is the real CRS and real proof:

CRS ψ = (P,P u, P v, P uv+1)

Proof for (x : ρ, ρ̂) = (x : gx, Ax) can be seen to be computed as follows:

Generate s← Zp

Compute c1 ← P ux+s, c2 ← (P uv+1)x(P v)s

Compute t← H(ρ, ρ̂, c1, c2)

Compute β ← (det)x, θ ← gs, φ← As, χ← (det)s

Proof π = (β, c1, c2, θ, φ, χ)

Game 2: In this game the CRS is modified as follows:

CRS σ = (P,P u, P v , P uv )

By DDH for G2, this is computationally indistinguishable from Game 1 (note the verification

trapdoor ξ is independent of the DDH tuple).

Proof for (x : ρ, ρ̂) = (x : gx, Ax) is computed identically as Game 1, except it uses the CRS

σ:

Generate s← Zp

Compute c1 ← P ux+s, c2 ← (P uv)x(P v)s

Compute t← H(ρ, ρ̂, c1, c2)

Compute β ← (det)x, θ ← gs, φ← As, χ← (det)s

Proof π = (β, c1, c2, θ, φ, χ)

Game 3: In this game the NIZK CRS remains σ. The simulator is given the trapdoor u, d1, d2, e1, e2.

The proof is computed as follows:

Generate s′ ← Zp

Compute c1 ← P s
′

, c2 ← (P v)s
′

Compute t← H(ρ, ρ̂, c1, c2)

Compute β ← ρd1 ρ̂d2(ρe11 ρ̂
e2)t, θ ← ρ−ugs

′

, φ← ρ̂−uAs
′

, χ← β−u(det)s
′

NIZK Proof π = (β, c1, c2, θ, φ, χ)

The proof for (x : ρ, ρ̂) = (x : gx, Ax) is identical to Game 2, except that it uses the variable

s′ = ux + s. Observe that s′ is distributed uniformly given uniform distribution of s. Also

gs = ρ−ugs
′

and As = ρ̂−uAs
′

.

Indistinguishability from Game 2 is information theoretic. Since Game 3 is just the simulator

game, we are through.
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Single-theorem Relative-Soundness. Suppose the adversary is provided a simulated proof π =

(β, c1, c2, θ, φ, χ) for a language candidate (ρ, ρ̂) chosen by the adversary. We have to show that any

candidate and proof (ρ′, ρ̂′, π′) 6= (ρ, ρ̂, π) provided by the adversary such that (ρ′, ρ̂′) /∈ Lg,A, will

fail the private verification test. Let π′ = (β′, c′1, c
′
2, θ
′, φ′, χ′) and t′ = H(ρ′, ρ̂′, c′1, c

′
2). We analyze

two cases:

Case t′ 6= t: If the private verification succeeds, then we have the following linear equations, where

A = ga, ρ = gx1 , ρ̂ = gx2 , ρ′ = gx
′

1 , ρ̂′ = gx
′

2 :




1 a 0 0

0 0 1 a

x1 x2 tx1 tx2

x′1 x′2 t′x′1 t′x′2









d1

d2

e1
e2



 =





log d

log e

log β

log β′





Observe that if t′ 6= t and x′2 6= ax′1, then the left-hand-side four by four matrix is full-

ranked. Since, d1, d2, e1, e2 are chosen randomly and independently, this implies that log β′

is uniformly distributed even conditioned on log d, log e and log β. Since, the latter three

constitute the only information available to the adversary about d1, d2, e1, e2, the adversary

succeeds in providing the correct β′ only with negligible probability.

Case t′ = t: In this case, by the collision resistance property of the hash, whp (ρ′, ρ̂′, c′1, c
′
2) =

(ρ, ρ̂, c1, c2). If private verification succeeds (which includes public verification), then

β′ = ρd1 ρ̂d2 (ρe1 ρ̂e2)t = β

e(θ′, P ) = e(g, c1) · e(ρ,Q)−1 = e(θ, P )

e(φ′, P ) = e(A, c1) · e(ρ̂, Q)−1 = e(φ, P )

e(χ′, P ) = e(det, c1) · e(β
′, Q)−1 = e(det, c1) · e(β,Q)−1 = e(χ,P )

Since the group GT is a prime order group, using the bi-linearity of e, we get π′ = π. Since

(ρ′, ρ̂′) = (ρ, ρ̂) as well, we get a contradiction.

�

Labeled Single Theorem Relatively-Sound NIZK System It is easy to extend this proof

system to a labeled version in the following way. Compute t as before, but additionally include the

label. That is, compute t as H(ρ, ρ̂, c1, c2, label). Completeness, Soundness and Zero Knowledge

proofs remain the same. For relative-soundness we again consider the two cases:

t′ = t : In this case the label is forced to be the same whp due to the collision resistance property

of H.

t′ 6= t : This analysis remains the same as before.

C Appendix: Key Exchange in the PAK Model

C.1 PAK Model of Security

We describe a definition of security, which we refer to as PAK model in this paper, due to Bellare,

Pointcheval and Rogaway [2]. This description summarizes a version depicted in [18].
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Participants, passwords, and initialization. Prior to any execution of the protocol there

is an initialization phase during which public parameters are established. We assume a fixed

set User of protocol participants. For every distinct U,U ′ ∈ User, we assume U and U ′ share a

password pwU,U ′. We make the simplifying assumption that each pwU,U ′ is chosen independently

and uniformly randomly from the set [D]
def
= {1, . . . ,D} for some integer D.

Execution of the protocol. We denote instance i of user U as Πi
U .

• sidiU , pidiU , and skiU denote the session key, partner id and session key for an instance, respec-

tively.

• acciU and termi
U are boolean variables denoting whether a given instance has accepted or

terminated, respectively.

The adversary’s interaction with the principals (more specifically, with the various instances)

is modeled via access to oracles which we describe now:

• Send(U, i,msg) — This sends message msg to instance Πi
U . This instance runs according to

the protocol specification. The output of Πi
U is given to the adversary.

The adversary can “prompt” instance Πi
U to initiate the protocol with partner U ′ by query

Send(U, i, U ′). In response to this query, instance Πi
U outputs the first message of the protocol.

• Execute(U, i, U ′, j) — If Πi
U and Πj

U ′ have not yet been used, this oracle executes the protocol

between these instances and gives the transcript of this execution to the adversary. This

oracle call represents passive eavesdropping of a protocol execution.

• Reveal(U, i) — This outputs the session key skiU , modeling leakage of session keys.

• Test(U, i) — A random bit b is chosen; if b = 1 the adversary is given skiU , and if b = 0 the

adversary is given a session key chosen uniformly from the appropriate space.

Partnering. Let U,U ′ ∈ User. Instances Πi
U and Πj

U ′ are partnered if: (1) sidiU = sid
j
U ′ 6= null;

and (2) pidiU = U ′ and pid
j
U ′ = U .

Correctness. If Πi
U and Πj

U ′ are partnered then acciU = acc
j
U ′ = true and skiU = sk

j
U ′ .

Advantage of the adversary. An instance Πi
U is fresh unless one of the following is true at the

conclusion of the experiment:

1. at some point, the adversary queried Reveal(U, i);

2. or, at some point, the adversary queried Reveal(U ′, j), where Πj
U ′ and Πi

U are partnered.

An adversary A succeeds if it makes a single query Test(U, i) to a fresh instance Πi
U , and outputs

a bit b′ with b′ = b. We denote this event by Succ. The advantage of the adversary A in attacking

Π is given by advA,Π(k)
def
= 2 · Pr[Succ]− 1, where the probability is taken over the random coins

used during the course of the experiment (including the initialization phase).
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Definition 5 Protocol Π is a secure protocol for password-based authenticated key exchange if, for

all dictionary sizes D and for all ppt adversaries A making at most Q(n) on-line attacks, it holds

that advA,Π(n) ≤ Q(n)/D + negl(n).

C.2 Proof of Security of the PAK protocol

Theorem 6 ([19]) The the protocol in Figure 1 is secure in the PAK model provided that the

encryption scheme is CCA2 secure and the hash function is smooth projective with respect to the

language of labeled encryption of the password.

Proof. We construct a simulator for the protocol execution which information theoretically hides

the password in messages sent to the adversary and the keys generated. Hence the only way for the

adversary to influence the key generation non-trivially is to demonstrate knowlege of the password

pwd.

The secret key sk for the CCA2-secure encryption scheme is given to the simulator. The main

difference in the simulation from the protocol is that S uses a dummy message µ instead of the real

password which it does not have access to.

C.2.1 Passive Execute Queries

When the adversary asks for the transcript of a session between parties Pi and Pj , the simulator

uses encryptions of µ, instead of the password:

ki
$
←− Hash-K; si ← α(ki) (5)

labeli ← (Pi, Pj , si) (6)

Ci
$
←− encpk(labeli, µ) (7)

Send (labeli, Ci) (8)

Similarly for the party Pj. The key of both parties for this session is set to a common random

value. We show that this transcript is indistinguishable from the real protocol by outlining a

sequence of games starting from the real transcript and ending with the simulated transcript.

Suppose Pj generates the message (labelj , Cj) = (Pj , Pi, sj, Cj).

Game 0: This is just the real protocol. We note that Pi computes its key as follows: ski ←

privHki
(labelj , Cj ,pwd) · pubHsj

(labeli, Ci,pwd;xi). The private hash algorithm privH uses

the private hash key for Pi, whereas the public hash algorithm pubH uses the public hash key

received and the witness for the encryption produced by Pi, that is, xi.

Game 1: This is the real protocol with the following change. Since sj is the public hash key

actually generated by a session of Pj , the simulator knows the corresponding private hash

key kj . In this game, Pi computes its key using private hash keys only. That is, ski ←

privHki
(labelj , Cj ,pwd) · privHkj

(labeli, Ci,pwd). The transcript remains identical to Game

0.
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Game 2: This is Game 1 with the following change. Ci and Cj are both computed as encryptions

of µ. This is indistinguishable from Game 1 due to CCA2 security of the encryption scheme

and because the encryption randomness is not used anywhere.

Game 3: This is Game 2 with the following change. The key of both parties for this session

is set to a common random value. In Game 2 the key computated by both peers was

privHki
(labelj , Cj ,pwd) · privHkj

(labeli, Ci,pwd). Since both the ciphertexts are encryp-

tions of µ, the hashes are over non-members of the language associated with it. Also the

private hash keys ki and kj are not used by any other sessions of any principal. Hence the

generated key is distributed uniformly from random. Therefore Game 3 is indistinguishable

from Game 2.

Since Game 3 is just the simulated transcript we are done with this part.

C.2.2 New Session: Sending a message to A

Next we look at the active attack queries. S starts simulating a new session of the protocol Π for

party Pi, peer Pj , and CRS = pk. To simulate this session, S uses encryptions of µ, instead of the

password:

ki
$
←− Hash-K; si ← α(ki) (9)

labeli ← (Pi, Pj , si) (10)

Ci
$
←− encpk(labeli, µ) (11)

Send (labeli, Ci) (12)

C.2.3 On Receiving a Message from A

On receiving a message (label′j , C
′
j) = (Pj , Pi, s

′
j, C

′
j) from A purportedly from Pj , intended for this

session of Pi, the simulator S first public verifies C ′j to be a ciphertext with label (Pj , Pi, s
′
j). If the

checks fail, the session is aborted.

We call a tuple (Pj , Pi, s, C) well formed for this session of Pi, if C can be public verified to

be a valid ciphertext with label label. We call a well formed tuple to be legitimate if there is an

actual session of Pj which generated this message. Two sessions of principals Pi and Pj are called

partnered if Pi and Pj are peers in both sessions, and if the session of Pi receives the message

produced by the session of Pj and vice versa.

If (Pj , Pi, s
′
j , C

′
j) is legitimate for this session and this is a partnered session with peer Pj , then

choose a key value uniformly and independently from random and set it as the key for both the

sessions. If there is no partner for this session, then set its key to be uniformly and independently

random.

If the message is not even well formed then, as in the real protocol, the session is terminated.

However, if the message is well formed but not legitimate for this session, then the simulator

behavior is as follows. Let p′ be the decryption of C ′j with label (Pj , Pi, s
′
j). If p′ = pwd, then

declare A to be successful and terminate. Otherwise set ski to be random.
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Since the messages sent out are information theoretically independent of the password, the

probability of the decryption equaling the password is at most the probability of guessing the

password by the adversary. In the next section, we describe a sequence of games leading from the

real protocol finally ending up at the simulator, which will complete the proof.

C.2.4 Proof of Indistinguishability for the simulator

Now we outline a sequence of games leading from the real protocol, which we denote Expt0 finally

ending up at the simulator described above.

Expt1: In this experiment, just as in the real protocol, Pi computes the first message as follows:

generate private hash key ki and let si ← α(ki) be the public hash key. Generate randomness

xi and compute an encryption of pwd with label labeli = (Pi, Pj , si). That is, compute Ci =

encpk(labeli,pwd;xi). Send (labeli, Ci) to the adversary A.

On receiving a message (Pj , Pi, s
′
j, C

′
j) from the adversary A in this session, just as in the real

protocol, the key ski is set to the actual computed key in case the message is legitimate for this

session. That is, ski ← privHki
(label′j , C

′
j ,pwd) · pubHs′j

(labeli, Ci,pwd;xi). The private hash

algorithm privH uses the private hash key for Pi, whereas the public hash algorithm pubH uses

the public hash key received and the witness for the encryption produced by Pi, that is, xi.

If the message is not even well formed then, as in the real protocol, the session is terminated.

However, if the message is well formed but not legitimate for this session, then the behavior is

different and as follows. Let p′ be the decryption of C ′j with label (Pj , Pi, s
′
j). If p′ = pwd, then

declare A to be successful and terminate. Otherwise set ski to be random.

In the case of p′ 6= pwd, we have that (label′j , C
′
j ,pwd) is not in the language of the smooth hash.

Also note that the private hash key ki is not used anywhere other than this session. Hence the

private hash privHki
(label′j , C

′
j ,pwd) is uniformly random, even conditioned on si = α(ki). Hence

this step is indistinguishable to A from the real key computation. Making A succeed if p′ = pwd

can only increase the advantage of A.

Expt2: This experiment is the same as Expt1 with the following change. On receiving a message

(Pj , Pi, s
′
j , C

′
j) from the adversary A in this session, the key ski is computed in a different way in

case the message is legitimate for this session. Since the message is legitimate, the simulator knows

the private hash key k′j corresponding to s′j. It now computes the second hash with the private key

rather than the public key. That is, ski ← privHki
(label′j , C

′
j ,pwd) ·privHk′j

(labeli, Ci,pwd). Since

the message was legitimate, the hash is over a language member and hence the computations are

actually the same. Observe that now the encryption randomness xi is not used anywhere.

Expt3: This experiment is the same as Expt2 with the following changes. Pi sends out a message

where the password pwd has been substituted by µ: Ci ← encpk(labeli, µ). The key generation is

changed in this experiment as follows. For partnered sessions, a key is generated uniformly from

random and is set as the key for both the sessions. For all other sessions which receive legitimate

messages, the key is generated uniformly and independently from random. The experiment remains

unchanged for sessions which do not receive legitimate messages.
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The indistinguishability of Experiments 2 and 3 follow by a sequence of hybrid experiments,

where we change, session by session, the message being sent out from using the password pwd to

using µ. Consider the sessions in the order of sending the first message. In this order, the i-th session

is changed as follows, resulting in Expt2,i. Suppose the session is of principal P and its peer is Q.

We change the message being sent by P from (labeli, Ci) to (labeli, Ĉi), where Ĉi = encpk(labeli, µ).

Consider the scenario where this session receives a legitimate message (Pj , Pi, s
′
j , C

′
j) - a message

generated by the j-th session in the order. We have two cases depending on whether i is less than

or greater than j. Consider the case where i is less than j. In this case, set the key of session i

to be uniformly and independently random instead of being computed by the projective hashes. If

session j receives (Pi, Pj , si, Ĉi), then set the key of session j to be the same as session i. The key

of all other sessions which receive (Pi, Pj , si, Ĉi), and are greater than i in the order, are set to be

uniformly and independently random. Consider the case where i is greater than j. In this case, the

key of session i was already set when the session j was considered - we just retain that. The key of

all other sessions which receive (si, Ĉi), and are greater than i in the order, are set to be uniformly

and independently random.

We show that Expt2,i and Expt2,i−1 are indistinguishable. The ciphertexts Ci and Ĉi are

indistinguishable by the CCA2 security of the encryption scheme and the fact that the encryption

randomness is not used in any other computation. If session j is the partnered session of session

i and j is greater than i, then in Expt2,i they both compute the key as privHki
(labelj , Cj ,pwd) ·

privHkj
(labeli, Ĉi,pwd). Observe firstly, (labeli, Ĉi,pwd) is not in the language of the hash. Sec-

ondly, sessions other than i which use the private key kj for computing the second hash in Expt2,i,

are all greater in order than i. Hence they compute hash over language members only. Due to these

two observations, sessions i and j compute the same key, which is uniformly and independently

random with respect to all other sessions. If the partnered session j is less than i in the order, then

the key computation remains unchanged.

Now consider a session l 6= j greater than i in the order, which receives (Pi, Pj , si, Ĉi). In

Expt2,i it computes the key as privHki
(labell, Cl,pwd) · privHkl

(labeli, Ĉi,pwd). Again we have,

(labeli, Ĉi,pwd) is not in the language of the hash. Again, sessions which use the private key kl
for computing the second hash in Expt2,i, are all greater in order than i. Hence they compute

hash over language members only. Due to these two observations, session l computes a key, which

is uniformly and independently random with respect to all other sessions. If l is less than i in the

order, then l’s key computation remains unchanged.

We end up at Expt3 after all these hybrid experiments, and hence it is indistinguishable from

Expt2. Since Expt3 is just the simulator we are through.

D Appendix: Key Exchange in the UC Model

D.1 Universally Composable Security

The Universally Composable (UC) framework [7] is a formal system for proving security of com-

putational systems such as cryptographic protocols. The framework describes two probabilistic

games: The real world that captures the protocol flows and the capabilities of an attacker, and the

ideal world that captures what we think of as a secure system. The notion of security asserts that
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these two worlds are essentially equivalent.

The real-world model. The players in the real-world model are all the entities of interest in

the system (e.g., the nodes in a network, the processes in a software system, etc.), as well as

the adversary A and the environment Z. All these players are modeled as efficient, probabilistic,

message-driven programs (formally, they are all interactive Turing machines).

The actions in this game should capture all the interfaces that the various participants can

utilize in an actual deployment of this component in the real world. In particular, the capabilities

of A should capture all the interfaces that a real-life attacker can utilize in an attack on the system.

(For example, A can typically see and modify network traffic.) The environment Z is responsible

for providing all the inputs to the players and getting all the outputs back from them. Also, Z

is in general allowed to communicate with the adversary A. (This captures potential interactions

where higher-level protocols may leak things to the adversary, etc.)

The ideal-world model. Security in the UC framework is specified via an “ideal functionality”

(usually denoted F), which is thought of as a piece of code to be run by a completely trusted entity

in the ideal world. The specification of F codifies the security properties of the component at hand.

Formally, the ideal-world model has the same environment as the real-world model, but we pretend

that there is a completely trusted party (called “the functionality”), which is performing all the

tasks that are required of the protocol. In the ideal world, participants just give their inputs to

the functionality F , which produces the correct outputs (based on the specification) and hands

them back to the participants. F may interact with an adversary, but only to the extent that

the intended security allows. (E.g., it can “leak” to the adversary things that should be publicly

available, such as public keys.)

UC-Security. An implementation π securely realizes an ideal functionality F if no external

environment can distinguish between running the protocol π in the real world and interacting

with the trusted entity running the ideal functionality F in the ideal world. That is, for every

adversary A in the real world, there should exist an adversary A′ in the ideal world, such that no

environment Z can distinguish between interacting with A and π in the real world and interacting

with A′ and F in the ideal world.

D.2 UC Password-Based KE-Protocol in SXDH

Given a security parameter m, let G = Gm be an asymmetric bilnear group of prime order q

(= poly(m)). We will assume that there are three groups Gm1 , Gm2 and GmT , such that there is

an efficiently computable bilinear pairing e from Gm1 × G
m
2 to GmT . Further, we assume that the

Decisional Diffie-Hellman is hard in both the group sequences {Gm1 }m≥1, and {Gm1 }m≥1. All three

groups are assumed to be of the same prime order q. Our proposed protocol, formally described in

Figure 2 runs as follows:

Consider parties Pi and Pj involved in the protocol with SSID ssid. The CRS is three group

elements g,A(= ga),K(= gk) chosen randomly from G1, another element P chosen randomly from

G2, and a uSS-NIZK CRS ψ (a labeled unbounded-simulation soundG2-extractable NIZK). Since g,
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Functionality FpwKE

The functionality FpwKE is parameterized by a security parameter k. It interacts with an adversary

S and a set of parties via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj , pw, role) from party Pi:

Send (NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first NewSession query, or if

this is the second NewSession query and there is a record (Pj , Pi, pw
′), then record (Pi, Pj , pw)

and mark this record fresh.

Upon receiving a query (TestPwd, sid, Pi, pw
′) from the adversary S:

If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw = pw′, mark the record

compromised and reply to S with “correct guess”. If pw 6= pw′, mark the record interrupted

and reply with “wrong guess”.

Upon receiving a query (NewKey, sid, Pi, sk) from S, where |sk| = k:

If there is a record of the form (Pi, Pj , pw), and this is the first NewKey query for Pi, then:

• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk) to

player Pi.

• If this record is fresh, and there is a record (Pj , Pi, pw
′) with pw′ = pw, and a key sk′

was sent to Pj , and (Pj , Pi, pw) was fresh at the time, then output (sid, sk′) to Pi.

• In any other case, pick a new random key sk′ of length k and send (sid, sk′) to Pi.

Either way, mark the record (Pi, Pj , pw) as completed.

Figure 3: The password-based key-exchange functionality FpwKE

P are also part of the uSS-NIZK CRS, having chosen the NIZK CRS, g, P are already determined.

The protocol is symmetric and asynchronous with each party computing a message to be sent, then

receiving a corresponding message and computing a key. Therefore, we just describe it from the

perspective of one party; the other is symmetric.

Party Pi generates x
$
←− Z∗q and computes c1 = 〈gx, Ax,Kx · pw〉. It also generates hash key

(n1, n̂1)
$
←− (Z∗q )

4 and computes the projection key η1 = αK,pwd(n1, n̂1) = gn · K n̂. Finally it

computes a NIZK proof of consistency in the following way:

π1 = uSS-NIZKψ(gx, Ax, η1;x,P
n1 ,P n̂1) with label 〈Pi, Pj , ssid〉

Note that π here denotes the commitments to the witnesses as well as the further proof as in the

Groth-Sahai system.

The NP language L for the NIZK is

L = {ρ, ρ̂, η | ∃x,N, N̂ : ρ = gx, ρ̂ = Ax, e(η,P) = e(g,N)e(K, N̂ )}

Now, the message sent by Pi is 〈c1, η1, π1〉. Let the message received by Pi in this session,

supposedly from Pj, be 〈c′2, η
′
2, π
′
2〉. Let c′2 be parsed as (ρ′2, ρ̂

′
2, γ
′
2). If any of ρ′2, ρ̂

′
2, γ
′
2, η
′
2 is not in

G1\{1}, or uSS-NIZK-Verify(π′2; ρ
′
2, ρ̂
′
2, η
′
2) with label 〈Pj , Pi, ssid〉 turns out to be false, then it sets
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its session key sk1 randomly from the target group of e, GT . Otherwise it is computed as follows:

h′2 = (
γ′2

pwd
)n̂1(ρ′2)

n1 h1 = (η′2)
x1 h3 = h′2 · h1 sk1 = e(h3,P).

D.3 Proof of Indistinguishability for the UC Protocol

We now describe a series of experiments between the Simulator and the environment, starting with

Expt0 which is the same as the experiment described as the Simulator in Section 8.3, and ending

with an experiment which is identical to the real world execution of the protocol in Fig 2. We will

show that the environment has negligible advantage in distinguishing between these experiments,

leading to a proof of realization of FpwKE by the protocol Π described in Figure 2.

For each instance, we will use subscript 2 along with a prime, to refer to variables after the

reception of the message from A, and use subscript 1 to refer to variables computed before sending

the message to A. We will call a message legitimate if it was not altered by the adversary, and

delivered in the correct session, and to the correct party.

Expt1: The first major change in the simulation is to set sk1 using smooth hash trapdoor keys in

the case where the message was legitimate, but still using the wrong password µ instead of the real

password pwd. Hence, because the hash proof system is for languages with messages encrypting

real password, the smoothness yields random values from the adversary’s point of view.

Thus, after these series of changes in the simulation the experiment Expt1 is same as Expt0
except for the following modified step 3 in the reception code: If msg rcvd == msg sent in same

session by peer, set sk1 to

e(H
pwd
n1,n̂1

(enc
eg
gk (µ;x2)) · H

pwd
n2,n̂2

(enc
eg
gk (µ;x1)),P).

Note that in showing that the above is same as a random value, we only employ the hash proof

system corresponding to n1 and n̂1, and note that the second factor corresponding to n2 and n̂2 is

independent of the first. In step 6, n1 and n̂1 are being used, but the code never gets there if the

msg received is same as message sent by legitimate peer.

Expt2: Next, we replace all occurrences of e(h1,P) (= e((η′2)
x1 ,P)) in the computation of sk1 in Step

6 of the reception code by e(g,N ′2)
x1 · e(K, (N̂ ′2)

x1), which is same as e(gx1 , N ′) · e(Kx1 , N̂ ′). This

leads to an indistinguishable change as the simulator had verified the NIZK proofs, and the NIZK

proofs have unbounded simulation extractability property, and thus e(η′2,P) = e(g,N ′2)e(K, N̂
′
2).

Expt3: The next change in simulation is to replace µ by the real password in the outgoing message

element γ. However, since the simulator is employing k to compute pwd′, one cannot directly

employ DDH to replace µ by pwd in outgoing γ. However, since we are using an augmented El-

Gamal encryption scheme, i.e. also including ρ̂ in the outgoing message along with a proof of its

relation to ρ, we can use the pairwise independence in k to accomplish our goal.

To be more precise, we will have a sequence of hybrid experiments, one for each session and

party pair (ssid, Pi), where we replace µ by pwd in the outgoing γ of (ssid, Pi), as well as in all

occurrences of µ in the reception phase of simulation of (ssid, Pi), i.e. on reception of a (supposed)

message from the peer of (ssid, Pi). First in every session, we replace the step compute pwd′ = γ′2/ρ
′k
2

by compute pwd′ = γ′2/(ρ
′k′
2 ρ̂′k

′′

2 ). This is indistinguishable because of simulation soundness of the
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NIZK system, and the fact that the simulator has verified the NIZK proofs. We also replace all

occurrences of K by gk
′

Ak
′′

, and all occurrences of Kx1 by gx1k′Ax1k′′ (this can be in the code of

session (ssid, Pi) or its peer). Next, we employ the DDH property of the group G1 to replace all

occurrences of Ax1 by ga
′x1 (i.e. employing DDH on gx1 and ga), where a′ is another independent

random variable. Next, we switch compute pwd′ = γ′2/(ρ
′k′
2 ρ̂′k

′′

2 ) back to pwd′ = γ′2/ρ
′k
2 , again by

simulation soundness. At this stage, because of pairwise independence redundancy in k, we can

replace all occurrences of gk
′x1+k′′a′x1 · µ by gk

′x1+k′′a′x1 · pwd, while keeping K = gk
′+ak′′ intact.

Next, we again replace compute pwd′ = γ′2/ρ
′k
2 by compute pwd′ = γ′2/(ρ

′k′
2 ρ̂′k

′′

2 ). Employing DDH

once again on gx1 and ga, we replace all occurrences of ga
′x1 by gax1 . Finally, we switch back to

pwd′ = γ′2/ρ
′k
2 .

At this point, not only is the outgoing γ1 being computed as Kx1 ·pwd, i.e. c1 = enc
eg
K (pwd;x1),

but also in the reception phase of the same (ssid, Pi), the term e(µ/pwd, N̂ ′2) has been replaced by

1. Recall that in Expt2, e(h1,P) was replaced by e(gx1 , N ′) · e(Kx1 , N̂ ′), and now e(Kx1 , N̂ ′) has

been replaced by e(pwd/µ ·Kx1 , N̂ ′), which is then equivalent to replacing e(µ/pwd, N̂ ′2) by 1 in

Step 6.

Further, if the message received was legitimate, then sk1 is now set to

e(H
pwd
n1,n̂1

(enc
eg
gk (µ;x2)) · H

pwd
n2,n̂2

(enc
eg
gk (pwd;x1),P).

Similarly, if the peer received a legitimate message, its computation of sk1 has a similar change,

i.e. its first factor has µ replaced by pwd.

Thus, at the end of these sequence of hybrid experiments, if the message received was legitimate,

then sk1 is now set to

e(H
pwd
n1,n̂1

(enc
eg
gk (pwd;x2)) · H

pwd
n2,n̂2

(enc
eg
gk (pwd;x1)),P).

Expt4: In this experiment we drop the condition if (pwd′ 6= pwd) then set sk1 to random in Step 5,

and always output as follows

h′2 = (
γ′2

pwd
)n̂1/ssid(ρ′2)

n1 , h1 = (η′2)
x1 ; set sk1 = e(h′2,P) · e(gx1 , N ′2) · e(K

x1 , N̂ ′2).

This is accomplished by a series of hybrid experiments, one for each (ssid, Pi), we employ the hash

proof smoothness, as pwd′ 6= pwd implies the tuple c′2 is not in the language, and hence h′2 is

anyway random and independent.

Expt5: In this experiment we set sk1 in the last step as

e(h′2,P) · e(η′x1

2 ,P).

This change is indistinguishable as the simulator is checking the validity of the NIZK proofs, and

by simulation-soundness extractability.

Expt6: In this experiment we can drop the extraction of N ′2 and N̂ ′2, as they are no longer needed.

Expt7: In this experiment we do a syntactic change, by dropping step 3. Note that currently that

step is computing sk1 as

e(H
pwd
n1,n̂1

(enc
eg
gk (pwd;x2)) · H

pwd
n2,n̂2

(enc
eg
gk (pwd;x1)),P),
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but since η′2 = η2, and c′2 = c2 for this session, then the above expression is same as

e(h′2,P) · e(η′x1

2 ,P).

Expt8: We replace all simulator generated proofs by proofs generated by real prover, and indistin-

guishability follows from the zero-knowledge property of the uSS-NIZK.

At the end of the experiment, we switch from the CRS generated by SE1 to that generated by

real-world NIZK initialization.

At this point, the experiment Expt7 is indistinguishable from the real-world experiment, and the

only property required to verify this claim is the completeness of the hash proof system, i.e. when

the labelled tuple c, ssid is in the language, then the hash can be computed from the projection

keys and the witness x1 of c.

That completes the proof of Theorem 4. �

E More Efficient Unbounded Simulation Sound NIZKs

In [6], an unbounded simulation sound NIZK scheme is given for bilinear groups, building on

the Groth-Sahai NIZKs and using Cramer-Shoup like CCA2 encryption schemes under K-linear

assumptions. In this section we show various general optimizations for that construction, and

further optimizations for specific languages involving generalized Diffie-Hellman tuples.

The general optimizations can be summarized as follows.

1. The scheme in [6] uses a one-time signature scheme. However, since it also uses a labeled

CCA2 encryption scheme, the one-time signature scheme can be dropped, and one can use

the label in the CCA2 scheme to get the signature property.

2. The scheme in [6] allows the simulator to generate a CCA2 encryption of ux (for trapdoor

x) along with a proof, instead of the proof of the statement. In order for the Adversary to

cheat, it must also produce such an encryption, which is impossible under CCA2. However,

one notices that since the simulator knows ux, instead of a normal encryption, the simulator

can hide ux with just the smooth hash.

We now give this optimized version under the SXDH-assumption (for ease of exposition). Similar

optimizations can be obtained under the DLIN assumption. Let the SXDH-group be (G1, G2, GT ),

each of the groups of order q, with a Zq-bilinear map e from G1 × G2 to GT . We will write the

bilinear map e(A,B) in infix notation as A · B. The group operation will be written in additive

notation.

Languages for the simulation-sound NIZK can be specified by equations (relations) of the form

~x · ~A = T , where ~x are variables from Zq, ~A are constants from G2, and T is a constant from

GT , or vice-versa, and thus ~x serves as witness for a member of a language specified by ~A and T .

Languages can also be specified by equations of the form ~B · ~Y = T1 · T2, where ~B are elements

from G1, ~Y are variables from G2, and T1 and T2 are constants from G1 and G2 resp. One can also

consider languages with multiple such relations of both kinds.

Note that languages for which Groth-Sahai NIWI proofs can be given are more general, including

equations like ~x · ~A+~b · ~Y = T , as well as quadratic equations.
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The uss-NIZK CRS will consist of the usual Groth-Sahai NIWI CRS for SXDH, along with

g,A=ga,k = gk1Ak2,d=gd1Ad2, e=ge1Ae2, and h=gx,u=gu, with g ∈ G1, and a, k1, k2, d1, d2, e1, e2, x, u

chosen at random from Zq. One could alternatively choose these values from G2. Let H be a col-

lision resistant hash function.

Given a set of relations as above, along with satisfying variables, the prover does the following:

1. • For each equation of the kind ~x · ~A = T , it generates a modified equation ~x · ~A = δ · T ,

where δ is a new global integer variable.

• Get modified equations of the form ~B · ~Y + T1 · V = 0, where V is a new variable

representing elements from G2, along with an additional equation V+(δ−1) ·T2 = 0 [16].

• Generate an additional quadratic equation δ(1− δ) = 0.

2. Produce a Groth-Sahai NIWI proof for the above modified set of equations, with δ set to 1.

Call this proof, which includes all commitments to original variables as well as δ and V, as

π1. Also append the original statement to be proven in π1.

3. Generate ρ = gw, ρ̂ = Aw, with w chosen at random.

4. Produce a Groth-Sahai NIWI proof of the following statements (using the same commitment

to δ as in step 2, and w′, x′ committed to zero): ρ1−δ = gw
′

, ρ̂1−δ = Aw
′

, h1−δ = gx
′

. Call

this proof along with commitments to x′, w′ as π2.

5. Set b = u · (kdet)w, where t = H(ρ, ρ̂, π1, π2).

6. Produce a Groth-Sahai NIWI proof of the following statement (using the same commitment

to δ as in step 2, and same commitment for w′, x′ as in Step 4): b1−δ = ux
′

· (kdet)w
′

. Call

this proof π3.

7. The uss-NIZK proof consists of (π1, π2, π3, ρ, ρ̂, b).

Verification. The proof (π1, π2, π3, ρ, ρ̂, b) of a statement S is verified by checking π1 against the

modified equations obtained from S, obtaining t = H(ρ, ρ̂, π1, π2), and verifying π2 and π3.

Completeness. By construction.

Soundness. Since δ is forced to be zero or one by soundness of the NIWI system, if an adversary

can prove a false statement S′, then δ must be zero. In such a case, the proof π2, π3 entails that

there exists a w, x, such that ρ = gw, ρ̂ = Aw, b = ux · (kdet)w, and h = gx. Since (kdet)w can be

computed from ρ, ρ̂, π1, π2, and the keys k1, k2, d1, d2, e1, e2, this allows the simulator to solve

a CDH game with instance (g,h,u), by using this Adversary.

Zero Knowledge. Let the simulator be (S1, S2), where S1 is the initialization routine. S1 generates

the CRS exactly as in the real-world but the Simulator S2 gets the trapdoor x.

Before we describe how S2 generates proofs, consider a hybrid prover, which works like the real

prover, except computes b = ux · (kdet)w in step 5, where t = H(ρ, ρ̂, π1, π2). By employing DDH

on tuple gk1, ρ = gw, gk1·w in group G1, it follows that this value is indistinguishable from one

generated by real prover. Note that w is not used by the real prover as a witness in any proof.

The simulator S2 sets δ = 0, and sets all original variables to zero (note that since the groups

G1 etc. are written in additive notation, zero is the unity of the group). Thus, it allows it to give
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a NIWI proof π1, indistinguishable from the hybrid prover. Next, it produces ρ = gw, ρ̂ = Aw,

with w chosen at random, thus same as in hybrid prover. By NIWI, the proof π2 generated with

w′ = w, x′ = x and δ = 0 is indistinguishable from π2 generated by hybrid prover. Next, simulator

generates b = ux · (kdet)w, where t = H(ρ, ρ̂, π1, π2), just as in the hybrid prover. This, allows the

simulator to generate π3 indistinguishable from the proof π3 generated by hybrid prover (again, by

NIWI).

Unbounded Simulation Soundness Extractability. First note that the simulator initialization

algorithm S1 generates the binding CRS for the NIWI system, which is same as the CRS for the

real world. In such a case, it is a property of the Groth-Sahai NIWI that witnesses can be extracted

from the commitments in the proof (although only group elements from G1 and G2 can be efficiently

extracted).

Suppose the Adversary on obtaining proofs from the simulator S2, manages to obtain a new

proof π∗ on a statement s∗, such that the extracted witnesses, along with s∗ do not satisfy the

relation R, whereas the verifier accepts. Thus, by soundness of the NIWI, it must be the case

that δ = 0 in this proof π∗. First note that if ρ, ρ̂, π1, π2 are same in π∗ as a S2 generated proof,

and further that b is also identical in the two proofs, then π3 is guaranteed to be identical in the

two proofs. This follows from a property of the Groth-Sahai NIWIs (both for SXDH and DLIN

assumptions) that the proofs are uniquely determined by the commitments to the variables, for

relations of the kind ~x · ~A = T , and b1−δ = ux
′

· (kdet)w
′

is indeed a relation of this kind.

Now, if ρ, ρ̂, π1, π2 is same in the two proofs, and thus t is also same in the two proofs, but b

is different, then since S2 is encrypting ux in b, with h = gx, the proof π3 from π∗ will be invalid.

Thus, 〈ρ, ρ̂, π1, π2〉 in π∗ must be different from every proof generated by S2, and from the collision

resistance property of H, we can assume that the t values are also different.

Let W be the event that a π∗ is valid, but the relation R does not hold. We next show by a

sequence of games that Pr[W ] is negligible.

Game 1: The challenger generates the uss-NIZK CRS, and retains a, k1, k2, d1, d2, e1, e2, as well

as x as trapdoors. The challenger generates proofs using S2 on Adversary supplied statements.

In other words it commits δ = 0 and x′ = x. The Adversary supplies a proof π∗. If 〈ρ, ρ̂, π1, π2〉

is same as some S2 generated proof then output NO and halt. If t is same as the t value for

some S2 generated proof, output NO and halt. Otherwise, the challenger checks if

b/(ρk1+d1+t·e1ρ̂k2+d2+t·e2) = ux.

If so, it outputs YES, else it outputs NO. Let W1 be the event that Challenger outputs

YES. By soundness of the NIWI system and collision-resistance property of H, it follows that

Pr[W ] is at most Pr[W1] plus a negligible amount - recall that under the event W , π∗ has δ

committed to 0, and 〈ρ, ρ̂, π1, π2〉 is distinct from values in all S2 generated proofs.

Game 2: This is the same as Game 1, except that the challenger now uses the hiding CRS of

the Groth-Sahai NIZK to generate proofs π2 and π3 with variables w′ and x′ committed to

zero. Recall that Groth-Sahai NIWIs are also NIZKs for the equations of the type required

in π2 and π3, where the ZK simulation uses an implicit δ
′

, similar to the δ used in the above

description. Let W2 be the event that the challenger outputs YES in this game. By the ZK

property of the Groth-Sahai NIZK, |Pr[W1]− Pr[W2]| is negligible.
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Game 3: By a sequence of hybrid games, one for each proof generated, the challenger changes

b in each proof it generates to encrypt u0 instead of ux. Given that the challenger is de-

crypting b from π∗, one needs to employ the two-universal smooth hash property just as in

the Cramer-Shoup CCA2-encryption scheme. In more details, in a first sub-hybrid game in

the hybrid game corresponding to the generation of say the i-th proof, the challenger, in-

distinguishably under the DDH assumption, changes every occurrence of Awi to ga·w
′

i for a

new and independent random variable w′i. In the next hybrid game, it changes the test to

b/(ρk1+a·k2+d1+t·e1ρ̂d2+t·e2) = ux. This sub-hybrid game has almost the same probability of

outputting YES as the previous sub-hybrid game, because if ρ̂ 6= ρa, then by the 2-universal

smooth hash property, the above test would fail with high probability in both games, and

hence both games would output NO in that case. In the next sub-hybrid game, one employs

a pairwise-independent information theoretic argument involving k1, k2, to replace ux by u0

in the i-th proof’s b value. In the next sub-hybrid game, one switches back to the original

test, and again as before by the 2-universal smooth hash property the two games are indistin-

guishable. Finally, one employs DDH again, to return to ga·wi for ρ̂ in the i-th proof. Let W2

be the event that the challenger outputs YES in this final hybrid game. By the arguments

above, |Pr[W2]− Pr[W1]| is negligible.

Now we split the challenger, into a CDH challenger generating g,h,u, and a CDH-solver generating

the NIZK-CRS, conducting rest of the game 3 above using the CDH challenge, and incorporating

the Adversary, and computing b/(ρk1+d1+t·e1ρ̂k2+d2+t·e2) on the Adversary’s proof π∗, and returning

this value to the CDH challenger. Note that Pr[W2] is exactly the probability of the CDH-solver

solving the CDH-challenge, which by assumption is negligible. Hence Pr[W ] is negligible as well.

It is noteworthy that the uss-NIZK CRS can just give the product of k and d, and it follows

that k can be deleted altogether from the scheme.

The above can also be made a labeled unbounded simulation-sound extractable NIZK, by in-

cluding the label in the collision-resistance hash computation t in step 5. The proof follows by a

simple modification of the above proof.

Note that it takes 14 extra group elements to convert a NIZK proof into a uSS-proof using this

construction. This follows from the description in [16] for the SXDH construction, where we need

commitments to additional variables δ, ε′, x′, which require 2 group elements each, and proofs for

a quadratic integer equation involving δ which requires 4 group elements, and four addional linear

equations which require one group element each.

In the case of DLIN assumption, one would need 28 extra group elements.

For the language in Section 8.2, the NIZK proof requires commitments to x, N, N̂ and V . There

are two linear equations, one pairing linear equation, and one multi-scalar multiplication equation

involving δ and V, which require a total of 4*2+2*1+2+6 = 18 group elements. In the next section,

we show a further optimization for this language, which saves another 3 group elements, resulting

in a total of 14+18-3 = 29 gtoup elements for the uss-NIZK proof for the language.
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E.1 Further Optimization for Specific Languages

We now show that for languages which include Diffie-Hellman tuples as components, one can obtain

further optimizations in the unbounded simulation sound NIZK proofs of Section E. One example

of such a language is the one used in the UC-secure password-based key-exchange protocol of Fig 2.

That language has two equations which require two components to be Diffie-Hellman tuples. If this

tuple is with respect to g and A as in the uss-NIZK CRS, then we obtain further optimization as

follows.

Thus, let the language have relations {f, f̂ | ∃y : f = gy, f̂ = Ay}. Further assume that the

witness y is not involved in any other relations defining the language.

Consider the proof being generated in steps 1-7 in Section E. Instead of generating proof π1 on

statements gy = f δ, Ay = f̂ δ as in step 2, skip this step for these two relations. All other relations

are still proven as in Step 2 and included in π1. Step 3 is as before. In Step 4, consider the following

equations: ρ1−δf δ = gw
′

, ρ̂1−δ f̂ δ = Aw
′

, h1−δ = gx
′

. Give a NIWI proof of this with δ as committed

in Step 2 (where it is committed to 1), and w′ committed to y. Include this commitment of w′ in

this proof π2.

In step 5, set b = u · (kdet)w, where t = H(ρ, ρ̂, π1, π2), and b̃ = (kdet)y.

In step 6, prove b1−δ b̃δ = ux
′

· (kdet)w
′

. Note, w′ is committed to y. Call this proof π3.

In step 7, output the uss-NIZK proof as (π1, π2, π3, ρ, ρ̂, b, b̃).

The proof that this constitutes an unbounded-simulation-sound NIZK for these languages is

same as in Section E, but additionally noting that the Simulator can generate b̃ from f , f̂ , and its

smooth-hash trapdoor keys.

This optimization saves on the commitment to y, and the two proofs for f and f̂ , while adding

a new group element b̃. In SXDH, this leads to a saving of 3 group elements. A similar scheme in

DLIN leads to a saving of nine group elements (3+3+2+2-1), recalling that in DLIN the generalized-

Diffie-Hellman tuple is a triple with two witnesses, while the smooth-hash remains a single group

element.

F Secure Protocols under DLIN Assumption

In this section, we instantiate the protocols under the DLIN assumption. Let G be a group with

a bilinear pairing e : G ×G → GT and |G| = |GT | = q, a prime number. Also assume that DLIN

is hard for G. Let Lg,f,h be the language: {(ρ, σ, τ) ∈ G3 | ∃x, y. ρ = gx ∧ σ = fy ∧ τ = hx+y},

with g, f, h in G. The proofs are analogous to the SXDH versions and these generalizations can be

obtained as in [10].

F.1 Single Theorem Relatively-Sound NIZK for the DLIN Language

We construct a single-theorem NIZK proof system, with a private verification function for Lg,f,h,

which is relatively-sound, as follows:

CRS Generation: Generate d1, d2, e1, e2, u1, u2
$
←− Zp and ψ̃, a CRS for a Groth-Sahai NIWI

under the DLIN assumption. Compute (d1, e1,d2, e2) = (gd1hu1 , f e1hu1 , gd2hu2 , f e2hu2). The
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CRS is ψ = (ψ̃,d1, e1,d2, e2). The last four elements are the projection keys for a 2-universal

projective-hash for the DLIN language (just as [10]), to be used in the relatively simulation

sound system. The private verification trapdoor key is ξ = (d1, d2, e1, e2, u1, u2).

Prover: Given witness x, y and candidate (gx, fy, hx+y), construct proof as follows. Let com be

Groth-Sahai commitments to exponents x, y. Compute t← H(gx, fy, hx+y, com), where H is

a collision resistant hash function. Then compute β ← (d1e1
t)x(d2e2

t)y. This is a 2-universal

projective-hash computed on the candidate with witness x, y. Let π̃ be the Groth-Sahai NIWI

proof (which also happens to be a NIZK proof) for the language {ρ, σ, τ, β | ∃x, y : ρ = gx, σ =

fy, τ = hx+y, β = (d1e1
t)x(d2e2

t)y, where t is a hash of ρ, σ, τ, and the commitment to x, y

in the NIWI itself. Output proof π = (β, π̃).

Public Verify: Given π = (β, π̃) as a candidate proof of (ρ, σ, τ), let com be the witness commit-

ments part of π̃. Compute t ← H(ρ, σ, τ, com). Then check π̃ as a Groth-Sahai NIWI proof

for the statement ∃x, y : ρ = gx, σ = fy, τ = hx+y, β = (d1e1
t)x(d2e2

t)y

Private Verify: Given π = (β, π̃) as a candidate proof of (ρ, σ, τ), let com be the witness com-

mitments part of π̃. Compute t ← H(ρ, σ, τ, com). Then first do public verification and if

that succeeds then check the following equation: β
?
=

(
ρd1σe1τu1

) (
ρd2σe2τu2

)t
.

Theorem 7 The above system is a single-theorem relatively-sound NIZK proof system for Lg,f,h.

Again, it is worth pointing out here that we use the fact that in Groth-Sahai NIZKs for DLIN,

once the commitments to the witnesses are fixed, there is a unique proof satisfying the linear

equations of the type used in the above NIZK proof.

Again, it is easy to extend this proof system to a labeled version in the following way. Compute

t as before, but additionally include the label. That is, compute t as H(ρ, σ, τ, com, label).

F.2 Public Verifiable CCA2 Encryption

We now define a labeled publicly-verifiable public-key encryption scheme DLENC as follows:

Key Generation: Generate g, f, h
$
←− G, and k1, k2

$
←− Z

∗
q. Let K1 = gk1 and K2 = fk2.

Let ψ be the CRS for a Labeled 1-SRS-NIZK for the language Lg,f,h. The public key is

(g, f, h,K1,K2, ψ) and the private key is (k1, k2).

Encrypt: Given plaintext m ∈ G, and label l. Choose x, y
$
←− Z

∗
q. Let the tuple 〈ρ, σ, τ, γ〉 be

〈gx, fy, hx+y,m · K1
xK2

y〉. Let π be a 1-SRS-NIZK proof of (ρ, σ, τ) ∈ Lg,f,h with witness

(x, y) and label (γ, l). The ciphertext is (ρ, σ, τ, γ, π).

Decrypt: Given ciphertext c = (ρ, σ, τ, γ, π) and label l. Verify if π is a 1-SRS-NIZK proof for

(ρ, σ, τ) and label (γ, l). If verification fails output ⊥. Otherwise output m = γ
ρk1σk2

.

Verify: Given ciphertext c = (ρ, σ, τ, γ, π) and label l. Verify if π is a 1-SRS-NIZK proof for

(ρ, σ, τ) and label (γ, l). If verification fails output false else output true.

Theorem 8 The scheme DLENC is publicly-verifiable (labeled) IND-CCA2 secure under the DLIN

assumption.
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F.3 Secure Protocol in the PAK Model

We again instantiate the [19] scheme, but now under the DLIN assumption. The public verifiable

encryption is the scheme DLENC as described before. Let the public key for the DLENC scheme

be (g, f, h,K1,K2, ψ). The hash proof system is described as follows:

Key Generation: Generate l,m, n
$
←− Z

∗
q. Compute η ← gl(K1)

n and φ← fm(K2)
n. The public

key is (η, φ) and the private key is (l,m, n).

Public Hash Computation: Given parameters (label, c,msg), where c = 〈ρ, σ, τ, γ, π〉. Also

given (ρ, σ, τ ;x, y) ∈ Rf,g,h. Then compute hash as:

Hη,φ(label, c,msg)← ηxφy

Private Hash Computation: Given parameters (label, c,msg), where c = 〈ρ, σ, τ, γ, π〉. Then

compute hash as:

Hl,m,n(label, c,msg)← ρlσm
(

γ

msg

)n

Theorem 9 Assume the existence of a DLIN hard group G which supports a bilinear pairing op-

eration. Then the protocol in Figure 1 with encryption instantiated by DLENC and hash proof

system instantiated as described, is secure in the PAK model.

F.4 Secure PWKE-Protocol in the UC/DLIN Model

In Figure 4, we give a UC-secure PWKE-protocol under the Decisional Linear assumption (DLIN).

Theorem 10 Assume the existence of a DLIN-hard group, a labeled unbounded simulation-sound

G-extractable NIZK proof system. Then the protocol in Figure 4 securely realizes the F̂pwKE func-

tionality in the Fcrs hybrid model, in the presence of static corruption adversaries.
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UC Protocol for Password-based Key Exchange in DLIN Group G

CRS = g, f, h,K1, K2,P, ψ : g, f, h,K1, K2
$
←− G P

$
←− G ψ = uSS-NIZK CRS

Party Pi Adversary A

Input (NewSession, sid, ssid, Pi, Pj, pwd, initiator/responder)

Choose xi, yi, li, mi, ni
$
←− Z

∗
q.

ci,ηi,φi,πi
−−−−−→ A

Set




ρi = gxi, σi = f yi, τ = hxi+yi,

γi = pwd · (Kxi

1 K
yi

2 )ssid,
ηi = gliKni

1 , φi = fmiKni

2





Let ci = 〈ρi, σi, τi, γi〉, and

πi = uSS-NIZKψ

(
ρi, σi, τi, ηi, φi;

xi, yi,P
li ,Pmi ,Pni

)
with label 〈Pi, Pj, ssid〉.

c′j ,η
′

j ,φ
′

j ,π
′

j

←−−−−−− A
Let c′j = 〈ρ′j , σ

′
j, τ
′
j , γ
′
j〉.

If any of ρ′j, σ
′
j , τ
′
j , γ
′
j, η
′
j , φ
′
j is not in G\{1}, or

not uSS-NIZK-Verify(π′j ; ρ
′
j, σ
′
j , τ
′
j , η
′
j, φ
′
j) with label 〈Pj , Pi, ssid〉

Set ski
$
←− GT ,

else compute

[
h′2 = (ρ′j)

li(σ′j)
mi(

γ′j

pwd
)ni

h1 = (η′j)
xi(φ′j)

yi

]

Set ski = e(h′2 · h1,P).
Output (sid, ssid, ski).

Figure 4: Single round UC-secure Password-based Authenticated Key Exchange in DLIN Bilinear

group G of prime order q. It assumes a group G with a Z
∗
q-bilinear map e from G × G to GT .

Let g and P be generators of G. The shared password pwd is assumed to be in G, and ssid is

assumed to be in Z
∗
q. The uSS-NIZK(ρ, σ, τ, η, φ; x, y, L,M,N) is a labeled unbounded-simulation

G-extractable NIZK proof of membership in the language L = {ρ, σ, τ, η, φ | ∃x, y, L,M,N : ρ = gx,

σ = fy, τ = hx+y, e(η,P) = e(g, L)e(K1, N), e(φ,P) = e(f,M)e(K2, N) }
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