
Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies

David Jao1 and Luca De Feo2

1 Department of Combinatorics and Optimization
University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

djao@math.uwaterloo.ca

2 Laboratoire PRiSM
Université de Versailles, 78035 Versailles, France

http://www.prism.uvsq.fr/~dfl

Abstract. We present new candidates for quantum-resistant public-key cryptosystems based on the
conjectured difficulty of finding isogenies between supersingular elliptic curves. The main technical idea
in our scheme is that we transmit the images of torsion bases under the isogeny in order to allow
the two parties to arrive at a common shared key despite the noncommutativity of the endomorphism
ring. Our work is motivated by the recent development of a subexponential-time quantum algorithm
for constructing isogenies between ordinary elliptic curves. In the supersingular case, by contrast, the
fastest known quantum attack remains exponential, since the noncommutativity of the endomorphism
ring means that the approach used in the ordinary case does not apply. We give a precise formulation of
the necessary computational assumption along with a discussion of its validity, and prove the security
of our protocols under this assumption. In addition, we present implementation results showing that
our protocols are multiple orders of magnitude faster than previous isogeny-based cryptosystems over
ordinary curves.

Keywords: elliptic curves, isogenies, quantum-resistant public-key cryptosystems

1 Introduction

The Diffie-Hellman scheme is a fundamental protocol for public-key exchange between two parties. Its original
definition over finite fields is based on the hardness of computing the map g, ga, gb 7→ gab for g ∈ F∗p, while
its elliptic curve analogue depends on the difficulty of computing P, aP, bP 7→ abP for points P on an elliptic
curve. Recently, Stolbunov [27] proposed a Diffie-Hellman type system based on the difficulty of computing
isogenies between ordinary elliptic curves, with the stated aim of obtaining quantum-resistant cryptographic
protocols. The fastest known (classical) probabilistic algorithm for solving this problem is the algorithm of
Galbraith and Stolbunov [10], based on the algorithm of Galbraith, Hess, and Smart [9]. This algorithm is
exponential, with a worst-case running time of O(4

√
q). However, on a quantum computer, recent work of

Childs et al. [5] has shown that the private keys in Stolbunov’s system can be recovered in subexponential
time. Moreover, even if we only consider classical attacks in assessing security levels, Stolbunov’s scheme
requires 229 seconds (even with precomputation) to perform a single key exchange operation at the 128-bit
security level on a desktop PC [27, Table 1].

In this work we present isogeny-based cryptosystems that address both the performance and security
drawbacks of Stolbunov’s system. Our scheme achieves performance on the order of one second (cf. Section 6)
at the 128-bit security level (as measured against the fastest known quantum attacks) using desktop PCs,
making it far faster than Stolbunov’s scheme. In terms of security, our scheme is not vulnerable to the
algorithm of Childs et al. [5], nor to any algorithm of this type, since it is not based on a group action.
The fastest known attacks against our scheme, even on quantum computers, require fully exponential time.
Our scheme involves a new computational assumption upon which its quantum resistance is based, and
like all new computational assumptions, further study and the passage of time is needed for validation.

2 David Jao and Luca De Feo

Nevertheless, we believe our proposal represents a promising candidate for quantum-resistant isogeny-based
public-key cryptography.

Our proposal uses isogenies between supersingular elliptic curves rather than ordinary elliptic curves.
The main technical difficulty is that, in the supersingular case, the endomorphism ring is noncommutative,
whereas Diffie-Hellman type protocols require commutativity. We show how to overcome this obstacle by
providing the outputs of the isogeny on certain points as auxiliary input to the protocol. To the best of
our knowledge, nothing similar to this idea has ever previously appeared in the literature. Providing this
auxiliary input does not seem to make the problem of finding isogenies any easier; see Section 5.2 for a full
discussion. The multiple orders of magnitude of performance gains in our scheme arise from the fact that
supersingular isogeny graphs are much faster to navigate than ordinary graphs. In Section 5.1 we provide
formal statements of the hardness assumptions and security reductions for our system. Finally, in Section 6
we present implementation results confirming the correctness and performance of our protocol.

2 Isogenies

Let E1 and E2 be elliptic curves defined over a finite field Fq. An isogeny φ : E1 → E2 defined over Fq is
a non-constant rational map defined over Fq which is also a group homomorphism from E1(Fq) to E2(Fq)
[23, III.4]. The degree of an isogeny is its degree as a rational map. For separable isogenies, to have degree `
means to have kernel of size `. Every isogeny of degree greater than 1 can be factored into a composition of
isogenies of prime degree over F̄q [6].

An endomorphism of an elliptic curve E defined over Fq is an isogeny E → E defined over Fqm for some
m. The set of endomorphisms of E together with the zero map forms a ring under the operations of pointwise
addition and composition; this ring is called the endomorphism ring of E and denoted End(E). The ring
End(E) is isomorphic either to an order in a quaternion algebra or to an order in an imaginary quadratic
field [23, V.3.1]; in the first case we say E is supersingular and in the second case we say E is ordinary.

Two elliptic curves E1 and E2 defined over Fq are said to be isogenous over Fq if there exists an isogeny
φ : E1 → E2 defined over Fq. A theorem of Tate states that two curves E1 and E2 are isogenous over Fq if
and only if #E1(Fq) = #E2(Fq) [29, §3]. Since every isogeny has a dual isogeny [23, III.6.1], the property
of being isogenous over Fq is an equivalence relation on the finite set of F̄q-isomorphism classes of elliptic
curves defined over Fq. Accordingly, we define an isogeny class to be an equivalence class of elliptic curves,
taken up to F̄q-isomorphism, under this equivalence relation.

The `-torsion group of E, denoted E[`], is the set of all points P ∈ E(F̄q) such that `P is the identity.
For ` such that p - `, we have E[`] ∼= Z/`Z⊕ Z/`Z.

Curves in the same isogeny class are either all supersingular or all ordinary. Traditionally, most elliptic
curve cryptography uses ordinary curves; however, for this work we will be interested in supersingular curves.
We assume for the remainder of this paper that we are in the supersingular case.

Supersingular curves are all defined over Fp2 , and for every prime ` - p, there exist `+1 isogenies (counting
multiplicities) of degree ` originating from any given such supersingular curve. Given an elliptic curve E and
a finite subgroup Φ of E, there is up to isomorphism a unique isogeny E → E′ having kernel Φ [23, III.4.12].
Hence we can identify an isogeny by specifying its kernel, and conversely given a kernel subgroup the
corresponding isogeny can be computed using Vélu’s formulas [32]. Typically, this correspondence is of little
use, since the kernel, or any representation thereof, is usually as unwieldy as the isogeny itself. However,
in the special case of kernels generated by Fp2-rational points of smooth order, specifying a generator of
the kernel allows for compact representation and efficient computation of the corresponding isogeny, as we
demonstrate below.

2.1 Ramanujan graphs

Let G = (V, E) be a finite graph on h vertices V with undirected edges E . Suppose G is a regular graph of
degree k, i.e., exactly k edges meet at each vertex. Given a labeling of the vertices V = {v1, . . . , vh}, the

Towards quantum-resistant cryptosystems from isogenies 3

adjacency matrix of G is the symmetric h× h matrix A whose ij-th entry Ai,j = 1 if an edge exists between
vi and vj and 0 otherwise.

It is convenient to identify functions on V with vectors in Rh via this labeling, and therefore also think of
A as a self-adjoint operator on L2(V). All of the eigenvalues of A satisfy the bound |λ| ≤ k. Constant vectors
are eigenfunctions of A with eigenvalue k, which for obvious reasons is called the trivial eigenvalue λtriv. A
family of such graphs G with h → ∞ is said to be a sequence of expander graphs if all other eigenvalues
of their adjacency matrices are bounded away from λtriv = k by a fixed amount.3 In particular, no other
eigenvalue is equal to k; this implies the graph is connected. A Ramanujan graph is a special type of expander
which has |λ| ≤ 2

√
k − 1 for any nontrivial eigenvalue which is not equal to −k (this last possibility happens

if and only if the graph is bipartite). The Ramanujan property was first defined in [15]. It characterizes
the optimal separation between the two largest eigenvalues of the graph adjacency matrix, and implies the
expansion property.

A fundamental use of expanders is to prove the rapid mixing of the random walk on V along the edges
E . The following rapid mixing result is standard but we present it below for completeness. For the proof,
see [11] or [7, 14, 22].

Proposition 2.1 Let G be a regular graph of degree k on h vertices. Suppose that the eigenvalue λ of any
nonconstant eigenvector satisfies the bound |λ| ≤ c for some c < k. Let S be any subset of the vertices of G,
and x be any vertex in G. Then a random walk of length at least log 2h/|S|1/2

log k/c starting from x will land in S

with probability at least |S|2h = |S|
2|G| .

2.2 Isogeny graphs

An isogeny graph is a graph whose nodes consist of all elliptic curves in Fq belonging to a fixed isogeny class,
up to F̄q-isomorphism (so that two elliptic curves which are isomorphic over F̄q represent the same node in
the graph). In practice, the nodes are represented using j-invariants, which are invariant up to isomorphism.
Isogeny graphs for supersingular elliptic curves were first considered by Mestre [16], and were shown by Pizer
[19, 20] to have the Ramanujan property.

Every supersingular elliptic curve in characteristic p is defined over either Fp or Fp2 [23], so it suffices to
fix Fq = Fp2 as the field of definition for this discussion. Thus, in contrast to ordinary curves, there are a finite
number of isomorphism classes of curves in any given isogeny class; this number is in fact the genus g of the
modular curve X0(p), which is roughly p+1

12 . It turns out that all supersingular curves defined over Fp2 belong
to the same isogeny class [16]. For a fixed prime value of ` 6= p, we define the vertices of the supersingular
isogeny graph G to consist of these g isomorphism classes of curves, with edges given by isomorphism classes
of degree-` isogenies, defined as follows: two isogenies φ1, φ2 : Ei → Ej are isomorphic if there exists an
automorphism α ∈ Aut(Ej) (i.e., an invertible endomorphism) such that φ2 = αφ1. Pizer [19, 20] has shown
that G is a connected k = `+ 1-regular multigraph satisfying the Ramanujan bound of |λ| ≤ 2

√
` = 2

√
k − 1

for the nontrivial eigenvalues of its adjacency matrix.

3 Public-key cryptosystems based on supersingular curves

In this section we present a key-exchange protocol and a public-key cryptosystem analogous to those of [21,
27], using supersingular elliptic curves. Since the discrete logarithm problem is unimportant when elliptic
curves are used in an isogeny-based system, we propose using supersingular curves of smooth order to improve
performance. In the supersingular setting, it is easy to construct curves of smooth order, and using a smooth
order curve will give a large number of isogenies that are fast to compute. Specifically, we fix Fq = Fp2 as the
field of definition, where p is a prime of the form `eAA `eBB · f ± 1. Here `A and `B are small primes, and f is a

3 Expansion is usually phrased in terms of the number of neighbors of subsets of G, but the spectral condition here
is equivalent for k-regular graphs and also more useful for our purposes.

4 David Jao and Luca De Feo

A B
Input: A,B, sID Input: B
mA, nA ∈R Z/`eAA Z mB , nB ∈R Z/`eBB Z
φA := E0/〈[mA]PA + [nA]QA〉 φB := E0/〈[mB]PB + [nB]QB〉

A,sID
φA(PB),
φA(QB),
EA−−−−−−→
B,sID
φB(PA),
φB(QA),
EB←−−−−−−

EAB := EBA :=
EB/〈[mA]φB(PA)+[nA]φB(QA)〉 EA/〈[mB]φA(PB)+[nB]φA(QB)〉

Output: j(EAB), sID Output: j(EBA), sID

E0

EA

ke
r(φA

)=〈
[mA

]PA
+[nA

]QA
〉

φA
(PB

),φA
(QB

)

EB

ker(φ
B)=〈[m

B]P
B+[n

B]Q
B 〉

φ
B (P

A),φ
B (Q

A)

EAB

ker
(φ
′
A
)=〈[

mA
]φB

(PA
)+[nA

]φB
(QA

)〉

EBA

ker(φ′
B)=〈[m

B]φ
A (P

B)+[n
B]φ

A (Q
B)〉

‖

Fig. 1. Key-exchange protocol using isogenies on supersingular curves.

cofactor such that p is prime. Alice and Bob will each take a random walk on a different isogeny graph; Alice
will use the graph consisting of isogenies of degrees `A, and Bob will use the graph of degree `B isogenies. The
main technical modification is that, since ideal classes no longer commute (or indeed even multiply together)
in the supersingular case, extra information must be communicated as part of the protocol in order to ensure
that both parties arrive at the same common value. This is in contrast to the ordinary case [27], where the
existence of an abelian class group allows for the straightforward creation of a Diffie-Hellman type system.

3.1 Key exchange

We fix as public parameters a supersingular curve E0 defined over Fp2 , and bases {PA, QA} and {PB , QB}
which generate E0[`eAA] and E0[`eBB] respectively, so that 〈PA, QA〉 = E0[`eAA] and 〈PB , QB〉 = E0[`eBB].
Alice chooses two random elements mA, nA ∈R Z/`eAA Z, not both divisible by `A, and computes an isogeny
φA : E0 → EA with kernel KA := 〈[mA]PA + [nA]QA〉. Alice also computes the image {φA(PB), φA(QB)} ⊂
EA of the basis {PB , QB} for E0[`eBB] under her secret isogeny φA, and sends these points to Bob together
with EA. Similarly, Bob selects random elements mB , nB ∈R Z/`eBB Z and computes an isogeny φB : E0 → EB

having kernel KB := 〈[mB]PB + [nB]QB〉, along with the points {φB(PA), φB(QA)}. Upon receipt of EB

and φB(PA), φB(QA) ∈ EB from Bob, Alice computes an isogeny φ′A : EB → EAB having kernel equal to
〈[mA]φB(PA) + [nA]φB(QA)〉; Bob proceeds mutatis mutandis. Alice and Bob can then use the common
j-invariant of

EAB = φ′B(φA(E0)) = φ′A(φB(E0)) = E0/〈[mA]PA+[nA]QA,[mB]PB+[nB]QB〉

to form a secret shared key. For specific details of how each of the above computations can be performed
efficiently, we refer the reader to Section 4.

Towards quantum-resistant cryptosystems from isogenies 5

The full protocol is given in Figure 1. We denote by A and B the identifiers of Alice and Bob, and use
sID to denote the unique session identifier.

3.2 Public-key encryption

The key-exchange protocol of Section 3.1 can easily be adapted to yield a public-key cryptosystem, in much
the same way that Elgamal encryption follows from Diffie-Hellman. We briefly give the details here. All
notation is the same as above. Stolbunov [27] uses a similar construction, upon which ours is based.

Setup: Choose p = `eAA `eBB · f ± 1, E0, {PA, QA}, {PB , QB} as above. Let H = {Hk : k ∈ K} be a hash
function family indexed by a finite set K, where each Hk is a function from Fp2 to the message space
{0, 1}w.

Key generation. Choose two random elements mA, nA ∈R Z/`eAA Z, not both divisible by `A. Compute
EA, φA(PB), φA(QB) as above, and choose a random element k ∈R K. The public key is the tuple
(EA, φA(PB), φA(QB), k) and the private key is (mA, nA, k).

Encryption. Given a public key (EA, φA(PB), φA(QB), k) and a message m ∈ {0, 1}w, choose two random
elements mB , nB ∈R Z/`eBB Z, not both divisible by `B , and compute

h = Hk(j(EAB)),
c = h⊕m.

The ciphertext is (EB , φB(PA), φB(QA), c).
Decryption. Given a ciphertext (EB , φB(PA), φB(QA), c) and a private key (mA, nA, k), compute the j-

invariant j(EAB) and set

h = Hk(j(EAB)),
m = h⊕ c.

The plaintext is m.

4 Algorithmic aspects

We now give specific algorithms to implement the abovementioned steps efficiently.

4.1 Parameter generation

For any fixed choice of `eAA and `eBB , one can easily test random values of f (of any desired cryptographic
size) until a value is found for which p = `eAA `eBB · f − 1 or p = `eAA `eBB · f + 1 is prime; the prime number
theorem in arithmetic progressions (specifically, the effective version of Lagarias and Odlyzko [13]) provides
a sufficient lower bound for the density of such primes.

Once the prime p = `eAA `eBB · f ± 1 is known, Bröker [2] has shown that it is easy to find a supersingular
curve E over Fp2 having cardinality (p ∓ 1)2 = (`eAA `eBB · f)2. Starting from E, one can select a random
supersingular curve E0 over Fp2 by means of random walks on the isogeny graph (cf. Proposition 2.1);
alternatively, one can simply take E0 = E. In either case, E0 has group structure (Z/(p ∓ 1)Z)2. To find a
basis for E0[`eAA], choose a random point P ∈R E0(Fp2) and multiply it by (`eBB · f)2 to obtain a point P ′

of order dividing `eAA . With high probability, P ′ will have order exactly `eAA ; one can of course check this by
multiplying P ′ by powers of `A. If the check succeeds, then set PA = P ′; otherwise try again with another
P . A second point QA of order `eAA can be obtained in the same way. To check whether QA is independent of
PA, simply compute the Weil pairing e(PA, QA) in E[`eAA] and check that the result has order `eAA ; as before,
this happens with high probability, and if not, just choose another point QA. Note that the choice of basis
has no effect on the security of the scheme, since one can convert from one basis to another using extended
discrete logarithms, which are easy to compute in E0[`eAA] by [30].

6 David Jao and Luca De Feo

Multiplication based

Input: E0, R0

1: for 0 ≤ i < eA do
2: Pi ← `ea−i−1

A R0;
3: Compute φi : Ei → Ei/〈Pi〉;
4: Ei+1 ← Ei/〈Pi〉;
5: Ri+1 ← φi(Ri);
6: end for

Output: EeA

Isogeny based

Input: E0, R0

1: Q0 ← R0;
2: for 0 ≤ j < eA − 1 do
3: Qj+1 ← `AQj ;
4: end for
5: for 0 ≤ i < eA do
6: Compute φi : Ei → Ei/〈QeA−1〉;
7: Ei+1 ← Ei/〈QeA−1〉;
8: for i ≤ j < eA − 1 do
9: Qj+1 ← φi(Qj);

10: end for
11: end for
Output: EeA

Fig. 2. Key exchange algorithms.

4.2 Key exchange

It remains to describe how Alice and Bob can compute isogenies of a given kernel. We show how to compute
φA : E0 → EA where EA = E0/〈[mA]PA + [nA]QA〉; the same procedure suffices to compute all the other
isogenies mentioned. The computation is performed using a version of Hensel lifting modulo `A. Let R0 :=
[mA]PA + [nA]QA. The order of R0 is `eAA . For 0 ≤ i < eA, let

Ei+1 = Ei/〈`eA−i−1
A Ri〉, φi : Ei → Ei+1, Ri+1 = φi(Ri),

where φi is a degree `A isogeny from Ei to Ei+1. Then EA = EeA and φA = φeA−1 ◦ · · · ◦ φ0.
Figure 2 gives two algorithms for this task. They both compute iteratively (Ri, `

eA−i−1
A Ri, φi, Ei+1) for

i < eA, but they differ in the strategy. The first one, which we will refer to as multiplication-oriented,
computes at each iteration `eA−i−1

A Ri from Ri using point addition (or duplication, or triplication). The
second one, which we call isogeny-oriented, first forms the list (`jAR0)j<eA using point addition, then at each
iteration computes the list (`jARi+1)j<eA−i−1 by evaluating φi(`

j
ARi) for each j. Observe that Alice and Bob

can use one algorithm or the other independently.
A quick analysis shows that both algorithms require O(log2 p) operations in Fp. The major cost in the

multiplication-based one is scalar point multiplication; this costs O(eA log2 `A) double-and-adds at each
iteration and is repeated eA ∼ log`A

√
p times. The major cost in the isogeny-based algorithm is the isogeny

evaluation at step 8; each evaluation costs O(`A) operations and there are 1
2eA(eA− 1) of them. By forming

the ratio of these quantities, we obtain O(log2 `A/`A), so we see that the multiplication-based algorithm is
preferable as `A grows—but we cannot grow `A indefinitely, because eventually Step 3 becomes the dominant
cost. Our implementation, described in Section 6, supports the isogeny-oriented approach for `A = 2, 3 and
the multiplication-oriented approach for `A > 2.

4.3 Isogenies of Montgomery curves

Independently of which method is chosen, it is important to use pick models for elliptic curves that offer
the fastest isogeny evaluation performance. The literature on efficient formulas for evaluating small degree
isogenies is much less extensive than for point multiplication. In this section we provide explicit and efficient
formulas for evaluating isogenies using curves in Montgomery form.

Each of our curves has group structure (Z/(p∓ 1)Z)2 and its twist has group structure (Z/(p± 1)Z)2.
Hence either the curve or its twist has a point of order 4. Consequently, we can write our curves in Montgomery
form as follows:

E : B2y2 = x3 +Ax2 + x (1)

Towards quantum-resistant cryptosystems from isogenies 7

Montgomery curves have very efficient arithmetic on their Kummer line (i.e. by representing points by the
coordinates (X : Z) where x = X/Z) [17]. The Kummer line identifies P with −P , and thus it is not possible
to add two distinct points; however it is still possible to compute any scalar multiple of a point. Also observe
that since P and −P generate the same subgroup, isogenies can be defined and evaluated correctly on the
Kummer line. The goal of this section is to give explicit and efficient formulas for such isogenies.

Let E be the Montgomery curve defined by Eq. (1). It has a point of order two in point P2 = (0, 0), and
a point of order four in P4 = (1,

√
(A+ 2)/B)—eventualy defined over a quadratic extension—such that

[2]P4 = P2. Montgomery curves have twists of the form ỹ =
√
cy; these are isomorphisms when c is a square.

The change of coordinates x̃ = x/B, ỹ = y/B brings the curve E to the Weierstrass form

Ẽ : ỹ2 = x̃3 +
A

B
x̃2 +

1
B2

x̃,

and the point P4 to P ′4 = (1/B, . . .). Inversely, given a Weierstrass curve Ẽ with equation ỹ2 = x̃3 +ax̃2 +bx̃,
together with a point P4 = (1/β, . . .)—with its ordinate possibly lying in a quadratic extension—such
that [2]P4 = (0, 0), the change of variables x̃ = x/β, ỹ = y/β brings Ẽ to the Montgomery form βy2 =
x3 + aβx2 + x.

Let G be a subgroup of the Montgomery curve E of odd cardinality ` and let h be the degree (`− 1)/2
polynomial vanishing on the abscissas of G. With a twist y = ỹ/

√
B, we can put E in the form ỹ2 =

x̃3 + Ax̃2 + x̃, and this doesn’t change the abscissas of G or the polynomial h. Now we can use Vélu’s
formulas to compute an isogeny having G for kernel: this gives an isogeny φ and a curve F such that

F : y2 = x3 + a2x
2 + a4x+ a6,

φ : E → F,

(x, y) 7→

(
g(x)
h(x)2

, y
√
B

(
g(x)
h(x)2

)′)
.

Because ` is odd, the point (0, 0) of E is sent to a point of order two in F . A closer look at Vélu’s formulas (see
Eq. (3) below) shows that φ(0, 0) = (p−1−p1, 0), where p1 is the sum of the abscissas of G and p−1 is the sum
of their inverses. By the change of variables x̃ = x−p−1 +p1, we bring F to the form F̃ : ỹ2 = x̃3 +ax̃2 + bx̃.
Now φ(P4) is a point of order four (possibly in a quadratic extension). Its abscissa in F̃ is rational and is
given by 1/β = g(1)/h(1) − p−1 + p1, so we apply the change of variables x̃ = x̄/β, ỹ = x̄/β to obtain a
Montgomery curve. Finally, we have to twist back the image curve to obtain a curve isogenous over the base
field: the twist ȳ = y

√
B cancels with the first one and leaves us with square-root-free formulas. The image

curve is
Bβy2 = x3 + aβx2 + x. (2)

To efficiently evaluate these isogenies (either on the full curve or on the Kummer line) we use [1, Propo-
sition 4.1], which says:

g

h
= `x+ p1 − 2(3x2 + 2Ax+ 1)

h′

h
− 4(x3 +Ax2 + x)

(
h′

h

)
. (3)

To evaluate at a point (x0, y0), we compute h(x0), h′(x0), h′′(x0), h′′′(x0); applying Horner’s rule, this costs
∼ 2`multiplications using affine coordinates, or∼ 3` using projective coordinates. Then we inject these values
in Eq. (3) and in its derivative to evaluate the isogeny, this only takes a constant number of multiplications
(plus one inversion in affine coordinates). Finally, the image of (x0, y0) is given by

(β(g(x0)/h(x0)− p−1 + p1), βy0(g/h)′(x0)) .

Note that if the y-coordinate is not needed4, we can avoid computing h′′′(x0), thus saving ∼ `/2 multipli-
cations. Of course, for specific small `, such as ` = 3, 5, it is more convenient to write down the isogeny
explicitly in terms of the kernel points and find optimized formulas.
4 While x coordinates are enough to compute Vélu’s isogenies and the image curve, this forces the other party to

use y-coordinate-free formulas for point multiplication.

8 David Jao and Luca De Feo

When ` = 2, things are more complex, but in our specific case we can easily deal with it. The isogeny of
E vanishing (0, 0) is readily seen as being

F : y2 = x3 +
A+ 6
B

x2 + 4
A+ 2
B2

x, (4)

φ : E → F,

(x, y) 7→
(

1
B

(x− 1)2

x
,

1
B

(
y − y

x2

))
.

(5)

If a point P8 satisfying [4]P8 = (0, 0) is known, then
√
A+ 2 can be computed from the abscissa of φ(P8),

and F can be put in Montgomery form as before. The isogeny vanishing on a generic point of order two
P2 6= (0, 0) can be easily computed when a point P4 satisfying [2]P4 = P2 is known: change coordinates to
bring P2 in (0, 0), then use the abscissa of P4 to express the resulting curve in Montgomery form (this is the
same technique as above, taking ` = 1); notice that this step needs to be done at most once per key exchange
. When points of order 8 or 4 are not available, as in the last few steps of our setting, ordinary Weierstrass
forms yield formulas that require a few extra multiplications.

We conclude this section with operation counts for the key exchange algorithms. We write I,M, S for the
costs of one inversion, multiplication and squaring in Fp2 respectively, and we make the assumption S ≤M ;
we count multiplication by constants as normal multiplications. For simplicity, we only list quadratic terms
in eA.

Multiplication-based. If P is a point on the Kummer line, computing P times an n-bit integer costs (7M +
4S) log2 n (see [17]). Thus the cumulative cost of Step 2 is

eA−1∑
i=1

(7M + 4S) log2 `
i
A ∼

1
2

(7M + 4S)(log2

√
p)2 log`A 2.

Doubling a point on the Kummer line only costs 3M + 2S, and thus the cost for `A = 2 drops down to
1
2 (3M + 2S)(log2

√
p)2.

Isogeny-based The only quadratic term in eA appears at Step 8. Since we do not need the y coordinate of the
points involved in this step, we only need the values h(x0), h′(x0), h′′(x0) in order to apply Eq. (3). We let
s = (`A − 1)/2 be the degree of h. In affine coordinates, since h is monic, Horner’s rule requires (3s− 6)M ,
except when s = 1, 2. Then, to compute β(g(x0)/h(x0) − p−1 + p1) we need I + 8M + 2S. For `A = 3 the
total count drops to I + 6M + 2S, and for `A = 5 it is I + 8M + 2S.

In projective coordinates, we first compute Z, . . . , Zs at a cost of (s− 1)M . Then, if h =
∑

i hiX
s−iZi,

we compute the monomials hiZ
i using sM . Finally we compute h, h′, h′′ using three applications of Horner’s

rule, costing again (3s− 6)M when s 6= 1, 2. The final computation requires 11M + 3S. For `A = 3 the total
count is 10M + 2S, and for `A = 5 it is 14M + 3S.

The difference between the affine and the projective formulas is I− 2(s− 1)M −S, so the choice between
the two must be done according to the ratio I/M .

Finally for `A = 2, assuming a point of order 8 on the domain curve is known (which will always be the
case, except in the last two iterations), evaluating the x part of Eq. 4 in projective coordinates and bringing
the result back to a Montgomery curve costs 2M + S.

There are eA(eA − 1) isogeny evaluations in the algorithm, so, assuming that N is the cost of doing one
evaluation, the total cost is about 1

2e
2
AN = 1

2N(log2
√
p)2(log`A 2)2. We summarize the main costs of the

two algorithms in Table 1.

Towards quantum-resistant cryptosystems from isogenies 9

`A 2 3 5 11 19
log`A 2 1 0.63 0.43 0.29 0.23

Isogeny 2M + S 4.0M + 0.8S 1.7M + 0.5S 2.0M + 0.2S 2.4M + 0.2S
Multiplication 3M + 2S 4.4M + 2.5S 3.0M + 1.7S 2.0M + 1.1S 1.6M + 0.9S

Table 1. Comparative costs for the multiplication and isogeny based algorithms using projective coordinates. The
entries must be multiplied by 1

2
(log2

√
p)2 to obtain the full cost.

5 Security

5.1 Complexity assumptions and security proofs

As before, let p be a prime of the form `eAA `eBB ·f ±1, and fix a supersingular curve E0 over Fp2 together with
bases {PA, QA} and {PB , QB} of E0[`eAA] and E0[`eBB] respectively. In analogy with the case of isogenies over
ordinary elliptic curves, we define the following computational problems, adapted for the supersingular case:

Problem 5.1 (Supersingular Isogeny (SSI) problem). Let φA : E0 → EA be an isogeny whose kernel is
〈[mA]PA + [nA]QA〉, where mA and nA are chosen at random from Z/`eAA Z and not both divisible by `A.
Given EA and the values φA(PB), φA(QB), find a generator RA of 〈[mA]PA + [nA]QA〉.

We remark that given a generator RA = [mA]PA + [nA]QA, it is easy to solve for (mA, nA), since E0 has
smooth order and thus extended discrete logarithms are easy in E0 [30].

Problem 5.2 (Supersingular Computational Diffie-Hellman (SSCDH) problem). Let φA : E0 → EA be an
isogeny whose kernel is equal to 〈[mA]PA + [nA]QA〉, and let φB : E0 → EB be an isogeny whose kernel is
〈[mB]PB + [nB]QB〉, where mA, nA (respectively mB , nB) are chosen at random from Z/`eAA Z (respectively
Z/`eBB Z) and not both divisible by `A (respectively `B). Given the curves EA, EB and the points φA(PB),
φA(QB), φB(PA), φB(QA), find the j-invariant of E0/〈[mA]PA + [nA]QA, [mB]PB + [nB]QB〉.

Problem 5.3 (Supersingular Decision Diffie-Hellman (SSDDH) problem). Given a tuple sampled with prob-
ability 1/2 from one of the following two distributions:

– (EA, EB , φA(PB), φA(QB), φB(PA), φB(QA), EAB), where EA, EB , φA(PB), φA(QB), φB(PA), φB(QA)
are as in the SSCDH problem and

EAB
∼= E0/〈[mA]PA + [nA]QA, [mB]PB + [nB]QB〉,

– (EA, EB , φA(PB), φA(QB), φB(PA), φB(QA), EC), where EA, EB , φA(PB), φA(QB), φB(PA), φB(QA)
are as in the SSCDH problem and

EC
∼= E0/〈[m′A]PA + [n′A]QA, [m′B]PB + [n′B]QB〉,

where m′A, n
′
A (respectively m′B , n

′
B) are chosen at random from Z/`eAA Z (respectively Z/`eBB Z) and not

both divisible by `A (respectively `B),

determine from which distribution the triple is sampled.

We conjecture that these problems are computationally infeasible, in the sense that for any polynomial-
time solver algorithm, the advantage of the algorithm is a negligible function of the security parameter log p.
The resulting security assumptions are referred to as the SSI, SSCDH, and SSDDH assumptions, respectively.
Using the methods of Stolbunov [26], it is a routine exercise to prove that the protocols of Section 3 are
secure under SSDDH:

Theorem 5.4. Under the SSDDH assumption, the key-agreement protocol of Section 3.1 is session-key
secure in the authenticated-links adversarial model of Canetti and Krawczyk [3].

10 David Jao and Luca De Feo

Theorem 5.5. If the SSDDH assumption holds, and the hash function family H is entropy-smoothing, then
the public-key cryptosystem of Section 3.2 is IND-CPA.

As an illustration of the proof techniques, we provide a proof of Theorem 5.4 in Appendix A.

Remark 5.6. As in the ordinary case [21, 27], our protocols do not provide authentication. One possible
workaround for the time being is to use classical public-key authentication schemes in conjunction with the
standard observation [24, §6.2] that the authentication step only needs to be secure against the adversary at
the time of the initial connection.

5.2 Hardness of the underlying assumptions

Given an SSI (respectively, SSCDH) solver, it is trivial to solve SSCDH (respectively, SSDDH). There is of
course no known reduction in the other direction, and given that the corresponding question of equivalence
for discrete logarithms and Diffie-Hellman has not yet been completely resolved in all cases, it is reasonable
to assume that the question of equivalence of SSI, SSCDH, and SSDDH is at least hard to resolve. For the
purposes of this discussion, we will presume that SSI is equivalent to SSDDH.

In the context of cryptography, the problem of computing an isogeny between isogenous supersingular
curves was first considered by Galbraith [8] in 1999. The first published cryptographic primitive based on
supersingular isogeny graphs is the hash function proposal of Charles et al. [4], which remains unbroken
to date (the cryptanalysis of [18] applies only to the LPS graph-based hash function from [4], and not to
the supersingular isogeny graph-based hash functions). The fastest known algorithm for finding isogenies
between supersingular curves in general takes O(

√
p log2 p) time [4, §5.3.1]; however our problem is less

general because the degree of the isogeny is known in advance and is smooth. In addition, the distribution of
isogenous curves obtained from taking kernels of the form 〈[mA]PA + [nA]QA〉 is not quite uniform: a simple
calculation against Proposition 2.1 indicates that a sequence of eA isogenies of degree `A falls short of the
length needed to ensure uniform mixing, regardless of the value of p. Since we are the first to propose using
isogenies of this type, there is no existing literature addressing the security of the isogenies of the special
form that we propose.

There is an easy exponential attack against our cryptosystem that improves upon exhaustive search. To
find an isogeny of degree `eAA between E and EA, an attacker builds two trees of all curves isogenous to E
(respectively, EA) via isogenies of degree `eA/2

A . Once the trees are built, the attacker tries to find a curve
lying in both trees. Since the degree of the isogeny φA is ∼ √p (much shorter than the size of the isogeny
graph), it is unlikely that there will be more than one isogeny path—and thus more than one match—from
E to EA. Given two functions f : A → C and g : B → C with domain of equal size, finding a pair (a, b)
such that f(a) = g(b) is known as the claw problem in complexity theory. The claw problem can obviously
be solved in O(|A| + |B|) time and O(|A|) space on a classical computer by building a hash table holding
f(a) for any a ∈ A and looking for hits for g(b) where b ∈ B. This gives a O(`eA/2

A) = O(4
√
p) classical attack

against our cryptosystem. With a quantum computer, one can do better using the algorithm in [28], which
has complexity O(3

√
|A||B|), thus giving an O(`eA/3

A) = O(6
√
p) quantum attack against our cryptosystem.

These complexities are optimal for a black-box claw attack [33].
We consider the question of whether the auxiliary data points φA(PB) and φA(QB) might assist an

adversary in determining φA. Since (PB , QB) forms a basis for E0[`eBB], the values φA(PB) and φA(QB)
allow the adversary to compute φA on all of E0[`eBB]. This is because any element of E0[`eBB] is a (known)
linear combination of PB and QB (known since extended discrete logarithms are easy [30]). However, there
does not appear to be any way to use this capability to determine φA. Even on a quantum computer, where
finding abelian hidden subgroups is easy, there is no hidden subgroup to find, since φA has degree `eAA , and
thus does not annihilate any point in E0[`eBB] other than the identity. Of course, if one could evaluate φA on
arbitrary points of E0[`eAA], then a quantum computer could easily break the scheme, and indeed in this case
the scheme is also easily broken classically by using a few calls to the oracle to compute a generator of the
kernel of the dual isogeny φ̂A. However, it does not seem possible to translate the values of φA on E0[`eBB]
into values on E0[`eAA].

Towards quantum-resistant cryptosystems from isogenies 11

Alice Bob
round 1 round 2 round 1 round 2

225331617− 1 365 ms 363 ms 318 ms 314 ms
5110791284− 1 419 ms 374 ms 369 ms 326 ms
11741369384− 1 332 ms 283 ms 321 ms 272 ms
17621960210 + 1 330 ms 274 ms 331 ms 276 ms
23562952286 + 1 339 ms 274 ms 347 ms 277 ms
31514147564− 1 355 ms 279 ms 381 ms 294 ms

238432428− 1 1160 ms 1160 ms 986 ms 973 ms
516571372968− 1 1050 ms 972 ms 916 ms 843 ms
111111310478 + 1 790 ms 710 ms 771 ms 688 ms
17941990116− 1 761 ms 673 ms 750 ms 661 ms
23852979132− 1 755 ms 652 ms 758 ms 647 ms
31774172166 + 1 772 ms 643 ms 824 ms 682 ms

25123323799− 1 2570 ms 2550 ms 2170 ms 2150 ms
52207182538 + 1 2270 ms 2140 ms 1930 ms 1810 ms
1114813138942 + 1 1650 ms 1520 ms 1570 ms 1440 ms
1712519120712− 1 1550 ms 1430 ms 1520 ms 1380 ms
23113291051004− 1 1480 ms 1330 ms 1470 ms 1300 ms

Table 2. Benchmarks for various group sizes and structures.

Finally, we discuss the possibility of adapting the quantum algorithm of Childs et al. [5] for the ordinary
case to the supersingular case. For both ordinary and supersingular curves, there is a natural bijection
between isogenies (up to isomorphism) and (left) ideal classes in the endomorphism ring. The algorithm of
Childs et al. depends crucially on the fact that the ideal classes in the ordinary case form an abelian group. In
the supersingular case, the endomorphism ring is a maximal order in a noncommutative quaternion algebra,
and the left ideal classes do not form a group at all (multiplication is not well defined). Thus we believe that
no reasonable variant of this strategy would apply to supersingular curves.

6 Implementation results and example

We implemented our cryptosystem in the computer algebra system Sage [25] using a mixed C/Cython/Sage
architecture. This allows us to access the large palette of number theoretic algorithms distributed with
Sage, while still permitting very efficient code in C/Cython for the critical parts such as the algorithms of
Section 4.2. The source code can be downloaded from the second author’s web page.

Arithmetic in Fp2 is written in C. We use the library GMP for arithmetic modulo p. The field Fp2 is
implemented as Fp2 [X]/(X2 + 1) (this requires p = 3 mod 4); using this representation, one multiplication
in Fp2 requires three multiplications (3M) in Fp, one Fp2 squaring requires two multiplications (2M) in Fp,
and one Fp2 inversion requires one inversion, two squarings, and two multiplications (I + 2S + 2M) in Fp.
Our experiments show that, for the sizes we are interested in, I = 10M and S = 0.8M .

We implemented the isogeny-based key exchange algorithm for ` = 2, 3 and the multiplication-based algo-
rithm for ` > 2. The main loop is implemented in Cython, while the isogeny evaluation and the Montgomery
ladder formulas are written in C.

Finally, the parameter generation is implemented in plain Sage. Because Sage is a collection of many open
source mathematical systems, various of its subsystems are involved in this last part. Of these, Pari [31] plays
an important role because it is used to compute Hilbert class polynomials and to factor polynomials over
finite fields.

All tests ran on a 2.4 GHz Opteron running in 64-bit mode. The results are summarized in Table 2. At
the quantum 128-bit security level (768-bit p), our numbers improve upon Stolbunov’s reported performance
figures [27, Table 1] by over two orders of magnitude (.758 seconds vs. 229 seconds). This is the highest

12 David Jao and Luca De Feo

security level appearing in [27, Table 1], so comparisons at higher levels are difficult. Nevertheless, it seems
safe to assume that the improvement is even greater at the 256-bit security level. Our results demonstrate
that the proposed scheme is practical.

6.1 Example

As a convenience, we provide an example calculation of a key-exchange transaction. Let `A = 2, `B = 3,
eA = 63, eB = 41, and f = 11. We use the starting curve E0 : y2 = x3 + x. For the torsion bases, we use

PA = (2374093068336250774107936421407893885897i + 2524646701852396349308425328218203569693,

1944869260414574206229153243510104781725i + 1309099413211767078055232768460483417201)

PB = (1556716033657530876728525059284431761206i + 1747407329595165241335131647929866065215,

3456956202852028835529419995475915388483i + 1975912874247458572654720717155755005566)

and QA = ψ(PA), QB = ψ(PB), where i =
√
−1 in Fp2 and ψ(x, y) = (−x, iy) is a distortion map [12]. The

secret values are

mA = 2575042839726612324, nA = 8801426132580632841,

mB = 4558164392438856871, nB = 20473135767366569910

The isogeny φA : E0 → EA is specified by its kernel, and thus the curve EA is only well defined up to
isomorphism; its exact value may vary depending on the implementation. In our case, the curve is EA : y2 =
x3 + ax+ b where

a = 428128245356224894562061821180718114127i + 2147708009907711790134986624604674525769

b = 3230359267202197460304331835170424053093i + 1577264336482370197045362359104894884862

and the values of φA(PB) and φA(QB) are

φA(PB) = (1216243037955078292900974859441066026976i + 1666291136804738684832637187674330905572,

3132921609453998361853372941893500107923i + 28231649385735494856198000346168552366)

φA(QB) = (2039728694420930519155732965018291910660i + 2422092614322988112492931615528155727388,

1688115812694355145549889238510457034272i + 1379185984608240638912948890349738467536)

Similarly, in our implementation EB : y2 = x3 + ax+ b is the curve with

a = 2574722398094022968578313861884608943122i + 464507557149559062184174132571647427722

b = 2863478907513088792144998311229772886197i + 1767078036714109405796777065089868386753

and the values of φB(PA) and φB(QA) are

φB(PA) = (2519086003347973214770499154162540098181i + 1459702974009609198723981125457548440872,

2072057067933292599326928766255155081380i + 891622100638258849401618552145232311395)

φB(QA) = (53793994522803393243921432982798543666i + 3698741609788138685588489568343190504844,

2853868073971808398649663652161215323750i + 1869730480053624141372373282795858691139)

The common j-invariant of EAB
∼= EBA, computed by both Alice and Bob, is equal to

j(EAB) = 1437145494362655119168482808702111413744i + 833498096778386452951722285310592056351.

7 Conclusion

We propose a new family of conjecturally quantum-resistant cryptographic protocols for key exchange and
public-key cryptosystems using isogenies between supersingular elliptic curves of smooth order. In order to
compensate for the noncommutative endomorphism rings that arise in this setting, we introduce the idea
of providing the images of torsion bases as part of the protocol. Against the fastest known attacks, the
resulting scheme improves upon all previous isogeny-based schemes by orders of magnitude in performance
at conventional security levels, making it the first practical isogeny-based public-key cryptosystem. Unlike
prior such schemes, our proposal admits no known subexponential-time attacks even in the quantum setting.

Towards quantum-resistant cryptosystems from isogenies 13

Acknowledgements

We thank Andrew M. Childs, Alfred Menezes, Vladimir Soukharev, and the anonymous reviewers for helpful
comments and suggestions. This work is supported in part by NSERC CRD Grant CRDPJ 405857-10.

References

1. Alin Bostan, François Morain, Bruno Salvy, and Éric Schost. Fast algorithms for computing isogenies between
elliptic curves. Math. Comp., 77(263):1755–1778, 2008.

2. Reinier Bröker. Constructing supersingular elliptic curves. J. Comb. Number Theory, 1(3):269–273, 2009.
3. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building secure channels.

In Birgit Pfitzmann, editor, EUROCRYPT, volume 2045 of Lecture Notes in Computer Science, pages 453–474.
Springer, 2001.

4. Denis Xavier Charles, Kristin E. Lauter, and Eyal Z. Goren. Cryptographic hash functions from expander graphs.
Journal of Cryptology, 22:93–113, 2009.

5. Andrew Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve isogenies in quantum subexpo-
nential time, 2010. http://arxiv.org/abs/1012.4019/.

6. Jean-Marc Couveignes. Hard homogeneous spaces, 2006. http://eprint.iacr.org/2006/291/.
7. Giuliana Davidoff, Peter Sarnak, and Alain Valette. Elementary number theory, group theory, and Ramanujan

graphs, volume 55 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2003.
8. Steven D. Galbraith. Constructing isogenies between elliptic curves over finite fields. LMS J. Comput. Math.,

2:118–138 (electronic), 1999.
9. Steven D. Galbraith, Florian Hess, and Nigel P. Smart. Extending the GHS Weil descent attack. In Advances

in cryptology—EUROCRYPT 2002 (Amsterdam), volume 2332 of Lecture Notes in Comput. Sci., pages 29–44.
Springer, Berlin, 2002.

10. Steven D. Galbraith and Anton Stolbunov. Improved algorithm for the isogeny problem for ordinary elliptic
curves, 2011. http://arxiv.org/abs/1105.6331/.

11. David Jao, Stephen D. Miller, and Ramarathnam Venkatesan. Expander graphs based on GRH with an applica-
tion to elliptic curve cryptography. J. Number Theory, 129(6):1491–1504, 2009.

12. Antoine Joux. The Weil and Tate pairings as building blocks for public key cryptosystems. In Algorithmic
number theory (Sydney, 2002), volume 2369 of Lecture Notes in Comput. Sci., pages 20–32. Springer, Berlin,
2002.

13. Jeffrey C. Lagarias and Andrew M. Odlyzko. Effective versions of the Chebotarev density theorem. In Algebraic
number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), pages 409–464.
Academic Press, London, 1977.

14. Alexander Lubotzky. Discrete groups, expanding graphs and invariant measures, volume 125 of Progress in
Mathematics. Birkhäuser Verlag, Basel, 1994. With an appendix by Jonathan D. Rogawski.

15. Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277, 1988.
16. Jean-François Mestre. La méthode des graphes. Exemples et applications. In Proceedings of the international

conference on class numbers and fundamental units of algebraic number fields (Katata, 1986), pages 217–242,
Nagoya, 1986. Nagoya Univ.

17. Peter L. Montgomery. Speeding the pollard and elliptic curve methods of factorization. Mathematics of Compu-
tation, 48(177):243–264, 1987.

18. Christophe Petit, Kristin Lauter, and Jean-Jacques Quisquater. Full cryptanalysis of LPS and Morgenstern hash
functions. In Proceedings of the 6th international conference on Security and Cryptography for Networks, SCN
’08, pages 263–277, Berlin, Heidelberg, 2008. Springer-Verlag.

19. Arnold K. Pizer. Ramanujan graphs and Hecke operators. Bull. Amer. Math. Soc. (N.S.), 23(1):127–137, 1990.
20. Arnold K. Pizer. Ramanujan graphs. In Computational perspectives on number theory (Chicago, IL, 1995),

volume 7 of AMS/IP Stud. Adv. Math., pages 159–178. Amer. Math. Soc., Providence, RI, 1998.
21. Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on isogenies, 2006. http://eprint.

iacr.org/2006/145/.
22. Peter Sarnak. Some applications of modular forms, volume 99 of Cambridge Tracts in Mathematics. Cambridge

University Press, Cambridge, 1990.
23. Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer-

Verlag, New York, 1992. Corrected reprint of the 1986 original.

14 David Jao and Luca De Feo

24. Douglas Stebila, Michele Mosca, and Norbert Lütkenhaus. The case for quantum key distribution. In Alexander
Sergienki, Saverio Pascazio, and Paolo Villoresi, editors, Quantum Communication and Quantum Networking:
First International Conference, QuantumComm 2009, volume 36 of Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering. Springer, 2010.

25. William A. Stein et al. Sage Mathematics Software (Version 4.6.2). The Sage Development Team, 2011. http:

//www.sagemath.org.
26. Anton Stolbunov. Reductionist security arguments for public-key cryptographic schemes based on group action.

In Stig F. Mjølsnes, editor, Norsk informasjonssikkerhetskonferanse (NISK), pages 97–109, 2009.
27. Anton Stolbunov. Constructing public-key cryptographic schemes based on class group action on a set of isogenous

elliptic curves. Adv. Math. Commun., 4(2):215–235, 2010.
28. Seiichiro Tani. Claw Finding Algorithms Using Quantum Walk. arXiv:0708.2584, March 2008.
29. John Tate. Endomorphisms of abelian varieties over finite fields. Invent. Math., 2:134–144, 1966.
30. Edlyn Teske. The pohlig-hellman method generalized for group structure computation. Journal of Symbolic

Computation, 27(6):521–534, 1999.
31. The PARI Group, Bordeaux. PARI/GP, version 2.4.3, 2008. available from http://pari.math.u-bordeaux.

fr/.
32. Jacques Vélu. Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. A-B, 273:A238–A241, 1971.
33. Shengyu Zhang. Promised and Distributed Quantum Search Computing and Combinatorics. In Lusheng Wang,

editor, Proceedings of the Eleventh Annual International Conference on Computing and Combinatorics, volume
3595 of Lecture Notes in Computer Science, pages 430–439, Berlin, Heidelberg, 2005. Springer Berlin / Heidelberg.

A Proof of Theorem 5.4

We recall the definition of session-key security in the authenticated-links adversarial model of Canetti and
Krawczyk [3]. We consider a finite set of parties P1, P2, . . . , Pn modeled by probabilistic Turing machines. The
adversary I, also modeled by a probabilistic Turing machine, controls all communication, with the exception
that the adversary cannot inject or modify messages (except for messages from corrupted parties or sessions),
and any message may be delivered at most once. Parties give outgoing messages to the adversary, who has
control over their delivery via the Send query. Parties are activated by Send queries, so the adversary has
control over the creation of protocol sessions, which take place within each party. Two sessions s and s′ are
matching if the outgoing messages of one are the incoming messages of the other, and vice versa.

We allow the adversary access to the queries SessionStateReveal, SessionKeyReveal, and Corrupt. The
SessionStateReveal(s) query allows the adversary to obtain the contents of the session state, including any
secret information. The query is noted and s produces no further output. The SessionKeyReveal(s) query
enables the adversary to obtain the session key for the specified session s, so long as s holds a session key.
The Corrupt(Pi) query allows the adversary to take over the party Pi, i.e., the adversary has access to all
information in Pi’s memory, including long-lived keys and any session-specific information still stored. A
corrupted party produces no further output. We say a session s with owner Pi is locally exposed if the
adversary has issued SessionKeyReveal(s), SessionStateReveal(s), or Corrupt(Pi) before s is expired. We say s
is exposed if s or its matching session have been locally exposed, and otherwise we say s is fresh.

We allow the adversary I a single Test(s) query, which can be issued at any stage to a completed, fresh,
unexpired session s. A bit b is then picked at random. If b = 0, the test oracle reveals the session key, and
if b = 1, it generates a random value in the key space. I can then continue to issue queries as desired, with
the exception that it cannot expose the test session. At any point, the adversary can try to guess b. Let
GoodGuessI(k) be the event that I correctly guesses b, and define

AdvantageI(k) = max
{

0,
∣∣∣∣Pr[GoodGuessI(k)]− 1

2

∣∣∣∣} ,
where k is a security parameter.

The definition of security is as follows:

Definition A.1. A key exchange protocol Π in security parameter k is said to be session-key secure in the
authenticated-links adversarial model of Canetti and Krawczyk if for any polynomial-time adversary I,

Towards quantum-resistant cryptosystems from isogenies 15

Algorithm 1 SSDDH distinguisher
Input: EA, EB , φA(PB), φA(QB), φB(PA), φB(QA), E

1: r
R← {1, . . . , k}, where k is an upper bound on the number of sessions activated by I in any interaction.

2: Invoke I and simulate the protocol to I, except for the r-th activated protocol session.
3: For the r-th session, let Alice send A, i, EA, φA(PB), φA(QB) to Bob, and let Bob send B, i, EB , φB(PA), φB(QA)

to Alice, where i is the session identifier.
4: if the r-th session is chosen by I as the test session then
5: Provide I as the answer to the test query.
6: d← I’s output.
7: else
8: d

R← {0, 1}.
9: end if

Output: d

1. If two uncorrupted parties have completed matching sessions, these sessions produce the same key as
output;

2. AdvantageI(k) is negligible.

Theorem A.2. Under the SSDDH assumption, the key-agreement protocol of Section 3.1 is session-key
secure in the authenticated-links adversarial model of Canetti and Krawczyk [3].

Proof. The proof is based on the proof given by Canetti and Krawczyk [3, §5.1] for two-party Diffie-Hellman
over Z∗q . A similar strategy was used by Stolbunov [26] in the case of ordinary elliptic curves.

It has been shown in Section 3 that two uncorrupted parties in matching sessions output the same session
key, and thus the first part of Definition A.1 is satisfied. To show that the second part of the definition is
satisfied, assume that there is a polynomial-time adversary I with a non-negligible advantage ε. We claim
that Algorithm 1 forms a polynomial-time distinguisher for SSDDH having non-negligible advantage.

To prove the claim, we must show that Algorithm 1 has non-negligible advantage (it is clear that it runs
in polynomial time). We consider separately the cases where the r-th session is (respectively, is not) chosen
by I as the test session. If the r-th session is not the test session, then Algorithm 1 outputs a random bit,
and thus its advantage in solving the SSDDH is 0. If the r-th session is the test session, then I will succeed
with advantage ε, since the simulated protocol provided to I is indistinguishable from the real protocol.
Since the latter case occurs with probability 1/k, the overall advantage of the SSDDH distinguisher is ε/k,
which is non-negligible.

