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Abstract

In this paper, we present new insights into central properties of voting systems, namely
verifiability, privacy, and coercion-resistance. We demonstrate that the combination of the two
forms of verifiability considered in the literature—individual and universal verifiability—are,
unlike commonly believed, insufficient to guarantee overall verifiability. We also demonstrate
that the relationship between coercion-resistance and privacy is more subtle than suggested in
the literature.

Our findings are partly based on a case study of prominent voting systems, ThreeBallot
and VAV, for which, among others, we show that, unlike commonly believed, they do not
provide any reasonable level of verifiability, even though they satisfy individual and universal
verifiability. Also, we show that the original variants of ThreeBallot and VAV provide a better
level of coercion-resistance than of privacy.
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1 Introduction
Verifiability, privacy, and coercion-resistance are central security requirements for modern voting
systems. Privacy is the most basic security requirement, which says that the way a particular voter
voted is not revealed to anybody, see, e.g., [2, 4]. Intuitively, verifiability means that voters have a
way of checking that their votes were actually counted and that the published result of the election
is correct. In the literature, traditionally two forms of verifiability are considered: individual
and universal verifiability [14, 1, 24, 12]. As stated, e.g., in [14], individual verifiability means
that a voter can check that her own ballot appears on the bulletin board. Universal verifiability
requires that anyone can check that the election outcome corresponds to the ballots published
on the bulletin board. In addition, it is explicitly or implicitly required that each vote in the
election outcome was cast by an eligible voter and that there is at most one vote per voter, a
fact that in some voting protocols can be verified as well. To achieve (individual) verifiability,
a voter typically obtains some kind of receipt which, together with additional data published in
the election, she can use to check that her vote was counted. This, however, potentially opens up
the possibility for vote buying and voter coercion. Besides verifiability, voting systems should
therefore also provide so-called coercion-resistance [2, 13, 23].
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In this paper, we present new insights into these central security properties. Our findings are
partly based on a case study for prominent voting protocols, ThreeBallot and VAV [25]. More
precisely, the contribution of this paper is as follows.
Contribution of this Paper. We demonstrate, using ThreeBallot and VAV as examples, that the
combination of the two mentioned forms of verifiability considered in the literature—individual
and universal verifiability—are, unlike commonly believed, insufficient to guarantee overall ver-
ifiability. More precisely, based on a definition of verifiability proposed in [20], we precisely
measure the level of verifiability ThreeBallot and VAV provide. It turns out that, while ThreeBal-
lot and VAV satisfy individual and universal verifiability, there is an attack on the verifiability of
these protocols, which results in an insufficient level of verifiability. Our attack allows a dishonest
bulletin board (or the scanner), collaborating with m dishonest voters, to turn m votes of honest
voters for A into m votes for B. This goes unnoticed even if all honest voters check whether their
receipts appear on the bulletin board and even if they check that the published result corresponds
to the ballots shown on the bulletin board.

As for privacy and coercion-resistance, we first provide a game-based definition of privacy,
along the lines of a game-based definition of coercion-resistance proposed in [19], since, as to
the best of our knowledge, such a definition does not exist. There are, however, definitions of
coercion-resistance in simulation-based settings (see, e.g., [21]) and in an abstract, Dolev-Yao
style model [9]. We note that both our definition of privacy and the definition of coercion-
resistance from [19] allow to measure the level of privacy/coercion-resistance a protocol provides:
for privacy, it is measured how well external observers can distinguish whether an honest voter
voted for candidate j or j′; for coercion-resistance, the ability of coercers to distinguish whether
coerced voters followed the coercer’s instructions or not is measured. This is important in order
to make meaningful statements about protocols, as many voting protocols, in particular many
paper-based protocols (e.g., ThreeBallot and VAV [25], Prêt à Voter [6], and Split-Ballot [22]),
do not provide the ideal level of privacy/coercion-resistance. As discussed in [19], simulation-
based security definitions, e.g., the one by Moran and Naor [21] provide a yes/no-answer, rather
than measuring the level of privacy/coercion-resistance. Also, they are more demanding than
game-based definitions and deem many reasonable protocols insecure.

One would expect that privacy and coercion-resistance are closely related: If the level of
privacy is low, i.e., there is a good chance of correctly determining how a voter voted, then this
should give the coercer leverage to coerce a voter. Some works in the literature indeed suggest
a close connection. For example, the definition of coercion-resistance by Moran and Naor [21],
being simulation-based, has privacy “built in”.

However, our case study, in which we precisely measured the level of privacy and coercion-
resistance of different variants of ThreeBallot and VAV proposed in the literature,1 demonstrates
that the relationship between privacy and coercion-resistance is more subtle than what can be
gathered from existing work.

Among others, it turns out that improving the level of privacy of a protocol in a natural way
(e.g., by changing the way honest voters fill out ballots) can lead to a lower level of coercion-
resistance. This is the case when going from the original variant of ThreeBallot to a “privacy
enhanced” variant proposed by de Marneffe et al. [8]. Clearly, in general, one does not expect
privacy to imply coercion-resistance. Still the effect is quite surprising.

1We note that coercion-resistance of one of the variants of ThreeBallot considered in this paper has already been
studied in [19].
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A maybe even more important and unexpected finding that comes out of our case study is that
the level of privacy of a protocol can be much lower than its level of coercion-resistance; this
is the case for the original variant of ThreeBallot [25] and a natural variant of VAV. The reason
behind this phenomenon is basically that it may happen that the counter-strategy a coerced voter
may run to defend against coercion hides the behavior of the coerced voter, including her vote,
better than the honest voting program.

To complete the picture, we also study the case in which the counter-strategy does not “outper-
form” the honest voting program in the above sense. For this case, we are able to prove a general
theorem that states that if a voting system provides a certain level of coercion-resistance, it pro-
vides at least the same level of privacy. As discussed in Section 6.5, this theorem is applicable to
many voting protocols.
Structure of this Paper. We first introduce some basic terminology and introduce the notion
of a voting protocol. In Sections 3 and 4 we recall (the variants of) ThreeBallot and VAV, re-
spectively. Our findings on verifiability are presented in Section 5 and those for privacy and
coercion-resistance in Section 6. We conclude in Section 7. Some more details are provided in
the appendix.

2 Preliminaries and Protocols
In this section, we introduce some basic terminology and the notion of a voting protocol.
Preliminaries. As usual, a function f from the natural numbers to the real numbers is negligible,
if for every c> 0 there exists `0 such that f (`)≤ 1

`c for all ` > `0. The function f is overwhelming,
if the function 1− f (`) is negligible. Let δ ∈ [0,1]. The function f is δ -bounded if f is bounded
by δ plus a negligible function, i.e., for every c > 0 there exists `0 such that f (`)≤ δ + 1

`c for all
` > `0.

We use systems of probabilistic polynomial-time interactive Turing machines (ITMs) as our
computational model (see, e.g., [15]). In a system of ITMs, also called a process, ITMs can
communicate with other ITMs via input/output tapes, also called (external) input/output channels.
If π and π ′ are processes (each with a set of external input/output tapes), then we write π ‖ π ′ for
the concurrent composition of π and π ′. A process defines a family of probability distributions
over runs, indexed by the security parameter.
Voting Protocols. A voting protocol P specifies the programs of the honest voters and authori-
ties in a voting process. More precisely, let k be the number of candidates and q be the number of
voters. Then, P specifies:
• A set {a1, . . . ,al} of voting authorities and a program π̂a, for every voting authority a. The

specification of π̂a includes the specification of the interface of a to the rest of the voting
process, i.e., the channels via which a is connected to other parties.

• A program (formally a process) π̂v, for every voter v ∈ {v1, . . . ,vq}. The specification of
π̂v includes the specification of the interface of v to the rest of the voting process. The
program π̂v takes a choice j ∈ {0, . . . ,k}, where j = 0 stands for abstention from voting, as
parameter, indicating which candidate v votes for (if any).

In the following, we will consider a probability distribution ~p = p0, . . . , pk on the possible choices
honest voters have, i.e., p0, . . . , pk ∈ [0,1] and ∑

k
i=0 pi = 1, where p0 is the probability that a voter

abstains from voting and pi, i ∈ {1, . . . ,k}, is the probability that a voter votes for candidate i.

3



(a) A: o
B: x

A: o
B: x

A: x
B: o (b) A: x

B: x
A: o
B: o

A: o
B: x

Figure 1: Two ways of voting for the second candidate (candidate B) in the ThreeBallot proto-
col, where x represents a marked position and o represents an unmarked position. All the other
possibilities of voting for B can be obtained as permutations of these two.

We define π̂v(~p) to be the process which first chooses j ∈ {0, . . . ,k} according to ~p and then runs
π̂v( j). We sometimes simply write π̂v instead of π̂v(~p), if the distribution ~p is clear from the
context.

Because, as we will see, the level of privacy, coercion-resistance, and verifiability of a protocol
P depends on several parameters, we consider protocol instantiations P∗ of P, for which these
parameters are fixed. The parameters are the following:

(i) the set AH ⊆ {a1, . . . ,al} of honest voting authorities AH ,
(ii) the total number q of voters and the set VH ⊆{v1, . . . ,vq} of honest voters (static corruption),

(iii) the number k of candidates, and
(iv) the probability distribution ~p, as described above.

Such a protocol instantiation will be denoted by P∗ = P(AH ,q,VH ,k,~p). We note that in our
theorems, only the number of honest (and dishonest) voters will matter, not the specific set VH of
honest voters. Therefore, we often simply write P(AH ,q,n,k,~p) with n = |VH |.

3 The ThreeBallot Voting Scheme
In ThreeBallot [25], a voter is given a multi-ballot consisting of three simple ballots. On every
simple ballot the candidates are printed in the same fixed order. In the secrecy of a voting booth,
the voter is supposed to fill out all three simple ballots in the following way: She marks the
candidate of her choice on exactly two simple ballots and every other candidate on exactly one
simple ballot; Figure 1 shows two ways of voting for candidate B. After this, she feeds all three
simple ballots to a voting machine (some kind of scanner) and indicates the simple ballot she
wants to get as a receipt. The machine checks the well-formedness of the multi-ballot, prints
secretly random numbers on each simple ballot, where length of these numbers is the length of
the security parameter and where numbers on different simple ballots are chosen independently,
and gives the voter a copy of the chosen simple ballot, with the random number printed on it. Note
that the voter does not get to see the random numbers of the remaining two simple ballots. The
scanner keeps all simple ballots (now separated) in a ballot box. We assume that clerks guarantee
that only registered voters can vote and that every voter votes at most once.

In the tallying phase, the voting machine posts on the bulletin board (electronic copies of)
all the cast simple ballots in a random order. From the ballots shown on the bulletin board the
result can easily be computed: The number of votes for the i-th candidate is the number of simple
ballots with the i-th position marked minus the total number of votes, which is the total number
of simple ballots on the bulletin board divided by three.

Intuitively, the system is coercion-resistant (at least to some extent), as every simple ballot
that a voter can take as a receipt can be part of a multi-ballot that forms a valid vote for any
candidate. Also, ThreeBallot was meant to provide (some level of) verifiability. For this, a
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crucial assumption, already made in the original paper [25], is that neither the scanner, the voting
authority, nor the bulletin board knows which simple ballots have been taken as receipts by honest
voters before all ballots were published. Now, as each voter may check whether the simple ballot
she has taken as a receipt appears on the bulletin board, it should be risky for any party to remove
or alter simple ballots in order to manipulate the result since the probability that the modification
of k simple ballots goes undetected is merely ( 2

3 )
k. Unfortunately, as we will see in Section 5.2,

this argument, found in the literature, is flawed.
As mentioned in the introduction, there are two variants of ThreeBallot which differ in the

way an honest voter fills out the ballot: the original variant by Rivest [25] and a variant by de
Marneffe et al. [8].
The original variant. In this variant of the protocol a voter first, for each candidate, randomly
chooses a simple ballot on which she then marks the position corresponding to this candidate.
Then, she randomly picks a simple ballot for which the position corresponding to the candidate
of her choice is not yet marked, and she marks this position. Finally, she randomly chooses one
ballot as a receipt.
The variant of de Marneffe et al. In this variant of the protocol a voter first, for each candidate,
marks the position corresponding to this candidate on a randomly chosen simple ballot. Then,
she randomly chooses one simple ballot to be taken as a receipt. Finally, she marks the position
corresponding to the candidate of her choice on a randomly chosen simple ballot on which this
position has not yet been marked and which is not the ballot chosen as a receipt; we remark that
in some cases there will be only one such simple ballot.

The advantage of this procedure is that the receipt an honest voter gets is stochastically inde-
pendent of the candidate the voter votes for, which in turn should give better privacy. We note that
in [8], ThreeBallot was analyzed in a simulation-based setting, focusing on privacy. The analysis
was based on the (only informally stated) assumption that the adversary, given a receipt, is not
able to reconstruct the exact way the corresponding multi-ballot was filled out. However, this
assumption is unjustified: Runs for which an adversary can reconstruct the multi-ballots occur
with non-negligible probability, as illustrated by the following example:

It may happen (with non-negligible probability, depending only on the probability distribution
~p and the number of voters) that each voter marks both positions on the first simple ballot, no
position on the second one, exactly one position on the third ballot, and then take the last ballot as
her receipt, as shown in Figure 1, (b) for the case that the voter votes for B. In this case, a receipt
directly indicates the choice of the voter, which completely breaks privacy.

In what follows, we denote by (xo,
x
x,

o
o), (

o
x,

x
x,

x
o) etc. multi-ballots filled out by voters, where the

underlined simple ballots (xo and o
x , respectively) represent those simple ballots picked as receipts

by the voters; we refer to these objects as patterns. A pattern does not fix the order of simple
ballots, e.g., (ox,

x
x,

o
o) is considered to be the same pattern as (xx,

o
x,

o
o).

4 The VAV Voting Scheme
In this section, we describe the VAV voting scheme [25]. In VAV, a voter is given a multi-ballot
consisting of three simple ballots. On every simple ballot the candidates are printed in the same
fixed order. On the top of one of those simple ballots the letter A is printed; on the top of the
remaining two simple ballots the letter V is printed. In the secrecy of a voting booth, the voter
is supposed to fill out her multi-ballot in the following way: (S1) She marks the position next to

5



(a)

V
1 : x
2 : o
3 : o

A
1 : x
2 : o
3 : o

V
1 : x
2 : o
3 : o

(b)

V
1 : x
2 : o
3 : o

A
1 : o
2 : x
3 : o

V
1 : o
2 : x
3 : o

(c)

V
1 : x
2 : o
3 : o

A
1 : o
2 : o
3 : x

V
1 : o
2 : o
3 : x

Figure 2: Three ways of voting for the candidate 1 in the VAV protocol, where x represents a
marked position and o represents an unmarked position.

the candidate of her choice on one of the V-ballots and then (S2) she marks the position next to
some randomly chosen candidate on the two remaining simple ballots (one V- and one A-ballot).
Figure 2 shows all three ways of filling out the multi-ballot for candidate 1 in an election with
three candidates. After this, she feeds all three simple ballots to a voting machine (some kind
of scanner) and indicates the simple ballot she wants to get as a receipt. The machine checks
the well-formedness of the multi-ballot, prints secretly random numbers on each simple ballot,
where the length of these numbers is the length of the security parameter and numbers on different
simple ballots are chosen independently, and gives the voter a copy of the chosen simple ballot,
with the random number printed on it. Note that the voter does not get to see the random numbers
of the remaining two simple ballots. The scanner keeps all simple ballots (now separated) in a
ballot box.

In the tallying phase, the voting machine posts on the bulletin board (electronic copies of) all
the cast simple ballots in a random order. From the ballots shown on the bulletin board the result
can easily be computed: All A-ballots and the corresponding V-ballots (i.e. V-ballots marked
at the same position) are removed. From the remaining V-ballots the number of votes for each
candidate can directly be read off.

Intuitively, as in the case of ThreeBallot, the system is coercion-resistant (at least to some
extent), as every simple ballot that a voter can take as a receipt can be part of a multi-ballot that
forms a valid vote for any candidate. Similarly to ThreeBallot, VAV is supposed to provide (some
level of) verifiability as it should be risky for any party to remove or alter simple ballots in order
to manipulate the result.

In the description of VAV in [25] it is not specified how exactly a voter chooses the receipt.
This, however, can heavily affect the properties we study in this paper. We therefore investigate
two variants of this protocol.
Simple variant. In the simplest case, a voter could choose one of her three simple ballots with
uniform probability as her receipt. We will call this the simple variant of VAV. For this variant,
however, the receipt is not independent of the candidate of her choice, which, as we will see,
has a significant negative effect on privacy and coercion-resistance. This is why we consider also
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another variant, where privacy is enhanced.
Privacy enhanced variant. In this variant, a voter chooses one of the two simple ballots not
used in step (S1), that is, one of those ballots where the random candidate has been marked. By
this, the receipt is stochastically independent of the candidate the voter votes for.

While the privacy enhanced variant significantly improves the level of privacy and coercion-
resistance, it decreases the level of verifiability: The voting machine is often able to determine
one simple ballot in a multi-ballot that was certainly not taken as a receipt and consequently it
can change this simple ballot without being detected. For instance, if an honest voter submits a
multi-ballot as shown in Figure 2, (b) or (c), the machine knows that the left-most ballot cannot be
chosen as a receipt. However, as we will see, the VAV voting scheme suffers from the same kind
of attack the ThreeBallot protocol does, independently of how the receipts are chosen. Therefore,
the level of verifiability is, in any case, very low.

In what follows, we will use, analogously to the case of ThreeBallot, the notion of a pattern
which specifies how a multi-ballot is filled out and which simple ballot is taken as a receipt.

5 Verifiability
In this section, we first recall the definition of verifiability from [20], where, however, we use a
slightly simplified definition which is sufficient for our setting. Next, we present our analysis of
verifiability for ThreeBallot and VAV, including the mentioned attacks. We then conclude with
remarks on the inadequacy of the notions of individual and universal verifiability demonstrated
by our attacks.

5.1 Definition of Verifiability
The definition of verifiability in [20] assumes a verifier, also called a judge, who can be an honest
regular protocol participant or an honest external observer. Now, informally speaking, verifiability
says that if in a run of the voting protocol an important goal is not achieved — typically, the
published result of the election is not correct, i.e., does not correspond to the votes actually cast
by eligible voters —, then the verifier does not accept the run/the election. Conversely, if in a run
certain parties which are supposed to make sure that the goal is achieved, such as (a subset of) the
voting authorities, behave honestly, then the verifier accepts the run.

More formally, let P∗ = P(AH ,q,VH ,k,~p) be a protocol instantiation. Given P∗, for each
protocol participant a in P∗, we consider the set Π(a) of all programs a may run. This set is
defined as follows: If a is assumed to be honest (i.e. a ∈ AH ∪VH ), then Π(a) = {π̂a}, i.e., Π(a)
consists only of the honest program of a as specified by the protocol. Otherwise, if a is not
assumed to be honest, then Π(a) consists of all processes limited only by a’s network interface,
which is the network interface that π̂a has. Note that in any case π̂a ∈Π(a).

Let Σ = {b1, . . . ,bt} be the set of all protocol participants of P∗. Then, a process induced by
P∗, also called an instance, is a process of the form π = (πb1 ‖ . . . ‖ πbt ), where πbi ∈Π(bi). Such
a process is called an instance with honest B ⊆ Σ if πbi = π̂bi for all bi ∈ B. A run of P∗ is a run
of some instance of P∗. Such a run is called a run with honest B if it is a run of an instance of P∗

with honest B.
The definition of verifiability is parameterized by a goal γ , which, formally, is a set of runs

of instances of P∗. In the context of voting, γ will typically contain all those runs in which the
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published result of the election is correct, i.e., corresponds to the votes actually cast by eligible
voters.

We say that a party a, playing the role of a verifier, accepts a run, if in this run a sends the
message accept on some designated channel decisiona. Intuitively, a accepts a run if she believes
that the goal γ has been achieved in this run.

For an instance π of P∗, by Pr[π(1`) 7→ (a : accept)] we denote the probability that π , running
with security parameter 1`, produces a run which is accepted by a. Similarly, by Pr[π(1`) 7→
¬γ, (a : accept)] we denote the probability that π , running with security parameter 1`, produces
a run in which the goal has not been achieved, i.e., a run that does not belong to γ , but which
nevertheless was accepted by a.

Definition 1 ([20], simplified2). Let P∗ = P(AH ,q,VH ,k,~p) be a protocol instantiation and let Σ

be the set of protocol participants in P∗. Let δ ∈ [0,1], B ⊆ Σ, a ∈ AH ∪VH (playing the role of
the verifier), and γ be a goal of P∗. Then, the goal γ is guaranteed in P∗ by B and δ -verifiable by
a if, for every instance π of P∗, the following conditions are satisfied:

(i) If π is an instance with honest B, then Pr[π(1`) 7→ (a : accept)] is overwhelming as a func-
tion of the security parameter.

(ii) Pr[π(1`) 7→ ¬γ, (a : accept)] is δ -bounded as a function of the security parameter.

Condition (ii) guarantees that the probability that a accepts a run even though the goal has not
been achieved (e.g., the published result of the election is incorrect) is “small”, i.e., bounded by δ .
Condition (i) says that the protocol is sound w.r.t. a set B of agents in the following sense: If the
agents in B are honest, then a accepts runs with overwhelming probability, which by Condition
(ii) implies that in those runs the goal has indeed been achieved. Typically, the set B includes
(a subset of) voting authorities/machines, i.e., those agents that suffice to guarantee that the goal
is achieved. Note that without Condition (i) every protocol in which no runs are accepted by
the verifier would be verifiable. Also note that requiring the probability in (ii) to be negligible,
i.e., requiring δ = 0, while highly desirable, would be too strong for many reasonable protocols.
This is due to the fact that checks (by authorities and voters) are often imperfect and partial, as
illustrated in subsequent sections. The value of δ determines the level of verifiability a protocol
provides.

5.2 Verifiability of ThreeBallot and VAV
In this section, we study verifiability of ThreeBallot and VAV. We precisely measure the level
of verifiability of these systems and show that, unlike commonly believed, these systems do not
provide any reasonable level of verifiability. We start with the analysis of ThreeBallot.
ThreeBallot. We first describe the attack on the verifiability of ThreeBallot and then precisely
state the level of verifiability of this system.

The Attack on the Verifiability of ThreeBallot. As mentioned in Section 3, in the literature the
reasoning for the verifiability of ThreeBallot has so far been that, if voters check whether their
receipt (a simple ballot) appears on the bulletin board, it should be risky for any party to remove or
alter simple ballots since the probability that the modification of k simple ballots goes undetected
is merely ( 2

3 )
k. However, the following attack shows that this reasoning is flawed.

2Definition 1 is a specific instance of the general definition presented in [20]. In [20], instead of the set B, we use a
more general formalism to specify sets of protocol participants, namely positive boolean formulas.

8



Our attack assumes that there are dishonest voters and that one of the voting authorities, the
voting machine or the bulletin board, is dishonest and collaborates with the dishonest voters. It is
clearly realistic to assume dishonest voters and a dishonest voting authorities; defending against
malicious authorities is the main point of verifiability. In what follows, we first consider the case
of an election with two candidates and assume that the bulletin board is dishonest.

As already mentioned in the introduction, the effect of our attack is that m dishonest voters,
collaborating with the dishonest bulletin board, can effectively vote for candidate B and, addition-
ally, turn m votes of honest voters voting for A into votes for B. For instance, with 10 dishonest
voters out of 101 voters, candidate B can win the election, even if 60 honest voters vote for A and
only 31 honest voters vote for B. This goes unnoticed, provided no post-election audit based on
paper ballots is performed, even if all honest voters check whether their receipts appear on the
bulletin board and even if they check that the published result corresponds to the ballots shown on
the bulletin board. Note that if no voter complains, then no post-election audit may be carried out.
Moreover, for the post-election audit to be effective, additional trust assumptions are required.

The attack works as follows. Let us assume that there exists an honest voter who votes for
candidate A and that the bulletin board, collaborating with some dishonest voter, wants to swap
such a vote. To do so, the dishonest voter casts (xo,

o
x,

o
x) and sends the serial number on her receipt

to the bulletin board. Then, the bulletin board replaces the simple ballot with this serial number
by o

x . The result of this manipulation is as if the dishonest voter had cast (ox,
o
x,

o
x). The bulletin

board remains consistent as these three simple ballots together with the multi-ballot submitted by
the honest voter voting for A (which must be either (xo,

x
x,

o
o) or (xo,

x
o,

o
x)) result in two valid votes

for candidate B. Note that the multi-ballot of the honest voter remains unchanged, and hence, no
voter or external observer will suspect any fraud.

By this attack, the bulletin board can safely change m votes of honest voters for one candidate
to another candidate, where m is the number of dishonest voters.

A similar attack works for the case of multiple candidates. Here the simplest case is that the
voting machine is dishonest. First observe that, given any multi-ballot of an honest voter voting
for candidate i, it is easy to construct three simple ballots (which potentially do not form a valid
multi-ballot) such that these simple ballots together with the multi-ballot of the honest voter form
two valid multi-ballots for candidate j. Hence, for every dishonest voter, a voting machine can
change the simple ballots of this voter in such a way that they, together with a multi-ballot of an
honest voter, result in two valid votes for the candidate of the machine’s choice. Note that several
side channels are conceivable over which a voter could reveal himself as dishonest to the voting
machine, e.g., voting at a specific time, pressing buttons in a specific unusual order, or in case of
many candidates, using a pre-agreed pattern to fill out the ballot. Note that this attack works even
if the voting machine does not know which simple ballots are taken as receipts.

The Precise Level of Verifiability of ThreeBallot. We now study the precise level of verifiability of
both the original variant of ThreeBallot and the variant by de Marneffe et al., showing that only
changing votes beyond the number of dishonest voters increases the risk of being detected.

In both cases, we assume that there is a protocol participant ver (a regular protocol participant
or an external observer), the verifier, who does not accept a run iff some voter complains rightly
(i.e. she has a receipt that does not appear correctly on the bulletin board) or the bulletin board is
inconsistent (e.g., the number of simple ballots is not divisible by three, two serial numbers occur
twice, a candidate got less marks than the number of voters, etc.). We assume that an honest
voter checks that her receipt occurs on the bulletin board with probability pcheck—it is realistic
to assume that not all voters check their receipt. Clearly, this probability will affect the level of
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verifiability. We also make the following assumptions:

1. Only eligible voters will be allowed to vote, and only once. Also, the number of voters who
actually voted is properly counted. This is typically guaranteed by clerks. A polling station
should at least have one honest clerk who oversees the actions of other clerks. This assumption
prevents that the voting machine or the bulletin board can place extra ballots on the bulletin
board.

2. Nobody involved in publishing the result, in particular, the voting machine and the bulletin
board, should get to know which receipts honest voters chose before all ballots have been
published. This assumption is clearly necessary in order to achieve any reasonable level of
verifiability, as otherwise the voting machine and the bulletin board could safely change the
ballots that were not taken as receipts, and hence, fabricate arbitrary outcomes.

3. The verifier ver behaves as described above.

We note that we neither assume the voting machine nor the bulletin board to be honest.
Let Po

TB and Pp
TB denote the ThreeBallot protocol in the original variant and the variant

by de Marneffe et al., respectively. Based on the assumptions made above, it is straightfor-
ward to formally define the protocol instantiations So

TB = Po
TB({ver},q,VH ,k,~p) of Po

TB and
Sp
TB = Po

TB({ver},q,VH ,k,~p) of Pp
TB, along with the sets Π(a) for every protocol participant

a as introduced in Section 5.1. Note that AH = {ver} does not include the voting machine or
the bulletin board as they are not assumed to be honest. The verifier ver could also belong to
VH . Clerks are not modeled explicitly. The interface the voters have to the rest of the system
guarantees assumption 1. above. We define n = |VH |.

We consider the goal γ` which, intuitively, states that at most ` votes of honest voters are
changed, i.e., the published result is correct (1) up to votes of dishonest voters and (2) up to `
votes of honest voters. Note that for dishonest voters not much can be guaranteed as they might,
for example, ignore the fact that their receipts are not shown or were modified on the bulletin
board. More precisely, γ` is defined as follows: γ` contains all runs for which there exist choices
of the dishonest voters (where a choice is either to abstain or to vote for one of the candidates)
such that the result obtained together with the choices made by the honest voters in this run differs
only by ` votes from the published result (i.e. the result that can be computed from the simple
ballots on the bulletin board).

The following theorem states the levels of verifiability of the two variants of ThreeBallot
(see Appendix A for the proof), where q` denotes the probability of the event that in a run of the
protocol there exists a candidate c such that the sum of all votes of honest voters for all candidates
except c is at least `. Note that if such an event has not occurred, then it is impossible to violate
the goal γ`−1, because, by assumption 1., dishonest parties cannot add new ballots to the bulletin
board (as opposed to changing/replacing ballots). However, q` will typically be quite close to 1.

Theorem 1. Let B be the set containing the voting machine and the bulletin board and x∈ {o, p}.
Then, the goal γ` is guaranteed in Sx

TB by B and δ x
Ver-verifiable by ver, where

δ
p
Ver = q`+1 ·

(
1− 1

6
· pcheck

)`+1−min(`+1,m)

and

δ
o
Ver = q`+1 ·

(
1− 1

3
· pcheck

)`+1−min(`+1,m)

,
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with m being the number of dishonest voters. Moreover, δ x
Ver is optimial, i.e., there is no δ ′ < δ x

Ver
for which the goal γ` is guaranteed in Sx

TB by B and δ ′-verifiable by a.

Now, note that if `+ 1 ≤ m, i.e., the number of votes to be changed is at most the number
of dishonest voters, then δ = δ

p
Ver = δ o

Ver = q`+1. By the definition of δ -verifiability and the fact
that δ is optimal, this means that there exists an attack—in fact, the one discussed—such that
the probability that in a run more than ` votes of honest voters were changed and the verifier still
accepted the run is δ . Note also that for ` > m the original variant of the protocol provides a better
level of verifiability than the variant by de Marneffe et al., since in this case δ o

Ver < δ
p
Ver.

VAV. An attack similar to the one for ThreeBallot also works for VAV: Let us assume that there
exists an honest voter who votes for candidate j and that the bulletin board, collaborating with
some dishonest voter, wants to switch such a vote to a vote for candidate i. To do so, the dishonest
voter casts a multi-ballot where i is marked on all three ballots. Moreover, the dishonest voter
takes the A-ballot as receipt and sends the serial number on her receipt to the bulletin board.
Then, the bulletin board replaces the simple ballot with this serial number by an A-ballot where
candidate j is marked. The bulletin board remains consistent, as the three simple ballots by the
dishonest voter, with the A-ballot modified, together with the multi-ballot submitted by the honest
voter voting for j constitute two valid votes for candidate i.

Hence, VAV too does not provide a reasonable level of verifiable. The exact (low) level of
verifiability VAV achieves can be found in Appendix B.

5.3 Inadequacy of Individual and Universal Verifiability
In our analysis of verifiability of ThreeBallot and VAV above, we used Definition 1 as proposed
by Küsters et al.[20]. This definition, applied to voting protocols, captures what is called global
verifiability by Küsters et al. — in short, if the published result of the election is not correct, the
verifier (a regular protocol participant or an external observer) should not accept the run, or only
with small probability.

However, in the literature (see, e.g., [14, 1, 24, 12]), verifiability of voting protocols has tra-
ditionally been expressed by two forms of verifiability, as already mentioned in the introduction:
individual verifiability (a voter can check that her own ballot appears on the bulletin board) and
universal verifiability (anyone can check that the election outcome corresponds to the ballots
published on the bulletin board). Note that, unlike global verifiability, these forms of verifiability
assume some particular structure of the voting protocol. Also note that these forms of verifiability
can be captured by Definition 1 using appropriate goals γ .

In the literature it was widely believed that individual and universal verifiability together
achieve some form of global verifiability. However, our case study on ThreeBallot and VAV
shows that this is not the case. These protocols achieve both individual and universal verifiability,
but as we proved, their level of (global) verifiability is completely insufficient: A voter can check
whether her receipt appears on the bulletin board, which gives her relatively high assurance that
all her simple ballots are unmodified and appear on the bulletin board; hence, we have individual
verifiability. (More precisely, as explained in Sections 3 and 4, if fraud would be attempted, even
only on a moderate scale, the probability that at least one voter would detect a problem with her
receipt would be very high.) We also obviously have universal verifiability as the result of the
election can be computed by everyone based on the information available on the bulletin board.
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In general, what individual and universal verifiability ignore is that dishonest authorities/voters
can break the integrity of ballots of honest voters by ill-formed ballots. Therefore, we advocate
using global verifiability (see above) which directly captures the required property.

6 Privacy and Coercion-Resistance
In this section, we first introduce our definition of privacy. We also briefly recall the definition of
coercion-resistance from [19]. We then present our analysis of privacy and coercion-resistance of
the variants of ThreeBallot and VAV described in Sections 3 and 4. We conclude the section with
a discussion of the relationship between privacy and coercion-resistance.

6.1 Definition of Privacy
For studying privacy of a protocol P, we assume that, besides the voting authorities and the voters,
there is an additional party o called an observer. We denote by O the set of all programs an
observer can run, i.e. all probabilistic polynomial-time ITMs with the following communication
interface: An observer can directly connect to the interface of dishonest voters and authorities; in
fact, the observer subsumes those parties. In addition, observers can observe publicly available
information, such as messages posted by voting authorities. We also assume that, in a protocol
instantiation P∗=P(AH ,q,VH ,k,~p), among the q voters, there is a voter who is under observation.

Now, a protocol instantiation P∗ = P(AH ,q,VH ,k,~p), along with the set O of observer pro-
cesses and a program πv of the voter v under observation, induces a set of processes of the form
(πo ‖ πv ‖ e), where πo ∈O and e denotes the concurrent composition of the processes π̂v′ , v′ ∈VH ,
of the honest voters and the processes π̂a, a ∈ AH , of the honest authorities; recall that the dishon-
est voters and the dishonest authorities are subsumed by πo. We denote by Pr[(πo ‖ πv ‖ e)(`) 7→ 1]
the probability that πo outputs 1 in a run of the process (πo ‖ πv ‖ e) with security parameter 1`.

In the following definition, we formalize privacy to be the inability of the observer πo to
distinguish whether the voter v under observation voted for candidate j or candidate j′, where v
runs her honest voting process π̂v as specified by the voting protocol.

Definition 2. Let P∗=P(AH ,q,VH ,k,~p) be a protocol instantiation along with a set O of observer
processes and a voter v under observation. Let δ ∈ [0,1]. We say that P∗ achieves δ -privacy, if

Pr[(πo ‖ π̂v( j) ‖ e)(`) 7→ 1]−Pr[(πo ‖ π̂v( j′) ‖ e)(`) 7→ 1] (1)

is δ -bounded as a function of the security parameter 1`, for all j, j′ ∈ {1, . . . ,k} and for all πo ∈O.

In the above definition we merely require (1) to be δ -bounded, instead of negligible, because
there is always a non-negligible probability that an observer knows how a voter voted, e.g., in case
all (honest) voters and the voter under consideration voted for the same candidate. In general,
and as we will see below and in Section 6.3, δ depends on the distribution ~p, the number k of
candidates, and the number n = |VH | of honest voters; the number of dishonest voters is typically
not relevant. By δ , we can precisely measure the level of privacy a voting protocol offers.

We note that the above definition does not imply that an observer cannot distinguish whether
or not a voter voted, i.e., abstention may be detected by an observer. If abstention should not be
detectable, one can simply let j and j′ range over {0, . . . ,k} instead of {1, . . . ,k} in the above
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definition. The above definition is motivated by the fact that for many voting protocols, includ-
ing ThreeBallot and VAV, abstention can be detected by an observer, since, e.g., the observer is
present at the polling station or the observer can see the receipts of all voters, and in particular,
he can see whether a voter does not have a receipt.

The above definition could be generalized in the obvious way by letting the observer observe
many voters at the same time and quantifying over two tuples of votes, instead over just j and
j′. While, for simplicity, in our case study we consider the version with one observed voter, our
findings and theorems extend to the case with multiple observed voters.

We note that the above (cryptographic) definition of privacy is close in spirit to a definition in
an abstract, Dolev-Yao style model [9]. Simulation-based definitions (see, e.g., [21]) are stronger,
but often too strong to be applicable (e.g., in case of ThreeBallot and VAV).

Privacy of the Ideal Protocol. As we have already mentioned, the level δ of privacy is bigger
than zero for virtually every voting protocol, as some information is always leaked by the result
of the election, e.g., if one candidate got all votes—an event with non-negligible probability—, it
is clear that everybody voted for this candidate. In order to have a lower bound on δ for all voting
protocols (where the results are of the form considered below), we now determine the optimal
value of δ for the ideal voting protocol. An ideal voting protocol collects the votes of all voters
and then correctly publishes the result, where we assume that a result reveals the number of votes
for every candidate. The argument sketched below is similar to the one for determining the level
of coercion-resistance of the ideal voting protocol in [19].

As we will see, the level of privacy of the ideal voting protocol, denoted by δPriv(k,n,~p),
depends on the number k of candidates, on the number n of honest voters, and the probability
distribution ~p on the candidates.

To define this function, we need the following terminology. Since the observer knows the
votes of the dishonest voters, he can simply subtract these votes from the final result and obtain
what we call the pure result~r = (r0, . . . ,rk) of the election, where ri, i ∈ {1, . . . ,k}, is the number
of votes for candidate i casted by honest voters, and r0 is the number of honest voters who ab-
stained from voting. Note that r0 + · · ·+ rk = n+1 (n honest voters plus the observed voter). We
denote by Res the set of all pure results. Let Ai

~r denote the probability that the choices made by
the honest voters yield the pure result~r, given that the voter under observation votes for the i-th
candidate. (Clearly, Ai

~r depends on ~p. However, we omit this in the notation.) It is easy to see that

Ai
~r =

(
n

r0, . . . ,ri−1,ri−1,ri+1, . . . ,rk

)
· pr0

0 . . . pri−1
i−1 pri−1

i pri+1
i+1 . . . prk

k

=
n!

r0! · · ·rk!
· pr0

0 . . . prk
k ·

ri

pi
,

where
(

n
m0,...,mk

)
= n!

m0!·...·mk! . Moreover, let M∗j, j′ = {~r ∈ Res : A j
~r ≤ A j′

~r }. Now, the intuition
behind the definition of δPriv(k,n,~p) is as follows: If the observer, given a pure result~r, wants to
decide whether the observed voter voted for candidate j or j′, the best strategy of the observer is
to opt for j′ if~r ∈M∗j, j′ , i.e., the pure result is more likely if the voter voted for candidate j′. This
leads to the following definition:

δPriv(n,k,~p) = max
j, j′∈{1,...,k}

∑
~r∈M∗

j, j′

(A j′

~r −A j
~r).
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The following theorem states that δPriv(k,n,~p) is indeed the optimal level of privacy, where
VA denotes the trusted authority in the ideal voting protocol.

Theorem 2. Let S = Pideal({VA},q,n,k,~p) be an instantiation of the ideal protocol and δ =
δPriv(n,k,~p). Then S achieves δ -privacy. Moreover, S does not achieve δ ′-privacy for any δ ′ < δ .

The proof of this theorem can be found in Appendix C. Some values for δPriv(n,k,~p) are
depicted in Figure 3 (see the values for the ideal protocol).

6.2 Definition of Coercion-Resistance
We now briefly recall the definition of coercion-resistance from [19]. Since the overall setting for
coercion-resistance is similar to that of privacy, we highlight the differences to privacy.

For the definition of coercion-resistance, the voter under observation considered for privacy
is now replaced by a voter under coercion, also called a coerced voter. Unlike a voter under
observation, a coerced voter does not have to follow the honest voting procedure but can deviate
from it. We denote by V the set of all programs the coerced voter v can run. This set includes all
probabilistic polynomial-time ITMs where the communication interface is that of an honest voter
plus an input and output channel for communication with the coercer (see below). In particular,
the set V contains what we call a dummy strategy dum which simply forwards all the messages
between the coercer and the interface the coerced voter has as an honest voter.

The observer in the case of privacy is now replaced by the coercer. We denote by C the set of
all programs a coercer can run, i.e., all probabilistic polynomial-time ITMs with a communication
interface similar to that of observers, where in addition the coercer can communicate with the
coerced voter.

Before recalling the formal definition of coercion-resistance, we provide some intuition. We
imagine that the coercer demands full control over the voting interface of the coerced voter, i.e.,
the coercer wants the coerced voter to run the dummy strategy dum∈V instead of the program an
honest voter would run. If the coerced voter in fact runs dum, the coercer can effectively vote on
behalf of the coerced voter or decide to abstain from voting. Of course, the coercer is not bound
to follow the specified voting procedure.

Now, informally speaking, a protocol is called coercion-resistant if the coerced voter, instead
of running the dummy strategy, can run some counter-strategy ṽ ∈ V such that (i) by running
this counter-strategy, the coerced voter achieves her own goal, e.g., votes for a specific candidate
(see below), and (ii) the coercer is not able to distinguish whether the coerced voter followed his
instructions (i.e., ran dum) or tried to achieve her own goal (by running ṽ). If such a counter-
strategy exists, then it indeed does not make sense for the coercer to try to influence a voter in
any way, e.g., by offering money and/or threatening the voter: Even if the coerced voter tries to
sell her vote by running dum, i.e., by following the coercer’s instructions, the coercer is not able
to tell whether the coerced voter is actually following the coercer’s instructions or whether she
is just trying to achieve her own goal. For the same reason, the coerced voter can safely run the
counter-strategy and achieve her own goal, even if she is coerced into running dum.

The goal of the coerced voter is formalized by a set γ of runs. For example, if γ is supposed
to express that the coerced voter wants to vote for a certain candidate, then γ would contain all
runs in which the coerced voter (successfully) voted for this candidate.

In the formal definition of coercion-resistance, we write, analogously to the case of privacy,
Pr[(πc ‖ πv ‖ e)(`) 7→ 1] for the probability that πc outputs 1 in a run of the process (πc ‖ πv ‖ e)
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with security parameter 1`. We write Pr[(πc ‖ πv ‖ e)(`) 7→ γ] for the probability that a run of
(πc ‖ πv ‖ e), with security parameter 1`, belongs to γ .

Definition 3 ([19]). Let P∗ = P(AH ,q,VH ,k,~p) be a protocol instantiation and let V and C be sets
of processes as above. Let δ ∈ [0,1] and let γ be a goal. Then, P∗ is δ -coercion-resistant w.r.t. γ ,
if there exists ṽ ∈V such that the following conditions are satisfied:

(i) Pr[(πc ‖ ṽ ‖ e)(`) 7→ γ] is overwhelming, as a function of `, for every πc ∈C.
(ii) Pr[(πc ‖ dum ‖ e)(`) 7→ 1]−Pr[(πc ‖ ṽ ‖ e)(`) 7→ 1] is δ -bounded, as a function of `, for

every πc ∈C.

Similar to the case of privacy, in Condition (ii) the difference is required to be δ -bounded
instead of negligible, since there is always a non-negligible chance for the coercer to know for
sure whether the coerced voter followed his instructions or not. For example, if one candidate
got all votes, but the coercer told the coerced voter to vote for a different candidate, then the
coercer knows that the coerced voter did not follow his instructions. In general, as in the case
of privacy, δ is a function of ~p, k, and the number n = |VH | of honest voters (see below and
Section 6.4). Clearly, a small δ is preferable. Let us illustrate the meaning of δ by the following
example. Assume that if πc outputs 1, i.e., the coercer thinks that the coerced voter is following
his instructions, then the coercer pays $100 to the coerced voter, and otherwise, if πc outputs 0,
i.e., the coercer thinks that the coerced voter did not follow his instructions, he might harm the
coerced voter. Now, if δ = 0.8, then this means that if the coerced voter follows the instructions
of the coercer, the coerced voter increases her chances of getting payed (not being harmed) by
up to 80%. Conversely, by following the counter-strategy, the coerced voter drastically decreases
her chances of getting payed and increases her chances of being harmed. This might be a strong
incentive for the coerced voter to follow the instructions of the coercer.

While here we concentrated on the case for one coerced voter, the above definition in fact also
applies to the setting of multiple coerced voters (see [19]).

Coercion-resistance of the Ideal Protocol. Since we will refer to the level of coercion-resistance
of the ideal protocol in this paper, we recall the optimal level of coercion-resistance established
in [19]. Similarly to the case of privacy, let Ai

~r denote the probability that the choices made by the
honest voters and the coerced voter yield the pure result~r = (r0, . . . ,rk), given that the coerced
voter votes for the i-th candidate. Also, let M∗i, j = {~r ∈ Res : Ai

~r ≤ A j
~r} and

δ
i
min(n,k,~p) = max

j∈{1,...,k}
∑

~r∈M∗i, j

(A j
~r −Ai

~r).

Let γi be the goal of the coerced voter which is achieved if the coerced voter votes for candi-
date i, in case she is instructed by the coercer to vote (for some candidate). Note that coercion-
resistance w.r.t. this goal does not imply that forced abstention attacks are prevented: If the coercer
wants the coerced voter to abstain from voting, the coerced voter, when running her counter-
strategy, does not need to vote in order to fulfil the goal. While for the ideal protocol a stronger
goal which says that the coerced voter in any case votes for i could be considered, for ThreeBallot
and VAV such a goal, which requires that forced abstention attacks are not possible, is too strong
(see Section 6.4). The following theorem states that δ i

min(n,k,~p) is optimal for γi:

Theorem 3 ([19]). Let S = Pideal({VA},q,n,k,~p). Then, S is δ -coercion-resistant w.r.t. γi, where
δ = δ i

min(n,k,~p). Moreover, S is not δ ′-coercion-resistant for any δ ′ < δ .
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We note that the level of privacy of the ideal protocol coincides with the level of coercion-
resistance of the ideal protocol, if the goal of the coerced voter is to vote for the candidate with
the smallest probability according to ~p.

6.3 Privacy of ThreeBallot and VAV
In this section, we analyze the level of privacy provided by all variants of ThreeBallot and VAV
described in Sections 3 and 4. In all cases, the presentation of the results follows the same
structure: First, we define what we call an essential view of the observer, where we abstract
away from some parts of the observer’s full view in a given protocol run. Based on the notion
of an essential view, we define the optimal level of privacy, δ , and state the result. Due to the
similar structure, we introduce the necessary terminology and present the results “in parallel” for
all protocol variants. We start with our modeling and security assumptions, which are largely the
same for all variants.
Modeling and Security Assumptions. In our analysis, we assume that the observer can see
whether a voter enters the voting booth. We also assume that an honest voter may reveal her
(paper) receipt to the observer, after the voting phase is finished. However, to measure how much
information an observer gains from the receipts of honest voters, we will also consider the case
that the observer does not get to see the receipts of honest voters.

Moreover, we assume that the voting machine (the scanner) is honest; the bulletin board may
be dishonest. Note that this assumption is indeed necessary for privacy: without this assumption,
the observer gets to know how voters vote, as the voters disclose their votes to the machine.
Even though the machine, at the moment a voter votes, might not know who the voter is, this
information could be reconstructed from the order in which voters voted.

In our analysis of ThreeBallot, we focus on the case with two candidates, i.e., a case where
the so-called short ballot assumption is fulfilled. It is well-known that without this assumption,
ThreeBallot does not have a sufficient level of privacy and coercion-resistance (see, e.g., [26, 11]).
The degradation of the level of coercion-resistance of the variant of ThreeBallot by Marneffe et
al. in the multi-candidate case was formally studied in [19]. However, in our analysis of VAV we
do not restrict the number of candidates.

By Ps+
VAV and Ps−

VAV we denote the simple variant of the VAV protocol (modeled as a protocol in
the sense of Section 2), where ‘+’ and ‘−’ indicate whether or not the honest voters reveal their
receipts. Similarly, Pp+

VAV and Pp−
VAV denote the privacy enhanced variant of VAV, with/without

receipts being revealed. As for ThreeBallot, we use Po+
TB and Po−

TB for the original variant and Pp+
TB

and Pp−
TB for the variant by Marneffe et al.

Following our modeling and security assumptions, we consider instantiations of Ps+
VAV, Ps−

VAV,
Pp+
VAV, Pp−

VAV , Po+
TB, Po−

TB, Pp+
TB and Pp−

TB, where the parameters are chosen as follows: (i) the set
AH = {M} of honest authorities contains the voting machine M only, (ii) the number q of (honest
and dishonest) voters, (iii) some number n of honest voters, (iv) some number k of candidates,
and (v) some probability distribution ~p on the candidates. In case of ThreeBallot, we assume that
k = 2. For brevity of notation, we, for instance, simply write Ps+

VAV, instead of Ps+
VAV(AH ,q,n,k,~p).

We denote the set of all the instantiations described above by S .
Views and essential views. The view of the observer in a protocol run contains (1) the random
coins generated by the observer, (2) optionally, depending on the case under consideration, the
receipts of the honest voters, after the voting phase is finished, and (3) all messages received
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from the interface of the dishonest parties (which the observer controls). The latter includes all
dishonest voters and the bulletin board, containing the shuffled simple ballots with serial numbers.
Note that the observer cannot directly see the information the honest voters obtain or the actions
they perform in the voting booth.

In an essential view of the observer we abstract away from those parts of his view which are
not relevant for distinguishing how voters vote, e.g., the serial numbers on the simple ballots,
the order of the simple ballots on the bulletin board or the simple ballots of the dishonest voters
(which are determined by the observer). The crucial part of the proof of Theorem 4, stated below,
is to show that, indeed, the observer can without loss of generality base his decision solely on
such essential views.

More precisely, if the observer cannot see the receipts of the voters, the essential view is
defined to be the pure result of the election, as defined in Section 6.1. If the observer can see the
receipts, the definition of an essential view depends on the system under consideration:

– ThreeBallot: The essential view of the observer consists of (i) three integers nx
x
, nx

o
, and no

x

indicating the number of the respective simple ballots on the bulletin board cast by honest
voters, including the observed voter, and (ii) the receipt r of the voter under observation and
(iii) integers rx

x
, rx

o
, and ro

x
, indicating the number of the respective receipts taken by the honest

voters.

Note that from these numbers the number of o
o-ballots on the bulletin board and the number of

o
o-receipts can easily be computed.

– Privacy enhanced variant of VAV: The essential view is just the pure result.

– Simple variant of VAV: The essential view of the observer consists of (i) integers nA
j , nV

j , for
each candidate j, indicating the number of A- and V-ballots, respectively, on the bulletin board
on which candidate j is marked, (ii) the receipt r of the voter under observation and (iii) integers
rA

j and rV
j , indicating the number of A- and V-ballots, respectively, taken by the honest voters

as receipts on which candidate j is marked.

By EV S we denote the set of all essential views of the observer for the instantiation S ∈S .
Level of privacy. Let S∈S . For an essential view ρ ∈EV S, and a candidate i, let AS

ρ,i denote the
probability that, in a run of S, the essential view of the observer is ρ , given that the observed voter
votes for i. For i, j ∈ {1, . . . ,k}, let MS

j,i = {ρ ∈ EV S : AS
ρ, j ≤ AS

ρ,i}. Similar to the case of privacy
for the ideal protocol, the intuition behind the definition of δ , given below, is the following: If
the observer, given an essential view ρ , wants to decide whether the observed voter voted for
candidate i or j, the best strategy for the observer is to opt for i, if ρ ∈ MS

j,i, i.e. his (essential)
view is more likely if the voter voted for candidate i.

Now, we are ready to express the function representing the level of privacy in the instantiation
S ∈S :

δ
S
Priv(n,k,~p) = max

i, j=1,...,k
∑

ρ∈MS
j,i

(
AS

ρ,i−AS
ρ, j

)
.

The following theorem shows that δ S
Priv = δ S

Priv(n,k,~p) indeed is the optimal level of privacy
achieved by the considered instantiations S of ThreeBallot and VAV.

Theorem 4. Let S ∈S . The instantiation S achieves δ S
Priv-privacy. Moreover, S does not achieve

δ ′-privacy for any δ ′ < δ S
Priv.

17



0

0.2

0.4

0.6

0.8

1

1 5 10 20 50 100 200 500
number of honest voters (without the observed voter)

pr
iv

ac
y

le
ve

l(
δ

)

Ideal, Pp+/p−/s−
VAV , Po−/p−

TB

Pp+
TB

Ps+
VAV

Po+
TB

Figure 3: Level of privacy (the smaller δ the higher privacy) for the considered variants of Three-
Ballot with two candidates, p0 = 0.3, p1 = 0.35, p2 = 0.35.

The proof of this theorem can be found in Appendix D. While the representation of δ S
Priv is

the same for every instantiation (except that the definitions of essential views differ), the proofs
of Theorem 4 for the various instantiations differ significantly. In each case, we first show that
the view of the observer can indeed be reduced to the corresponding essential view, and then,
by combinatorial arguments, we show that δ S

Priv is optimal. Due to space limitations, we do not
present this proof here.

For every S ∈ S , we have developed concrete formulas for AS
ρ,i, which, in some cases, in-

volved non-trivial combinatorial reasoning (see Appendix E). These formulas allowed us to com-
pute concrete values for δ S

Priv, as depicted in Figure 3 for the case of two candidates. Note that
election results are often published per polling station, with just a few hundred voters each.

As can be seen from Figure 3 and as we formally prove in Appendix G, the variants of the
protocols where the observer does not get to see receipts of voters provide the ideal level of
privacy. The privacy enhanced variant of VAV with receipts being revealed is ideal too: Intuitively,
the reason for this is that the receipts taken by the honest voters are picked independently of the
chosen candidates. Furthermore, the bulletin board does not leak any information about how a
given voter voted, except for the bare result—the ballots of type A and V which cancel out are
chosen independently of the voters’ choices. The variant of ThreeBallot by Marneffe et al. is close
to ideal. However, the level of privacy of the original variant of ThreeBallot and the simple variant
of VAV is unacceptable. This is due to the receipts which, for these variants of the protocols, leak
a lot of information about a vote. In case of VAV, for example, it is easy to see that with probability
1
3 , a voter takes the simple ballot as a receipt which exactly shows her choice, hence, δ can never
drop below 1

3 .

6.4 Coercion-Resistance of ThreeBallot and VAV
In this section, we analyze the level of coercion-resistance provided by all variants of ThreeBallot
and VAV described in Sections 3 and 4. We note that the level of coercion-resistance of the variant
by Marneffe et al. [8] has already been established in [19]. However, the results for VAV and the
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one for the original variant of ThreeBallot are new.
As in the case of privacy, the presentation of the results follows the same structure for all

protocol variants, which is why we again introduce the necessary terminology and present the
results “in parallel” for all these variants. For coercion-resistance, we also use the notion of
an essential view (although defined differently). In addition, we have to define the goal of the
coerced voter and the counter-strategy.
Modeling and security assumptions. We make the same modeling and security assumptions as
in the case of privacy and consider the same set S of concrete instantiations.
The goal of the coerced voter. Our analysis is w.r.t. the goal γi, for i ∈ {1, . . . ,k}, which is
met if the coerced voter votes for candidate i, in case she is instructed by the coercer to vote for
some candidate. Note that if the coerced voter is not instructed to vote, she cannot vote, as this fact
would be observed by the coercer, who sees if the voter enters the voting booth (forced-abstention
attack). Recall that for ThreeBallot, we assume k = 2.
Counter-strategy. We define the counter-strategy of the coerced voter for an instance S ∈S as
follows: The counter-strategy coincides with the dummy strategy dum with one exception: If the
coerced voter is requested to fill out her ballot and cast it according to a certain pattern Z, then the
coerced voter will, instead, fill out the ballot according to CS(Z, i), as defined next. (Recall that
the goal of the coerced voter is to vote for i.) We define CS(Z, i) to be Z, if the pattern Z forms a
valid vote for i. Otherwise, the definition of CS(Z, i) depends on the protocol under consideration:

– ThreeBallot: We define CS(Z, i) in such a way that it yields the same receipt as Z does. More-
over, it adjusts the two remaining ballots in such a way that the resulting multi-ballot is a
valid vote for candidate i. By this requirement, CS(Z, i) is uniquely determined, except for two
cases: CS((xo,

o
x,

o
x),1) and CS((ox,

x
o,

x
o),2). In the former case, for instance, one can take (xo,

x
o,

o
x)

or (xo,
x
x,

o
o), or randomly pick one of the two, possibly based on some further information. For

these cases, we define CS(Z, i) to choose one of the possible patterns uniformly at random.

– VAV: Similarly as in the case for ThreeBallot, CS(Z, i) is defined in such a way that it yields
the same receipt as Z does. It adjusts the two remaining ballots in such a way that the resulting
multi-ballot is a valid vote for candidate i. By this requirement, CS(Z, i) is uniquely determined,
except for the case where the coercer demands a V -receipt for candidate i. In this case, one can
mark an arbitrary candidate on the remaining two ballots. We demand that CS(Z, i) then marks
candidate i also on the remaining ballots.

We use these strategies in the proof of Theorem 5. From the proof of this theorem it follows that
these counter-strategies achieve the maximal level of coercion-resistance and, in this sense, are
optimal for the coerced voter.
Essential views. The essential view of the coercer is defined as follows:

– ThreeBallot: If the coercer can see the receipts of honest voters, the essential view is defined
just like the essential view of the observer in case of privacy (see Section 6.3), except that it
does not contain the receipt of the coerced voter (as the coerced voter returns always the receipt
demanded by the coercer). If the coercer cannot see the receipts, the essential view consists
of the integers nx

x
, nx

o
, and no

x
, representing the numbers of the respective simple ballots on the

bulletin board.

– Privacy enhanced variant of VAV: Regardless of whether the coercer can see the receipts or
not, an essential view of the coercer consists of two integers nA

j and nV
j for each candidate j,
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indicating the number of A- and V-ballots on the bulletin board, respectively, with candidate j
marked.

– Simple variant of VAV: The essential view of the coercer consists of integers nA
j and nV

j , for each
candidate j, as defined above and, if the coercer can see the receipts, additionally, two integers
rA

j and rV
j , for each candidate j, indicating the number of A- and V-ballots, respectively, taken

by the honest voters as receipts with candidate j marked.

By EV S we denote the set of all essential views of the coercer for the instantiation S ∈S .
Level of coercion-resistance. Let S∈S and ρ ∈ EV S. We define AS

ρ,Z to be the probability that,
in a run of S, the choices made by the honest voters and the coerced voter result in the essential
view ρ , given that the coerced voter chooses the pattern Z. The definition of the level of coercion-
resistance, δ , now follows the same idea as in the case of privacy. We define MS

Z,i = {ρ ∈ EV S :
AS

ρ,C(Z,i) ≤ AS
ρ,Z} to be the set of those essential views for which the coercer should accept the run

and we define
δ

S
CR(n,k,~p) = max

Z
∑

ρ∈MS
Z,i

(AS
ρ,Z−AS

ρ,C(Z,i)). (2)

The following theorem shows that δ S
CR = δ S

CR(n,k,~p) indeed is the optimal level of coercion-
resistance for the instantiation S, where the case in which S is the variant of ThreeBallot by
Marneffe et al. was shown in [19].

Theorem 5. Let S ∈ S . Then S is δ S
CR-coercion-resistant. Moreover, S is is not δ ′-coercion-

resistant for any δ ′ < δ S
CR.

Similar to the case of privacy, the details of the proofs for the different variants S of the
protocols differ significantly. The proof of this theorem can be found in Appendix F.

We developed concrete formulas for AS
ρ,i and AS

ρ,C(Z,i), which involved non-trivial combina-

torial arguments, but allowed us to compute concrete values for δ S
CR, as depicted in Figure 4 for

the case of two candidates (see Apendix E). To put these values in context, we present also the
corresponding values for the variant of ThreeBallot and the ideal protocol studied in [19]. As we
can see in Figure 4, for all the considered protocols, the level of coercion-resistance is lower if
the coercer can see the receipts.3 Altogether, under the same assumptions, VAV provides a better
level of coercion-resistance than ThreeBallot, but both are still worse than the ideal protocol.

Some selected values for the multi-candidate case, namely 10 candidates, are depicted in
Figure 5. To put these values in context, we present also the corresponding values for the ideal
protocol and the variant of ThreeBallot by Marneffe et al. as studied in [19]. We can see that
the (privacy enhanced) variant of VAV handles the case of multiple candidates much better than
ThreeBallot, which for 10 candidate basically does not provide any coercion-resistance. (Recall
that δ close to 1 means that the coercer can tell almost for sure whether the coerced voter followed
his instructions or not.)

6.5 Relationship between Privacy and Coercion-resistance
As already mentioned in the introduction, one would expect that privacy and coercion-resistance
are closely connected: If a protocol provides a poor level of privacy, i.e., an observer has a

3Note that in [18], incorrect values of the level of coercion-resistance for Pp+
VAV are given.
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Figure 4: Level of coercion (δ ) for different protocols with two candidates, p0 = 0.3, p1 = p2 =
0.35. The goal of the coerced voter is to vote for candidate 1.

good chance of distinguishing whether an honest voter voted for candidate j or j′, then this
should give the coercer leverage to distinguish whether the coerced voter followed the coercer’s
instructions or not. Indeed some works suggest a close connection between coercion-resistance
and privacy, most notable the already mentioned work by Moran and Naor [21] and work in an
abstract, Dolev-Yao style approach [10], which, however, puts strong restrictions on the coercer
and counter-strategies. The definitions used in these works yield yes/no-answers, rather than
measuring the level of coercion-resistance and privacy.

Our case study of ThreeBallot and VAV demonstrates that the connection between privacy and
coercion-resistance, in particular when it comes to measuring the level of privacy and coercion-
resistance, is more subtle than what can be gathered from existing work.

One observation that comes out of our case study is that improving the level of privacy of
a protocol in a natural way (e.g., by changing the way honest voters fill out ballots) can lead to
a worse level of coercion-resistance. This is the case when going from the original variant of
ThreeBallot to the “privacy enhanced” variant by de Marneffe et al., as can be seen from the
results in Sections 6.3 and 6.4 (compare the levels of privacy of the systems So+

TB and Sp+
TB, given

in Figure 3, with those for coercion-resistance of the same systems in Figure 4). Clearly, in
general, one does not expect privacy to imply coercion-resistance. One might, however, expect
that improving privacy also improves coercion-resistance. In this sense, the illustrated effect is
surprising. At the end of this section, we propose another (though artificial) variant of ThreeBallot
which better explains and amplifies the described effect.

Another finding that comes out of our case study, which maybe more unexpected, is that the
level of privacy of a protocol can be much lower than its level of coercion-resistance. This is so for
the original variant of ThreeBallot and the simple variant of VAV, as can be seen from the results
in Sections 6.3 and 6.4 (compare the level of privacy of So+

TB, given in Figure 3, with the level of
coercion resistance of this system, given in Figure 4; similarly for the system Ss+

VAV). The reason
behind this phenomenon is basically that the counter-strategy hides the behavior of the coerced
voter, including her vote, better than the honest voting program hides the vote. Conversely, one
could say that the honest voting program is “suboptimal” in hiding the way the voter voted. In the
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Figure 5: The lower-bound of coercion-resistance (δ ) for ThreeBallot in the variant by Marneffe
et al. and the precise values for VAV in the privacy enhanced variant and the ideal voting protocol
with 10 candidates, where an honest voter abstains from voting with probability p0 = 0.3 and she
chooses a candidate with probability ((1− p0)/10).

original variant of ThreeBallot and the simple variant of VAV, a receipt an honest voter obtains
indeed discloses more information than necessary. The following simple, but unlike ThreeBallot
and VAV, artificial example, carries this effect to extremes: Consider the ideal voting protocol
which collects all votes and publishes the correct result. Now imagine a voting protocol in which
voters use the ideal voting protocol to cast their vote, but where half of the voters publish how they
voted (e.g., based on a coin flip). Clearly, the level of privacy this protocol provides is very low,
namely δ ≥ 1

2 . However, a coerced voter can be more clever and simply lie about how she voted.
This protocol indeed provides a high level of coercion-resistance, namely δ ≈ δ i

min(n/2,k,~p) (see
Section 6.2). Below we also provide a slightly more subtle example based on ThreeBallot.

In case the counter-strategy does not “outperform” the honest voting program (or conversely,
the honest voting program does not leak more information than the counter-strategy), one would
expect that if a voting system provides a certain level of coercion-resistance, then it provides at
least the same level of privacy. We now show that this is indeed true.

We first have to define what it means for the counter-strategy to outperform the honest voting
program.

For this purpose, let P∗ = P(AH ,q,VH ,k,~p) be a protocol instantiation, with sets V and C of
processes as in Definition 3. As usual, with π̂v( j) we denote the honest voting program voting
for candidate j and with γi we denote the goal which contains all runs in which the coerced voter
voted for candidate i (or the weaker goal, where this is required, only if the voter is instructed by
the coercer to vote for some candidate). Let ṽi be a counter-strategy that tries to achieve this goal.
Let π

j
c be a process of the coercer which only connects to dum, but does not use any other part

of the interface the coercer can connect to, and which simply simulates the program of an honest
voter voting for candidate j. Clearly, the systems (π j

c ‖ dum) and π̂v( j) are identical from the
point of view of an external observer.

Now, informally speaking, for ṽi to not outperform π̂v(i) we require that from the point of
view of an external observer, ṽi, if instructed to vote for some candidate j by following the honest
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program, behaves like π̂v(i). Recall that, the program πo of an external observer may output 0
or 1 on some designated channel and may use the same communication interface as the coercer,
except for connecting to dum, i.e., there is no direct communication between an external observer
and the coerced voter. Now, formally we say that ṽi does not outperform π̂v(i), if for all programs
πo of the external observer we have that

Pr[(πo ‖ π
j
c ‖ ṽi ‖ e)(`) 7→ 1]−Pr[(πo ‖ π̂v(i) ‖ e)(`) 7→ 1]

is negligible as a function in the security parameter 1`.
Now, we can state that, under the assumption that the counter-strategy does not outperform

the honest voting program, we have that if a protocol is δ -coercion-resistant, then it also achieves
δ -privacy. In the following theorem, we say that P∗ is δ -coercion-resistant w.r.t. γi and ṽi, if ṽi
can be used to show δ -coercion-resistant of P∗ w.r.t. γi. For simplicity, we focus here on the case
of single-voter coercion-resistance/privacy, but this result can easily be lifted to the multi-voter
case.

Theorem 6. Let P∗ be δ -coercion-resistant w.r.t. γi and ṽi, for every candidates i. Then, if ṽi does
not outperform π̂v(i), for every candidate i, then P∗ achieves δ -privacy.

Proof sketch. Let j, j′ ∈ {1, . . . ,k} and let πo be a program of the observer, in the sense of Sec-
tion 6.1. We define πc = (πo ‖ π

j
c ) to be a coercer program. Recall from Section 6.2 that

the communication interface of a coercer is that of an observer, except that a coercer can also
communicate with the coerced voter. Therefore, πc indeed is a coercer program. Since P∗ is
δ -coercion-resistant w.r.t. γ j′ and ṽ j′ , we know that Pr[T 7→ 1]−Pr[T̃ 7→ 1] is δ -bounded for
T = (πc ‖ dum ‖ e)(`) and T̃ = (πc ‖ ṽ j′ ‖ e)(`).

Now, by the definition of π
j
c , we know that Pr[T 7→ 1] = Pr[T ′ 7→ 1], for T ′ = (πo ‖ π̂v( j) ‖

e)(`). Moreover, because ṽ j′ does not outperform π̂v( j′), we have that Pr[T̃ 7→ 1]−Pr[T̃ ′ 7→ 1]
is negligible for T̃ ′ = (πo ‖ π̂v( j′) ‖ e)(`). It follows that Pr[T ′ 7→ 1]−Pr[T̃ ′ 7→ 1] is δ -bounded,
which proves that P∗ achieves δ -privacy.

It turns out that for many voting protocol which have been analyzed with respect to coercion-
resistance, the (optimal) counter-strategies indeed do not outperform the honest voting program
of the respective protocol. In particular, it is not hard to check that at least the following protocols
satisfy the condition in Theorem 6: the Bingo voting system [3] (see [19]), Scantegrity II [5]
(see [17]), the JCJ voting protocol [13] and the Civitas voting system [7] (see also [16]). Also
the “privacy enhanced” variants of ThreeBallot and VAV satisfy the condition (but clearly not the
other variants of ThreeBallot and VAV we considered, since, as mentioned, for these variants the
level of coercion-resistance is higher—δ is smaller—than the level of privacy.)

For such protocols, once δ -coercion-resistance is proven, by Theorem 6 we obtain δ -privacy
for free. In case the level of coercion-resistance corresponds to the ideal one—as, e.g., proven
for the Bingo voting system and Scantegrity II in [19] and [17]—, by Theorems 2 and 3, the level
of privacy is ideal as well. However, in general, the actual level of privacy might be better than
what can be concluded from the theorem, with the “privacy enhanced” variants of ThreeBallot
and VAV being examples.

We conclude this section with the postponed examples mentioned above.

Example (Improving Privacy Significantly Lowers the Level of Coercion-Resistance). We con-
sider the following variant of ThreeBallot. An honest voter is supposed to submit either (xx,

x
o,

o
o)
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or (xx,
o
x,

o
o) (according to her favorite candidate). This scheme is ideal in terms of privacy, because

the bulletin board and the receipts do not leak any information apart from the pure result of the
election. However, this scheme provides no coercion-resistance whatsoever: When the coerced
voter is instructed to submit (ox,

x
x,

o
o) (which is allowed but never done by honest voters), but wants

to vote for candidate A, she would have to submit (ox,
x
o,

x
o). But then, as all the honest voters submit

(xx,
x
o,

o
o) or (xx,

o
x,

o
o), the coercer could easily detect that he was cheated, by counting the number of

ballots of type o
o on the bulletin board.

Example (Improving Coercion Resistance Significantly Lowers the Level of Privacy). We consider
the following variant of ThreeBallot. In order to vote for candidate A, an honest voter is supposed
to submit (xx,

x
o,

o
o) or (xo,

x
o,

o
x), each with probability 1

2 . Analogously for a voter that wants to vote
for candidate 2. By this, in 50% of the cases, an honest voter reveals her vote, namley in the case
where she does not have x

x as receipt. That means that this variant provides a very low level of
privacy (δ ≥ 0.5), i.e. the observer can with quite high probability tell which candidate a given
voter voted for. However, this variant is not that bad in terms of coercion-resistance, as here, the
coerced voter is not bound to follow the honest strategy and can choose patterns in a more clever
way. In fact, we can use here the same counter-strategy we used previously—take the receipt
required by the coercer and adjust the remaining ballots to form a valid vote for the favorite
candidate. Note that, following this strategy, the coerced voter may submit patterns which are
valid but never chosen by the program of an honest voter. For this counter-strategy, although the
coercer might learn approximatively half of the votes of the honest voters, the actual vote of the
coerced voter is still hidden behind the votes of the honest voters that submitted (xx,

x
o,

o
o) or (xx,

o
x,

o
o),

i.e. that did not reveal their votes to the coercer. This results in a reasonably small δ .

7 Conclusion
In this paper, we presented new insights into central security properties, namely verifiability,
privacy, and coercion-resistance. Our findings, in part, come from a case study, in which we
precisely measure the level of verifiability, privacy, and coercion-resistance of different variants
of ThreeBallot and VAV proposed in the literature.

For verifiability we have demonstrated that the combination of individual and universal ver-
ifiability is, unlike commonly believed, insufficient to provide overall/global verifiability. Our
case study shows that the main problem with individual and universal verifiability is that these
notions ignore that dishonest authorities/voters can break the integrity of ballots of honest voters
by ill-formed ballots. We therefore advocate the concept of global verifiability, as captured by
the definition of verifiability in [20] and used in the present paper.

We also demonstrated that the relationship between privacy and coercion-resistance is more
subtle than what can be gathered from the literature. Our case study highlighted interesting phe-
nomena for existing protocols: i) improving privacy may degrade the level of coercion-resistance,
ii) the level of coercion-resistance may be higher than the level of privacy. The latter is due to
the fact that the counter-strategy a coerced voter uses maybe “smarter” in hiding information
than the honest voting program. For the case that this is not so, we were able to prove that
δ -coercion-resistance implies δ -privacy. As discussed in Section 6.5, for many protocols, the
counter-strategy does indeed not outperform the honest voting program. We conjecture that if it
does, then it should be possible to improve the honest voting program.

Besides these general findings on verifiability, privacy, and coercion-resistance, our case study
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also provides the first comprehensive picture on the security of prominent voting systems, Three-
Ballot and VAV.
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A Proof Sketch of Theorem 1
In the proof we will use the following fact:

Lemma 1. Let [b1,b2,b3] be the simple ballots submitted by an honest voter in a protocol run
(where the order of these simple ballots matters). Then, for i = 1,2,3, the probability that bi is
taken as the receipt is 1

3 in the system So
TB and bigger than or equal to 1

6 in the system Sp
TB.

Moreover, if [b1,b2,b3] is a vote for candidate j (for j = 1, . . . ,k) and bl (for l = 1,2,3) is a
ballot where the j-th position is marked, then the probability that bl is taken as a receipt in the
system Sp

TB is [b1,b2,b3] is 1
6 .

Proof. As the receipts are chosen uniformly in So
TB, we immediately get the result for this system.

Let us now consider the system Sp
TB. Without loss of generality, we can assume that [b1,b2,b3] is

a vote for candidate 1 and that the first position is marked on b1 and b2 (but not on b3). What we
need to compute is, in fact, the conditional probability that an honest voter takes bi as her receipt,
given she submits [b1,b2,b3].

We start with computing the probability that an honest voter submits [b1,b2,b3]. By the defini-
tion of the voting procedure of the system Sp

TB, an honest voter can obtain (and submit) [b1,b2,b3]
in two ways: right before the voter has chosen her receipt, she must have either [b′1,b2,b3] or
[b1,b′2,b3], where b′1 and b′2 are as b1 and b2 with the difference that the first position is not
marked. From [b′1,b2,b3] the voter obtains [b1,b2,b3], if she choses b3 as the receipt (which
happens with probability 1

3 ) and then marks candidate 1 on the first ballot (which happens with
probability p1) or if he choses b2 as the receipt (which happens with probability 1

3 ) and then
marks the first position of b1 (which happens with probability 1

2 · p1). Now, the probability for
having [b′1,b2,b3] before the receipt is picked is p = 1

3k . In the same way we can handle the case
when [b1,b2,b3] is obtained from [b1,b′2,b3]. From this, we can compute the probability than the
honest voter submits [b1,b2,b3] as 2 · p · p1 · ( 1

3 +
1
6 ) = p · p1.

Now, the probability that an honest voter submits [b1,b2,b3] and takes b1 as the receipt is
p1 · p · 1

6 (this is only possible if she stars with [b1,b′2,b3], picks b1 as the receipt and then marks
candidate 1 on the second ballot). From this, we conclude that the conditional probability that
an honest voter takes b1 as the receipt, given she submits [b1,b2,b3], is 1

6 . In a very similar way,
we can show that the probability that an honest voter takes b2 as the receipt, given she submits
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[b1,b2,b3], is 1
6 , too. Finally, from the above we easily obtain that the probability that an honest

voter takes b3 as the receipt, given she submits [b1,b2,b3], is 2
3 .

Now we prove Theorem 1. For the first condition of Definition 1, we have to show that
whenever, in a run of the system, the machine and the bulletin board are honest, ver accepts
this run with overwhelming probability. This is easy to see: If the machine and the bulletin
board are honest in a run of the system, only well-formed ballots are sent to the bulletin board,
(with overwhelming probability) no serial numbers occur twice, and the bulletin board correctly
displays the ballots received from the machine. Now, by the definition of the verifier, it follows
that ver accepts such a run.

For the second condition of Definition 1, we have to show that the probability that the system
produces a run which is accepted by ver, even though the goal is violated, is bounded by δ

p
Ver or

δ o
Ver, respectively. In such a run, since it is accepted by ver, the bulletin board must be consistent.

Furthermore, because the goal is violated, there must exist a candidate, say candidate i, such that
the sum of all votes of honest voters for all candidates except i is at least `+1.

As we have already shown, the machine can change m votes without any risk of this being
detected. Therefore, in order to violate the goal γ`, it remains to change k′ = `+1−min(`+1,m)
votes of honest voters that did not vote for candidate i. Let us consider the following procedure a
dishonest party (the voting machine or the bulletin board) can use to do this: If a voter votes for
candidate j 6= i, candidate j is marked on two simple ballots, whereas candidate i is marked only
on one ballot. The dishonest party chooses one simple ballot of such a voter with marked j-th
position, but not i-th position, and replaces it by a similar ballot, but with the markings on the i-th
and j-th position swapped. By Lemma 1 we know that every time this is done, the probability that
this is detected by an honest voter is 1

6 · pcheck in the system Sp
TB and 1

3 · pcheck in So
TB. As it must

be done k′ times and, as mentioned, there must exist `+ 1 voters who voted not for candidate i,
we conclude that, when this strategy is used, the probability that the goal γ` is violated and the
observer accepts the run is δ

p
Ver and δ o

Ver, respectively. This shows that these bounds are optimal
(i.e. the considered goal is not δ ′-verifiable for smaller δ ′).

To prove that the goal γ` is δ x
Ver-verifiable, we need to show that the strategy described above

is optimal, i.e. for any other strategy of the dishonest party, the probability that the run is accepted
even though the goal is not satisfied is smaller. If a strategy does not changes m votes using
m dishonest voters, as described earlier, it clearly is not optimal (recall that doing this does not
involve any risk of being detected). It if does it, there are still k′ votes, as defined above, to be
changed. So, let us consider any way k′ votes are changed. First, let us observe that to change k′

votes the dishonest party must change at least k′ simple ballots of honest voters. If exactly one
simple ballot belonging to some honest voter is changed, the probability that this goes undetected
is, by Lemma 1, at most (1− 1

6 · pcheck). Moreover, it is always worse to change t > 1 simple
ballots of one honest voter, than to change t ballots of t separate voters: If all three simple ballots
of an honest voter are changed, the probability that this is not detected is 0. In case two ballots of
an honest voter are changed, this probability is at least 1− 2

6 · pcheck, which is, in fact, less than
(1− 1

6 · pcheck)
2 (which expresses the probability that the cheating is detected if two simple ballots

of two different honest voters are changed). Altogether, we can conclude that probability that k
votes are changed and the run is accepted is at most δ

p
Ver and δ o

Ver, respectively.
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B Verifiability of VAV
Let Ps

VAV and Pp
VAV denote the VAV protocol in the simple variant and the privacy enhanced

variant, respectively. Based on analogous assumptions as those for ThreeBallot (see Section 5.2),
it is straightforward to formally define the protocol instantiations Ss

VAV = Ps
VAV({ver},q,VH ,k,~p)

of Ps
VAV and Sp

VAV = Pp
TB({ver},q,VH ,k,~p) of Pp

VAV.
To state the following theorem, we need to introduce the following notation. For a given run

of the protocol, we denote by A the set of those candidates j for which the sum of all votes of
honest voters for all candidates except j is at least `+1. Intuitively, if a candidate does not belong
to A, then it is impossible for a dishonest party to violate the considered goal by increasing the
number of votes for this candidate, because there is not enough votes for other candidates that can
be changed.

Next, by X j we denote the number of multi-ballots in a run submitted by honest voters for
which the following holds:

(i) the multi-ballot forms a vote for a candidate different from j, and
(ii) on the multi-ballot, not the same candidate is marked on all three simple ballots.

These multi-ballots can safely be changed to votes for j, as explained in Section 4.
Finally, we define pr = Pr[A 6= /0 and max j∈A X j = r], where the probability is over runs of

the protocol. (Note that pr only depends on choices made by honest voters.) As one can see, pr is
the probability that it is possible in principle to violate the goal (A 6= /0) and that r is the candidate
such that the number of votes that we can safely change (as explained in Section 4) to votes for r
is maximal.

Theorem 7. Let B be the set containing the voting machine and the bulletin board and x∈ {s, p}.
The goal γ` is guaranteed in Sx

VAV by B and δ x
VerVAV -verifiable by a, where δ s

VerVAV = δ o
Ver with δ o

Ver
as in Theorem 1 and

δ
p
VerVAV =

n

∑
r=0

pr

(
1− 1

4
· pckeck

)max(`+1−r−m,0)

,

where m is the number of dishonest voters and pr is defined as above. Moreover, δ x
VerVAV is

optimal, i.e. there is not δ ′ < δ x
VerVAV for which the goal is guaranteed in Sx

VAV by B and δ x
VerVAV -

verifiable by a.

Proof sketch. The statement for Ss
VAV follows as in the proof of Theorem 1.

The intuition behind the statement for Sp
VAV is the following. The best strategy of the adversary

for violating the goal in a given run is as follows: First, he determines those candidates j such
that the number of submitted multi-ballots not for j is bigger than `. (Those candidates form the
set A introduced above). Second, among those candidates, he determines a candidate j for which
the number X j is maximal. The probability of this number being r is pr. Now, if X j = r, then
the adversary can safely change r votes. If there are some further votes to be changed (i.e. if
r < `+1), then the adversary can use dishonest voters to change additional m votes, as described
in Section 5.2. Only if there are still some votes to be changed (i.e. r+m < `+1), the adversary
changes further q = `+1− r−m ballots of q different voters, which is detected with probability
1
4 · pcheck for each ballot (see Lemma 2 below). Hence, the probability that the adversary goes

undetected when changing `+ 1− r−m ballots is
(
1− 1

4 · pckeck
)`+1−r−m

. Now, considering all
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possible values of r and the corresponding probabilities pr, we obtain the overall probability that
` changes goes undetected, as in the theorem.

The theorem follows from the observation that the strategy described above is the best strategy
of the adversary. It can be shown in the similar way as in the case of Theorem 1. Here, we use
the following lemma.

Lemma 2. Let [b1,b2,b3] be the simple ballots submitted by an honest voter in a protocol run of
the system Sp

VAV (where the order of these simple ballots matters) such that some candidate j is
marked on all b1,b2 and b3 (recall that only those ballots cannot be changed safely in Sp

VAV as
described earlier). Then, for i = 1,2,3, the probability that bi is taken as the receipt is 1

4 if bi is a
V -ballot and 1

2 if bi is an A-ballot.

Proof. Let [b1,b2,b3] be as in the lemma. Without loss of generality, we can assume that b1
is an A-ballot and b2 and b3 are V-ballots. It follows directly form the definition of the voting
procedure of Sp

VAV that b1 is picked as the receipt with probability 1
2 . Moreover, b1 and b2 are

picked as the receipt with the same probability which must be then 1
4 .

C Proof of Theorem 2
Our goal is to prove that S = Pideal({VA},q,n,k,~p) achieves δ -privacy where δ = δPriv(n,k,~p).
We begin with some auxiliary definitions and facts.

For a protocol instantiation P∗, we denote by Ω1 = {0, . . . ,k}n the set of all possible com-
binations of choices made by the honest voters, with the corresponding probability distribution
µ1 derived from ~p = p0, p1, . . . , pk. All other random bits used by ITMs in an instance of P∗,
i.e., all other random bits used by honest voters as well as all random bits used by honest au-
thorities, the coercer, and the coerced voter, are uniformly distributed. We take µ2 to be this
distribution over the space Ω2 of random bits. Formally, this distribution depends on the secu-
rity parameter. We can, however, safely ignore it in the notation without causing confusion. We
define Ω = Ω1×Ω2 and µ = µ1× µ2, i.e., µ is the product distribution obtained from µ1 and
µ2. For an event ϕ , we will write Prω1,ω2←Ω[ϕ], Prω1,ω2 [ϕ], or simply Pr[ϕ] to denote the prob-
ability µ({(ω1,ω2) ∈ Ω : ϕ(ω1,ω2)}). Similarly, Prω1←Ω1 [ϕ] or simply Prω1 [ϕ] will stand for
µ1({ω1 ∈Ω1 : ϕ(ω1)}); analogously for Prω2←Ω2 [ϕ].

Let
∆i j = ∑

~r∈M∗i, j

(A j
~r −Ai

~r). (3)

So, we have δPriv(n,k,~p) = maxi, j∈{1,...,k}∆i j. By res(ω1, i), where ω1 ∈ Ω1 and i ∈ {1, . . . ,k},
we denote the pure result of the election (i.e. an element of Res) obtained when the honest voters
vote according to ω1 and the voter under observation votes for i. Therefore, we have

Ai
~r = Prω1 [res(ω1, i) =~r].

By definition of M∗i, j, it is easy to see that for every i, j ∈ {1, . . . ,k} and every set M ⊆ Res of pure
results, the following inequality holds:

∑
~r∈M

(
A j
~r −Ai

~r

)
≤ ∑

~r∈M∗i, j

(
A j
~r −Ai

~r

)
= ∆i j. (4)
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Let πo ∈ O be an arbitrary observer process and M be the set of views accepted by πo. Note
that the view of the observer in a run of the system consists only of his random coins ω2 ∈ Ω2
and the result of the election. Therefore, each element of M can be represented as (ω2,~r), where
ω2 ∈ Ω2 and~r is a pure result (note that, given the program c, the complete result is determined
by~r and ω2). For ω2 ∈Ω2, we define Mω2 to be {~r ∈ Res : (ω2,r) ∈M}. With this, we obtain:

Pr[(πo ‖π̂v( j) ‖ e)(`) 7→ 1]−Pr[(πo ‖ π̂v(i) ‖ e)(`) 7→ 1] =
= Pr[(ω2,res(ω1, j)) ∈M]−Pr[(ω2,res(ω1, i)) ∈M]

= ∑
ω2∈Ω2

(
µ2(ω2) ·Prω1 [res(ω1, j) ∈Mω2 ] − µ2(ω2) ·Prω1 [res(ω1, i) ∈Mω2 ]

)
= ∑

ω2∈Ω2

µ2(ω2) ∑
~r∈Mω2

(
Prω1 [res(ω1, j) =~r] − Prω1 [res(ω1, i) =~r]

)
= ∑

ω2∈Ω2

µ2(ω2) · ∑
~r∈Mω2

(
A j
~r −Ai

~r

)
(by (4))
≤ ∑

ω2∈Ω2

µ2(ω2) · ∑
~r∈M∗i, j

(
A j
~r −Ai

~r

)
(by (3))
= ∑

ω2∈Ω2

µ2(ω2) ·∆i, j

≤ ∑
ω2∈Ω2

µ2(ω2) · max
i, j∈{1,...,k}

∆i, j

= max
j∈{1,...,k}

∆i, j = δ
i
Priv(n,k,~p).

This implies that Pr[(c ‖ π̂v( j) ‖ e)(`) 7→ 1]−Pr[(c ‖ π̂v(i) ‖ e)(`) 7→ 1] is δ -bounded, for δ =
δPriv(n,k,~p).

It remains to show that δ is optimal. We observe that in the above inequalities we obtain
equality for an observer program πo = π∗o which, for i, j, accepts a run only if the pure result~r in
his view belongs to M∗i, j and for i, j such that ∆i, j = maxl,l′∈{1,...,k}∆l,l′ . Hence, for πo = π∗o

Pr[(πo ‖ π̂v( j) ‖ e)(`) 7→ 1]−Pr[(πo ‖ π̂v(i) ‖ e)(`) 7→ 1] = δ

and, therefore S does not achieve δ ′-privacy, for any δ ′ < δ .

D Proof of Theorem 4
In this section, we prove Theorem 4. We only deal with the case where the observer can see
the receipt of the voter under observation. The other case is analogous (and simpler). Let S ∈
{Po+

TB,P
p+
TB,P

s+
VAV,P

p+
VAV}

We first introduce some notation. We will assume that an element ω1 ∈ Ω1 = ΩS
1 now deter-

mines the choices of the honest voters plus the random coins the honest voters and the voter under
observation use to determine, together with their chosen candidates, the exact pattern they submit
(see Section 3 and Section 4 for the definition of a pattern). We define the following random
variables on Ω1.
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Let rec(ω1) = recs(ω1) be the vector of numbers of receipts of honest voters add: and the
voter under observation of the different types, i.e., x

x,
x
o, o

x , or o
o in PTB and in PVAV, for every

candidate i, an A- and a V -ballot where candidate i is marked. Let Rec(ω1) = RecS(ω1) be the
vector (r0,r1, . . . ,rn), where r0 is the receipt of the voter under observation and ri (1 ≤ i ≤ n) is
the receipt of the i-th honest voter (without a serial number).

We can represent an element ω2 of the space of random bits Ω2 used in a run of a system, in
addition to the random choices ω1, as a tuple ω2 = (α,~r,π), where α is a sequence of random
coins of the observer, ~r = (ri j)i∈{0,...,m}, j∈{1,2,3}, where ri j is the serial number printed by the
voting machine on the j-th ballot cast by the i-th voter (where the 0-th voter is the observed
voter), and π is a permutation applied to the set of ballots before publishing. (Note that serial
number ri j, for j ∈ {1,2,3}, are not printed, if the i-th voter does not vote.)

We will use the letter η to range over views of the observer. Further, ρ is used to denote an
essential view of the observer, as defined in Section 6.3.

Let i, j be arbitrary candidates. By ρ(η) we will denote the essential view determined by η .
By ρ(i,ω1), for a candidate i and ω1 ∈Ω1, we denote the essential view obtained when the voter
under observation casts simple ballots for candidate i in a way determined by the randomness
in ω1 and the honest voters casts ballots determined by ω1. By Rec(η) we denote the receipts
without serial numbers that the observed voter and the honest voters give to the observer in run
η .

For an observer view η , let ϕη be a predicate over Ω1 such that ϕη(ω1) iff ρ( j,ω1) = ρ(η)
and Rec(ω1) = Rec(η). Analogously, we define a predicate ϕ̃η(ω1) which holds iff ρ(i,ω1) =
ρ(η) and Rec(ω1) = Rec(η).

Let c be a program of the observer and let T = (c ‖ π̂v( j) ‖ eS) and T̃ = (c ‖ π̂v(i) ‖ eS). Note
that the behavior of the systems T and T̃ is completely determined by (ω1,ω1) ∈Ω1×Ω2, as the
exact pattern of the voter under observation submits in π̂v( j) and π̂v(i) is determined by ω1.

We now show that the view of the observer is information-theoretically independent of the
choices of the honest voters as long as these choices are consistent with the essential view and the
order of the receipts. This is formulated in Lemma 4, with the core stated in the following lemma.

Lemma 3. Let η be a view of the observer and ω1,ω
′
1,ω

′′
1 ,ω

′′′
1 be arbitrary elements of Ω1 with

ϕη(ω1), ϕη(ω
′
1), ϕ̃η(ω

′′
1 ) and ϕ̃η(ω

′′′
1 ). Then the sets

A = {ω2 : T (ω1,ω2) 7→ η}, B = {ω2 : T (ω ′1,ω2) 7→ η},
C = {ω2 : T̃ (ω ′′1 ,ω2) 7→ η}, D = {ω2 : T̃ (ω ′′′1 ,ω2) 7→ η}

have the same cardinality, and hence, have the same probability.

Proof. We will show how to construct a bijection h : A→ B. The proof for the remaining cases
are very similar.

Let I = {0, . . . ,n}×{1,2,3}. For (m, l)∈ I, by bm,l and b′m,l we denote the marking on the l-th
ballot cast by the m-th voter according to ω1 and ω ′1, respectively. Because ϕη(ω1) and ϕη(ω

′
1),

we know that there exists a permutation σ : I → I such that b′(m,l) = bσ(m,l). Moreover, we can
assume that σ preserves receipts of voters, i.e. if the m-th voter picks the l-th ballot as her receipt
according to ω1 and she picks the l′-th ballot as a receipt according to ω ′1, then σ(m, l′) = (m, l).
Note that, in this case, b(m,l) = b′(m,l′).

Let (α,~r,π) ∈ ω2. We define h(α,~r,π) = (α,~r′,π ′), where r′(m,p) = rσ(m,p) and π ′(m, l) =
π(σ(m, l)) (recall that π determines the position π(m, p) of the ballot b(m,p) on the bulletin board).
It is easy to check that h is a bijection from A to B.
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Using the lemma above, we can obtain the following fact.

Lemma 4. Let η be an observer view. Let ω
η

1 and ω̃
η

1 be some fixed elements of Ω1 such that
ϕη(ω

η

1 ) and ϕ̃η(ω̃
η

1 ), respectively. Then, the following equations hold true:

Pr[T 7→ η ] = Prω1 [ϕη(ω1)] ·Prω2 [T (ω
η

1 ,ω2) 7→ η ] (5)

Pr[T̃ 7→ η ] = Prω1 [ϕ̃η(ω1)] ·Prω2 [T̃ (ω̃
η

1 ,ω2) 7→ η ] (6)

Prω2 [T (ω
η

1 ,ω2) 7→ η ] = Prω2 [T̃ (ω̃
η

1 ,ω2) 7→ η ] . (7)

Proof. Using Lemma 3 we obtain:

Pr[T 7→ η ] = Pr[ϕη(ω1),T (ω1,ω2) 7→ η ]

= ∑
ω ′1:ϕη (ω ′1)

Pr[ω1 = ω
′
1,T (ω

′
1,ω2) 7→ η ]

= ∑
ω ′1:ϕη (ω1)

Prω1 [ω1 = ω
′
1] ·Prω2 [T (ω

′
1,ω2) 7→ η ]

= ∑
ω ′1:ϕη (ω1)

Prω1 [ω1 = ω
′
1] ·Prω2 [T (ω

η

1 ,ω2) 7→ η ]

= Prω1 [ϕη(ω1)] ·Prω2

[
T (ωη

1 ,ω2) 7→ η
]
.

This proves (5). One can prove (6) in an analogous way. The equation (7) follows directly from
Lemma 3.

Now, using Lemma 4, we can link the level of privacy ThreeBallot/VAV provides with the
optimal bound δ S

Priv stated in Section 6.3. Clearly we have:

Prω1 [ϕη(ω1)] = AS
ρ(η), j ·Prω1 [Rec(ω1) = Rec(η) | ρ( j,ω1) = ρ(η)]

and
Prω1 [ϕ̃η(ω1)] = AS

ρ(η),i ·Prω1 [Rec(ω1) = Rec(η) | ρ(i,ω1) = ρ(η)].

Furthermore, it is easy to show that given two essential views with the same number of receipts
of every type (and otherwise possibly different information on the bulletin board), the probability
of obtaining a specific vector of receipts (which links receipts and voters) stays the same. From
this it follows:

Prω1 [Rec(ω1) = Rec(η) | ρ( j,ω1) = ρ(η)] =

= Prω1 [Rec(ω1) = Rec(η) | ρ(i,ω1) = ρ(η)]

= Prω1 [Rec(ω1) = Rec(η) | rec(ω1) = rec(η)].

Together with Lemma 4, we immediately obtain for all ω
η

1 with ϕη(ω
η

1 )

Pr[T 7→ η ]−Pr[T̃ 7→ η ] =
(
AS

ρ(η), j−AS
ρ(η),i

)
·

·Prω2 [T (ω
η

1 ,ω2) 7→ η ]·
·Prω1 [Rec(ω1) = Rec(η) | rec(ω1) = rec(η)].
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Note that if there does not exist ω̃
η

1 such that ϕ̃η(ω̃
η

1 ), then AS
ρ(η),i = 0 and Pr[T̃ 7→ η ] = 0.

Now, we are ready to prove that the system S, as defined in Theorem 4 in the case the observer
can see the receipts of honest voters, achieves δ -privacy for δ = δ S

Priv.
Let M be the set of views for which the observer program c outputs 1 (i.e., informally, where

the observer thinks that the voter under observation voted for j). In what follows, let ρ range over
all essential views, η over all views, and Rec over all possible vectors of receipts. Finally, let
Mρ,Rec = {η ∈M : Rec(η) = Rec, and ρ( j,η) = ρ}. For ρ,Rec with Mρ,Rec 6= /0 let ω

ρ,Rec
1 be an

arbitrary element of Ω1 with ρ( j,ωρ,Rec
1 ) = ρ and Rec(ωρ,Rec

1 ) = Rec. Then we have ϕη(ω
ρ,Rec
1 )

for all η ∈Mρ,Rec. We have:

Φ = Pr[T 7→ 1]−Pr[T̃ 7→ 1]
= Pr[T 7→M]−Pr[T̃ 7→M]

= ∑
ρ

∑
Rec

∑
η∈Mρ,Rec

(
Pr[T 7→ η ]−Pr[T̃ 7→ η ]

)
= ∑

ρ

(AS
ρ, j−AS

ρ,i)∑
Rec

∑
η∈Mρ,Rec

Prω2 [T (ω
ρ,Rec
1 ,ω2) 7→ η ]

·Prω1 [Rec(ω1) = Rec | rec(ω1) = rec(ρ)].

We get:

Φ≤ ∑
ρ∈MS

i, j

(AS
ρ, j−AS

ρ,i)∑
Rec

∑
η∈Mρ,Rec

Prω2 [T (ω
ρ,Rec
1 ,ω2) 7→ η ]

·Prω1 [Rec(ω1) = Rec | rec(ω1) = rec(ρ)]

≤ ∑
ρ∈MS

i, j

(AS
ρ, j−AS

ρ,i)∑
Rec

Prω1 [Rec(ω1) = Rec | rec(ω1) = rec(ρ)]

· ∑
η∈Mρ,Rec

Prω2 [T (ω
ρ,Rec
1 ,ω2) 7→ η ]

≤ ∑
ρ∈MS

i, j

(AS
ρ, j−AS

ρ,i)∑
Rec

Prω1 [Rec(ω1) = Rec | rec(ω1) = rec(ρ)]

≤ ∑
ρ∈MS

i, j

(AS
ρ, j−AS

ρ,i)≤ δ
S
Priv.

This shows that S achieves δ S
Priv-privacy. It remains to show that δ S

Priv is optimal.
Let us consider the program c of the observer which accepts a view η only if ρ(η) is in MS

i, j.
With this program c we have, for each essential view ρ:

Pr[T 7→ ρ] = AS
ρ, j and Pr[T̃ 7→ ρ] = AS

ρ,i .

For i, j such that ∑ρ∈MS
i, j

(
AS

ρ, j−AS
ρ,i
)
= maxl,l′=1,...,k ∑ρ∈MS

l,l′

(
AS

ρ,l′ −AS
ρ,l

)
we immediately ob-

tain:

Φ = ∑
ρ∈MS

i, j

(
Pr[T 7→ ρ]−Pr[T̃ 7→ ρ]

)
= ∑

ρ∈MS
i, j

(
AS

ρ, j−AS
ρ,i
)
= δ . (8)

This concludes the proof of Theorem 4.
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E Formulas
In this section we will sometimes use the same symbol to denote a random variable and a constant,
when the context will allow to distinguish between these cases. For instance, we may use ρ to
represent a random function over Ω1 (such that ρ(ω1) is the essential view determined by ω1)
and fix some essential view ρ . Then, in contexts like Prω1 [ρ(ω1) = ρ], the first instance of ρ

denotes the random variable and the second instance denotes the fixed essential view.

E.1 Formulas for PTB

In this section, we begin by stating some auxiliary facts. Then we develop the constants express-
ing the level of privacy and coercion resistance of ThreeBallot.

E.1.1 Auxiliary Facts

Lemma 5. In the original version of ThreeBallot, the following formulas are true:
1. Consider the case when the honest voters keep their receipts secret. Let ρ = (nx

x
,nx

o
,no

x
) be an

essential view produced by n honest voters, as defined in Section 6.4. Then the probability Ao−
ρ

that n honest voters produce the essential view ρ is as follows:

Ao−
ρ =

( n
N

)(N
R

)
· pn−N

0 · pR
1 · pN−R

2 ·
(

N
nx
x

)(
2
3

)nx
x
(

1
3

)N−nx
x

,

where N = (2nx
x
+ nx

o
+ no

x
)/3 denotes the total number of non-abstaining voters and R =

(nx
x
+nx

o
)−N denotes the number of votes for candidate 1.

2. Consider the case when the honest voters publish their receipts secret. Let ρ =(nx
x
,nx

o
,no

x
,rx

x
,rx

o
,ro

x
)

be an essential view of the coercer, as defined in Section 6.4. Then the probability Ao+
ρ that n

honest voters produce the essential view ρ is:

Ao+
ρ =

( n
N

)(N
R

)
pn−N

0 pR
1 pN−R

2 ∑
τ1,τ2

(
R
τ1

)(
R− τ1

τ2

)(
4
9

)τ1
(

1
9

)τ2

(
N−R
rx
o
− τ1

)(
N−R− rx

o
+ τ1

ro
x
− τ2

)(
1
9

)rx
o
−τ1
(

4
9

)ro
x
−τ2

(
N− rx

o
− ro

x

rx
x

)(
2
9

)N−rx
o
−ro

x

·
(

τ1 + ro
x
− τ2

nx
x
− rx

x
− (N− rx

x
− rx

o
− ro

x
)

)(
1
2

)τ1+ro
x
−τ2

with N and R as above and τ1 and τ2 ranging over the set {0, . . . ,n}. We use the convention
that

(m
l

)
= 0 for m < 0.

In the proof of Lemma 5 (see below), we will use the following easy to prove facts.

Lemma 6. Consider honest, non-abstaining voter in the original variant of ThreeBallot. The
following facts hold true.
1. The probability that a voter takes receipt x

x is 2
9 .

2. The probability that a voter takes receipt o
o is 2

9 .

3. The probability that a voter that votes for candidate 1 takes receipt x
o is 4

9 and 1
9 for receipt o

x .
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4. The probability that a voter that votes for candidate 2 takes receipt o
x is 4

9 and 1
9 for receipt x

o.

5. The probability that a voter produces a x
x-ballot is 1

2 in either of the following cases: (a) if
we assume that she votes for candidate 1 and takes x

o as a receipt, and (b) if she votes for
candidate 2 and takes o

x as a receipt.

Proof of Lemma 5. We only prove 2., 1. is analogous (and simpler).
We will use the following random variables on Ω1: F(ω1) denotes the number of (xx)-ballots,

R(ω1) is the number of votes of honest voters for candidate 1, N(ω1) is the number of non-
abstaining honest voters, τ1(ω1) denotes the number of voters that vote for 1 and take x

o as receipt,
and τ2(ω1) is the number of voters that vote for 1 and take o

x as receipt.
Let ρ = (nx

x
,nx

o
,no

x
,rx

x
,rx

o
,ro

x
). Let N = (2nx

x
+ nx

o
+ no

x
)/3 denote the total number of non-

abstaining voters and R = (nx
x
+ nx

o
)−N denote the votes for candidate 1. Then we have the

following equality, where τ1 and τ2 range over {0, . . . ,n}.

Ao+
ρ = Prω1 [ρ(ω1) = ρ] = ∑

τ1,τ2

Prω1 [ρ(ω1) = ρ,τ1(ω1) = τ1,τ2(ω1) = τ2].

Moreover, since nx
x
, N, and R determine nx

o
and no

x
and vice versa, we have for all τ1,τ2

Prω1 [ρ(ω1) = ρ,τ1(ω1) = τ1,τ2(ω1) = τ2]

=Prω1 [F(ω1) = nx
x
,R(ω1) = R,τ1(ω1) = τ1,τ2(ω1) = τ2,rec(ω1) = (rx

x
,rx

o
,ro

x
),N(ω1) = N]

=Prω1 [F(ω1) = nx
x
| R(ω1) = R,τ1(ω1) = τ1,τ2(ω2) = τ2,

rec(ω1) = (rx
x
,rx

o
,ro

x
),N(ω1) = N]· (9)

·Prω1 [rxx(ω1) = rx
x
| rx

o
(ω1) = rx

o
,ro

x
(ω1) = ro

x
,τ1(ω1) = τ1,τ2(ω2) = τ2,

R(ω1) = R,N(ω1) = N]· (10)

·Prω1

[
rx
o
(ω1) = rx

o
,ro

x
(ω1) = ro

x
, | τ1(ω1) = τ1,τ2(ω2) = τ2,R(ω1) = R,N(ω1) = N

]
·

(11)

·Prω1 [τ1(ω1) = τ1,τ2(ω1) = τ2 | R(ω1) = R,N(ω1) = N] · (12)
·Prω1 [R(ω1) = R,N(ω1) = N] . (13)

For (13), we have to distribute n−N abstaining voters and R voters voting for candidate 1 among
the n voters, which gives us

Prω1 [R(ω1) = R,N(ω1) = N] =
( n

N

)(N
R

)
pn−N

0 pR
1 pN−R

2 .

For (12), we have to distribute τ1, respectively τ2, voters that take receipt x
o, respectively o

x , among
the R voters that vote for candidate 1. Using Lemma 6, we get

Prω1 [τ1(ω1) = τ1,τ2(ω1) = τ2 | R(ω1) = R,N(ω1) = N] =

=

(
R
τ1

)(
R− τ1

τ2

)(
4
9

)τ1
(

1
9

)τ2
(

4
9

)R−τ1−τ2

.

For (11), we have to distribute the remaining rx
o
− τ1 receipts of type x

o among the N − R
voters that do not vote for 1 and the remaining ro

x
− τ2 receipts of type o

x among the remaining

36



N−R− (rx
o
− τ1) voters that do not vote for 1. With Lemma 6 we obtain:

Prω1

[
rx
o
(ω1) = rx

o
,ro

x
(ω1) = ro

x
, | τ1(ω1) = τ1,τ2(ω2) = τ2R(ω1) = R,N(ω1) = N

]
=

=

(
N−R
rx
o
− τ1

)(
N−R− rx

o
+ τ1

ro
x
− τ2

)(
1
9

)rx
o
−τ1
(

4
9

)ro
x
−τ2
(

4
9

)N−R−rx
o
+τ1−ro

x
+τ2

For (10), we have to distribute rx
x

receipts of type x
x among the N− rx

o
− ro

x
voters who take x

x or o
o

as receipt. With Lemma 6 we obtain:

Prω1

[
rx
x
(ω1) = rx

x
| rx

o
(ω1) = rx

o
,ro

x
(ω1) = ro

x
,τ1(ω1) = τ1,τ2(ω2) = τ2R(ω1) = R,N(ω1) = N

]
=

=

(
N− rx

o
− ro

x

rx
x

)(
1
2

)N−rx
o
−ro

x

Once rx
x
, rx

o
, ro

x
, τ1 and τ2 are fixed, we know that the number of x

x-ballots submitted by the
honest voters who have taken x

x or o
o as the receipt is rx

x
+(N− rx

x
− rx

o
− ro

x
). So, for (9), we have

to distribute the remaining nx
x
− rx

x
− (N− rx

x
− rx

o
− ro

x
) voters that submit a x

x ballot among the
remaining τ1 + ro

x
− τ2 voters who do not take x

x nor o
o as the receipt, but still may submit x

x (note
that a voter who votes for 1 and takes o

x as the receipt cannot submit x
x-ballot; similarly for a voter

who votes for 2 and takes x
o as the receipt). With Lemma 6 we obtain:

Prω1 [F(ω1) = nx
x
| rx

x
(ω1) = rx

x
,rx

o
(ω1) = rx

o
,ro

x
(ω1) = ro

x
,τ1(ω1) = τ1,τ2(ω2) = τ2,

R(ω1) = R,N(ω1) = N] =

(
τ1 + ro

x
− τ2

nx
x
− rx

x
− (N− rx

x
− rx

o
− ro

x
)

)(
1
2

)τ1+ro
x
−τ2

By combining and rewriting the above formulas, we obtain the formula in Lemma 5.

The following lemma is proved in [19].

Lemma 7. In the version of [8], the following formulas are true:
1. Consider the case where the honest voters keep their receipts secret. Let ρ be an essential view

of the form (nx
x
,nx

o
,no

x
) produced by n honest voters. Then, the probability Ap−

ρ that n honest
voters produce the essential view ρ is as follows:

Ap−
ρ =

( n
N

)(N
R

)
· pn−N

0 · pR
1 · pN−R

2 ·
(

N
nx
x

)(
2
3

)nx
x
(

1
3

)N−nx
x

,

with N = (2nx
x
+nx

o
+no

x
)/3 denoting the total number of non-abstaining voters and R = (nx

x
+

nx
o
)−N denoting the number of votes for candidate 1.

2. Consider the case where the honest voters publish their receipts. Let ρ be an essential view
of the form (nx

x
,nx

o
,no

x
,rx

x
,rx

o
,ro

x
) produced by n honest voters. Then, the probability Ap+

ρ that n
honest voters produce the essential view ρ is as follows:

Ap+
ρ =

( n
N

)
pn−N

0 pR
1 pN−R

2 ·
(

N
rx
x
,rx

o
,ro

x

)
·
(

1
9

)rx
x
(

2
9

)rx
o
+r3(4

9

)N−rx
x
−rx

o
−ro

x

·

· ∑
τ1,τ2

(
rx
o
+ ro

x
− τ1− τ2

nx
x
−N + rx

o
+ ro

x

)(
1
2

)rx
o
+ro

x
−τ1−τ2

·

·
(

N− rx
o
− ro

x

R− (rx
o
− τ1)− τ2

)(
rx
o

τ1

)(
ro
x

τ2

)
·
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with N and R as above and τ1 and τ2 ranging over the set {0, . . . ,n}. We use the convention
that

(m
l

)
= 0 for m < 0.

E.1.2 Formulas for Privacy

For an essential view ρ as defined in Section 6.3 (that is in the setting of privacy), i.e., with
indication of the receipt r of the voter under observation, let ρ̃ denote the view without the receipt
of the voter under observation. Furthermore, for a pattern Z and an essential view ρ , let ρ −Z
denote the essential view obtained by removing the ballots of Z from ρ .

In the following we write Ao+
ρ,i for AS

ρ,i with S = Po+
TB(AH ,q,n,k,~p) and analogously for Ap+

ρ,i

Lemma 8. 1. For the original variant of ThreeBallot we have

1. Ao+
ρ,1 =


4
9 ·A

o+
ρ̃−x

x
x
o
o
o
, r = x

x or o
o

2
9 ·A

o+
ρ̃−x

x
x
o
o
o
+ 2

9 ·A
o+
ρ̃−x

o
o
x
x
o
, r = x

o
1
9 ·A

o+
ρ̃−x

o
o
x
x
o
, r = o

x

2. Ao+
ρ,2 =


4
9 ·A

o+
ρ̃−x

x
x
o
o
o
, r = x

x or o
o

1
9 ·A

o+
ρ̃−o

x
o
x
x
o
, r = x

o
2
9 ·A

o+
ρ̃−x

x
o
x
o
o
+ 2

9 ·A
o+
ρ̃−o

x
x
o
o
x
, r = o

x

2. For the variant of [8] we have

1. Ap+
ρ,1 =


5
9 ·A

p+
ρ̃−x

x
x
o
o
o
, r = x

x or o
o

1
9 ·A

p+
ρ̃−x

x
x
o
o
o
+ 1

9 ·A
p+
ρ̃−x

o
x
o
o
x
, r = x

o
2
9 ·A

p+
ρ̃−x

o
x
o
o
x
, r = o

x

2. Ap+
ρ,2 =


5
9 ·A

p+
ρ̃−x

x
x
o
o
o
, r = x

x or o
o

2
9 ·A

p+
ρ̃−o

x
o
x
x
o
, r = x

o
1
9 ·A

p+
ρ̃−x

x
o
x
o
o
+ 1

9 ·A
p+
ρ̃−o

x
x
o
o
x
, r = o

x

Proof. We now focus on Ao+
ρ,1. The proofs for the remaining cases are similar.

Let us consider the case when r = x
o. A voter that votes for candidate 1 submits either the

pattern x
x
x
o
o
o or x

o
x
o
o
x . An elementary calculation yields that the probability that a voter who votes for

candidate 1 submits x
x
x
o
o
x and takes x

o as receipt is 2
9 , which is also the probability that a voter that

votes for candidate 1 submits x
o
x
o
o
x and takes x

o as receipt.
In the following, we will use the following random variables on Ω1: ρ(ω1) is the essential

view determined by ω1, ρ̃(ω1) is the essential view without the receipt of the voter under obser-
vation, Z0(ω1) is the pattern of the voter under observation (as determined by ω1), and v0(ω1) is
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the candidate chosen by this voter. Then we obtain

Ao+
ρ,1 = Prω1 [ρ(ω1) = ρ | v0(ω1) = 1]+

= Prω1 [ρ(ω1) = ρ,Z0(ω1) =
x
x
x
o
o
o | v0(ω1) = 1]+

+Prω1 [ρ(ω1) = ρ,Z0(ω1) =
x
o
o
x
x
o | v0(ω1) = 1] =

= Prω1 [ρ̃(ω1) = ρ,Z0(ω1) =
x
x
x
o
o
o | v0(ω1) = 1]+

+Prω1 [ρ̃(ω1) = ρ,Z0(ω1) =
x
o
o
x
x
o | v0(ω1) = 1] =

= Prω1 [ρ̃(ω1) = ρ̃ | Z0(ω1) =
x
x
x
o
o
o] ·Prω1 [Z0(ω1) =

x
x
x
o
o
o | v0(ω1) = 1]+

+Prω1 [ρ̃(ω1) = ρ̃ | Z0(ω1) =
x
o
o
x
x
o] ·Prω1 [Z0(ω1) =

x
o
o
x
x
o | v0(ω1) = 1] =

=
2
9
·Ao+

ρ̃−x
x
x
o
o
o
+

2
9
·Ao+

ρ̃−x
o
x
o
o
x
.

The cases r = x
x, r = o

o, or r = o
x are analogously to that (and simpler), as then the pattern used

by the voter under observation is uniquely determined.

Now let us consider the case when the voters keep their receipts secret. In this case an essential
view is of the form ρ = (nx

x
,nx

o
,no

x
).

Lemma 9. For both the original variant of ThreeBallot and the variant from [8], i.e., for S ∈
{Po−

TB,P
p−
TB}, we have:

1. AS
ρ,1 =

2
3 AS

ρ−x
x
x
o
o
o
+ 1

3 AS
ρ−x

o
x
o
o
x

2. AS
ρ,2 =

2
3 AS

ρ−x
x
o
x
o
o
+ 1

3 AS
ρ−o

x
o
x
x
o
.

Proof. The proof is analogous to the proof of Lemma 8, where one uses the fact that the prob-
ability that an honest voter that votes for candidate 1 (respectively 2) submits the pattern x

x
x
o
o
o

(respectively x
x
o
x
o
o) is 2

3 .

E.1.3 Formulas for Coercion-Resistance

Lemma 10. Let S ∈ {p+, p−,o+,o−}. Let ρ denote an essential view as defined in Section 6.4.
Then we have AS

ρ,Z = AS
ρ−Z .

Proof. This lemma follows directly from the definition of AS
ρ,Z and AS

ρ−Z .

E.2 Formulas for VAV
E.2.1 Auxiliary Facts

Lemma 11. Let S ∈ {Pp−
VAV,P

s−
VAV} and ρ = (nA

1 , . . . ,n
A
k ,n

V
1 , . . . ,n

V
k ) be an essential view in S, as

defined in Section 6.4, produced by n honest voters. Let ci = nV
i −nA

i denote the number of votes
for candidate i and N = ∑

k
i=1 ci the number of non-abstaining voters. Then, the probability AS

ρ

that n honest voters produce the view ρ is as follows:

AS
ρ =

(
n

n−N,c1, . . . ,ck

)
pn−N

0 pc1
1 · . . . · p

ck
k

(
N

nA
1 , . . . ,n

A
k

)(
1
k

)N

. (14)
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Proof. For (14), we have to distribute the abstaining voters n−N and the voters that vote for
candidate ci (1 ≤ i ≤ k) among the n honest voters, which gives us the first part of (14). For the
second part, we have to distribute the A-ballots among the voters. Note that the probability that
a voter submits a particular A-ballot is 1

k , independent of the chosen candidate. As the chosen
candidate of a voter and the A-ballot she submitted uniquely determines the pattern she submitted,
the essential view is uniquely determined by the chosen candidates and the A-ballots. From this
(14) follows.

Lemma 12. Let ρ = (nA
1 , . . . ,n

A
k ,n

V
1 , . . . ,n

V
k ,r

A
1 , . . . ,r

A
k ,r

V
1 , . . . ,r

V
k ) be an essential view in S =

Pp+
VAV, as defined in Section 6.4, produced by n honest voters. Let ci = nV

i − nA
i denote the num-

ber of votes for candidate i and N = ∑
k
i=1 ci the number of non-abstaining voters. Then, the

probability AS
ρ that n honest voters produce the view ρ is as follows:

AS
ρ =

(
n

n−N,c1, . . . ,ck

)
pn−N

0 pc1
1 · . . . · p

ck
k

(
N

rA
1 , . . . ,r

A
k ,r

V
1 , . . . ,r

V
k

)(
1
2k

)N

. (15)

Proof. The proof is analogously to the proof of Lemma 11, with the difference that, instead of
distributing the A-ballots among the voters, we now distribute the receipts among the voters. As
every receipt is taken with probability 1

2k (independent of the chosen candidate), and the receipt
together with the chosen candidate uniquely determines the pattern, (15) follows (analogously to
the proof of Lemma 11).

For the simple variant of VAV, in case the voters publish their receipts, we restrict ourself to
the case of two candidates.

Lemma 13. Let ρ = (nA
1 ,n

A
2 ,n

V
1 ,n

V
2 ,r

A
1 ,r

A
2 ,r

V
1 ,r

V
2 ) be an essential view in S = Ps+

VAV, as defined
in Section 6.4, produced by n honest voters. Let ci = nV

i − nA
i denote the number of votes for

candidate i and N = c1 +c2 the number of non-abstaining voters. Then, the probability AS
ρ that n

honest voters produce the view ρ is:

AS
ρ = ∑

τA
11,τ

A
22,τ2,τ

V
22

(
n

n−N,c1,c2

)
pc1

0 pc2
1 pc2

2

(
c1

τV
11,τ

A
11,τ

V
12,τ

A
12,τ1

)(
c2

τV
21,τ

A
21,τ

V
22,τ

A
22,τ2

)
2τV

11+τV
22

(
1
6

)N

Proof. We define the following random variables on Ω1: Let τV
11(ω1) denote the number of voters

that submit a pattern, where candidate 1 is marked on every ballot and a V-ballot is taken as
receipt. Similarly, let τA

11(ω1) denote the number of voters that submit the same pattern, but the
A ballot is taken as receipt. Let τV

12(ω1) denote the number of voters that vote for candidate 1 but
submit an A-ballot for candidate 2 and take the V-ballot for candidate 1 as receipt. Let τA

12(ω1)
denote the number of voters that submit the same pattern but take the A-ballot as receipt. Further,
let τ1(ω1) denote the number of voters that submit the same pattern, but take the V-ballot for
candidate 2 as receipt.

In the similar way we handle the symmetric case: Let τV
22(ω1) denote the number of voters

that submit a pattern, where candidate 2 is marked on every ballot and a V-ballot is taken as
receipt. Let τA

22(ω1) be the number of voters that submit the same pattern, but the A ballot is
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taken as receipt. Let τV
21(ω1) denote the number of voters that vote for candidate 2 but submit an

A-ballot for candidate 1 and take the V-ballot for candidate 2 as receipt. Let τA
21(ω1) denote the

number of voters that submit the same pattern but take the A-ballot as receipt. Finally, let τ2(ω1)
denote the number of voters that submit the same pattern, but take the V-ballot for candidate 1 as
receipt.

Now, we have

AS
ρ = Pr[ρ(ω1) = ρ]

= ∑
τA

11,τ
A
22,τ2,τ

V
22

Pr[ρ(ω1) = ρ,τA
11(ω1) = τ

A
11,τ

A
22(ω1) = τ

A
22,τ2(ω1) = τ2,τ

V
22(ω1) = τ

v
22]

= ∑
τA

11,τ
A
22,τ2,τ

V
22

Pr[Mρ,τA
11,τ

A
22,τ2,τ

V
22 ]

where

Mρ,τA
11,τ

A
22,τ2,τ

V
22 =

= {ω1 : ρ(ω1) = ρ,τA
11(ω1) = τ

A
11,τ

A
22(ω1) = τ

A
22,τ2(ω1) = τ2,τ

V
22(ω1) = τ

V
22}.

By taking a look at the definition of the random variables τA
12(ω1), . . . above, one can easily verify

that the following equations hold true:

nV
1 (ω1) = 2τV

11(ω1) + τV
12(ω1) + τ1(ω1) + τV

21(ω1) + τA
12(ω1) + τA

21(ω1) + 2τA
11(ω1) + + τ2(ω1)

nA
1 (ω1) = τV

11(ω1) + + τV
21(ω1) + + τA

21(ω1) + τA
11(ω1) + + τ2(ω1)

nV
2 (ω1) = τV

12(ω1) + τ1(ω1) + τV
21(ω1) + τA

12(ω1) + τA
21(ω1) + + 2τV

22(ω1) + 2τA
22(ω1) + τ2(ω1)

nA
2 (ω1) = τV

12(ω1) + τ1(ω1) + + τA
12(ω1) + 2τV

22(ω1) + 2τA
22(ω1)

rV
1 (ω1) = τV

11(ω1) + τV
12(ω1) + + τ2(ω1)

rA
1 (ω1) = + τA

21(ω1) + τA
11(ω1)

rV
2 (ω1) = τ1(ω1) + + τV

21(ω1) + + τV
22(ω1)

rA
2 (ω1) = τA

12(ω1) + + τA
22(ω1)

Using the Gaussian elimination algorithm (and the fact that nV
1 (ω1)+ nV

2 (ω1) = 2nA
1 (ω1)+

2nA
2 (ω1) = 2rV

1 (ω1)+2rV
2 (ω1)+2rA

1 (ω1)+ rA
2 (ω1), which is true, as every expression obviously

equals two times the number of voters), we get that the above system of linear equations is equiv-
alent to the following system:

τ
A
12(ω1) = rA

2 (ω1)− τ
A
22(ω1)

τ
A
21(ω1) = rA

1 (ω1)− τ
A
11(ω1)

τ
V
21(ω1) =−nV

1 (ω1)+2nA
1 (ω1)+nA

2 (ω1)− τ
A
21(ω1)− τ

A
22(ω1)− τ2(ω1)− τ

V
22(ω1)

τ1(ω1) = nV
1 (ω1)−nA

1 (ω1)− τ
A
11(ω1)− τ

A
12(ω1)− rV

1 (ω1)+ τ2(ω1)

τ
V
12(ω1) = nV

1 (ω1)−2nA
1 (ω1)− τ

A
12(ω1)+ τ

A
21(ω1)+ τ2(ω1)+ τ

V
21(ω1)− τ1(ω1)

τ
V
11(ω1) = nA

1 (ω1)− τ2(ω1)− τ
A
21(ω1)− τ

V
21(ω1)− τ

A
11(ω1).

whose equations, therefore, also hold true.
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From this, we immediately get that every element of Mρ,τA
11,τ

A
22,τ2,τ

V
22 is included in the set

M̃ρ,τA
11,τ

A
22,τ2,τ

V
22 = {ω1 : τ

A
11(ω1) = τ

A
11,τ

A
22(ω1) = τ

A
22,τ2(ω1) = τ2,τ

V
22(ω1) = τ

v
22

τ
A
12(ω1) = τ

A
12,τ

A
21(ω1) = τ

A
21,τ

V
21(ω1) = τ

V
21,τ1(ω1) = τ1,

τ
V
12(ω1) = τ

V
12,τ

V
11(ω1) = τ

V
11 }

where

τ
A
12 = rA

2 − τ
A
22

τ
A
21 = rA

1 − τ
A
11

τ
V
21 =−nV

1 +2nA
1 +nA

2 − τ
A
21− τ

A
22− τ2− τ

V
22

τ1 = nV
1 −nA

1 − τ
A
11− τ

A
12− rV

1 + τ2

τ
V
12 = nV

1 −2nA
1 − τ

A
12 + τ

A
21 + τ2 + τ

V
21− τ1

τ
V
11 = nA

1 − τ2− τ
A
21− τ

V
21− τ

A
11.

Furthermore, one can use the above equations and the fact that nV
1 +nV

2 = 2nA
1 +2nA

2 = 2rV
1 +2rV

2 +

2rA
1 + rA

2 , to show that every element ω1 of M̃ρ,τA
11,τ

A
22,τ2,τ

V
22 is also an element of Mρ,τA

11,τ
A
22,τ2,τ

V
22 .

For example, to show that rA
2 (ω1) = rA

2 we use the equation rA
2 (ω1) = τA

12(ω1)+ τA
22(ω1) and the

facts τA
12(ω1) = τA

12 = rA
2 − τA

22 and τA
22(ω1) = τA

22.
Therefore

AS
ρ = ∑

τA
11,τ

A
22,τ2,τ

V
22

Pr[M̃ρ,τA
11,τ

A
22,τ2,τ

V
22 ]. (16)

We now compute Pr[M̃ρ,τA
11,τ

A
22,τ2,τ

V
22 ]. First, a simple calculation yields that the probability that a

voter marks the same candidate on all three simple ballots and takes V-ballot as receipt is 1
3 ; the

probability for all other patterns is 1
6 . We obtain:

Pr[M̃ρ,τA
11,τ

A
22,τ2,τ

V
22 ] =

(
n

n−N,c1,c2

)
pc1

0 pc2
1 pc2

2 (17)

·
(

c1

τV
11,τ

A
11,τ

V
12,τ

A
12,τ1

)(
1
3

)τV
11
(

1
6

)τA
11
(

1
6

)τV
12
(

1
6

)τA
12
(

1
6

)τ1

(18)

·
(

c2

τV
21,τ

A
21,τ

V
22,τ

A
22,τ2

)(
1
3

)τV
22
(

1
6

)τA
21
(

1
6

)τV
21
(

1
6

)τA
22
(

1
6

)τ2

(19)

Here, for (17) we distributed the abstaining voters, the voters for candidate 1 and the voters
for candidate 2 among the n voters. For (18), we distributed the different possible patterns for
candidate 1 among c1 voters for candidate 1 and analogously for (19) for candidate 2.

From this and equation (16), we obtain the formula in Lemma 13.

E.2.2 Formulas for privacy

From the above lemmas, we get the following formulas for privacy.
In the following, we denote by Zi

j the pattern (a filled out multi ballot) which is a vote for
candidate i, where candidate j is marked on A-ballot. Let ρ −Zi

j be the essential view obtained
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from ρ by removing Zi
j, that is by removing a V-ballot for candidate i, a V-ballot for candidate j,

and an A-ballot for j.

Lemma 14. Let S ∈ {Pp−
VAV,P

s−
VAV} and ρ = (nA

1 , . . . ,n
A
k ,n

V
1 , . . . ,n

V
k ) be an essential view in S

produced by n honest voters and the voter under observation. Then we have

AS
ρ,i =

1
k

k

∑
j=1

AS
ρ−Zi

j
.

Proof. Clearly, AS
ρ−Zi

j
is the probability that the essential view is ρ , given that the voter under

observation votes for candidate i and submits an A-ballot for j. The probability that the voter
under observation submits an A-ballot for candidate j is 1

k . Hence, ∑
k
j=1

1
k AS

ρ−Zi
j

gives us the

probability for the essential view ρ , given that the voter under observation votes for candidate i
(and submits and arbitrary A-ballot).

Lemma 15. Let ρ = (nA
1 , . . . ,n

A
k ,n

V
1 , . . . ,n

V
k ,r

A
1 , . . . ,r

A
k ,r

V
1 , . . . ,r

V
k ,r) be an essential view in S =

Pp+
VAV produced by n honest voters and the voter under observation. Let j be the candidate marked

on the ballot r. Then we have
AS

ρ,i =
1
2k

AS
ρ−Zi

j
.

Proof. Clearly, AS
ρ−Zi

j
is the probability that the essential view is ρ , given that the voter under

observation votes for candidate i and has a receipt where candidate j is marked (note that, in the
system Pp+

VAV, the candidate marked on the A-ballot is j). The probability that the voter under
observation has the receipt r is 1

2k . From this, the formula follows.

In the following lemma, we denote by Ax
o an A-ballot with marked first candidate. In the

analogous way, we define Ao
x , V x

o, and V o
x . Also, ρ̃ denotes the essential view without the receipt

of the voter under observation.

Lemma 16. Let ρ = (nA
1 ,n

A
2 ,n

V
1 ,n

V
2 ,r

A
1 ,r

A
2 ,r

V
1 ,r

V
2 ,r) be an essential view in S = Ps+

VAV produced
by n honest voters and the voter under observation. Let r be a ballot where candidate j is marked.
Then we have

AS
ρ,1 =



1
6 AS

ρ̃−Z1
1
, r = Ax

o

1
6 AS

ρ̃−Z1
2
, r = Ao

x

1
6 AS

ρ̃−Z1
2
, r =V o

x

1
3 AS

ρ̃−Z1
1
+ 1

6 AS
ρ−Z1

2
, r =V x

o

AS
ρ,2 =



1
6 AS

ρ̃−Z2
2
, r = Ao

x

1
6 AS

ρ̃−Z2
1
, r = Ax

o

1
6 AS

ρ̃−Z2
1
, r =V x

o

1
3 AS

ρ̃−Z2
2
+ 1

6 AS
ρ−Z2

1
, r =V o

x

where ρ̃ −Zi
j is obtained from ρ by removing the receipt of the voter under observation and a

V-ballot for candidate i, a V-ballot for candidate j, and an A-ballot for candidate j.

Proof. We now focus on AS
ρ,1, the case of AS

ρ,2 is similar.
Note that, if r = V x

o, then the pattern is not uniquely determined. Here, either on all ballots
candidate 1 is marked or on one V-ballot and on the A-ballot, candidate 2 is marked. The proba-
bility that a voter that votes for candidate 1 takes the receipt V x

o and marks candidate 1 on all three
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ballots is 1
3 , whereas the probability that a voter that votes for candidate 1 takes V x

o as receipt and
marks candidate 2 on the remaining ballots is 1

6 .
In the following, we will use the following random variables on Ω1: ρ(ω1) is the essential

view determined by ω1, ρ̃(ω1) is the essential view without the receipt of the voter under obser-
vation, r(ω1) is the receipt of the voter under observation determined by ω1, Z0(ω1) is the pattern
of the voter under observation (as determined by ω1), and v0(ω1) is the candidate chosen by this
voter. We have

As+
ρ,1 = Prω1 [ρ(ω1) = ρ | v0(ω1) = 1]

= Prω1 [ρ(ω1) = ρ,Z0(ω1) = Z1
1 | v0(ω1) = 1]+

+Prω1 [ρ(ω1) = ρ,Z0(ω1) = Z1
2 | v0(ω1) = 1] =

= Prω1 [ρ̃(ω1) = ρ̃,Z0(ω1) = Z1
1 ,r(ω1) =V x

o | v0(ω1) = 1]+

+Prω1 [ρ̃(ω1) = ρ̃,Z0(ω1) = Z1
2 ,r(ω1) =V x

o | v0(ω1) = 1] =

= Prω1 [ρ̃(ω1) = ρ̃ | Z0(ω1) = Z1
1 ] ·Prω1 [Z0(ω1) = Z1

1 ,r(ω1) =V x
o | v0(ω1) = 1]+

+Prω1 [ρ̃(ω1) = ρ̃ | Z0(ω1) = Z1
2 ] ·Prω1 [Z0(ω1) = Z1

2 ,r(ω1) =V x
o | v0(ω1) = 1] =

=
1
3
·As+

ρ̃−Z1
1
+

1
6
·As+

ρ̃−Z1
2
.

The cases r = Ax
o, r = Ao

x , and r =V o
x are analogous (and simpler, as in these cases the pattern

is uniquely determined).

E.2.3 Formulas for Coercion-Resistance

From Lemma 11, we also get the following formula for coercion-resistance:

Lemma 17. Let S ∈ {Pp−
VAV,P

s−
VAV,P

p+
VAV,P

s+
VAV} and ρ = (nA

1 , . . . ,n
A
k ,n

V
1 , . . . ,n

V
k ) be an essential

view in S produced by n honest voters and the coerced voter. Let Z be an arbitrary pattern. Then
we have

AS
ρ,Z = AS

ρ−Z ,

where ρ−Z results from ρ by removing the ballots of Z.

Proof. This formula follows directly from the definition.

F Proofs of Theorem 5
In this section, we prove Theorem 5. The proof for the ThreeBallot protocol (that is for Po+

TB, Po−
TB,

Pp+
TB, and Pp−

TB,) is given in [19]. Therefore, we only need to focus on VAV (Ps+
VAV, Ps−

VAV, Pp+
VAV,

and Pp−
VAV). In the following, we will only deal with the case where the coercer can see the receipt

of the voters (i.e. we will consider the systems Ps+
VAV and Pp+

VAV). Proofs for Ps−
VAV and Pp−

VAV are
similar (and simpler).

For a coercer’s view η , let f (η) denotes the pattern that, in a run with η , the coercer requires
the coerced voter to use, if any (otherwise, f (η) is undefined). Since in the systems we consider,
this patterns depends only on ω2, we will also denote it by f (ω2).
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We use the same notations as in Appendix D with the following exceptions: ω1 ∈Ω1 now only
determines the choices and the submitted patterns of the honest voters (recall that in Appendix D,
ω1 also determined the way the voter under observation votes for candidate j in π̂v( j) ). The
receipt of the coerced voter is not included in Rec and rec. Further, let ϕη be a predicate over
Ω1 such that ϕη(ω1) iff ρ( f (η),ω1) = ρ(η) and Rec(ω1) = Rec(η), and, similarly, ϕ̃η(ω1) be a
predicate which holds iff ρ(C( f (η), i),ω1)= ρ(η) and Rec(ω1)=Rec(η), Recall that, according
to the considered goal γi, i is the candidate the coerced voter wants to vote for.

Further, let c be now a program of the coercer. Let T = (c ‖ dum ‖ eS) and T̃ = (c ‖ ṽ ‖ eS).
We now show that the view of the coercer is information-theoretically independent of the

choices of honest voters and the coerced voter as long as these choices are consistent with the
essential view and the order of the receipts. This is formally stated in Lemma 19 below. The
following lemma, which is the counterpart of Lemma 3 from Appendix D, is the core fact used to
prove Lemma 19.

Lemma 18. Let η be a view of the coercer such that f (η) is defined. Let ω1,ω
′
1,ω

′′
1 ,ω

′′′
1 be

arbitrary elements of Ω1 with ϕη(ω1), ϕη(ω
′
1), ϕ̃η(ω

′′
1 ) and ϕ̃η(ω

′′′
1 ). Then the sets

A = {ω2 : T (ω1,ω2) 7→ η}, B = {ω2 : T (ω ′1,ω2) 7→ η},
C = {ω2 : T̃ (ω ′′1 ,ω2) 7→ η}, D = {ω2 : T̃ (ω ′′′1 ,ω2) 7→ η}

have the same cardinality, and hence, have the same probability.

The proof of this lemma is very similar to the proof of Lemma 3. Using Lemma 18, one can
prove the following lemma (the proof is very similar to the proof of Lemma 4).

Lemma 19. Let η be a coercer view such that f (η) is defined. Let ω
η

1 and ω̃
η

1 be some fixed
elements of Ω1 such that ϕη(ω

η

1 ) and ϕ̃η(ω̃
η

1 ), respectively. Then, the following equations hold
true:

Pr[T 7→ η ] = Prω1 [ϕη(ω1)] ·Prω2 [T (ω
η

1 ,ω2) 7→ η ] (20)

Pr[T̃ 7→ η ] = Prω1 [ϕ̃η(ω1)] ·Prω2 [T̃ (ω̃
η

1 ,ω2) 7→ η ] (21)

Prω2 [T (ω
η

1 ,ω2) 7→ η ] = Prω2 [T̃ (ω̃
η

1 ,ω2) 7→ η ] . (22)

Now, using Lemma 19, we can link the level of coercion-resistance VAV provides with the
optimal bound δ S

CR stated in Section 6.4. Clearly we have:

Prω1 [ϕη(ω1)] = Prω1 [ρ( f (η),ω1) = ρ(η), Rec(ω1) = Rec(η)]

= Prω1 [ρ( f (η),ω1) = ρ(η)] ·Prω1 [Rec(ω1) = Rec(η) | ρ( f (η),ω1) = ρ(η)]

= A f (η)
ρ(η)
·Prω1 [Rec(ω1) = Rec(η) | ρ( f (η),ω1) = ρ(η)]

and, similarly,

Prω1 [ϕ̃η(ω1)] = AC( f (η),i)
ρ(η)

·Prω1 [Rec(ω1) = Rec(η) | ρ(C( f (η), i),ω1) = ρ(η)].

Furthermore, it is easy to show that given two essential views with the same number of receipts
of every type (and otherwise possibly different information on the bulletin board), the probability
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of obtaining a specific vector of receipts (which links receipts and voters) stays the same. From
this it follows:

Prω1 [Rec(ω1) = Rec(η) | ρ( f (η),ω1) = ρ(η)] =

= Prω1 [Rec(ω1) = Rec(η) | ρ(C( f (η), i),ω1) = ρ(η)]

= Prω1 [Rec(ω1) = Rec(η) | rec(ω1) = rec(η)].

Together with Lemma 19, we immediately obtain for all η such that f (η) is defined and for all
ω

η

1 with ϕη(ω
η

1 ):

Pr[T 7→ η ]−Pr[T̃ 7→ η ] =
(
A f (η)

ρ(η)
−AC( f (η),i)

ρ(η)

)
·

·Prω2 [T (ω
η

1 ,ω2) 7→ η ] ·Prω1 [Rec(ω1) = Rec(η) | rec(ω1) = rec(η)].

Note that if there does not exist ω̃
η

1 such that ϕ̃η(ω̃
η

1 ), then AC( f (η),i
ρ(η)

= 0 and Pr[T̃ 7→ η ] = 0.

Now, we are ready to prove that S ∈ {Ps+
VAV,P

p+
VAV} is δ -coercion resistant w.r.t. Ṽi for δ =

δ S
CR(n,k,~p).

Let M be the set of views that are accepted by the program c of the coercer, i.e., for which
the coercer outputs 1. In what follows, let Z range over the set of all possible patterns, ρ over all
essential views, η over all views of the coercer, and Rec over all possible vectors of receipts. We
abbreviate C(Z, i) by C(Z). Finally, let Mρ,Rec

Z = {η ∈M : f (η) = Z, Rec(η) = Rec, and ρ(η) =

ρ}. For Z,ρ,Rec with Mρ,Rec
Z 6= /0 let ω

Z,ρ,Rec
1 be an arbitrary element of Ω1 with ρ(Z,ωZ,ρ,Rec

1 ) =

ρ and Rec(ωZ,ρ,Rec
1 ) = Rec. Then we have ϕη(ω

Z,ρ,Rec
1 ) for all η ∈Mρ,Rec

Z . We have:

Φ = Pr[T 7→ 1]−Pr[T̃ 7→ 1]
= Pr[T 7→M]−Pr[T̃ 7→M]

= ∑
Z

∑
ρ

∑
Rec

∑
η∈Mρ,Rec

Z

(
Pr[T 7→ η ]−Pr[T̃ 7→ η ]

)
= ∑

Z
∑
ρ

(AZ
ρ −AC(Z)

ρ )∑
Rec

∑
η∈Mρ,Rec

Z

Prω2 [T (ω
Z,ρ,Rec
1 ,ω2) 7→ η ]

·Prω1 [Rec(ω1) = Rec | rec(ω1) = rec(ρ)].

For the third equation we use the fact that Pr[T 7→ η ]−Pr[T̃ 7→ η ] = 0, if f (η) is not defined, as
in this case T and T̃ coincide. With MS

Z = MS
Z,i as defined in Section 6.4, we get:

Φ≤∑
Z

∑
ρ∈MS

Z

(AS
ρ,Z−AS

ρ,C(Z))∑
Rec

∑
η∈Mρ,Rec

Z

Prω2 [T (ω
Z,ρ,Rec
1 ,ω2) 7→ η ]

·Prω1 [Rec(ω1) = Rec | rec(ω1) = rec(ρ)]

Now, by the definition of Mρ,Rec
Z , for η ∈ Mρ,Rec

Z , we have f (η) = Z and, because f (η) de-
pends only on ω2, we know that T (ωZ,ρ,Rec

1 ,ω2) 7→ η implies f (ω2) = Z. Therefore, we have
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∑
η∈Mρ,Rec

Z
Prω2 [T (ω

Z,ρ,Rec
1 ,ω2) 7→ η ]≤ Prω2 [ f (ω2) = Z]. With this, we obtain:

Φ ≤ ∑
Z
Prω2 [ f (ω2) = Z] ∑

ρ∈MS
Z

(AZ
ρ −AC(Z)

ρ ) (23)

∑
Rec

Prω1 [Rec(ω1) = Rec | rec(ω1) = rec(ρ)]≤ (24)

≤ ∑
Z
Prω2 [ f (ω2) = Z] ∑

ρ∈MS
Z

(AS
ρ,Z−AS

ρ,C(Z)) (25)

≤ ∑
Z
Prω2 [ f (ω2) = Z] ·δ (26)

≤ δ . (27)

This shows that S is δ -coercion resistant w.r.t. Ṽi. It remains to show that δ is optimal.
Let us consider the program c of the coercer which requests the coerced voter to vote using

Z∗ and accepts a view η only if ρ(η) is in MS
Z∗,i, where MS

Z,i is as defined in Section 6.4, and Z∗

is a pattern with

max
Z

∑
ρ∈MS

Z,i

(AS
ρ,Z−AS

ρ,C(Z)) = ∑
ρ∈MS

Z∗ ,i

(AS
ρ,Z∗ −AS

ρ,C(Z∗)).

With this program c of the coercer we have, for each essential view ρ:

Pr[T 7→ ρ] = AS
ρ,Z∗ and Pr[T̃ 7→ ρ] = AS

ρ,C(Z∗) .

We immediately obtain:

Φ = ∑
ρ∈MS

Z∗ ,i

(
Pr[T 7→ ρ]−Pr[T̃ 7→ ρ]

)
= ∑

ρ∈MS
Z∗ ,i

(
AS

ρ,Z∗ −AS
ρ,C(Z∗)

)
= δ , (28)

which shows that S is not δ ′-coercion resistant for any δ ′ < δ , in case the counter-strategy ṽ is
used. To complete the proof of Theorem 5, we need to show that every other counter-strategy ṽ′

does not yield a smaller δ .
First, note that every reasonable counter-strategy ṽ′ should, up to a negligible set of runs, (a)

cast ballots only when instructed by the coercer, (b) in case instructed by the coercer to cast a bal-
lot, cast a ballot for candidate i, and (c) take the receipt requested by the coercer. Failing to meet
(b) would mean that ṽ′ /∈ Ṽi. Conversely, to guarantee that ṽ′ ∈ Ṽi, the coerced voter only needs
to vote if instructed by the coercer. Therefore, it is clear that in order to be as indistinguishable
from the dummy strategy as possible, a counter-strategy should only cast a ballot if instructed
to do so by the coercer, which explains (a). As for (c), it is clear that if a counter-strategy takes
a receipt different from the one requested by the coercer, the coercer can easily distinguish this
strategy from the dummy strategy. Therefore, ṽ′ must be like ṽ, up to the response in case it is
instructed to vote for some j 6= i according to a pattern where the coercer demands a V-receipt
for candidate i. Let Z be the set of such patterns. For Z0 ∈Z , a counter-strategy may mark an
arbitrary candidate on the remaining two ballots (one of these responses can be chosen randomly,
according to some strategy). Recall from Section 6.4 that the response of the counter-strategy ṽ,
C(Z0), marks in this case candidate i also on the remaining ballots. Let C′(Z) =C′(Z, i) denotes
the response of the counter-strategy ṽ′ to a pattern Z. We also know that C′(Z) =C(Z) for every
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Z /∈ Z . As just explained, for Z0 ∈ Z , C′(Z0) has k choices which could be chosen randomly.
For simplicity of the argument, we assume that C′(Z0) always marks some candidate j on the
remaining ballots; the case of a randomized choice can be treated similarly.

Let c be the program of the coercer which requests the coerced voter to vote using Z? and
accepts a view η only if ρ(η) is in M̃S

Z?,i, where M̃S
Z,i = {ρ : AS

ρ,Z ≥ AS
ρ,C′(Z)}, and Z? is a pattern

such that
max

Z
∑

ρ∈M̃S
Z,i

(AS
ρ,Z−AS

ρ,C′(Z)) = ∑
ρ∈M̃S

Z?,i

(AS
ρ,Z? −AS

ρ,C′(Z?)) .

With this, analogously to (28), we have:

Φ̃ = Pr[(c ‖ dum ‖ eS) 7→ 1]−Pr[(c ‖ ṽ′ ‖ eS) 7→ 1] = ∑
ρ∈M̃S

Z?,i

(AS
ρ,Z−AS

ρ,C′(Z?)).

Hence it remains to show that

max
Z

∑
ρ∈M̃S

Z,i

(AS
ρ,Z−AS

ρ,C′(Z))≥max
Z

∑
ρ∈MS

Z,i

(AS
ρ,Z−AS

ρ,C(Z)) = δ .

For Z0 ∈Z , let Z′0 be as Z0 with the only difference that now the A-ballot for candidate i has
to be taken as receipt. Then C′(Z′0) is uniquely determined and equal to C(Z′0). As the receipt of
the coerced voter is not part of the essential view, we have, for all ω1:

ρ(Z′0,ω1) = ρ(Z0,ω1) and ρ(C(Z′0),ω1) = ρ(C(Z0),ω1).

It follows
∑

ρ∈MS
Z′0 ,i

(AS
ρ,Z′0
−AS

ρ,C(Z′0)
) = ∑

ρ∈MS
Z0 ,i

(AS
ρ,Z0
−AS

ρ,C(Z0)
). (29)

Now, we obtain:

max
Z

∑
ρ∈M̃S

Z,i

(AS
ρ,Z−AS

ρ,C′(Z))≥max
Z /∈Z

∑
ρ∈M̃S

Z,i

(AS
ρ,Z−AS

ρ,C′(Z))

= max
Z /∈Z

∑
ρ∈MS

Z,i

(AS
ρ,Z−AS

ρ,C(Z))

= max
Z

∑
ρ∈MS

Z,i

(AS
ρ,Z−AS

ρ,C(Z)),

where the last equation follows from (29). This concludes the proof of Theorem 5.

G Relationship between some constants
The following theorem states that the level of privacy of ThreeBallot and VAV in the case

S ∈ {Po−
TB,P

p−
TB,P

s−
VAV,P

p−
VAV,P

p+
VAV} is as good as the level of privacy of the ideal protocol

(which only reveals the result of the election).

Theorem 8. Let S ∈ {Po−
TB,P

p−
TB,P

s−
VAV,P

p−
VAV,P

p+
VAV}. Then we have δ S

Priv = δPriv, where δPriv is
the level of privacy the ideal protocol achieves.
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Proof. Let S = Po−
TB and let ρ = (nx

x
,nx

o
,no

x
) be an essential view of S. By f (ρ) we denote the pure

result determined by ρ . Let (N,R,r) = f (ρ). Note that N is the number of abstaining voters and
R is the number of votes for candidate 1.
1. We show that AS

ρ,2 ≥ AS
ρ,1⇔ A2

f (ρ) ≥ A1
f (ρ) where Ai

f (ρ) is as in Section 6.1. By Lemma 9 and
Lemma 5, we have

AS
ρ,1 =

2
3

AS
ρ−x

x
x
o
o
o
+

1
3

AS
ρ−x

o
x
o
o
x
=

=

(
n

N−1

)(
N−1
R−1

)
pn−N+1

0 pR−1
1 pN−R

2
2
3

(
N−1
nx
x
−1

)(
2
3

)nx
x
−1(1

3

)N−nx
x

+

+

(
n

N−1

)(
N−1
R−1

)
pn−N+1

0 pR−1
1 pN−R

2
1
3

(
N−1

nx
x

)(
2
3

)nx
x
(

1
3

)N−nx
x
−1

=

(
n

N−1

)(
N−1
R−1

)
pn−N+1

0 pR−1
1 pN−R

2

(
2
3

)nx
x
(

1
3

)N−nx
x
((

N−1
nx
x
−1

)
+

(
N−1

nx
x

))
=

=

(
n

N−1

)(
N−1
R−1

)
pn−N+1

0 pR−1
1 pN−R

2

(
N
nx
x

)(
2
3

)nx
x
(

1
3

)N−nx
x

and

AS
ρ,2 =

(
n

N−1

)(
N−1

R

)
pn−N+1

0 pR
1 pN−R−1

2

(
N
nx
x

)(
2
3

)nx
x
(

1
3

)N−nx
x

.

From this, we get

AS
ρ,2−AS

ρ,1 =

(
N
nx
x

)(
2
3

)nx
x
(

1
3

)N−nx
x

·

·
((

n
N−1

)(
N−1
R−1

)
pn−N+1

0 pR−1
1 pN−R

2 −
(

n
N−1

)(
N−1

R

)
pn−N+1

0 pR
1 pN−R−1

2

)
≥ 0

if and only if(
n

N−1

)(
N−1
R−1

)
pn−N+1

0 pR−1
1 pN−R

2 −
(

n
N−1

)(
N−1

R

)
pn−N+1

0 pR
1 pN−R−1

2 ≥ 0,

i.e., A2
f (ρ) ≥ A1

f (ρ).

2. Now, we show that for all essential views~r = (N∗,R∗,r∗), we have ∑ρ: f (ρ)=~r AS
ρ,i =Ai

~r. Indeed,
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we have

∑
ρ: f (ρ)=~r

AS
ρ,1 = ∑

ρ: f (ρ)=~r

(
n

N∗−1

)(
N∗−1
R∗−1

)
pn−N∗+1

0 pR∗−1
1 pN∗−R∗

2 ·

·
(

N∗

nx
x

)(
2
3

)nx
x
(

1
3

)N∗−nx
x

=

=

(
n

N∗−1

)(
N∗−1
R∗−1

)
pn−N∗+1

0 pR∗−1
1 pN∗−R∗

2 ·

· ∑
ρ: f (ρ)=~r

(
N∗

nx
x

)(
2
3

)nx
x
(

1
3

)N∗−nx
x

=

=

(
n

N∗−1

)(
N∗−1
R∗−1

)
pn−N∗+1

0 pR∗−1
1 pN∗−R∗

2 = Ai
~r.

Here, we used that, for every nx
x
∈ {0, . . . ,N∗}, the equation f (nx

x
,nx

o
,no

x
) =~r has exactly one

solution nx
o
(nx

x
,N∗,R∗),no

x
(nx

x
,N∗,R∗), and it has no solutions with nx

x
/∈ {0, . . . ,N∗} and, there-

fore

∑
ρ: f (ρ)=~r

(
N∗

nx
x

)(
2
3

)nx
x
(

1
3

)N∗−nx
x

=
N∗

∑
nx
x
=0

(
N∗

nx
x

)(
2
3

)nx
x
(

1
3

)N∗−nx
x

= 1.

3. We conclude:

∑
ρ∈MS

j,i

(
AS

ρ,i−AS
ρ, j

)
= ∑

ρ: f (ρ)∈M∗j,i

(
AS

ρ,i−AS
ρ, j

)
=

= ∑
~r∈M∗j,i

∑
ρ: f (ρ)=~r

(
AS

ρ,i−AS
ρ, j

)
= ∑

~r∈M∗j,i

(
Ai
~r−A j

~r

)
By taking the maximum on both sides, the proof is done for S = Po−

TB.

For S ∈ {Pp−
TB,P

s−
VAV,P

p−
VAV,P

p+
VAV} the proofs are analogous, where, in step 1, we have to use the

multinomial equivalent to (
N−1
`−1

)
+

(
N−1
`

)
=

(
N
`

)
,

namely
k

∑
j=1

(
N−1

`1, . . . , ` j−1, . . . , `k

)
=

(
N

`1, . . . , `k

)
,

where `1 + · · ·+ `k = N.
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