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Abstract. In this paper we consider anonymity in the context of Broadcast Encryption (BE). This
issue has received very little attention so far and all but one of the currently available BE schemes fail
to provide anonymity. Yet, we argue that it is intrinsically desirable to provide anonymity in standard
applications of BE and that it can be achieved at a moderate cost. We provide a security definition for
Anonymous Broadcast Encryption (ANOBE) and show that it is achievable assuming only the existence
of IND-CCA secure public key encryption (PKE). Focusing on reducing the size of ciphertexts, we then
give two generic constructions for ANOBE. The first is from any anonymous (key-private) IND-CCA
secure PKE scheme, and the second is from any IBE scheme that satisfies a weak security notion in
the multi-TA setting. Furthermore, we show how randomness re-use techniques can be deployed in
the ANOBE context to reduce computational and communication costs, and how a new cryptographic
primitive – anonymous hint systems – can be used to speed up the decryption process in our ANOBE
constructions. Finally, we present a slightly modified version of the Kurosawa-Desmedt (KD) PKE
scheme (establishing several results about this scheme that may be of independent interest) and use
it to instantiate our first main construction, yielding the currently most efficient ANOBE scheme. All
of our results are in the standard model, achieving fully collusion-resistant ANOBE schemes secure
against adaptive IND-CCA adversaries.
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1 Introduction

Anonymity. In a world that is increasingly relying on digital technologies, addressing the issue
of protecting users’ privacy is of crucial importance. This is reflected by the great attention given
to anonymity in all the main fields of modern cryptography. In the area of Public-Key Encryption
(PKE), anonymity is often referred to as key-privacy [6]. This notion captures the property that
an eavesdropper is not able to tell under which one of several public keys a ciphertext was created.
The analogous concept in the ID-based setting was studied in [1,13]. The benefit of preserving
receivers’ privacy is relevant in more elaborate systems involving for example Hierarchical IBE
[12], Attribute-Based Encryption (ABE) or Predicate Encryption [31], where achieving anonymity
guarantees becomes increasingly challenging. Furthermore, in the context of digital signatures, a
number of primitives effectively rely on anonymity – group signatures [18], anonymous credentials
[17] and e-cash [16] are well-known examples of this.

Broadcast Encryption. Broadcast Encryption (BE) addresses the issue of confidentially broad-
casting a message to an arbitrary subset drawn from a universe of users. We will call the universe of
n users U and the target, or privileged, set S, where S ⊆ U . Since its introduction in 1993 by Fiat
and Naor [25], various flavours of BE have been introduced: the scheme can be in a symmetric or
asymmetric setting; the set of receivers could be static or dynamic; revocation and traitor-tracing
algorithms could be integrated into the system, users’ keys might or might not be updated and



then forward secrecy may be achieved. We refer to some of the relevant work in the area and the
references therein [25,38,22,45,9,20,19,29]. One of the fundamental properties of a BE scheme is
collusion resistance in the sense that no coalition of users in U \ S should be able to recover the
message. In the literature we can find several schemes that resist collusion attacks mounted by
coalitions of at most t < n users; only some schemes are fully collusion-resistant, i.e. they can
tolerate attacks by coalitions of any size. For the purpose of this paper, we will consider systems
that are public-key, allow stateless receivers (users that are not required to update their private
keys) and are fully collusion-resistant. These are by now standard objectives for a BE scheme in
the public-key setting.

Several additional practical aspects need to be taken into consideration, especially in view of the
real-life applications of BE: strength of security notions, public and private storage requirements,
ciphertext length, and computational costs. The specific nature of the primitive has led researchers
to focus in particular on solutions having ciphertexts that are as short as possible. In this respect,
the results of [9] and [29] are nearly optimal. However, designing BE schemes for real-life applica-
tions to broadcasting should not only involve efficiency and confidentiality issues. In particular, the
privacy of users should be protected as much as possible. We believe that, to date, this aspect has
not been adequately dealt with. Our study of the literature reveals that anonymity in BE has only
been considered in a single paper [5], in the context of encrypted file systems3. Surprisingly, almost
all subsequent work on BE has ignored the issue of anonymity. Moreover, as we shall explain below,
state-of-the-art BE schemes are inherently incapable of providing any kind of anonymity.

Anonymity in Broadcast Encryption. According to commonly accepted definitions [29,10,19],
a BE scheme consists of four algorithms: Setup, KeyGen, Enc and Dec. Each user in the system
can obtain his private key from the KeyGen algorithm, and the sender can choose an arbitrary
target set of users S to which he wishes to broadcast a message. To decrypt, a legitimate user, i.e.
a user in S, has to run the decryption algorithm on input the ciphertext, his private key and a
description of the target set S. This set S is required specifically as an input to Dec in the existing
definitions of BE. Hence the user needs to somehow know to which set S the message was broadcast,
otherwise he cannot decrypt. Unfortunately, solving this problem is not just a matter of removing
this requirement from the model, as current schemes explicitly rely on S as an input to Dec for
decryption to work. Thus these schemes cannot provide any anonymity.

This limitation in the existing BE model and schemes clearly causes serious privacy issues:
imagine we deploy a BE scheme, as defined above, for television broadcasting. Suppose the privileged
set is the set of all users who have paid a subscription to a certain channel. Each customer should
have access to that channel using his private key. The problem is that, to decrypt, he will have to
know who else has paid for the specific subscription! Not only is this requirement very inconvenient
for the practical deployment of BE schemes, it is also a severe violation of the individual subscriber’s
privacy. Ideally, a BE scheme should protect users’ privacy by guaranteeing that ciphertexts do not
leak any information about the privileged set S.

Current BE schemes such as those in [29,10,19] do not account for the cost of broadcasting a
description of S when calculating the size of ciphertexts. In the most general usage scenario intended
for BE, where S is dynamic and may be unpredictable from message to message, the ciphertexts
in such schemes must effectively include a description of S as part of the ciphertexts themselves.

3 We observe that [30] addresses the issue of hiding the identity of the sender in a broadcast protocol, which is not
what we intend by anonymous broadcast encryption.
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This means that the true ciphertext size in these schemes is linear in n rather than constant-size,
as a cursory examination of the schemes might suggest4. However, achieving linear-sized ciphertext
is already an impressive achievement, since there is a simple counting argument showing that, for
a universe of n users in which every possible subset S should be reachable by secure broadcast,
ciphertexts must contain at least n bits.

Further Details on Related Work. As mentioned above, the only prior work addressing the
issue of anonymity in BE appears to be that of Barth et al. [5] (there, it is called privacy). In
[5], several BE systems used in practice were examined with respect to anonymity. In addition,
a generic construction for a BE scheme using a key-private, IND-CCA secure PKE scheme was
given, with the scheme achieving anonymity and IND-CCA security against static adversaries. The
construction encrypts the message for each intended receiver using the PKE scheme, and then
ties together the resulting ciphertexts using a strongly secure one-time signature. Barth et al.
[5] also provided a technique which can be used to speed-up decryption, but this technique was
only analysed in the Random Oracle Model. In [11] the authors provide a private linear broadcast
encryption (PLBE) scheme to realise a fully collusion-resistant traitor-tracing scheme. A PLBE,
however, is a BE system with limited capabilities (i.e. it cannot address arbitrary sets of users) and
hence this work does not provide a solution to the problem considered so far.

In a very recent work [24] that builds on [5] and this paper, the authors have given constructions
for anonymous broadcast encryption schemes with compact ciphertexts, but using a much weaker
notion of anonymity that does not seem to relate very closely to real-world requirements.

There is much work, both cryptographic and non-cryptographic, on pseudonymous systems. In
principle, pseudonyms could be used to enhance the anonymity of BE schemes: now users would
not be identifiable directly, since a certificate would link a public key to a pseudonym rather than
a real name. However, ciphertexts would still be linkable, in the sense that it would be possible to
detect if two ciphertexts were intended for the same set of recipients or not. The approach we take
here offers much stronger levels of privacy, removing ciphertext linkability in particular.

Our Contributions. Despite its importance, anonymous broadcast encryption has not received
much attention since the initial work of Barth et al. [5]. This paper aims to raise the profile of this
neglected primitive.

We start by giving a unified security definition for Anonymous Broadcast Encryption (ANOBE).
Instead of separating anonymity and confidentiality as in [5], we use a combined security notion
for ANOBE which helps to streamline our presentation and proofs. In addition, we strengthen the
model to allow the adversary to make adaptive corruptions, with all of our constructions achieving
security in this setting. In contrast, the definition of [5] is static, requiring the adversary to choose
whom to corrupt before seeing the public keys in the system. As a first step we show that our
enhanced security definition is indeed satisfiable: adaptively secure ANOBE can be built based
only on the existence of IND-CCA secure PKE (without requiring the base PKE scheme to have
any anonymity properties itself). This construction results in a very efficient (constant) decryption
procedure but has ciphertexts whose size is linear in n, the number of users in the universe U .

Our second contribution is to show that the generic construction for ANOBE suggested by Barth
et al. [5] actually possesses adaptive security, and not merely static security as was established

4 This does not rule the use of compact encodings of S being transmitted with ciphertexts in more restrictive usage
scenarios, for example, only sending the difference in S when the set S changes only slowly from message to
message.
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in [5]. This construction starts from any weakly robust (in the sense of [2]), key-private PKE
scheme with chosen-ciphertext security. In comparison with our first generic construction, this result
imposes stronger requirements on the underlying encryption scheme. However, it achieves shorter
ciphertexts, with the size being linear in the size of the target set S. We also provide a variant
of this construction that replaces the IND-CCA secure PKE component with an identity-based
encryption (IBE) scheme having suitable security properties. This alternative further increases the
set of components that can be used to obtain ANOBE.

One major drawback of the latter constructions is that decryption takes linear time in the size
of the set S. Our third result is a technique allowing for constant decryption cost and which we
prove secure in the standard model (i.e., without random oracles) using our enhanced security
definition. So far, the only known technique – put forth by Barth et al. [5] – enabling constant-time
decryption requires the random oracle heuristic in the security analysis. To eliminate the random
oracle, we introduce a new primitive, which we call an anonymous hint system. In essence, this
primitive provides a way for an encrypter to securely tell receivers which ciphertext component is
intended for them, allowing them to ignore all but one ciphertext component and so decrypt more
efficiently. The hint primitive, for which we provide an implementation based on the Decision-Diffie-
Hellman (DDH) assumption, is defined and realized in such a way that its integration with our
generic ANOBE constructions maintains compatibility with our proofs of adaptive security.

Our fourth contribution is to show how randomness re-use techniques originally developed for
PKE in [34,8,7] can be modified for secure deployment in the ANOBE setting. In particular, we
identify a slightly stronger notion of reproducibility that we call key-less reproducibility. We show
that if our base PKE scheme has this property (in addition to the other properties needed in
our generic construction) then it can be used with the same randomness across all ciphertext
components in our main ANOBE construction. This not only allows the size of ciphertexts to
be reduced further (by eliminating repeated ciphertext elements) but also reduces the sender’s
computational overhead.

Our final contribution is to establish that the Kurosawa-Desmedt (KD) [36] hybrid encryption
scheme can be tweaked to have all the properties that are needed of the base PKE scheme in our
constructions. The KD scheme is an ideal starting point since it is one of most efficient PKE schemes
with IND-CCA security in the standard model. In results that may be of independent interest, we
present KD∗, a modified version of the KD scheme, that is strongly robust (although weak robustness
suffices for our purposes), assuming that its symmetric components satisfy some relatively mild
conditions; anonymous under the DDH assumption (and, again, under mild assumptions on its
symmetric components) and key-less reproducible.

Tying everything together and using KD∗ as the base scheme, we obtain the currently most
efficient instantiation of an ANOBE scheme, for which ciphertexts contain only 2 group elements
and |S| symmetric ciphertexts (plus a signature and a verification key). Decryption can be achieved
in constant time by combining this scheme with our DDH-based hint system, with an additional
2|S|+ 1 group elements in the ciphertext.

As can be seen from the details of our constructions, achieving anonymity does not add any
cost to the encryption process compared to non-anonymous schemes (for example, [9,29]): in our
ANOBE schemes, encryption requires a number of group operations that is linear in |S|. As for
decryption, our speed-up technique allows the legitimate user to recover the message in constant
time. Our ciphertext size is linear in |S| (and thus linear in n and of the same order of magnitude
as the true ciphertext size in existing BE schemes). Thus one interpretation of our results is that
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anonymity does not “cost” anything in an asymptotic sense. Naturally, the constants matter in
practice, and reducing the constant in the ciphertext size for ANOBE to something closer to what
can be achieved in the non-anonymous setting is a major open problem. However, we reiterate that
reducing the true size of ciphertexts below linear in n in either the anonymous or non-anonymous
setting is impossible.

2 Anonymous Broadcast Encryption

We define a model of public-key Broadcast Encryption, where algorithms are specified to allow for
anonymity (similarly to [5]) and they are general enough to include the identity-based variant of
BE introduced in [19].

Definition 1. Let U = {1, ..., n} be the universe of users. A broadcast encryption (BE) scheme is
defined by four algorithms and has associated message space MSP and ciphertext space CSP.

BE.Setup(λ, n): This algorithm takes as input the security parameter λ and the number of users
in the system n. It outputs a master public key BE-MPK and a master secret key BE-MSK.

BE.Key-Gen(BE-MPK,BE-MSK, i): This algorithm takes as input BE-MPK, BE-MSK and an
index i ∈ U and outputs the private key ski for user i.

BE.Enc(BE-MPK,m, S): This algorithm takes as input BE-MPK, a message m ∈ MSP and a
subset S ⊆ U , the broadcast target set. It outputs a ciphertext c ∈ CSP.

BE.Dec(BE-MPK, ski, c): This algorithm takes as input BE-MPK, a private key ski and a cipher-
text c ∈ CSP. It outputs either a message m ∈MSP or a failure symbol ⊥.

The correctness property is that for all S ⊆ U and all i ∈ U if c = BE.Enc(BE-MPK,m, S) and
ski is the private key for i ∈ S then BE.Dec(BE-MPK, ski, c) = m with overwhelming probability.

We observe that this definition no longer requires the set S as an input to the decryption
algorithm. This is crucial in developing the notion of anonymous broadcast encryption (ANOBE),
for which we next provide an appropriate security model for the case of adaptive adversaries.

Definition 2. We define the ANO-IND-CCA security game for BE as follows.
Setup. The challenger C runs BE.Setup(λ, n) to generate master public key BE-MPK and master
secret key BE-MSK and gives BE-MPK to the adversary A.
Phase 1. A can issue queries to a private key extraction oracle for any index i ∈ U . The oracle will
respond by returning ski = BE.Key-Gen(BE-MPK,BE-MSK, i). A can also issue decryption queries
of the form (c, i), where i ∈ U , and the oracle will return the decryption BE.Dec(BE-MPK, ski, c).
Challenge. A selects two equal-length messages m0, m1 ∈MSP and two distinct sets S0, S1 ⊆ U
of users. We require that S0 and S1 be of equal size and also impose the restriction that A has not
issued key queries for any i ∈ S04S1 = (S0 \S1)∪ (S1 \S0). Further, if there exists an i ∈ S0 ∩S1
for which A has queried the key, then we require that m0 = m1. The adversary A passes m0,m1 and
S0, S1 to C. The latter picks a random bit b ∈ {0, 1} and computes c∗ = BE.Enc(BE-MPK,mb, Sb)
which is returned to A.
Phase 2. A continues to make queries to the private key extraction oracle with the restrictions
that i /∈ S04S1 and that, if i ∈ S0∩S1, then m0 = m1. A may continue issuing decryption queries
(c, i) with the restriction that if c = c∗ then either i /∈ S0 4 S1 or i ∈ S0 ∩ S1 and m0 = m1.
Guess. The adversary outputs its guess b′ for b.
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Definition 3. We say that a BE scheme is anonymous and semantically secure against chosen-
ciphertext attacks (ANO-IND-CCA) if all polynomial-time adaptive adversaries A have at most
negligible advantage in the above game, where A’s advantage is defined as AdvANO-IND-CCA

A,BE (λ) =∣∣Pr[b′ = b]− 1
2

∣∣ .
Like the definition of [5], Definition 2 does not require the ANOBE ciphertext to hide the num-

ber of receivers. However, specific schemes (such as the one in Section 3.1) can also conceal the
cardinality of S.

We will next show that this notion is indeed feasible by presenting a generic construction that
relies solely on the existence of IND-CCA secure PKE schemes. We will then improve its perfor-
mance by giving alternative generic constructions whose underlying primitives require additional
security properties.

3 Generic Constructions for ANOBE from PKE

3.1 ANOBE from Minimal Assumptions

Since our aim is to provide a formal treatment of anonymous broadcast encryption, we begin by
showing that ANOBE can be achieved. Indeed, by simply assuming the existence of an IND-CCA
secure PKE scheme we can construct an ANOBE scheme as follows.

Let πpke = (Gen,KeyGen,Encrypt,Decrypt) be a PKE scheme with message spaceM = {0, 1}m.
Here, algorithm Gen takes as input a security parameter and outputs public parameters par, used
by KeyGen to generate a key pair (pk, sk). Let Σ = (G,S,V) be a one-time signature scheme
consisting of a key generation algorithm G, a signing algorithm S and a verification algorithm V.
We assume that the key space of Σ is K = {0, 1}v, for some v ∈ poly(λ). We use πpke and Σ to
generically instantiate a BE scheme, with message space {0, 1}m−v. In the description hereafter,
we include the symbol ε as a valid but distinguished message in {0, 1}m−v: in other words, all the
messages that receivers accept as legal plaintexts are different from ε.

BE.Setup(λ, n): Generate par ← Gen(λ) and, for i = 1 to n, generate (ski, pki) ← Keygen(par).
The master private key is BE-MSK = {ski}ni=1 and the master public key consists of

BE-MPK =
(
par, Σ, {pki}ni=1

)
.

BE.Key-Gen(BE-MPK,BE-MSK, i): parse the master secret key BE-MSK as {ski}ni=1 and output
ski.

BE.Enc(BE-MPK,M, S): to encrypt a message M for a receiver set S ⊆ {1, . . . , n}, generate a
one-time signature key pair (SK,VK) ← G(λ). Then, for all indices j ∈ {1, . . . , n}, compute
Cj = Encrypt(par, pkj ,M ||VK) if j ∈ S and Cj = Encrypt(par, pkj , ε||VK) if j 6∈ S. The ANOBE
ciphertext consists of C =

(
C1, . . . , Cn, σ

)
, where σ = S

(
SK, (C1, . . . , Cn)

)
.

BE.Dec(BE-MPK, ski, C): given C =
(
C1, . . . , Cn, σ

)
, compute M ′ = Decrypt(ski, Ci). If M ′ 6=⊥,

parse M ′ as M ′ = M ||VK for some bitstrings M ∈ {0, 1}m−v and VK ∈ {0, 1}v. Then, if
V
(
VK, (C1, . . . , Cn), σ

)
= 1 and M 6= ε return M . Otherwise, output ⊥.

The correctness of the BE scheme follows directly from the correctness of πpke and Σ. This con-
struction is reminiscent of generic constructions of chosen-ciphertext-secure multiple encryption
[23] and it is easily seen to yield a secure ANOBE. A proof of the following theorem is available in
Appendix A.

6



Theorem 1. Let πpke be an IND-CCA secure PKE scheme and let Σ be a strongly unforgeable
one-time signature scheme. The BE scheme constructed above is ANO-IND-CCA secure against
adaptive adversaries.

We have described an ANOBE scheme from minimal assumptions. We note that encryption time is
linear in n but decryption is performed in constant time, since a user simply selects the ciphertext
component to decrypt according to its index. However, the ciphertext size is linear in n, as we
encrypt to each user in the universe. It is desirable to improve on this and achieve a realization of
ANOBE with more compact ciphertexts.

We will next see how to modify this first generic construction, obtaining an ANOBE scheme
whose ciphertext size is linear in the size of the target set S.

3.2 ANOBE with Adaptive Security from Robust, Anonymous PKE

A simple solution to the broadcast problem is to encrypt the message under the public key of each
user in the privileged set. This naive approach, so often discarded in most BE literature due to
efficiency reasons, turns out to provide another generic construction for ANOBE, which differs from
the previous one as now we deploy a public-key encryption scheme only to encrypt the message to
the users in the target set.

For this approach, the underlying PKE scheme has to be key-private (or IK secure [6]), in that
the ciphertext does not leak under which public key it was created. We also require the PKE scheme
to be weakly robust, in the sense of [2], not only for correctness but also for consistency in the CCA
security proof simulation. This property can be generically achieved [2] for any PKE scheme, by
appending some publicly-known redundancy to the message and checking it upon decryption.

This is essentially the construction that was already suggested by Barth, Boneh and Waters
[5]. We now prove that it is actually adaptively secure, rather than just statically secure, as was
established in [5].

Let πpke = (Gen,Keygen,Encrypt,Decrypt) be a PKE scheme and Σ = (G,S,V) be a signature

scheme. We construct an ANOBE scheme, ANOBEπ
pke,Σ , as follows.

BE.Setup(λ, n): Run Gen(λ, n) to obtain public parameters par. For i = 1 to n, run Keygen(par)
to generate (ski, pki). The master private key is BE-MSK = {ski}ni=1 and the master public key
is

BE-MPK =
(
par, Σ, {pki}ni=1

)
.

BE.Key-Gen(BE-MPK,BE-MSK, i): parse BE-MSK as {ski}ni=1 and output ski.

BE.Enc(BE-MPK,M, S): to encrypt M for a receiver set S = {i1, . . . , i`} ⊆ {1, . . . , n} of size
` = |S|, generate a signature key pair (SK,VK)← G(λ). Then, for each j = 1 to `, compute

Cj = Encrypt(par, pkij ,M ||VK).

The ANOBE ciphertext is C =
(
VK, Cτ(1), . . . , Cτ(`), σ

)
, where σ = S

(
SK, Cτ(1), . . . , Cτ(`)

)
and

τ : {1, . . . , `} → {1, . . . , `} is a random permutation.

BE.Dec(BE-MPK, ski, C): parse C as a tuple
(
VK, C1, . . . , C`, σ

)
. If V

(
VK, C1, . . . , C`, σ

)
= 0,

return ⊥. Otherwise, repeat the following steps for j = 1 to `.
1. Compute M ′ = Decrypt(ski, Cj). If M ′ 6=⊥ and can moreover be parsed as M ′ = M ||VK for

some M of appropriate length, return M .
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2. If j = ` output ⊥.

The correctness of ANOBEπ
pke,Σ follows directly from the correctness and weak robustness of πpke.

Theorem 2. ANOBEπ
pke,Σ is adaptively ANO-IND-CCA secure assuming that: (i) πpke is key-

private and IND-CCA (AI-CCA) secure and weakly robust under chosen-ciphertext attacks (as
defined in Appendix F); (ii) Σ is a strongly unforgeable one-time signature scheme.

In our proof (given in Appendix B) we make use of a sequence of hybrid arguments where ciphertext
components are gradually modified at each step and each hybrid argument requires the reduction
to guess upfront the identity of an uncorrupted user. We note that Gentry and Waters [29] already
briefly mentioned that such an approach could potentially be useful to prove adaptive security
but, to the best of our knowledge, no rigorous analysis of this type was previously given in the
literature. Moreover, in the constructions that follow, achieving adaptive security represents even
more of a challenge since it is a non-trivial task to get this proof technique to suitably interact with
the methods we present for speeding up encryption and decryption procedures.

In terms of efficiency, from this construction we will obtain secure ANOBE schemes with typ-
ically very small (constant) private key storage requirements and ciphertexts which are |S| times
the size of the ciphertext of the underlying PKE scheme. Encryption and decryption have both cost
linear in the size of S. If, for example (as suggested in [5]), we use the Cramer-Shoup PKE scheme
to instantiate the ANOBE scheme, the private keys will have constant size (namely 5 elements in
Zp), and the resulting ciphertext will consist of roughly 4 · |S| group elements. The scheme will be
secure in the standard model under the DDH assumption.

If we look at recent efficient instantiations of BE, for example that of Gentry-Waters [29], we
have private keys whose size is linear in the number of users, and ciphertexts which consist of n
bits plus 3 group elements (if we include the cost of transmitting a description of S as part of the
ciphertext). It is clear that in general the solution of [29] is more efficient in terms of ciphertext
size. The key point though is that it is not anonymous.

4 Generic Construction for ANOBE from IBE

An IBE scheme I typically consists of four algorithms (Setup,KeyExt,Enc,Dec), where Setup and
KeyExt are run by a trusted authority (TA). In our construction we will make use of a multi-TA
IBE scheme I ′ = (CommonSetup,TASetup,KeyDer,Enc′,Dec′) as formalised in [40]. We recall from
[40] that CommonSetup, on input the security parameter, outputs the system’s parameters par and
a set of labels of the TAs in the system, and that TASetup, on input par, outputs a master public
key mpk and a master secret key msk. This algorithm is randomized and executed independently
for each TA in the system. The remaining algorithms are as per a normal IBE scheme. For this
primitive we consider the notion of TA anonymity, as defined in [40], which formally models the
inability of the adversary to distinguish two ciphertexts corresponding to the same message and
identity, but created using different TA master public keys. An example of a TA-anonymous IBE
scheme is the multi-TA version of Gentry’s IBE scheme [28] developed in [41].

Now, let I ′ = (CommonSetup,TASetup,KeyDer,Enc′,Dec′) be a weakly robust, in the sense of
definition 10 (in Appendix F.2), multi-TA IBE scheme and let Σ = (G,S,V) be a signature scheme.
We will use I ′ and Σ to generically instantiate a BE scheme in the following way.
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BE.Setup(λ, n): Run CommonSetup on input of λ ∈ N to obtain the system’s parameters par. Run
TASetup(par) n times to obtain n key-pairs {mpki,mski}i∈U . Return the par, Σ and n public
keys {mpki}i∈U .

BE.Key-Gen(par, λ, i): Return mski, the secret key corresponding to the public key mpki of user i.

BE.Enc(par,M, S): Run G to obtain a verification key VK and the corresponding signing key SK.
For each i ∈ S run Enc′(mpki,M,VK) to obtain ciphertext Ci. The ANOBE ciphertext is

C =
(
VK, Cτ(1), . . . , Cτ(`), σ

)
,

where σ = S
(
SK, Cτ(1), . . . , Cτ(`)

)
and τ : {1, . . . , `} → {1, . . . , `} is a random permutation.

BE.Dec(par,mski, C): Parse the ciphertext C as
(
VK, C1, . . . , C`, σ

)
. If V

(
VK, C1, . . . , C`, σ

)
= 0,

return ⊥. Otherwise, compute skiVK = KeyDer(mpki,mski,VK) and repeat the following steps
for j = 1 to `.

1. Compute M ′ = Dec′(mpki, skiVK , Cj). If M ′ 6=⊥ and can moreover be parsed as M ′ = M ||VK
for some M of appropriate length, return M .

2. If j = ` output ⊥.

The correctness of the BE scheme follows directly from the correctness and the weak robustness
of the IBE scheme I ′ used to construct it.

If instantiated with the multi-TA version of Gentry’s IBE scheme [28,41] (which can be made
weakly robust simply by applying the transform in [2]), this construction yields very short constant
size private keys (just one element in Z∗p) and ciphertexts consisting of roughly 3 · |S| group elements
(|S| in G and 2 · |S| in GT ) plus a signature and a verification key. Encryption and decryption have
both cost linear in the size of S.

Theorem 3. Let I ′ be a TA-anonymous, sID-IND-CPA secure IBE scheme and let Σ be a strongly
unforgeable one-time signature. Then, the above BE scheme is adaptively ANO-IND-CCA secure.

We give some intuition for the proof. We observe that, in [41], the authors apply a modified
version of the Canetti-Halevi-Katz (CHK) transform [14] using the same primitives as our generic
construction to obtain a key-private IND-CCA PKE scheme. We introduce further modifications to
build a BE scheme achieving ANO-IND-CCA security. The idea is that, within this transform, we
encrypt m for the same identity VK under the |S| different public keys. We then sign all ciphertexts
and append the verification key VK (note that this signature binds all these ciphertexts together).
Upon decryption, a user verifies the signature against VK and, if valid, proceeds to derive the
decryption key for identity VK by running the IBE key-extraction algorithm on input his private
key. By similar arguments to those in [14] and [41], and by applying techniques analogous to those
proving adaptive security in Theorem 2, we can show that adaptive ANO-IND-CCA security is
achieved.

5 Efficient Decryption in the Standard Model

The generic constructions for ANOBE presented in Section 3.2 and 4 both suffer from linear time
decryption. This arises from the fact that users do not know which ciphertext component is intended
for them, and hence will have to perform an average of |S|/2 decryptions before recovering the
message. Clearly this procedure is quite cumbersome. We now present a technique which achieves
constant time decryption in the standard model. We make use of a new primitive, called tag-based
anonymous hint systems, for which we provide a definition, the relevant security models and a
concrete instantiation.
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5.1 Tag-Based Anonymous Hint Systems

A tag-based anonymous hint system can be seen as a tag-based encryption scheme [33] allowing
to generate weak forms of encryption under a tag t and a public key pk. The result of the process
consists of a value U and a hint H. The pair (U,H) should be pseudo-random (in particular, hints
generated under two distinct public keys should be indistinguishable) when only the public key pk
is available. Also, the private key sk makes it possible to check whether a given hint H is valid
w.r.t. a tag t. A value-hint pair can be seen as an extractable commitment to a public key. Formally,
such a system is defined in terms of the following algorithms.

Keygen(cp) : takes as input a set of common public parameters cp and outputs a key pair (sk, pk).
We assume that cp specifies a randomness space Rh and a space T h of acceptable tags for the
scheme.

Hint(cp, t, pk, r): is a deterministic algorithm taking as input common public parameters cp, a
public key pk, a tag t and random coins r ∈R Rh. It outputs pair (U,H) consisting of a value
U and a hint H. It is required that U only depends on the random coins r and not on pk.

Invert(cp, sk, t, U): is a deterministic “inversion” algorithm taking as input a value U , a tag t and
a private key sk. It outputs either a hint H or ⊥ if U is not in the appropriate domain.

Correctness requires that, for any pair (sk, pk) ← Keygen(λ) and any possible random coins r, if
(U,H)← Hint(t, pk, r), then Invert(cp, sk, t, U) = H.

Although hint systems bear similarities with tag-KEMs, as formalized by Abe et al. [3], the two
primitives are different and incomparable. In the tag-KEM syntax, the symmetric “session key” is
chosen first and it does not depend on the tag. In hint schemes, the syntax requires to choose a
pair (U,H), where U does not depend on pk but the session key H can depend on both pk and the
tag (this is what happens in the construction we give). The security definitions are also different
since, in Definition 4 hereafter, there is no inversion oracle (that would return H given U and t)
but only a verification oracle that determines if (U,H, t) form a valid triple with respect to public
keys pk0 and pk1.

In certain aspects, hint schemes are reminiscent of extractable hash proof systems [44] but there
are several differences. In [44], in addition to the value that we call U , the random coins allowing
to compute U are used to compute a witness S such that (U, S) satisfies some relation. From U ,
the element S is also computable using the private key and the value that we call H (which is
termed “hash value” in [44]). At the same time, S should be infeasible to compute without the
private key or the random coins used to sample U . Hint schemes are different in that they rather
require the hardness of computing H from U without the private key. In addition, tag-based hints
require that it be hard to decide if a pair (U,H) is valid for a certain tag t? (i.e., to decide if
H = Invert(cp, sk, t?, U)) even with access to a decision oracle for tags t 6= t?.

Definition 4. A tag-based hint system (Keygen, Hint, Invert) is anonymous if no PPT adversary
has non-negligible advantage in the following game:

1. On input of common public parameters cp, the adversary A chooses a tag t? and sends it to the
challenger.

2. The challenger generates pairs (sk0, pk0) ← Keygen(λ), (sk1, pk1) ← Keygen(λ) and gives
pk0, pk1 to A.
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3. On polynomially-many occasions, A adaptively invokes a verification oracle on value-hint-tag
triples (U,H, t) such that t 6= t?. The challenger replies by returning bits (d0, d1) ∈ {0, 1}2
where d0 = 1 if and only if H = Invert(cp, sk0, t, U) and d1 = 1 if and only if H =
Invert(cp, sk1, t, U).

4. When A decides to enter the challenge phase, the challenger flips a binary coin b
$← {0, 1} and

chooses other random coins r?
$← Rh. It outputs (U?, H?) = Hint(cp, t?, pkb, r

?).
5. A makes further queries but is not allowed to make queries involving the target tag t?.
6. A outputs a bit b′ ∈ {0, 1} and wins if b′ = b.

As usual, A’s advantage is measured by the distance Advanon-hint(A) = |Pr[b′ = b]− 1/2|.

Definition 5. A tag-based hint system (Keygen, Hint, Invert) is strongly robust if no PPT adver-
sary A has non-negligible advantage in the following game, where A’s advantage is its probability
of success.

1. The challenger chooses public parameters cp and generates pairs (sk0, pk0) ← Keygen(λ),
(sk1, pk1)← Keygen(λ). It gives cp and pk0, pk1 to A.

2. A invokes a verification oracle on arbitrary value-hint-tag triples (U,H, t). The challenger replies
by returning bits (d0, d1) ∈ {0, 1}2 where d0 = 1 if and only if H = Invert(cp, sk0, t, U) and
d1 = 1 if and only if H = Invert(cp, sk1, t, U).

3. A outputs a triple (U?, H?, t?) and wins if the latter satisfies H? = Invert(cp, sk0, t
?, U?) = 1

and H? = Invert(cp, sk1, t
?, U?) = 1.

Analogously to the PKE case [2], weak robustness for tag-based hint systems is defined by letting
the adversary simply make a challenge request in step 3. The challenger then chooses a tag t? as
well as random coins r?, generates a value-hint pair (U?, H?) = Hint(cp, t?, pk0, r

?) and A wins
if H? = Invert(cp, sk1, t

?, U?) = 1. Weak robustness will be sufficient for our purposes but the
scheme hereafter is also strongly robust under the discrete logarithm assumption in G.

To show that this newly defined primitive is indeed feasible, we give an example of an anonymous
hint system based on the DDH assumption and the CCA-secure public key encryption scheme
described in [15].

Let the common public parameters cp = {G, p, g} consist of a group G of prime order p > 2λ

with a generator g ∈R G. We assume that tags are elements of T h = Z∗p and that the randomness

space is Rh = Z∗p.

Keygen(cp): chooses random x1, x2, y1, y2
$← Z∗p and computes Xi = gxi and Yi = gyi for each

i ∈ {1, 2}. The public key is pk =
(
X1, X2, Y1, Y2

)
and the private key is sk = (x1, x2, y1, y2).

Hint(cp, t, pk, r): given pk = (G, p, g,X1, X2, Y1, Y2), return ⊥ if r 6∈ Rh = Z∗p. Otherwise, compute
(U,H) as

U = gr, H = (V,W ) =
(
(Xt

1X2)
r, (Y t

1Y2)
r
)
.

Invert(cp, sk, t, U): return ⊥ if U 6∈ G. Otherwise, parse sk as (x1, x2, y1, y2) ∈ (Z∗p)4 and output
H = (V,W ) = (U t·x1+x2 , U t·y1+y2)

The following results are proved in Appendix C and D, respectively.

Lemma 1. The above tag-based hint scheme is anonymous if the DDH assumption holds in G.

Lemma 2. The hint scheme is strongly robust under the discrete logarithm assumption in G.

We will now use an anonymous hint system to generically obtain ANOBE with efficient decryp-
tion.
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5.2 ANOBE with Efficient Decryption

Let πhint = (Keygen, Hint, Invert) be an anonymous hint system with its set of common public
parameters cp. Let πpke = (Gen,Keygen,Encrypt,Decrypt) be a PKE scheme and Σ = (G,S,V) be
a signature scheme.

BE.Setup(λ, n): Obtain (par) ← Gen(λ) and, for i = 1 to n, and generate encryption key pairs
(s̃ki, p̃ki) ← πpke.Keygen(par) and hint key pairs (skhi , pk

h
i ) ← πhint.Keygen(cp). The master

public key consists of

BE-MPK =
(

cp, par, {
(
p̃ki, pk

h
i

)
}ni=1, Σ

)
and the master private key is BE-MSK = {s̃ki, skhi }ni=1.

BE.Key-Gen(BE-MPK,BE-MSK, i): parse BE-MSK as {s̃ki, skhi }ni=1 and output ski = (s̃ki, sk
h
i ).

BE.Enc(BE-MPK,M, S): to encrypt a message M for a receiver set S = {i1, . . . , i`} ⊆ {1, . . . , n}
of size ` = |S|, generate a one-time signature key pair (SK,VK)← G(λ). Then, choose r

$← Rh
and compute (U,Hj) = πhint.Hint(cp,VK, pkhij , r) for j = 1 to ` (recall that the first output U

of Hint does not depend on the public key). Then, for each j ∈ {1, . . . , `}, compute a ciphertext
Cj = πpke.Encrypt(par, p̃kij ,M ||VK). Choose a random permutation τ : {1, . . . , `} → {1, . . . , `}
and set the final ciphertext as

C =
(
VK, U, (Hτ(1), Cτ(1)), . . . , (Hτ(`), Cτ(`)), σ

)
,

where σ = S
(
SK, U, (Hτ(1), Cτ(1)), . . . , (Hτ(`), Cτ(`))

)
.

BE.Dec(BE-MPK, ski, C): given ski = (s̃ki, sk
h
i ) and C =

(
VK, U, (H1, C1), . . . , (H`, C`), σ

)
, return

⊥ if V
(
VK, U, (H1, C1), . . . , (H`, C`), σ

)
= 0 or if U is not in the appropriate space. Otherwise,

compute H = πhint.Invert(cp, skhi ,VK, U). If H 6= Hj for all j ∈ {1, . . . , `}, return ⊥. Other-
wise, let j be the smallest index such that H = Hj and compute M ′ = πpke.Decrypt(s̃ki, Cj).
If M ′ can be parsed as M ′ = M ||VK for some M of appropriate length, return M . Otherwise,
output ⊥.

The correctness of this scheme follows directly from the correctness and weak robustness of its
component schemes πhint and πpke.

The proof of the following theorem is deferred to Appendix E.

Theorem 4. The above construction is adaptively ANO-IND-CCA secure assuming that (i) πhint

is anonymous; (ii) πpke is AI-CCA secure and weakly robust under chosen-ciphertext attacks; (iii)
Σ is a strongly unforgeable one-time signature.

In [5], a technique to speed up decryption was presented. The scheme of [5] can be seen as using
a hint scheme where tags are empty strings and pairs (U,Hj) consist of U = gr and Hj = H(Xr

ij
),

where H is a random oracle and Xij ∈ G is the public key of the hint scheme. In the present context,
it is tempting to believe that simple hints of the form Xr

ij
suffice to achieve efficient decryption

in the standard model. Indeed, one step of the proof consists of a DDH-based transition from one
hybrid game to another and, during that specific transition, the simulator B could simply handle
all decryption queries using the private keys {s̃ki}ni=1 in the underlying encryption scheme since it
knows them all. For reasons that will become apparent in the proof of a key lemma for Theorem 4
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below, this does not suffice. The reason is that, the adversary can issue decryption queries where
(g, U = gr, Xij , Hij = Xr′

ij
) does not form a Diffie-Hellman tuple. In this case, the answer of the

simulator would differ from that of the real decryption procedure in the chosen-ciphertext scenario:
more precisely, the simulation could accept a ciphertext that would be rejected by a real decryption.

In [5], this problem was addressed using a random oracle and the Gap Diffie-Hellman assumption
[39]: each hint was of the form Hj = H(Xr

ij
), where H is the random oracle. By invoking the

DDH-oracle at each random oracle query, the simulator was able to figure out which ciphertext
components had to be decrypted so as to perfectly emulate the real decryption algorithm. Here, we
address this issue in the standard model using the tag-based anonymous hint primitive.

From a practical standpoint, it is convenient to instantiate the above construction by combining
our DDH-based hint scheme with an encryption scheme based on the same assumption such as the
Cramer-Shoup cryptosystem. Interestingly both schemes can be instantiated using the same DDH-
hard cyclic group. Considering efficiency, it is moreover possible to recycle the group element gr of
the hint system and simultaneously use it as part of a Cramer-Shoup ciphertext. In the security
proof, everything goes through with these optimizations although we omit the details here.

6 Reducing the Size of the Ciphertext with Randomness Re-Use

This section considers randomness re-use as a technique to optimize ANOBE constructions. Ran-
domness re-use [7,4] is a powerful tool that provides computational and bandwidth savings. In [7],
Bellare et al. introduce a property, called reproducibility, providing a condition under which ran-
domness re-use is secure. We define the notion of key-less reproducibility, which is better suited for
the anonymity setting.

Definition 6. Let πpke = (Gen,Keygen,Encrypt,Decrypt) be a PKE scheme. Let M and R be
the message and randomness space of πpke. Let R be an algorithm that takes as input the public
parameters, a ciphertext, another random message and a key pair (sk, pk), and outputs a ciphertext.
Consider the experiment:

ExpKLR
πpke,R(λ)

(par)
$← Gen(λ)

(pk, sk)
$← Keygen(par)

m
$←M; r

$← R
c = Encrypt(pk,m; r)

(pk′, sk′)
$← Keygen(par)

m′
$←M

return 1 if Encrypt(par, pk′,m′; r) = R(par, c,m′, pk′, sk′) and 0 otherwise.

πpke is key-less reproducible if, for any λ, there is a PPT algorithm R such that the above experiment
outputs 1 with probability 1.

We note that this definition differs from the one in [7] since the algorithm R does not take pk
(the public key under which c was created) as an input. Indeed, this is a crucial difference which
allows extending the notion of reproducibility to the context where anonymity is required. We now
reconsider the generic construction for ANOBE presented in Section 3.2.

Let Σ = (G,S,V) be a signature scheme, and let πpke = (Gen,Keygen,Encrypt,Decrypt) be a

key-less reproducible PKE scheme. We call ANOBE πpke,Σ
rr the scheme constructed from Σ and πpke

as follows.
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BE.Setup, BE.Key-Gen, BE.Dec are as in Section 3.2.

BE.Enc(BE-MPK,M, S): to encrypt M for a receiver set S = {i1, . . . , i`} ⊆ {1, . . . , n} of size ` =

|S|, generate a signature key pair (SK,VK)← G(λ). Choose r
$← R, where R is the randomness

space of πpkepar . Then, for each j = 1 to `, compute Cj = Encrypt(par, pkij ,M ||VK; r). The final

BE ciphertext consists of C =
(
VK, Cτ(1), . . . , Cτ(`), σ

)
, where σ = S

(
SK, Cτ(1), . . . , Cτ(`)

)
and

τ : {1, . . . , `} → {1, . . . , `} is a random permutation.

Theorem 5. Let πpke = (Gen,Keygen,Encrypt,Decrypt) be an AI-CCA secure, weakly robust and
key-less reproducible PKE scheme. Let Σ be a strongly unforgeable one-time signature scheme. Then

ANOBE πpke,Σ
rr is adaptively ANO-IND-CCA secure.

The proof for Theorem 5 is analogous to that of Theorem 2, the only difference being the use
of algorithm R in the simulation.
Proof sketch. The proof follows precisely the proof of Theorem 2 up until the BE challenge ciphertext
is generated. The modifications are in the following steps and apply to both Lemma 4 and Lemma 5.

1. For j = 1 to k − 1, B sets Cj = R(par, C?,M1||VK?, pkρj , skρj ).
2. For j = k + 1 to `, B computes Cj = R(par, C?,M0||VK?, pkθj , skθj ).
3. Finally, set Ck = C?.

We observe that B knows all the necessary secret keys since it generated them on its own at
the beginning of the simulation. The proof then continues as in Theorem 2.

We note that there is no further loss in the security reduction since the key-less reproducibility
property of πpke implies that Encrypt(par, pk′,m′; r) = R(par,Encrypt(par, pk,m; r),m′, pk′, sk′)
with probability 1. ut

We have shown that the key-less reproducibility of a PKE scheme guarantees that randomness
can be re-used securely. We can exploit this property to compress the ANOBE ciphertexts and,
depending on the concrete instantiation, significantly increase the efficiency of the scheme. More

precisely, given an ANOBE πpke,Σ
rr ciphertext C = (VK, Cτ(1), . . . , Cτ(`), σ), let ccc denote the com-

mon ciphertext components that may arise in Cτ(1), . . . , Cτ(`) from sharing randomness across PKE
components, i.e.,

Cτ(1) = (ccc, c̃τ(1)), . . . , Cτ(`) = (ccc, c̃τ(`)).

The compressed ANOBE ciphertext will be C̃ = (VK, ccc, c̃τ(1), . . . , c̃τ(`), σ). Upon receipt, the user
simply reconstitutes the original ciphertext C and runs BE.Dec as usual. We explore instantiations
of this idea next.

6.1 An Efficient Instantiation of ANOBE from Kurosawa-Desmedt

This section presents an ANOBE scheme based on a randomness re-using variant of the Kurosawa-
Desmedt encryption scheme KD∗ [36] (which is described in Appendix G). KD∗ is an ideal candidate
for our purposes since it is AI-CCA secure (the proof is in Appendix G) and key-less reproducible
(Lemma 9). Moreover, as shown in Appendix G, it can easily be made strongly robust [2] under
mild assumptions on the involved symmetric components: namely, the hash function H must be
pre-image resistant; the key derivation function has to be collision-resistant and the symmetric en-
cryption scheme must be key-binding (as defined in [37]) as well as a secure authenticated encryption
scheme (as already required by its proof of IND-CCA security [21]).
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Concrete instantiation. The following scheme is obtained from KD∗ by optimizing our generic
construction and removing redundant ciphertext components from the overall ciphertext: namely,
(gr1, g

r
2) only has to appear once in the ANOBE ciphertext and this change is easily seen not to

affect the security analysis.

BE.Setup(λ, n): chooses a group G of prime order p > 2λ with generators g1, g2
$← Zp as well as

a universal one-way hash function H : {0, 1}∗ → Zp. It also selects a key derivation function
KDF : G → {0, 1}k, for some k ∈ poly(λ), a strongly unforgeable one-time signature scheme
Σ = (G,S,V) and a symmetric authenticated encryption scheme Πsym-enc = (E,D). Then, for

i = 1 to n, choose xi,1, xi,2, yi,1, yi,2
$← Zp and compute elements ci = g

xi,1
1 g

xi,2
2 , di = g

yi,1
1 g

yi,2
2 .

The master public key consists of

BE-MPK =
(
G, g1, g2, {ci, di}ni=1, H, KDF, Πsym-enc, Σ

)
and the master private key is BE-MSK =

(
{xi,1, xi,2, yi,1, yi,2}ni=1

)
.

BE.Key-Gen(BE-MPK,BE-MSK, i): parse BE-MSK as
(
{xi,1, xi,2, yi,1, yi,2}ni=1

)
and output user

i’s private key ski = (xi,1, xi,2, yi,1, yi,2).

BE.Enc(BE-MPK,m, S): to encrypt m for a receiver set S = {i1, . . . , i`} ⊆ {1, . . . , n} of size

` = |S|, generate a signature key pair (SK,VK)← G(λ), pick r
$← Z∗p and compute the common

part of the ciphertext (u1, u2) = (gr1, g
r
2) ∈ G2. Then, for each j = 1 to `, compute α = H(u1, u2)

as well as

vj =
(
cij · dαij

)r
, Kj = KDF(vj), ej = EKj (m||VK).

The ciphertext is C =
(
VK, u1, u2, eτ(1), . . . , eτ(`), σ

)
, where σ = S

(
SK, (u1, u2, eτ(1), . . . , eτ(`))

)
is a signature and τ : {1, . . . , `} → {1, . . . , `} is a random permutation.

BE.Dec(ski, C): given ski = (xi,1, xi,2, yi,1, yi,2) and the BE ciphertext C =
(
VK, u1, u2, e1, . . . , e`, σ

)
,

return ⊥ if V
(
VK, (u1, u2, e1, . . . , e`), σ

)
= 0. Otherwise, compute α = H(u1, u2). For j = 1 to

`, do the following.
1. Compute vj = u

xi,1+α·yi,1
1 · uxi,2+α·yi,22 and Kj = KDF(vj) ∈ {0, 1}k. If M = DKj (ej) 6=⊥ and

if M can be parsed as m||VK for some message m, return m.
2. If i = `, return ⊥.

In Appendix G we show that KD∗ has all the properties required for our ANOBE construction
to be secure: it is AI-CCA (Theorem 7), weakly robust (Theorem 6) and key-less reproducible
(Lemma 9). The following result is a direct consequence of Theorem 5 and Theorem 7, Theorem 6
and Lemma 9.

Corollary 1. The above BE construction is adaptively ANO-IND-CCA secure.

Optimizations using labels. We note that the above concrete ANOBE system can be further
optimized by using a variant of KD∗ that supports labels. A label L is essentially a public string
that can be non-malleably bound to the ciphertext. To do this in this setting, the simplest solution
is to compute the hash value α as α = H(u1, u2, L). With this modification, Cramer-Shoup and
Kurosawa-Desmedt cryptosystems are easily seen to satisfy label-augmented definitions of chosen-
ciphertext security [42] and anonymity under chosen-ciphertext attacks (see, e.g., [32]). The only
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change in the security proofs is that the hash function H must be assumed collision-resistant (and
not only target collision-resistant).

Using labels, the above construction is easily modified in such a way that, instead of encrypting
` times a concatenation M ||VK, we can only encrypt M alone and settle for including VK among
the inputs of H and compute α = H(u1, u2,VK). By doing so, we obtain significantly shorter
ciphertexts.

Efficiency comparison. It is interesting to compare the above scheme with the one of Section 3.2
when the latter is instantiated with the Kurosawa-Desmedt cryptosystem. We assume that labels
are used in all schemes so as to avoid encrypting VK with the plaintext and also consider that
a multi-exponentiation with two base elements has roughly the same cost as a single-base expo-
nentiation. At the sender’s end, the scheme of Section 3.2 requires 3 · |S| exponentiations which
is essentially three times as expensive as in the above scheme (where only |S| exponentiations are
needed).

From a bandwidth point of view, the above construction requires to transmit |S| symmetric au-
thenticated encryptions (which typically consist of a symmetric encryption and a MAC) in addition
to two group elements and a one-time verification key. The saving provided by randomness-re-using
techniques is thus about 2 · |S| group elements, which, in practice, would be about 50% of the ci-
phertext size without randomness re-use. Assuming that encrypted messages are at least as short
as a group element (which seems reasonable if we encrypt a symmetric key and if group elements
are in an elliptic curve subgroup), the ciphertext overhead is about |S| · (`G + `MAC), where `G and
`MAC denote the bitlength of group elements and MAC tags, respectively.

7 Conclusions and Open Problems

We have seen that in the context of broadcast encryption the main focus of research to date has
been on reducing ciphertext size. Achieving this has entailed sacrificing all anonymity properties.
Yet we have argued that anonymity is a fundamental property to strive for in broadcast encryption.
With the aim of highlighting the importance of this overlooked feature, we have formally defined
the notion of anonymous broadcast encryption (ANOBE) and given several constructions for this
primitive. We have also shown how these constructions can be improved via anonymous hint systems
(to optimize decryption performance) and randomness re-use (to reduce the ciphertext size and the
computational costs of encryption).

Much work still needs to be done in this area, from improving the efficiency of ANOBE schemes
to considering all the additional properties that can be found in standard BE, such as traitor
tracing, revocation, dynamism of users joining the system, and realising them in the anonymous
setting. There is still a gap between the sizes of ciphertexts in state-of-the-art BE schemes and our
ANOBE schemes. This gap is hidden in the constants in an asymptotic evaluation of ciphertext
size (when the true size of ciphertexts is measured) but is nevertheless significant in practice. A
major challenge, then, is to further reduce the size of ciphertexts in ANOBE, whilst maintaining
its full anonymity properties.
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A Proof of Theorem 1

We now give a proof of Theorem 1.

Proof. Recall that, since |S0| = |S1| = `, we have |S0\S1| = |S1\S0| = |Sb| − |S0 ∩ S1| for each
b ∈ {0, 1}. We consider a sequence of games starting with Game 0 where the adversary is given an
encryption of M0 for S0. In the last game, the adversary obtains an encryption of M1 under S1.

Game 0real: is the real game when the challenger’s bit is set to b = 0. The ANOBE adversary A
is given public parameters BE-MPK consisting of n public key encryption keys {pki}ni=1. For
each i ∈ {1, . . . , n}, user i’s private key is ski. In the first stage, A adaptively chooses indices
i ∈ {1, . . . , n} and obtains the corresponding ski. The adversary may also query the decryption
oracle by sending requests (C, i) which are answered using the relevant private key ski. In the
challenge step, A chooses messages M0,M1 and two subsets S0, S1 ⊂ {1, . . . , n} of equal size
|S0| = |S1| = `. The challenger generates a one-time signature key pair (SK?,VK?) ← G(λ)
and returns the challenge ciphertext C? =

(
C1, . . . , Cn, σ

)
where σ = S(SK?, (C1, . . . , Cn))

and, for each j ∈ {1, . . . , n}, Cj is computed as Cj = Encrypt(pkj ,M0||VK?) if j ∈ S0 and
Cj = Encrypt(pkj , ε||VK?) if j 6∈ S0. In the second phase, A is allowed to make more corruption
queries for indices i such that i ∈ {1, . . . , n}\(S0 4 S1) and is granted further access to the
decryption oracle under the usual restriction. Upon termination, A outputs a bit b′ ∈ {0, 1} and
we define Ereal0 to be the event that b′ = 0.

Game 0: is as Game 0real with the difference that the challenger now rejects all post-challenge
decryption queries

(
C = (C1, . . . , Cn, σ), i

)
for which Ci = C?i (i.e., the i-component of C

coincides with that of the challenge ciphertext). Clearly, the only situation where the challenger
rejects a ciphertext that would not have been rejected in Game 0real is when A breaks the
security of the one-time signature. It is easy to see since Ci = C?i decrypts to a message whose
last v bits form the challenge verification key VK? as in the challenge phase. We call E0 the
event that A outputs b′ = 0 in Game 0.

To describe subsequent games, it is convenient to represent the sets S0 and S1 as n-bit words
s01 . . . s0n ∈ {0, 1}n and s11 . . . s1n ∈ {0, 1}n such that, for each b ∈ {0, 1} and j ∈ {1, . . . , n},
sbj = 1 if and only if j ∈ Sb.

Game k (1 ≤ k ≤ n): From the two adversarially-chosen sets S0, S1 ⊂ {1, . . . , n} and their respec-
tive n-bit words s01 . . . s0n and s11 . . . s1n, the challenger B generates the challenge ciphertext
as follows.
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1. If s0j = s1j = 1, set Cj = Encrypt(pkj ,M1||VK?) if j ≤ k and Cj = Encrypt(pkj ,M0||VK?) if
j > k. If s0j = s1j = 0 set Cj = Encrypt(pkj , ε||VK?).

2. If s0j = 1 and s1j = 0, set Cj = Encrypt(pkj , ε||VK?) if j ≤ k and Cj = Encrypt(pkj ,M0||VK?)
if j > k.

3. If s0j = 0 and s1j = 1, set Cj = Encrypt(pkj ,M1||VK?) if j ≤ k and Cj = Encrypt(pkj , ε||VK?)
if j > k.

The adversary is then returned C? =
(
C1, . . . , Cn, σ

)
and the second phase is handled as in

previous games. We call Ek the event of A outputting b′ = 0 at the end of Game k.

Game nreal: is identical to Game n with the difference that, when handling decryption queries,
the challenger no longer returns ⊥ in decryption queries (C = (C1, . . . , Cn, σ), i) such that that
Ci = C?i . Game nreal thus coincides with the real game when the challenger’s bit equals b = 1.
We let Erealn be the event that A outputs the bit b′ = 0 at the end of Game `real.

Game 0real and Game 0 are clearly indistinguishable if the one-time signature is strongly unforgeable
and the same argument can be made about Game ` and Game `real.

We thus have |Pr[Ereal0 ] − Pr[E0]| = |Pr[Erealn ] − Pr[En]| ≤ Advsuf
OTS(A). As for other game

transitions, they are justified by lemmas 3 which demonstrates that, if Game k and Game k−1 can
be distinguished for some k ∈ {1, . . . , n}, there must exist either an IND-CCA adversary B against
the underlying encryption scheme. Putting the above altogether, we find

|Pr[Ereal0 ]− Pr[Erealn ]| ≤ 2 ·Advsuf
OTS(A) + n ·Advind-cca(B).

ut

Lemma 3. For any k ∈ {1, . . . , n}, Game k is indistinguishable from Game k− 1 if the public key
encryption scheme is IND-CCA. More precisely, we have

|Pr[Ek]− Pr[Ek−1]| ≤ Advind-cca(B).

Proof. Towards a contradiction, let us assume that an adversary A can distinguish Game k and
Game k − 1. We show that it implies a chosen-ciphertext adversary against the cryptosystem.

We first recall that, in the challenge phase, the adversarially-chosen messages M0,M1 and sets
S0, S1 must be such that either

- S0 = S1 and M0 6= M1, in which case the adversary cannot corrupt any user in S0 = S1 (and,
of course, we must have |S0| = |S1| ≥ 1).

- S0 6= S1, in which case the adversary is disallowed to corrupt anyone in S04S1.

If we consider the n-bit words s01 . . . s0n ∈ {0, 1}n and s11 . . . s1n ∈ {0, 1} associated with S0 and
S1, Game k is identical to Game k − 1 if s0k = s1k = 0 (since Ck is an encryption of ⊥ in both
games) and we thus assume that s0k = s1k = 1 or s0k 6= s1k. Moreover, if s0k = s1k = 1 (in other
words, if k ∈ S0 ∩ S1), the adversary can only corrupt skk in the situation where M0 = M1, in
which case Game k and Game k − 1 are also identical. In the following, we can thus only consider
the situation s0k 6= s1k (i.e., k ∈ S04S1), in which the adversary cannot legally query skk.

Our IND-CCA adversary B receives a public key pk? from its challenger and to prepare BE-MPK
for A, it has to generate n encryption keys pk1, . . . , pkn. To do this, B defines pkk = pk?. Then, B
runs the key generation algorithm of πpke itself and generates n−1 key pairs (ski, pki)← Keygen(1λ)
for each i ∈ {1, . . . , n}\{k}. It finally hands the master public key BE-MPK =

(
{pki}ni=1, Σ

)
to A.
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At any time, A can corrupt an arbitrary user i ∈ {1, . . . , n} depending on the previously col-
lected information. At each corruption query, B can consistently answer the query since it knows
secret keys {ski}i 6=k (recall that, according to the rules, should be denied access to skk). When
A queries the decryption of a ciphertext (C = (C1, . . . , Cn, σ), i), we assume that i = k (i.e., the
query involves the challenge key pkk = pk?) since B can always decrypt by itself otherwise. To
simulate the behavior of the decryption algorithm without knowing skk = sk?, B invokes its own
decryption oracle on Ck. If the IND-CCA challenger’s response is not ⊥ and can be parsed as
M ||VK, for some message M ∈ {0, 1}m−v and some bitstring VK ∈ {0, 1}v, B returns M to A if
V(VK, (C1, . . . , Cn), σ) = 1 and M 6= ε. In any other situation, B returns ⊥, meaning that Ck fails
to decrypt properly under skk.

In the challenge phase, A outputs messages M0,M1 and two subsets S0, S1 ⊂ {1, . . . , n} of equal
size. At this step, B generates a one-time signature key pair (SK?,VK?)← G(λ) and constructs two
messages M ′0,M

′
1 as follows.

- If s0k = 1 and s1k = 0, it sets M ′0 = M0||VK? and M ′1 = ε||VK?.

- If s0k = 0 and s1k = 1, it sets M ′0 = ε||VK? and M ′1 = M1||VK?.

The two messages M ′0 and M ′1 are sent to B’s IND-CCA challenger which returns a challenge
ciphertext C? = Encrypt(pk?,M ′b), for some internally flipped random bit b ∈R {0, 1}. The ANOBE
challenge ciphertext is generated by setting C?k = C? and defining remaining ciphertext components
as follows, for j = 1 to n.

1. If s0j = s1j = 1, set C?j = Encrypt(pkj ,M1||VK?) if j ≤ k − 1 and C?j = Encrypt(pkj ,M0||VK?)
if j > k. If s0j = s1j = 0 set Cj = Encrypt(pkj , ε||VK?).

2. If s0j = 1 and s1j = 0, set C?j = Encrypt(pkj , ε||VK?) if j ≤ k−1 and C?j = Encrypt(pkj ,M0||VK?)
if j > k.

3. If s0j = 0 and s1j = 1, set C?j = Encrypt(pkj ,M1||VK?) if j ≤ k−1 and C?j = Encrypt(pkj , ε||VK?)
if j > k.

The ANOBE adversary A is given C = (C?1 , . . . , C
?
n, σ), where σ = S(SK?, (C?1 , . . . , C

?
n)).

In the second phase, Amakes another series of adaptive corruption queries for indices i 6∈ S04S1
(and a fortiori such that i 6= k) and B deals with them as in the first phase. When A makes a
decryption query (C, i), B parses the ciphertext C as C = (C1, . . . , Cn, σ) and handles the query
using {ski}i 6=k if i 6= k. If i = k, B returns ⊥ if Ck = C?k . If Ck 6= C?k , B can query Ck for decryption
to its IND-CCA challenger and proceed as in pre-challenge decryption queries.

At the end of the game, A outputs a bit b′ ∈ {0, 1} and B outputs the same result. It is easy to
see that B’s advantage as an IND-CCA adversary is exactly the difference between A’s probabilities
of outputting 0 in Game k and Game k − 1. Indeed, if B’s challenger chooses b = 0 (and encrypts
M ′0 in the challenge phase), B is playing Game k − 1. If b = 1, B is rather playing Game k. ut

B Proof of Theorem 2

We now give a proof of Theorem 2.

Proof. Recall that, since |S0| = |S1| = `, we have |S0\S1| = |S1\S0| = |Sb| − |S0 ∩ S1| for each
b ∈ {0, 1}. We consider a sequence of games where the adversary is given an encryption of M0 for
S0 in Game 0 while, in the last game, the adversary obtains an encryption of M1 under S1.
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Game 0real: corresponds to the real game when the challenger’s bit is b = 0. Namely, the ANOBE
adversary A is given public parameters BE-MPK containing par and n public keys {pki}ni=1.
For each i ∈ {1, . . . , n}, user i’s private key is ski. In the first phase, the adversary A adaptively
chooses indices i ∈ {1, . . . , n} and obtains the corresponding ski. The adversary may also invoke
the decryption oracle by making queries (C, i) which are handled using the relevant private key
ski. In the challenge phase, the adversary A comes up with messages M0,M1 and two subsets
S0, S1 ⊂ {1, . . . , n} of equal size |S0| = |S1| = ` with S0 6= S1. The challenger generates a one-
time signature key pair (SK?,VK?)← G(λ), parses S0 as {θ1, . . . , θ`} and returns the challenge
ciphertext C? =

(
VK?, Cτ(1), . . . , Cτ(`), σ

)
where Cj = Encrypt(par, pkθj ,M0||VK?) for j = 1 to

` and τ : {1, . . . , `} → {1, . . . , `} is a random permutation. In the second phase, A is allowed to
make more decryption queries (under the usual restriction) and key queries for arbitrary indices
i such that i ∈ {1, . . . , n}\(S04S1). Eventually, A outputs a bit b′ ∈ {0, 1} and we define Ereal0

to be the event that b′ = 0.

Game 0: is as Game 0real but the challenger now rejects all post-challenge decryption queries
(C, i) where C contains the same verification key VK? as in the challenge phase. We call E0 the
event that A outputs b′ = 0 in Game 0.

Game k (1 ≤ k ≤ `): From the two adversarially-chosen sets S0, S1 ⊂ {1, . . . , n}, the challenger B
defines the value φ = |S0∩S1| and then considers two ordered sets S′0 = {θ1, . . . , θφ, θφ+1, . . . , θ`},
S′1 = {ρ1, . . . , ρφ, ρφ+1, . . . , ρ`} that are obtained by ordering S0 and S1 in such a way that
θj = ρj for each j ∈ {1, . . . , φ} and θj 6= ρj if j ∈ {φ+1, . . . , `}. Then, B generates the challenge
ciphertext as follows.
1. For j = 1 to φ, set Cj = Encrypt(par, pkθj ,M1||VK?) if j ≤ k and
Cj = Encrypt(par, pkθj ,M0||VK?) if j > k.

2. For j = φ+ 1 to `, set Cj = Encrypt(par, pkρj ,M1||VK?) if j ≤ k and
Cj = Encrypt(par, pkθj ,M0||VK?) if j > k.

The adversary is then returned C? =
(
VK?, Cτ(1), . . . , Cτ(`), σ

)
, for a randomly chosen permu-

tation τ : {1, . . . , `} → {1, . . . , `}, and the second phase is handled as in previous games. We
call Ek the event of A outputting b′ = 0 at the end of Game k.

Game `real: is identical to Game ` with the difference that, when handling decryption queries,
the challenger no longer rejects ciphertexts that contain the verification key VK?. Game `real
actually proceeds like the real game when the challenger’s bit is b = 1. We let Ereal` be the event
that A outputs the bit b′ = 0 at the end of Game `real.

Game 0real and Game 0 are clearly indistinguishable if the one-time signature is strongly unforgeable
and the same argument can be made about Game ` and Game `real.

We thus have |Pr[Ereal0 ] − Pr[E0]| = |Pr[Ereal` ] − Pr[E`]| ≤ Advsuf
OTS(A). As for other game

transitions, they are justified by lemmas 4 and 5 that separately consider the situations where
k ≤ φ and k > φ. More precisely, we have that, if Game k and Game k − 1 can be distinguished
for some k ∈ {1, . . . , `}, lemmas 4 and 5 show that there exists either a AI-CCA adversary B2
or a WROB-CCA adversary B3 (see appendix F for definitions of these two notions) against the
encryption scheme. Putting the above arguments altogether, we obtain

|Pr[Ereal0 ]− Pr[Ereal` ]| ≤ 2 ·Advsuf
OTS(A) + n2 · ` ·

(
Advai-cca(B2) + Advwrob-cca(B3)

)
≤ 2 ·Advsuf

OTS(A) + n3 ·
(
Advai-cca(B2) + Advwrob-cca(B3)

)
.

ut

22



Lemma 4. For each k ∈ {1, . . . , φ}, Game k is indistinguishable from Game k−1 if the underlying
encryption scheme is IND-CCA. More precisely, we have

|Pr[Ek]− Pr[Ek−1]| ≤ n ·Advind-cca(B).

Proof. Assuming that an attacker A can distinguish Game k and Game k − 1, we build a chosen-
ciphertext adversary against the public key encryption scheme. For each k ∈ {1, . . . , φ}, we observe
that Game k and Game k − 1 are identical when M0 = M1 and we thus assume M0 6= M1, so that
the adversary cannot corrupt any user in S0 ∩ S1.

Our IND-CCA adversary B obtains par and a public key pk? from its challenger and it has to
prepare a master public key BE-MPK comprising n encryption keys pk1, . . . , pkn for the ANOBE

adversary A. To this end, picks i?
$← {1, . . . , n} at random and defines pki? = pk?. Then, B runs

Keygen and generates n − 1 key pairs (ski, pki) on its own for each i ∈ {1, . . . , n}\{i?}. It finally
gives the master public key BE-MPK =

(
par,Σ, {pki}ni=1

)
to A.

At any time, A is allowed to corrupt an arbitrary user i ∈ {1, . . . , n} depending on the infor-
mation it gathered so far. At each corruption query, B aborts and fails in the event that A chooses
to corrupt user i?. Otherwise, B is necessarily able to consistently answer the query since it knows
secret keys {ski}i 6=i? . When the adversary A makes a decryption query (C = (VK, C1, . . . , C`, σ), i),
we assume that the query involves the challenge key pk? since B can always decrypt itself using
ski otherwise. To simulate the decryption algorithm without knowing the challenge private key
sk?, B proceeds as follows. For j = 1 to `, it resorts to its IND-CCA challenger and asks it for
the decryption of Cj . If the IND-CCA challenger’s response differs from ⊥ and can be parsed as
M ||VK, for some message M of appropriate length, B returns M to A. If the counter j reaches its
maximal value ` and no decryption query provided a result of the form M ||VK, B returns ⊥ to
indicate that the ciphertext fails to decrypt properly.

In the challenge phase, A outputs messages M0,M1 and two subsets S0, S1 ⊂ {1, . . . , n} of equal
size. At this step, B re-orders S0, S1 as S′0 = {θ1, . . . , θφ, θφ+1, . . . , θ`}, S′1 = {ρ1, . . . , ρφ, ρφ+1, . . . , ρ`}
where θj = ρj for each j ∈ {1, . . . , φ}. If θk 6= i?, B aborts and declares failure and we denote by
Good the event that θk = i?.

If the event Good occurs, B chooses a one-time signature key pair (SK?,VK?)← G(λ) and sends
the messages (M0||VK?), (M1||VK?) to its IND-CCA challenger. The latter replies by generating
a challenge ciphertext C? = Encrypt(par, pk?,Mb||VK?), for some internally flipped random bit

b
$← {0, 1}. The ANOBE challenge ciphertext is then generated as follows.

1. For j = 1 to k − 1, B sets Cj = Encrypt(par, pkθj , (M1||VK?)
)
.

2. For j = k + 1 to `, B sets Cj = Encrypt(par, pkθj , (M0||VK?)
)
.

3. Finally, set Ck = C?.

The adversary A then receives C = (VK?, Cτ(1), . . . , Cτ(`), σ), where σ = S(SK?, Cτ(1), . . . , Cτ(`))
and τ : {1, . . . , `} → {1, . . . , `} is a random permutation.

In the second phase, Amakes another series of adaptive corruption queries for indices i 6∈ S04S1
and B deals with them as in the first phase. Whenever A makes a decryption query (C, i), B parses
the ciphertext C as C = (VK, C1, . . . , C`, σ) and outputs ⊥ if VK = VK? or if σ is invalid. Otherwise,
if i 6= i?, B simply runs the legal decryption procedure on its own since it knows ski. If i = i?,
B appeals to its IND-CCA challenger and the decryption oracle it is given access to. Namely,
ciphertexts {C1, . . . , C`} are handled by repeating the following steps for j = 1 to `.
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- If Cj = C?, B considers that Cj decrypts to ⊥ under sk? (which is legitimate since C? would
decrypt to Mb||VK? and VK 6= VK?) and does not make use of its decryption oracle.

- If Cj 6= C?, B queries the decryption of Cj . If the result can be parsed as M ||VK for some
plaintext M of appropriate length, B outputs M .

If the counter j reaches ` and no decryption query resulted in a plaintext of the form M ||VK, B
returns ⊥.

Eventually, the adversary A outputs a bit b′ ∈ {0, 1} and B outputs the same result. If B
did not abort, its advantage as an IND-CCA adversary is as large as the difference between A’s
probabilities of outputting 0 in Game k and Game k − 1. Indeed, if B’s challenger chooses b = 0,
then B is clearly playing Game k − 1 whereas, if b = 1, B is playing Game k.

Now, let us assess B’s probability not to abort. First, since M0 6= M1 by hypothesis, A is not
allowed to corrupt any user in S0 ∩ S1 = {θ1, . . . , θφ}. Since θk ∈ S0 ∩ S1, a sufficient condition for

B not to be asked for the unknown private key ski? is to be lucky when drawing i?
$← {1, . . . , n}

and have event Good occurring. This is the case with probability Pr[Good] = 1/n since the choice
of i? is completely independent of A’s view. ut

Lemma 5. For each k ∈ {φ + 1, . . . , `}, Game k is indistinguishable from Game k − 1 if the
underlying encryption acheme is AI-CCA secure and weakly robust. More precisely, for any ANOBE
adversary distinguishing the two games, there exists either an AI-CCA adversary B or a WROB-
CCA adversary B′ (as defined in appendix F.2) such that

|Pr[Ek]− Pr[Ek−1]| ≤ n2 ·
(
Advai-cca(B) + Advwrob-cca(B′)

)
.

Proof. We prove that, if an ANOBE attacker A is able to distinguish Game k and Game k − 1
for some k ∈ {φ + 1, . . . , `}, we can either translate A into an AI-CCA adversary B against the
encryption scheme or break its WROB-CCA property.

The AI-CCA adversary B takes as input par and two public keys pk?0, pk
?
1 from its AI-CCA

challenger and we call sk?0 and sk?1 the underlying private keys. Algorithm B has to generate a
master public key BE-MPK containing n public key keys pk1, . . . , pkn. To this end, B picks two

distinct indices i?0, i
?
1

$← {1, . . . , n} and defines pki?0 = pk?0 and pki?1 = pk?1. Then, B runs Keygen
and generates n − 2 key pairs (ski, pki) for each i ∈ {1, . . . , n}\{i?0, i?1}. The master public key
BE-MPK =

(
par,Σ, {pki}ni=1

)
is provided as input to A.

Throughout the game, A can adaptively corrupt any user i ∈ {1, . . . , n}. At each corruption
query, B aborts if the queried index i falls in {i?0, i?1}. Otherwise, B necessarily knows the queried
secret key ski and hands it to A. For each decryption query (C = (VK, C1, . . . , C`, σ), i) made by
A, B can handle the query on its own whenever i 6∈ {i?0, i?1}. If i = i?0 (resp. i = i?1), B queries its
own decryption oracle up to ` times and successively asks for the decryption of C1, . . . , C` under
sk?0 (resp. sk?1). At the first answer that differs from ⊥ and can be parsed as M ||VK, for some M of
the right length, B returns M . If B fails to obtain a decryption result of the form M ||VK, for some
M , B returns ⊥ to A, meaning that C does not properly decrypt under sk?0 (resp. sk?1).

In the challenge phase, A outputs messages M0,M1 and subsets S0, S1 ⊂ {1, . . . , n} of equal size
`. These sets are re-ordered as S′0 = {θ1, . . . , θφ, θφ+1, . . . , θ`} and S′1 = {ρ1, . . . , ρφ, ρφ+1, . . . , ρ`}
where θj = ρj for each j ∈ {1, . . . , φ}. If θk 6= i?0 or ρk 6= i?1, B aborts. We denote by Good the event

(θk = i?0) ∧ (ρk = i?1), which implies pkθk = pk?0 and p̃kρk = p̃k
?
1.

If Good occurs, B generates a one-time signature key pair (SK?,VK?) ← G(λ) and sends the
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messages (M0||VK?), (M1||VK?) to its AI-CCA challenger. The latter returns a challenge ciphertext

C? = Encrypt(par, pkb,Mb||VK?), for some internally flipped random bit b
$← {0, 1}. The ANOBE

adversary’s challenge ciphertext is then obtained as follows.

1. For j = 1 to k − 1, B sets Cj = Encrypt(par, pkρj , (M1||VK?)
)
.

2. For j = k + 1 to `, B computes Cj = Encrypt(par, pkθj , (M0||VK?)
)
.

3. Finally, set Ck = C?.

The adversary A receives C = (VK?, Cτ(1), . . . , Cτ(`), σ), where σ = S(SK?, (Cτ(1), . . . , Cτ(`))) and
τ : {1, . . . , `} → {1, . . . , `} is a random permutation.

In the second phase, A makes further adaptive corruption queries for indices i 6∈ S04S1 and B
handles them as previously. Decryption queries are handled as in the first phase with one difference:
if A makes a decryption query (C = (VK, Cτ(1), . . . , Cτ(`), σ), i) for which we simultaneously have
i ∈ {i0, i1}, VK 6= VK? and Cj = C? for some j ∈ {1, . . . , `}, B considers that Cj decrypts to ⊥
under ski without invoking its own decryption oracles on Cj . Since VK 6= VK?, it is clear that C?

cannot correctly decrypt to a message ending with VK under the private key sk?b . Still, we have to
rule out the possibility to have Decrypt(sk?1−b, C

?) = M ||VK, for some plaintext M , since this could
render A’s view inconsistent. If this event were to happen with non-negligible probability, algorithm
B could be turned into a weak robustness (more precisely, WROB-CCA) adversary B′. The latter
would simply generate the ANOBE challenge ciphertext by computing C1, . . . , C` itself and waiting
for A to make a decryption query C = (VK, C1, . . . , C`, σ) for which there exists j ∈ {1, . . . , `} such
that Cj correctly decrypts under both skb and sk1−b.

When A halts, it outputs a result b′ ∈ {0, 1} and B outputs b′ as well. If B did not abort, its
AI-CCA advantage is as large as the gap between A’s probabilities of outputting 0 in Game k and
Game k − 1. Indeed, if B’s AI-CCA challenger sets its challenge bit as b = 0, B is playing Game
k − 1 with A whereas, if the AI-CCA challenger sets b = 1, B is playing Game k.

Now, let us assess B’s probability not to abort. Recall that the adversary A cannot legally
corrupt any user in S04S1 = {θφ+1, . . . , θ`, ρφ+1, . . . , ρ`}. For this reason, a sufficient condition for
A not to query the private keys skθk or skρk is to have Good occurring. Since event Good comes
about with probability Pr[Good] = 1/n(n− 1) > 1/n2, the claimed result follows. ut

C Proof of Lemma 1

We give a proof of Lemma 1.

Proof. The proof proceeds with a sequence of games where the first game is the real game and the
last one is a game where the challenger’s bit b ∈ {0, 1} is unconditionally hidden. In Game i, we
call Si the event that b′ = b.

Game 0: is the real attack game. The adversary begins by choosing a tag t? and obtains two
public keys pk0 = (X0,1, X0,2, Y0,1, Y0,2), pk1 = (X1,1, X1,2, Y1,1, Y1,2) from the challenger that keeps
the private keys sk0 = (x0,1, x0,2, y0,1, y0,2), sk1 = (x1,1, x1,2, y1,1, y1,2) to itself. The adversary A
then makes verification queries for inputs (U,H = (V,W ), t) such that t 6= t?. At each query, the
challenger replies by outputting two bits (d0, d1) ∈ {0, 1}2 where d0 =

(
H = Invert(cp, sk0, t, U)

)
and d1 =

(
H = Invert(cp, sk1, t, U)

)
. In the challenge phase, the challenger flips a fair binary

coin b
$← {0, 1} and generates the challenge as

(
U?, (V ?,W ?)

)
=
(
gr, ((Xt

b,1Xb,2)
r, (Y t

b,1Yb,2)
r)
)
, for

some r
$← Z∗p, which is sent to the adversary A. After a second series of queries, A outputs a bit
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b′ ∈ {0, 1} and we call S0 the event that b′ = b.

Game 1: is identical to Game 0 with the following two differences.

- The challenger’s bit b
$← {0, 1} is chosen at the beginning of the game.

- In the adversary’s challenge (U?, V ?,W ?), W ? is replaced by a random element of G.

The first change is purely conceptual and we argue that, under the DDH assumption, a computa-
tionally bounded adversary cannot notice the second one.

To prove this, we show a DDH distinguisher B that bridges between Game 0 and Game 1.
Algorithm B takes as input a tuple (g,X = gx, Y = gy, T ), where x, y ∈R Z∗p, and aims at de-

ciding whether T = gxy or T ∈R G∗. At the outset of the game, B picks θ1, θ2
$← Z∗p and defines

X̃ = gθ1Xθ2 . When the challenge bit b
$← {0, 1} is chosen, B honestly generates pk1−b by choosing

x1−b,1, x1−b,2, y1−b,1, y1−b,2
$← Z∗p and setting X1−b,1 = gx1−b,1 , X1−b,2 = gx1−b,2 , Y1−b,1 = gy1−b,1 and

Y1−b,2 = gy1−b,2 . As for pkb, B chooses α, β1, β2
$← Z∗p and computes Xb,1 = X̃, Xb,2 = X̃−t

?
gβ1 ,

Yb,1 = gβ2Xα and Yb,2 = g−β2t
?
. The adversary is given the two public keys (X0,1, X0,1, Y0,1, Y0,2)

and (X1,1, X1,2, Y1,1, Y1,2) and we note that they are both uniformly distributed in G4 as required.
When the adversary A makes a verification query (U, (V,W ), t), with t 6= t?, B can simply run

algorithm Invert(cp, sk1−b, t, U) since it knows sk1−b. When it comes to simulate the evaluation
of the bit db =

(
(V,W ) = Invert(cp, skb, t, U)

)
, it computes

Z1 = (V/Uβ1)1/(t−t
?), Z2 = (W/Uβ2(t−t

?))1/α·t

and answers that db = 1 (i.e., that (V,W ) = Invert(cp, skb, t, U) = 1) if and only if Z1 = U θ1 ·Zθ22 .
To see why this test works, we note that, if (U, V,W ) is a valid hint for pkb and t, it must be the
case that (Z1, Z2) = (X̃r, Xr), where r = logg(U), so that the test is satisfied. If

(
U, (V,W )

)
is not

a valid value-hint pair w.r.t. (pkb, t), we must have (U, V,W ) = (gr, (Xt
b,1Xb,2)

r+r′ , (Y t
b,1Yb,2)

r+r′′),

where it holds that either r′ 6= 0 or r′′ 6= 0, and this implies that Z1 = X̃r+r1 and Z2 = Xr+r2

where either r1 6= 0 or r2 6= 0. If r2 = 0 and r1 6= 0, the equality Z1 = U θ1Zθ22 is never satisfied and
we thus assume r2 6= 0. In this case, we can only have Z1 = U θ1Zθ22 by pure chance since, due to
the dependence on θ2 ∈ Z∗p, the value U θ1Zθ22 = X̃r ·Xr2·θ2 is independent of A’s view since it is

the product of an information-theoretically fixed term X̃r with a completely undetermined value
Xr2·θ2 . The same arguments as in [15] show that B’s probability to incorrectly answer a verification
query is at most q/p if q is the number of queries.

In the challenge phase, B constructs the challenge value-hint pair (U?, (V ?,W ?)) as

U? = Y, V ? = Y β1 , W ? = Tα·t
?

It is easy to see that, if T = gxy, A’s view is the same as in Game 0 (except with probability
q/p) whereas, if T ∈R G∗, B is playing Game 1 with A since W ? is uniformly distributed in G∗.
Combining this observation with the above arguments, we find |Pr[S1]−Pr[S0]| ≤ AdvDDH(B)+q/p.

Game 2: is identical to Game 1 but, in the challenge phase V ? and W ? are both chosen uniformly
in G? and independently of U?. To argue that A cannot see the difference as long as the DDH
assumption holds, we proceed as in the previous transition.

Namely, the DDH distinguisher B takes as input (g,X = gx, Y = gy, T ), where x, y ∈R Z∗p,
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and aims to decide if T = gxy. At the beginning of the game, B picks θ1, θ2
$← Z∗p and defines

X̃ = gθ1Xθ2 . When b
$← {0, 1} is chosen, B honestly generates pk1−b as in the transition from Game

0 to Game 1. Then, it computes pkb by picking α, β1, β2, β3
$← Z∗p and computes Xb,1 = gβ1Xα,

Xb,2 = g−β1t
?
, Yb,1 = gβ2X̃β3 and Yb,2 = X̃. The adversary is given pk0 = (X0,1, X0,1, Y0,1, Y0,2) and

pk1 = (X1,1, X1,2, Y1,1, Y1,2) which are both uniformly distributed in G4 as required.
Whenever the adversary A sends a verification query

(
U, (V,W ), t

)
, B aborts in the unlikely

event that β3 · t = p−1 (since β3 is chosen at random independently of A’s view, this happens with
probability at most q/p during the game). Otherwise, it can compute

Z1 = (V/Uβ1(t−t
?))1/α·t, Z2 = (W/Uβ2·t)1/(β3·t+1)

If Z1 = U θ1 · Zθ22 , then B replies that db = 1 (meaning that (V,W ) = Invert(cp, skb, t, U) = 1).
Otherwise, the second output bit db of the verification algorithm is declared to be 0. In addition, B
can run Invert(cp, sk1−b, t, U) normally since it knows sk1−b. The above test is easily seen to work
(with overwhelming probability) for the same reasons as in the transition from Game 0 to Game
1. The only situation where B fails to answer verification queries in the same way as in Game 2 is
when β3 · t = p − 1 at some verification query. When taking into account the tiny probability of
this event, we find that |Pr[S2]− Pr[S1]| ≤ AdvDDH(B) + q/p.

When it comes to construct the challenge
(
U?, (V ?,W ?)

)
for the adversary, B chooses W ? $← G∗

at random and generates (U?, V ?) as

U? = Y, V ? = Tα·t
?
.

It is easy to see that, if T = gxy, the challenger B is playing Game 1 with the adversary. If T ∈R G?,
A and B are playing Game 2.

In Game 2, the challenge
(
U?, (V ?,W ?)

)
is just a sequence of three independent random group

elements that carries no information about the bit b ∈ {0, 1}. Hence, we have Pr[S2] = 1/2.
By combining the above arguments, we obtain

Advanon-hint(A) ≤ 2 ·AdvDDH(B) + 2 · q
p
< 2 ·

(
AdvDDH(B) +

q

2λ

)
. (C.1)

ut

D Proof of Lemma 2

We give a proof of Lemma 2.

Proof. Assuming the existence of a strong robustness adversary A, we construct an algorithm B
that receives as input (G, p, g,X) and computes x = logg(X) ∈ Zp with overwhelming probability.

To generate the public keys pk0 and pk1, B begins by defining X̃ = gθ1Xθ2 for randomly chosen
θ1, θ2 ∈ Z∗p. Then, B picks αi,1, αi,2, βi,1, βi,2, γi,1, γi,2, δi,1, δi,2

$← Z∗p, for i ∈ {0, 1}, and computes

Xi,1 = gαi,1Xβi,1 Xi,2 = gαi,2Xβi,2

Yi,1 = gγi,1X̃δi,1 Yi,2 = gγi,2X̃δi,2 .

The adversary is given pk0 = (X0,1, X0,2, Y0,1, Y0,2) and pk1 = (X1,1, X1,2, Y1,1, Y1,2) and starts
making verification queries.
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At each verification query
(
U, (V,W ), t

)
, B aborts if βi,1 · t+βi,2 = 0 or δi,1 · t+δi,2 = 0 for some

i ∈ {0, 1} (since A has no information on (βi,1, βi,2, δi,1, δi,2), this only happens with probability
q/p throughout the game). Otherwise, B replies by computing

Zi,1 = (V/Uαi,1t+αi,2)1/(βi,1·t+βi,2) and Zi,2 = (W/Uγi,1t+γi,2)1/(δi,1·t+δi,2)

for each i ∈ {0, 1}. If it turns out that Zi,2 = U θ1Zθ2i,1 for some i ∈ {0, 1}, the reduction B replies

that (V,W ) = Invert(cp, ski, t, U) = 1. We note that, if
(
U, (V,W )

)
is valid for pki, we must have

Z1,i = Xr and Zi,2 = X̃r, where r = logg(U), for the same reason as in the proof of lemma 1. The
same arguments show that B’s probability to incorrectly answer a verification query is at most q/p.

We note that the adversary is successful if some verification query
(
U?, (V ?,W ?), t?

)
results

in the output (1, 1) (namely, U? is inverted to (V ?,W ?) under both private keys sk0 and sk1).
The same arguments as in the proof of lemma 1 guarantee that, except with probability 2/p, the
equalities

U? = gr, V ? = (Xt?

0,1X0,2)
r = (Xt?

1,1X1,2)
r, W ? = (Y t?

0,1Y0,2)
r = (Y t?

1,1Y1,2)
r,

hold for some r ∈ Z∗p. Since r 6= 0, this implies Xt?
0,1X0,2 = Xt?

1,1X1,2 and Y t?
0,1Y0,2 = Y t?

1,1Y1,2. In

particular, we thus have gα0,1t?+α0,2Xβ0,1t?+β0,2 = gα1,1t?+α1,2Xβ1,1t?+β1,2 and thus

gt
?·(α0,1−α1,1)+(α0,2−α1,2) = Xt?·(β1,1−β0,1)+(β1,2−β0,2) (D.1)

The probability to have t? = (α1,2 − α0,2)/(α0,1 − α1,1) = (β0,2 − β1,2)/(β1,1 − β0,1) is negligible
since {(αi,1, αi,2)}i=0,1 (as well as {(βi,1, βi,2)}i=0,1) are uniformly chosen in (Z∗p)2 and independent
of A’s view. It comes that the equality (D.1) allows B to compute

x = logg(X) =
t? · (α0,1 − α1,1) + (α0,2 − α1,2)

t? · (β1,1 − β0,1) + (β1,2 − β0,2)
.

ut

E Proof of Theorem 4

We give a proof for Theorem 4.

Proof. Recall that, since |S0| = |S1| = `, it always holds that |S0\S1| = |S1\S0| = |Sb| − |S0 ∩ S1|
for each b ∈ {0, 1}. We consider a sequence of games where the adversary is given an encryption of
M0 for S0 in Game 0 while, in the last game, the adversary obtains an encryption of M1 under S1.

Game 0real: corresponds to the real game when the challenger’s bit is b = 0. Namely, the ad-
versary A is given public parameters BE-MPK containing n tuples {(p̃ki, pkhi }ni=1. For each
i ∈ {1, . . . , n}, user i’s private key is a pair ski = (s̃ki, sk

h
i ). In the first phase, the adversary A

adaptively chooses indices i ∈ {1, . . . , n} and obtains the corresponding ski. The adversary may
also invoke the decryption oracle by making queries (C, i) which are handled using the relevant
private key ski. At the challenge phase A chooses messages M0,M1 and two subsets S0, S1 ⊂
{1, . . . , n} of size |S0| = |S1| = ` such that S0 6= S1. The challenger generates a one-time signa-

ture key pair (SK?,VK?) ← G(λ), picks a random exponent r
$← Rh, parses S0 as {θ1, . . . , θ`}

and returns the challenge ciphertext C? =
(
VK?, U, (Hτ(1), Cτ(1)), . . . , (Hτ(`), Cτ(`)), σ

)
where
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(U,Hj) = πhint.Hint(cp,VK?, pkhθj , r), Cj = πpke.Encrypt(p̃kθj ,M0||VK?)
)

for j = 1 to ` and

τ : {1, . . . , `} → {1, . . . , `} is a random permutation. In phase 2, A makes further decryp-
tion queries (with the usual restriction) and key queries for arbitrary indices i such that
i ∈ {1, . . . , n}\(S0 4 S1). Eventually, A outputs a bit b′ ∈ {0, 1} and we define Ereal0 to be
the event that b′ = 0.

Game 0: is as Game 0real but the challenger now rejects all post challenge decryption queries
(C, i) where C contains the same verification key VK? as in the challenge phase. We call E0 the
event that A outputs b′ = 0 in Game 0.

Game 0′: is defined to be identical to Game 0 for convenience.

Game k (1 ≤ k ≤ `): is identical to Game k − 1’ but, in the challenge phase is processed dif-
ferently. From the two adversarially-chosen sets S0, S1 ⊂ {1, . . . , n}, the challenger B defines
the value φ = |S0 ∩ S1| and then considers two ordered sets S′0 = {θ1, . . . , θφ, θφ+1, . . . , θ`},
S′1 = {ρ1, . . . , ρφ, ρφ+1, . . . , ρ`} that are obtained by ordering S0 and S1 in such a way that

θj = ρj for each j ∈ {1, . . . , φ} and θj 6= ρj if j ∈ {φ + 1, . . . , `}. Then, B picks r
$← Rh and

constructs the challenge ciphertext as follows.

1. For j = 1 to φ,

a. Compute (U,Hj) = πhint.Hint(cp,VK?, pkhθj , r).

b. Set Cj = πpke.Encrypt(p̃kθj ,M1||VK?) if j ≤ k and Cj = πpke.Encrypt(p̃kθj ,M0||VK?) if
j > k.

2. For j = φ+ 1 to `,

- If j < k, set (Hj , Cj) =
(
Hj , π

pke.Encrypt(p̃kρj ,M1||VK?)
)
, where Hj is obtained by

computing (U,Hj) = πhint.Hint(cp,VK?, pkhρj , r).

- If j > k, compute a value-hint pair (U,Hj) = πhint.Hint(cp,VK?, pkhθj , r) and set

(Hj , Cj) =
(
Hj , π

pke.Encrypt(p̃kθj ,M0||VK?)
)
.

- If j = k, compute (U,Hk) = πhint.Hint(cp,VK?, pkhρk , r) and set

(Hk, Ck) =
(
Hk, π

pke.Encrypt(p̃kθk ,M0||VK?)
)
.

The adversary is then returned C? =
(
VK?, U, (Hτ(1), Cτ(1)), . . . , (Hτ(`), Cτ(`)), σ

)
, for a ran-

domly chosen permutation τ : {1, . . . , `} → {1, . . . , `}, and the second phase is handled as in
previous games. We call Ek the event of A outputting b′ = 0 at the end of Game k.

Game k’ (1 ≤ k ≤ `): is identical to Game k but the challenge ciphertext C? is now generated as
follows.

1. For j = 1 to φ, compute (Hj , Cj) as in Game k
2. For j = φ + 1 to `, construct (Hj , Cj) by computing (U,Hj) = πhint.Hint(cp,VK?, pkhρj , r)

and setting
(Hj , Cj) =

(
Hj , π

pke.Encrypt(p̃kρj ,M1||VK?)
)

if j ≤ k (namely, Cj is an encryption of M1 under p̃kρj instead of M0 under p̃kθj ). If j > k,

the pair (Hj , Cj) is computed as (Hj , Cj) =
(
Hj , π

pke.Encrypt(p̃kθj ,M0||VK?)
)

where Hj is

obtained as part of (U,Hj) = πhint.Hint(cp,VK?, pkhθj , r)
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We denote by E′k the event that the adversary outputs b′ = 0 in Game k’.

Game `real: is identical to Game `′ with the difference that, when handling decryption queries,
the challenger no longer rejects ciphertexts that contain the verification key VK?. Game `real
actually proceeds like the real game when the challenger’s bit is b = 1. We let Ereal` be the event
that A outputs the bit b′ = 0 at the end of Game `real.

Game 0real and Game 0 are clearly indistinguishable if the one-time signature is strongly unforgeable
and the same argument can be made about Game ` and Game `real.

We thus have |Pr[Ereal0 ] − Pr[E0]| = |Pr[Ereal` ] − Pr[E`]| ≤ Advsuf
OTS(A). As for other game

transitions, they are justified by lemmas 6, 7 and 8 that separately consider the situations where
k ≤ φ and k > φ. Specifically, we show that, if Game k and Game k − 1’ can be distinguished,
there exists an anonymity adversary B1 against the hint system. Likewise, if Game k and Game
k’ can be told apart, lemmas 7 and 8 show that there exists either a AI-CCA adversary B2 or a
WROB-CCA adversary B2 against the encryption scheme. By combining these results altogether,
we find

|Pr[Ereal0 ]− Pr[Ereal` ]| ≤ 2 ·Advsuf
OTS(A) + n2 · ` ·Advanon-hint(B1)

+n2 · ` ·
(
Advai-cca(B2) + Advwrob-cca(B3)

)
≤ 2 ·Advsuf

OTS(A)

+n3 ·
(
Advanon-hint(B1) + Advai-cca(B2) + Advwrob-cca(B3)

)
.

ut

Lemma 6. For each k ∈ {1, . . . , `}, Game k is indistinguishable from Game k− 1’ if the tag-based
hint scheme is anonymous. More precisely, we have

|Pr[Ek]− Pr[E′k−1]| ≤ n2 ·Advanon-hint(B). (E.1)

Proof. We show that, if an adversary A can distinguish Game k and Game k−1’, we can construct
an anonymity adversary B against the tag-based anonymous hint scheme. We note that Game k
and Game k − 1’ are identical when k ≤ φ = |S0 ∩ S1| and we thus assume k > φ.

On input of common public parameters cp for the hint scheme, our adversary B initially gener-
ates a one-time key pair (SK?,VK?)← G(λ) and sends VK? as a target tag to its challenger. The lat-
ter replies by sending public parameters (G, g) as well as two distinct tag-based hint public keys pkh0 ,
pkh1 . Then, B has to prepare a master public key BE-MPK for the ANOBE adversary A. To do this,

B randomly picks two distinct indices i0, i1
$← {1, . . . , n} and sets pkhi0 = pkh0 and pkhi1 = pkh1 . Then,

our adversary B generates a set of n key pairs (s̃ki, p̃ki)← πpke.Keygen(1λ) for the underlying pub-
lic key encryption scheme. It then defines pki0 = (p̃ki0 , pk

h
i0

) and pki1 = (p̃ki1 , pk
h
i1

). For all indices

i ∈ {1, . . . , n}\{i0, i1}, B generates (skhi , pk
h
i )← πhint.Keygen(cp) itself and defines pki = (p̃ki, pk

h
i ).

It finally hands A the master public key consisting of BE-MPK =
(
cp, {pk1, . . . , pkn}, Σ

)
, where

pki = (p̃ki, pk
h
i ).

Throughout the game, A is allowed to corrupt any user i ∈ {1, . . . , n} depending on the pre-
viously collected information. At each corruption query, B aborts if the queried index i unluck-
ily falls into the forbidden set {i0, i1}. Otherwise, B necessarily knows the underlying secret key
ski = (s̃ki, sk

h
i ) and returns it to the ANOBE adversary A.
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When the adversary A makes a decryption query,
(
C = (VK, U, (H1, C1), . . . , (H`, C`), σ), i

)
,

for some index i ∈ {1, . . . , n}, B returns ⊥ if VK = VK?. Otherwise, we note that B can always
answer the query on its own whenever i 6∈ {i0, i1}. If i ∈ {i0, i1}, B invokes its tag-based anonymity
challenger5 up to ` times: for j = 1 to `, it considers Hj and makes verification queries (U,Hj ,VK)
until the challenger indicates that Hj = Invert(cp, skβ,VK, U) = 1 for some j ∈ {1, . . . , `} and
some β ∈ {0, 1}. When the smallest such j is found, B uses the corresponding private key s̃kiβ to
decrypt Cj and sends the result to A. If the challenger always replies 0 at each verification query,
B simply returns ⊥ to A, meaning that user i was not a legitimate receiver of C.

In the challenge phase, A outputs messages M0,M1 and two subsets S0, S1 ⊂ {1, . . . , n} of equal
size. At this point, B re-orders S0, S1 as S′0 = {θ1, . . . , θφ, θφ+1, . . . , θ`}, S′1 = {ρ1, . . . , ρφ, ρφ+1, . . . , ρ`}
where θj = ρj for each j ∈ {1, . . . , φ}. If θk 6= i0 or ρk 6= i1, the simulator B aborts. We call Good
the event (θk = i0) ∧ (ρk = i1), which implies pkθk = (p̃kθk , pk

h
0 ) and pkρk = (p̃kρk , pk

h
1 ).

If Good occurs, B sends its challenge request to its own challenger and receives in response a
challenge hint (U?, H?) = πhint.Hint(cp,VK?, pkhb , r

?), for some random bit b
$← {0, 1} and some

r?
$← Rh. The ANOBE challenge ciphertext is produced according

to the following steps.

1. For j = 1 to φ, B sets (Hj , Cj) =
(
πhint.Invert(cp, skhθj ,VK?, U?), πpke.Encrypt(p̃kθj ,M1||VK?)

)
using skhθj , which is available if Good occurs occurs.

2. For j = φ+ 1 to k − 1, B can build (Hj , Cj) as

(Hj , Cj) =
(
πhint.Invert(cp, skhρj ,VK?, U?), πpke.Encrypt(p̃kρj ,M1||VK?)

)
in the same way since it knows skhρj in any occurrence of Good.

3. For j = k+1 to `, B sets (Hj , Cj) =
(
πhint.Invert(cp, skhθj ,VK?, U?), πpke.Encrypt(p̃kθj ,M0||VK?)

)
,

which is possible since skhθj is available for the same reason as in previous cases.

4. Finally, set (Hk, Ck) =
(
H?, πpke.Encrypt(p̃kθk ,M0||VK?)

)
.

The adversary A then receives the ciphertext C =
(
VK?, U?, (Hτ(1), Cτ(1)), . . . , (Hτ(`), Cτ(`)), σ

)
,

for some random permutation τ : {1, . . . , `} → {1, . . . , `} and where σ is a one-time signature on
the whole bundle.

In the second phase, A makes further adaptive corruption queries for indices i 6∈ S0 4 S1 and
B handles them as in the first phase. Also, B can still consistently answer decryption queries by
appealing to its tag-based hint challenger and since it knows {s̃ki}ni=1.

The game ends with A outputting a bit b′ ∈ {0, 1} which is also B’s result. If B did not abort,
its anonymity advantage against the tag-based hint system is as large as the gap between A’s
probabilities of outputting 1 in Game k and Game k − 1’. Indeed, if B’s challenger chooses b = 0,
then B is playing Game k − 1’ with A whereas, if b = 1, B is playing Game k.

When analyzing B’s probability not to abort, we first recall that A’s corruption queries cannot
involve any index i in S04S1 = {pkθφ+1

, . . . , pkθ` , pkρφ+1
, . . . , pkρ`}. Therefore, a sufficient condition

for B not to be faced with an embarrassing query is to have Good occurring. The probability of this
desirable event is Pr[Good] = 1/n(n − 1) > 1/n2. The announced bound (E.1) then follows from
the bound given by (C.1). ut
5 This is necessary to make sure that decryption queries are handled as in the real scheme.
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Lemma 7. For each k ∈ {1, . . . , φ}, Game k’ is indistinguishable from Game k if the underlying
encryption scheme is IND-CCA. More precisely, we have

|Pr[E′k]− Pr[Ek]| ≤ n ·Advind-cca(B).

Proof. We prove that, if the adversary A can distinguish Game k and Game k’, there is a chosen-
ciphertext adversary against the underlying public key encryption scheme. We note that, for each
k ∈ {1, . . . , φ}, Game k and Game k’ are identical when M0 = M1 and we thus assume M0 6= M1.
This implies that the adversary cannot corrupt users in S0 ∩ S1.

Our IND-CCA adversary B receives a public key p̃k
?

from its challenger and it has to prepare a
master public key BE-MPK comprising n public keys p̃k1, . . . , p̃kn for the ANOBE adversary A. To

this end, B picks i?
$← {1, . . . , n} at random and defines p̃ki? = p̃k

?
. Then, B generates n−1 public

key encryption key pairs (s̃ki, p̃ki) ← πpke.Keygen(1λ) itself for each i ∈ {1, . . . , n}\{i?}. It finally
chooses public parameters cp for the hint scheme and generates (skhi , pk

h
i ) ← πhint.Keygen(cp) for

i = 1 to n. The master public key BE-MPK =
(
cp, {(p̃ki, pkhi )}ni=1, Σ

)
is given to A.

At any time, A is allowed to corrupt an arbitrary user i ∈ {1, . . . , n} depending on the informa-
tion it gathered so far. At each corruption query, B aborts and fails in the event that A chooses to
corrupt user i?. Otherwise, B is necessarily able to consistently answer the query since it knows secret
keys {s̃ki, skhi }i 6=i? . When A makes a decryption query (C = (VK, U, (H1, C1), . . . , (H`, C`), σ), i),

we assume that the query involves the challenge key p̃k
?

since B can always run the legal de-
cryption procedure otherwise. To simulate the decryption algorithm without knowing s̃k

?
, B ap-

peals to its own IND-CCA challenger. It first uses the i-th hint private key skhi to compute
H = πhint.Invert(cp, ski,VK, U). If H 6= Hj for each j ∈ {1, . . . , `}, B returns ⊥. Otherwise,
B considers the smallest index j such that H = Hj and sends the decryption query Cj to its own
challenger. If the latter’s response can be parsed as M ||VK, for some M of appropriate length, B
returns M to A. Otherwise, B returns ⊥ to indicate that the ciphertext fails to decrypt properly.

In the challenge phase, A outputs messages M0,M1 and two subsets S0, S1 ⊂ {1, . . . , n} of equal
size. At this step, B re-orders S0, S1 as S′0 = {θ1, . . . , θφ, θφ+1, . . . , θ`}, S′1 = {ρ1, . . . , ρφ, ρφ+1, . . . , ρ`}
where θj = ρj for each j ∈ {1, . . . , φ}. If θk 6= i?, B aborts and declares failure and we denote by
Good the event that θk = i?.

If the event Good occurs, B chooses a one-time signature key pair (SK?,VK?)← G(λ) and sends
the two messages (M0||VK?), (M1||VK?) to its IND-CCA challenger. The latter returns a challenge
ciphertext C? = πpke.Encrypt(p̃k

?
,Mb||VK?), for some hidden random bit b ∈R {0, 1}. The ANOBE

challenge ciphertext is then generated by choosing r
$← Rh and defining ciphertext components as

follows.

1. For j = 1 to k − 1, B computes (U,Hj) = πhint.Hint(cp,VK?, pkhθj , r) and sets (Hj , Cj) as

(Hj , Cj) =
(
Hj , π

pke.Encrypt(p̃kθj ,M1||VK?)
)
.

2. For j = k + 1 to `, B computes (U,Hj) = πhint.Hint(cp,VK?, pkhθj , r) and sets (Hj , Cj) as

(Hj , Cj) =
(
Hj , π

pke.Encrypt(p̃kθj ,M0||VK?)
)
.

3. Finally, set (Hk, Ck) = (Hk, C
?), where Hk is obtained as (U,Hk) = πhint.Hint(cp,VK?, pkhθk , r).

32



The adversary A then receives the ciphertext C = (VK?, U, (Hτ(1), Cτ(1)), . . . , (Hτ(`), Cτ(`)), σ),
where σ = S(SK?, U, (Hτ(1), Cτ(1)), . . . , (Hτ(`), Cτ(`))) and for some permutation τ : {1, . . . , `} →
{1, . . . , `}.

In the second phase, A makes further adaptive corruption queries for indices i 6∈ S0 4 S1 and
B handles them as in the first phase. Whenever A makes a decryption query (C, i), B parses the
ciphertext C as C = (VK, U, (H1, C1), . . . , (H`, C`), σ) and outputs ⊥ if VK = VK? or if σ is invalid.
Otherwise, if i 6= i?, B can run the decryption algorithm by itself since it knows the private key
s̃ki. If i = i?, B appeals to the decryption oracle it is given access to. It first uses skhi? to compute
H = πhint.Invert(cp, skhi? ,VK, U) and determine which ciphertext should be decrypted among
{C1, . . . , C`}. If H 6∈ {H1, . . . ,H`}, B returns ⊥. Assuming that H = Hj for some j ∈ {1, . . . , `},
B returns ⊥ if Cj = C? as, given that VK 6= VK?, the real ANOBE decryption necessarily gives
⊥ since C? decrypts to Mb||VK?. Otherwise, upon receiving the challenger’s response M ||VK′, B
returns M if VK = VK′. Otherwise, it returns ⊥.

At the end of the game, A outputs b′ ∈ {0, 1} and B produces the same result. We claim that,
if B did not abort, its IND-CCA advantage is as large as the difference between A’s probabilities
of outputting 0 in Game k and Game k’. Indeed, if B’s challenger chooses b = 0, then B is playing
Game k whereas, if b = 1, B is playing Game k’.

When it comes to evaluate B’s probability not to abort, we note that, whenever M0 6= M1,
A is not allowed to corrupt any user in S0 ∩ S1 = {θ1, . . . , θφ}. Since θk ∈ S0 ∩ S1, a sufficient
condition for B not to be asked for s̃ki? is to have Good occurring. This is the case with probability
Pr[Good] = 1/n since the index i? is chosen at random independently of A’s view. ut

Lemma 8. For each k ∈ {φ+1, . . . , `}, Game k’ is indistinguishable from Game k if the encryption
scheme is AI-CCA secure and weakly robust. More precisely, for any ANOBE adversary distinguish-
ing the two games, there exists either an AI-CCA adversary B or a WROB-CCA adversary B′ such
that

|Pr[Ek]− Pr[E′k]| ≤ n2 ·
(
Advai-cca(B) + Advwrob-cca(B′)

)
.

Proof. We show that, if the ANOBE adversary A is able to distinguish Game k and Game k’, we
can either construct an AI-CCA adversary B against the public key encryption scheme or break its
weak robustness property.

Our AI-CCA adversary B is given as input two public keys p̃k
?
0, p̃k

?
1 from its AI-CCA challenger

and we denote by s̃k
?
0 and s̃k

?
1 the corresponding private keys. Algorithm B has to generate a master

public key BE-MPK containing n public key encryption keys p̃k1, . . . , p̃kn. To do this, B randomly

picks two distinct indices i?0, i
?
1

$← {1, . . . , n} and sets p̃ki?0 = p̃k
?
0 and p̃ki?1 = p̃k

?
1. Then, B generates

n− 2 key pairs (s̃ki, p̃ki)← πpke.Keygen(1λ) for each i ∈ {1, . . . , n}\{i?0, i?1}. Finally, B also chooses
public parameters cp for the hint scheme and generates (skhi , pk

h
i )← πhint.Keygen(cp) for i = 1 to

n. The master public key consisting of
(
cp, (p̃k0, pk

h
0 ), . . . , (p̃kn, pk

h
n), Σ

)
is given as input to A.

During the game, the adversary A is allowed to adaptively corrupt any user i ∈ {1, . . . , n}. At
each corruption query, B aborts in the event that the queried i is such that i ∈ {i?0, i?1}. Otherwise,
B necessarily knows the queried secret key (s̃ki, sk

h
i ) and returns it to A.

For each decryption query (C = (VK, U, (H1, C1), . . . , (H`, C`), σ), i) made by A, B can reply
on its own whenever i 6∈ {i?0, i?1}. If i = i?0 (resp. i = i?1), B uses skhi to determine which ciphertext
should be decrypted among C1, . . . , C`. Namely, if Hj 6= πhint.Invert(skhi ,VK, U) for j = 1 to `, B
returns ⊥. If it turns out that Hj = πhint.Invert(skhi ,VK, U) for some j ∈ {1, . . . , `}, B queries its
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own decryption oracle and asks it for the decryption of Cj under s̃k
?
0 (resp. s̃k

?
1).

In the challenge phase, A outputs messages M0,M1 and subsets S0, S1 ⊂ {1, . . . , n} of equal size
`. These sets are re-ordered as S′0 = {θ1, . . . , θφ, θφ+1, . . . , θ`} and S′1 = {ρ1, . . . , ρφ, ρφ+1, . . . , ρ`}
where θj = ρj for each j ∈ {1, . . . , φ}. If θk 6= i?0 or ρk 6= i?1, B aborts. We denote by Good the event

(θk = i?0) ∧ (ρk = i?1), which implies p̃kθk = p̃k
?
0 and p̃kρk = p̃k

?
1.

If the event Good occurs, B generates a one-time signature key pair (SK?,VK?) ← G(λ) and
sends the messages (M0||VK?,M1||VK?) to its AI-CCA challenger. The latter flips a random coin

b
$← {0, 1} and returns a challenge ciphertext C? = πpke.Encrypt(p̃kb,Mb||VK?). The adversary’s

challenge ciphertext is then obtained by choosing r
$← Rh and computing ciphertext components

as follows.

1. For j = 1 to k − 1, B sets (Hj , Cj) =
(
Hj , π

pke.Encrypt(p̃kρj ,M1||VK?)
)
, where Hj is obtained

as part of (U,Hj) = πhint.Hint(cp,VK?, pkhρj , r)

2. For j = k + 1 to `, B computes (Hj , Cj) =
(
Hj , π

pke.Encrypt(p̃kθj ,M0||VK?)
)
, where Hj is

obtained as per (U,Hj) = πhint.Hint(cp,VK?, pkhθj , r)

3. Finally, set (Hk, Ck) = (Hk, C
?), where (U,Hk) = πhint.Hint(cp,VK?, pkhρk , r).

The adversary A is then given the challenge C = (VK?, U, (Hτ(1), Cτ(1)), . . . , (Hτ(`), Cτ(`)), σ), where
σ = S(SK?, (U, (Hτ(1), Cτ(1)), . . . , (Hτ(`), Cτ(`)))) and τ : {1, . . . , `} → {1, . . . , `} is a random per-
mutation.

In the second phase, A makes further adaptive corruption queries for indices i 6∈ S04S1 and B
handles them as previously. Decryption queries are also dealt with in the same way with one dif-
ference: namely, if A makes a decryption query (C = (VK, U, (H1, C1), . . . , (H`, C`), σ), i) for which
we simultaneously have i ∈ {i?0, i?1} and

VK 6= VK?, Hj = πhint.Invert(cp, skhi ,VK, U), Cj = C?,

for some j ∈ {1, . . . , `}, our adversary B returns ⊥. Since VK 6= VK?, it is easy to see that C? cannot
correctly decrypt to a message ending with VK under the private key s̃k

?
b . Still, we have to consider

the probability to have Decrypt(s̃k
?
1−b, C

?) = M ||VK for some plaintext M , which would render A’s
view inconsistent. However, it is easy to see that B could be turned into a weak robustness (more
precisely, WROB-CCA) adversary B′ if the latter event occurs with non-negligible probability.

When A terminates, it outputs a bit b′ ∈ {0, 1} and B outputs b′ as well. If B did not abort,
its AI-CCA advantage is easily seen to be as large as the difference between A’s probabilities of
outputting 0 in Game k and Game k’. Indeed, if B’s AI-CCA challenger sets its challenge bit as
b = 0, B is playing Game k with A whereas, in the situation b = 1, B is playing Game k’.

When it comes to assess B’s probability not to abort, we recall that A cannot corrupt any user
in S0 4 S1 = {θφ+1, . . . , θ`, ρφ+1, . . . , ρ`}. Hence, a sufficient condition for the adversary A not to
query the private keys s̃kθk or s̃kρk is to have Good occurring. Since it does so with probability
Pr[Good] = 1/n(n− 1) > 1/n2, the announced result follows. ut

We note that, if we assume that the underlying encryption scheme supports labels (like, e.g.,
the Cramer-Shoup cryptosystem), shorter ciphertexts can be obtained by including the verification
key VK in the label of each ciphertext (instead of appending it to the plaintext). In this case, the
proof of lemma 8 does not have to assume that the encryption scheme is weakly robust.
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F Security Definitions for Public Key Encryption

F.1 Definition of AI-CCA Security for Encryption Schemes

Definition 7. A public key encryption scheme (Keygen,Encrypt,Decrypt) is AI-CCA secure if no
PPT adversary has non-negligible advantage in the following game:

1. The challenger generates two key pairs (sk0, pk0) ← Keygen(λ), (sk1, pk1) ← Keygen(λ) and
gives pk0, pk1 to the adversary A.

2. The adversary A queries decryption oracles Osk0(.), Osk1(.). Each query consists of an adversarially-
chosen ciphertext C.

3. In the challenge phase, A outputs equal-length messages m0,m1. The challenger then flips a
coin b

$← {0, 1} and returns C? = Encrypt(pkb,mb).

4. A makes further queries to decryption oracles Osk0(.), Osk1(.) but is disallowed to query C? to
Osk0(.) and Osk1(.).

5. The adversary A outputs a bit b′ ∈ {0, 1} and wins if b′ = b.

As always, A’s advantage is defined as Advai-cca(A) = |Pr[b′ = b]− 1
2 |.

F.2 Definitions of Robustness

This section recalls the definitions of robust public key encryption given by Abdalla, Bellare and
Neven [2].

Definition 8. [2] A public key encryption scheme (Keygen,Encrypt,Decrypt) is strongly robust un-
der chosen-ciphertext attacks (SROB-CCA) if no PPT adversary has non-negligible advantage in
the following game:

1. The challenger generates two distinct key pairs (sk0, pk0)← Keygen(λ), (sk1, pk1)← Keygen(λ)
and sends pk0, pk1 to the adversary A.

2. On a polynomial number of occasions, A invokes decryption oracles Osk0(.), Osk1(.) for arbitrary
ciphertexts of its choice. The adversary A wins if it manages to make a decryption query C for
which Osk0(C) 6=⊥ and Osk1(C) 6=⊥.

The advantage of A is defined to be its probability of success, taken over all random coins.

For our purposes, the following weaker form of robustness suffices.

Definition 9. [2] A public key encryption scheme (Keygen,Encrypt,Decrypt) is weakly robust under
chosen-ciphertext attacks (WROB-CCA) if no PPT adversary has non-negligible advantage in the
game hereafter:

1. The challenger generates key pairs (sk0, pk0) ← Keygen(λ), (sk1, pk1) ← Keygen(λ) and sends
public keys pk0, pk1 to the adversary A.

2. The adversary A adaptively invokes decryption oracles Osk0(.), Osk1(.) for arbitrary ciphertexts.

3. Eventually, A halts and outputs a message m. Then, the challenger computes C = Encrypt(pk0,m)
and the adversary A wins if Decrypt(sk1, C) 6=⊥.

Again, A’s advantage is its success probability, taken over all random coins.
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Finally, in our construction of ANOBE from TA-anonymous IBE, the following definition of
weak robustness must be satisfied by the underlying IBE system.

Definition 10. An multi-TA IBE scheme (CommonSetup,TASetup,KeyDer,Enc,Dec) is fixed-ID
weakly robust under chosen-plaintext attacks (FID-WROB-CPA) if no PPT adversary has non-
negligible advantage in the game below:

1. The challenger generates two master key pairs (msk0,mpk0) ← TASetup(λ), (msk1,mpk1) ←
TASetup(λ) and gives both master public keys mpk0,mpk1 to the adversary A.

2. The adversary A adaptively interacts with key extraction oracles Omsk0(.), Omsk1(.) for arbitrary
identities of its choice.

3. At the end of the game, A halts and outputs a plaintext m. At this point, the challenger chooses
an identity ID, computes C = Enc(mpk0,m, ID) and the adversary A wins if Dec(mpk1, skID, C) 6=⊥,
where skID = KeyDer(mpk1,msk1, ID).

A’s advantage is defined analogously to definition 9.

G The Kurosawa-Desmedt Encryption Scheme

The following description of the KD cryptosystem [36] assumes common public parameters con-
sisting of a group G of prime order p > 2λ, with generators g1, g2 ∈R G. They also include the
description of a universal one-way hash function H : {0, 1}∗ → Zp, a key derivation function
KDF : G → {0, 1}k, for some integer k ∈ poly(λ), a symmetric authenticated encryption scheme
Πsym-enc = (E,D) of key length k

Keygen(λ, cp): given common public parameters cp = (G, g1, g2, H,Πsym-enc), choose random ex-

ponents x1, x2, y1, y2
$← Zp and compute

c = gx11 g
x2
2 , d = gy11 g

y2
2

The public key is pk = (c, d) and the private key is sk = (x1, x2, y1, y2).

Encrypt(pk,m): to encrypt a message m ∈ G,

1. Pick r
$← Zp and compute

u1 = gr1, u2 = gr2, v = (c · dα)r,

where α = H(u1, u2) ∈ Zp.
2. Compute K = KDF(v) ∈ {0, 1}k, e = EK(m).

The ciphertext is C = (u1, u2, e).

Decrypt(sk, C): parse the ciphertext C as (u1, u2, e). Compute α = H(u1, u2), v = ux1+α·y11 ·
ux2+α·y22 and K = KDF(v) ∈ {0, 1}k. Then, return m = DK(e) (which may be ⊥ if the e fails to
properly decrypt under the key K).

The above algorithms describe the original Kurosawa-Desmedt encryption scheme. Following [2],
we denote by KD∗ the modified KD scheme where the encryption exponent r = 0 is explicitly
disallowed: namely, the sender chooses r

$← Z∗p (instead of r
$← Zp) at encryption and the receiver

outputs ⊥ upon receiving a ciphertext (u1, u2, e) such that u1 = 1G.
To prove the strong robustness of KD∗, we will need a symmetric authenticated encryption

scheme satisfying the following definition.
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Definition 11 ([26]). A symmetric encryption scheme (E,D) is key-binding if, for any message
m, any key k and any randomness r, there exists no key k′ such that k′ 6= k and Dk′(Ek(m)) 6=⊥.

Key-binding symmetric encryption schemes are relatively simple to construct (see [26] for example).

Theorem 6. The KD∗ scheme is SROB-CCA assuming that (i) KDF is a secure key derivation
function and is additionally collision-resistant; (ii) the hash function H : {0, 1}∗ → Zp is pre-image
resistant; (iii) Πsym-enc is a key binding symmetric authenticated encryption scheme.

Proof. The proof uses a sequence of games where, in Game i, we denote by Si the event that
the challenger outputs 1 (meaning that the adversary wins the SROB-CCA game). The sequence
proceeds as follows.

Game 0: is the real strong robustness game. Namely, the challenger B chooses a prime order group
G with generators g1, g2

$← G. It also generates two public keys pk0 = (c0, d0) and pk1 = (c1, d1),
where

c0 = g
x0,1
1 g

x0,2
2 , d0 = g

y0,1
1 g

y0,2
2

c1 = g
x1,1
1 g

x1,2
2 , d1 = g

y1,1
1 g

y1,2
2

and sk0 = (x0,1, x0,2, y0,1, y0,2) and sk1 = (x1,1, x1,2, y1,1, y1,2) are the underlying private keys. Dur-
ing the game, the adversary A is allowed to simultaneously invoke both decryption oracles Osk0(.),
Osk1(.) on ciphertexts of its choice. For each adversarially-generated ciphertext C = (u1, u2, e), the
challenger executes the actions of Osk0(.) and Osk1(.). If either decryption gives the result ⊥, the
challenger simply returns the outputs of both oracles to A. In the event that A makes a decryption
query C gives Osk0(C) = M0 6=⊥ and Osk1(C) = M1 6=⊥, the challenger returns M0,M1 to A,
halts and outputs 1. If A terminates without any occurrence of the latter event, the challenger B
outputs 0. We call S0 the event of B outputting 1 at the end of its interaction with A.

Game 1: is identical to Game 0 with the difference that the challenger B makes uses of the discrete
logarithm ω = logg1(g2) ∈ Zp when handling decryption queries. Namely, when A comes up with a
ciphertext C = (u1, u2, e), B returns (M0,M1) = (⊥,⊥) if u2 6= uω1 . Clearly, Game 1 and Game 0
are identical until, on behalf of Osk1(.) or Osk2(.), B outputs ⊥ for a ciphertext that would correctly
decrypt in Game 0. If we call F1 the latter event, we clearly have |Pr[S1] − Pr[S0]| ≤ Pr[F1]. The
same “plug and pray” argument as in [27,3,21] shows that event F1 implies either a distinguisher
B′ for the key derivation function or an adversary B′′ against the (weak) ciphertext integrity of the
symmetric encryption scheme (see section H for definitions of these properties) . Since algorithms
B′ and B′′ have to guess upfront which decryption query will involve the accepted invalid ciphertext,
we actually have Pr[F1] ≤ q · (AdvPRF-KDF

B′ (λ) + AdvCT-INT
B′′ (λ)).

Game 2: is as Game 1 but we introduce a new failure event F2 which causes the challenger B to
halt and output 0 if it occurs. This event F2 consists in the adversary A invoking the decryption
oracles on a ciphertext C = (u1, u2, e) such that u2 = uω1 , KDF(v0) = KDF(v1) and v0 6= v1, where

v0 = u
x0,1+α·y0,1
1 u

x0,2+α·y0,2
2 , v1 = u

x1,1+α·y1,1
1 u

x1,2+α·y1,2
2 (G.1)

with α = H(u1, u2) ∈ Zp. Obviously, event F2 implies an algorithm B′′′ finding a collision on the
key derivation function and we can write |Pr[S2]− Pr[S1]| ≤ Pr[F2] ≤ AdvCR-KDF

B′′′ (λ).
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Game 3: is identical to Game 2 but we add yet another failure event F3 that gets the challenger
B to stop and output 0. We call F3 the event that A outputs a ciphertext C = (u1, u2, e) such
that u2 = uω1 and v0 = v1, where v0 and v1 are given by (G.1). Since u2 = uω1 (in other words,
logg1(u1) = logg2(u2)), the condition v0 = v1 implies c0d

α
0 = c1d

α
1 , where α = H(u1, u2) ∈ Zp.

The same reasoning as in [2][Theorem 5.1] shows that this implies an algorithm Bpre-img finding
pre-images for random elements in the range of H. Indeed, the condition c0d

α
0 = c1d

α
1 implies the

equality

α =
(x1,1 − x0,1) + ω · (x1,2 − x0,2)
(y0,1 − y1,1) + ω · (y0,2 − y1,2)

. (G.2)

Suppose that algorithm Bpre-img receives as input a random α? ∈ Zp in the range of H with the
task of finding a pre-image for it. Assuming that F3 occurs with noticeable probability, Bpre-img can
prepare the two public keys pk0 = (c0, d0) and pk1 = (c1, d1) in such a way that the underlying
private keys sk0 = (x0,1, x0,2, y0,1, y0,2), sk1 = (x1,1, x1,2, y1,1, y1,2) satisfy (G.2) when the target
α? is the left-hand-side member. This will force A to output a ciphertext (u1, u2, e) such that
α? = H(u1, u2) and thereby break the pre-image resistance of H.

Since Bpre-img’s challenger chooses α? ∈ Zp uniformly and independently of A’s view, the above
choice of sk0 and sk1 is easily seen not to affect the distribution of pk0 and pk1. We can thus write
|Pr[S3]− Pr[S2]| ≤ Pr[F3] ≤ Advpre-img

Bpre-img(λ).
In Game 3, we claim that Pr[S3] = 0 as we have ruled out all the possibilities for A to win the

SROB-CCA game. Indeed, the only possibility forA to output C = (u1, u2, e) such thatOsk1(C) 6=⊥
and Osk2(C) 6=⊥ would be to have Dk0(e) 6=⊥ and Dk1(e) 6=⊥, where k0 = KDF(v0), k1 = KDF(v1)

and vi = u
xi,1+α·yi,1
1 u

xi,2+α·yi,2
2 for i = 0, 1. Since k0 6= k1 unless one of the events F2 or F3 occurs,

we cannot simultaneously have Dk0(e) 6=⊥ and Dk1(e) 6=⊥ as long as Πsym-enc is a key binding
symmetric encryption scheme in the sense of definition 11. ut

We now give a proof that KD∗ is key-private under chosen-ciphertext attacks. The proof makes
use of standard techniques along the lines of [6][Theorem 6] and [21]. Although the result seems
pretty straightforward, we have not been able to find a proof for it in the literature.

Theorem 7. The KD∗ scheme is AI-CCA assuming that: (i) the DDH assumption holds in G; (ii)
H is a universal one-way hash function; (iii) KDF is a secure key-derivation function; (iv) Πsym-enc

is a secure symmetric authenticated encryption scheme.

Proof. The proof uses a sequence of games where, in Game i, Si stands for the event that the
adversary successfully guesses the challenger’s bit b ∈ {0, 1}. The proof makes use of Halevi’s
sufficient condition for key-privacy. Namely, in the challenge phase, the adversary’s chosen message
M is ignored and the challenger B rather computes an encryption of a random message M?. The
sequence of games is very similar to the one of [21] and proceeds as follows.

Game 0: is the real attack game. More precisely, the challenger B chooses a prime order group
G with generators g1, g2

$← G. It also generates two public keys pk0 = (c0, d0) and pk1 = (c1, d1),
where

c0 = g
x0,1
1 g

x0,2
2 , d0 = g

y0,1
1 g

y0,2
2

c1 = g
x1,1
1 g

x1,2
2 , d1 = g

y1,1
1 g

y1,2
2
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and sk0 = (x0,1, x0,2, y0,1, y0,2) and sk1 = (x1,1, x1,2, y1,1, y1,2) are the underlying private keys.
During the game, the adversary A is allowed to invoke both decryption oracles Osk0(.), Osk1(.)
on arbitrary ciphertext C of its choice. For each query C = (u1, u2, e) made to oracle Oski(.),
for i ∈ {0, 1}, the challenger runs the decryption process using ski and hands the result of the
decryption process to A. In the challenge phase, the adversary A comes up with a plaintext M . At
this step, the challenger ignores M , flips a random coin b?, chooses a random plaintext M?, picks
r?

$← Z∗p and computes

u?1 = gr
?

1 , u?2 = gr
?

2 , v? = (cb?d
α?

b? )r
?
, e? = EK?(M?),

where K? = KDF(v?) and α? = H(u?1, u
?
2). We let C? = (u?1, u

?
2, e

?) be the challenge ciphertext sent
to A.

In the second phase, A makes further decryption queries C such that C 6= C? and eventually
outputs a bit b′ ∈ {0, 1}. We call S0 the event that b′ = b?.

Game 1: we modify the way to generate the common parameters (g1, g2), the public keys pk0, pk1
and the challenge ciphertext. Namely, the challenger B picks random values x, y ∈ Z∗p, w0, w1

$← Zp
such that w0 + x · w1 6= 0 and defines X = gx1 , Y = gy1 , T = gxy1 as well as

g2 = Y u?0,1 = X u?0,2 = T (G.3)

u?1,1 = gw0
1 ·X

w1 u?1,2 = Y w0 · Tw1

Decryption queries are handled using sk0 and sk1 as in Game 0.
In the challenge phase, the challenger flips a coin b?

$← {0, 1}, picks a random message M? and
computes

v?b? = u?b?,1
xb?,1+α

?·yb?,1 · u?b?,2?
xb?,2+α

?·yb?,2 and K? = KDF
(
v?b?
)
, (G.4)

where α? = H(ub?,1, ub?,2?). Everything else is calculated as in Game 0 and the challenge ciphertext
is defined to be

C? = (ub?,1, ub?,2? , e
?),

where e? = EK?(M?). Clearly, this change is just conceptual since K? has the same distribution as
in Game 0. Hence, Pr[S1] = Pr[S0].

Game 2: is identical to Game 2 with the difference that the challenger B rejects all pre-challenge
decryption queries C = (u1, u2, e) such that u1 ∈ {u?0,1, u?1,1} or u2 ∈ {u?0,2, u?1,2}. We call F2 the
event that B rejects a ciphertext that would not have been rejected in Game 1.

Since elements (u?0,1, u
?
0,2, u

?
1,1, u

?
1,2) are independent of A’s view until the challenge phase, the

probability of F2 is at most Pr[F2] ≤ 4 · q/p, where q is the number of decryption queries. It comes
that |Pr[S2]− Pr[S1]| ≤ Pr[F2] ≤ 4 · q/p.
Game 3: in this game, we modify the distribution of the challenge ciphertext and define T as a
random element of G instead of setting T = gxy1 as in Game 1 and 2. All other calculations (including
the way to compute g2 and u?0,1, u

?
0,2, u

?
1,1, u

?
1,2 in (G.3)) remain unchanged. Clearly, Game 3 is

indistinguishable from Game 2 if the DDH assumption holds and |Pr[S3]− Pr[S2]| ≤ AdvDDH(B).

Game 4: is identical to Game 3 with the difference that the challenger B now rejects all post-
challenge decryption queries C = (u1, u2, e) such that (u1, u2) 6= (u?1, u

?
2) but α = H(u1, u2) =

H(u?1, u
?
2) = α?. If we call F4 the probability to reject a ciphertext that would not have been
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rejected in Game 3, there exists a PPT collision-finding algorithm BCR such that |Pr[S4]−Pr[S3]| ≤
Pr[F4] ≤ AdvUOWHF(BUOWHF) and the two games are indistinguishable if H is a universal one-way
hash function.

Game 5: in this game, the simulator B makes explicit use of the value y = logg1(g2) ∈ Z∗p, which
can henceforth be used since we are done with the DDH assumption. In this game, B rejects all
decryption queries C = (u1, u2, e) such that u2 6= uy1. If F5 denotes the probability of rejecting a
ciphertext that would not have been rejected in Game 4, the same arguments as in [21] show that
there exist PPT algorithms B′ and B′′ such that Pr[F5] ≤ q · (AdvPRF-KDF

B′ (λ) + AdvCT-INT
B′′ (λ)). If

b? ∈ {0, 1} denotes the challenger B’s random bit, the proof of [21] already implies that Oskb? (.)
rejects pairs C = (u1, u2, e) such that u2 6= uy1 with overwhelming probability in Game 4, unless
the security of KDF or the ciphertext authentication property of Πsym-enc is broken. So, we only
consider queries to oracle Osk1−b? (.) here.

For simplicity, we assume b? = 0 (the case b? = 1 can be handled in a completely similar way)
and consider the probability that an invalid ciphertext (C = (ũ1, ũ2, ẽ) = (gr1, g

r′
2 , ẽ)) (namely, with

r 6= r′) be accepted by Osk1(.). When such a decryption query is processed, the challenger B com-

putes α̃ = H(ũ1, ũ2) and ṽ = ũ
x1,1+α̃·y1,1
1 · ũx1,2+α̃·y1,22 = g

r·(x1,1+α̃·y1,1)+y·r′·(x1,2+α̃·y1,2)
1 and attempts

to decrypt ẽ using the symmetric key K̃ = KDF(ṽ). The same “plug and pray” argument as in [21]
show that the symmetric decryption must fail unless A was able to break either the security of
KDF or to forge a valid symmetric encryption for Πsym-enc on a random-looking key K̃.

Indeed, if we consider whatA knows about sk0 = (x0,1, x0,2, y0,1, y0,2), sk1 = (x1,1, x1,2, y1,1, y1,2)
and about the value logg1(ṽ) = r ·(x1,1+α̃·y1,1)+y ·r′ ·(x1,2+α̃·y1,2), we observe that pk0 reveals the
right-hand-side member of the first two equations in the linear system (G.5). The challenge cipher-

text is of the form C? = (gx1 , g
x′
2 , e

?), where x, x′ ∈R Z∗p and e? = KDF
(
g
x·(x0,1+α?y0,1)+x′·y·(x0,2+α?y0,2)
1

)
,

which potentially leaks the right-hand-side member of the third equation. The fourth and fifth equa-
tions correspond to the information revealed by pk1 but we easily check that A has no information
about the RHS member of the last equation.



1 y 0 0 0 0 0 0
0 0 1 y 0 0 0 0
x yx′ α?x α?ry 0 0 0 0
0 0 0 0 1 y 0 0
0 0 0 0 0 0 1 y
0 0 0 0 r yr′ α̃r α′yr′





x0,1
x0,2
y0,1
y0,2
x1,1
x1,2
y1,1
y1,2


=



logg1(c0)

logg1(d0)

logg1(v?)

logg1(c1)

logg1(d1)

logg1(ṽ)

 (G.5)

Indeed, as long as r 6= r′, the matrix in (G.5) is easily seen to be of full rank. Since the last row
is linearly independent of other rows, logg1(ṽ) is independent of A’s view. So, the only way for A
to create a ciphertext that is rejected in Game 5 but would not have been in Game 4 is to imply
a KDF-distinguisher B′ or an algorithm B′′ forging a symmetric authenticated encryption: we can
write

|Pr[S5]− Pr[S4]| ≤ q · (AdvPRF-KDF
B′ (λ) + AdvCT-INT

B′′ (λ)).
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In Game 5, we claim that Pr[S5] = 1/2. Indeed, since T = gxy+δ for some δ 6= 0, if we consider
the value v?b? for both b? = 0 and b? = 1, we find that

v?0 = (c0 · dα
?

0 )x · gδ·(x0,2+α
?
0y0,2)

1

v?1 = (c1 · dα
?

1 )w0+w1x · gδ·w1·(x1,2+α?1y1,2)
1

where α?0 = H(u?0,1, u
?
0,2) and α?1 = H(u?1,1, u

?
1,2). It is easy to see that the distributions of v?0 and v?1

are statistically indistinguishable from A’s view since, given that all invalid ciphertexts are rejected
by both oracles, A has no information about (x0,2, y0,2, x1,2, y1,2) whatsoever. ut

Finally, we prove the following lemma.

Lemma 9. The KD∗ scheme is key-less reproducible.

Proof. The proof is quite simple and it is similar to the proof of standard reproducibility (given
in [8,7]) for the Cramer-Shoup cryptosystem. For any public parameters par = (G, g1, g2, H), any
given public key pk = (c, d) = (gx11 g

x2
2 , g

y1
1 g

y2
2 ) and any ciphertext C = (u1, u2, e) = (gr1, g

r
2,EK(m)),

with K = KDF
(
(c · dα)r

)
and α = H(u1, u2), the reproducibility algorithm R proceeds as follows.

R
(
par, C,m′, pk′ = (c′, d′), sk′

)
:

Parse C as (u1, u2, e) and return ⊥ if (u1, u2) 6∈ G2.

Parse sk′ as (x′1, x
′
2, y
′
1, y
′
2) ∈ (Zp)4 and return ⊥ if (c′, d′) 6=

(
g
x′1
1 g

x′2
2 , g

y′1
1 g

y′2
2

)
.

Compute v′ = u
x′1+α·y′1
1 · ux

′
2+α·y′2

2 ∈ G and K ′ = KDF(v′).
Compute e′ = EK′(m

′) and return (u1, u2, e
′).

It is straightforward that this algorithm satisfies the definition of key-less reproducibility. ut

H Definitions for Authenticated Encryption Schemes and Key Derivation
Functions

A symmetric encryption scheme is specified by a pair (E,D), where E is the encryption algorithm
and D is the decryption procedure, and a key space K(λ) where λ ∈ N is a security parameter. The
security of authenticated symmetric encryption is defined by means of two games that capture the
ciphertext indistinguishability and ciphertext (one-time) integrity properties.

Definition 12. A symmetric encryption scheme is secure in the sense of authenticated encryption
if any PPT adversary has negligible advantage in the following games.

1. The IND-SYM game. For any PPT algorithm A, the model considers the following game,
where λ ∈ N is a security parameter:

GameIND-SYM
A (λ)

K
$← K(λ)

(m0,m1, s)← A(find, λ)

d?
$← {0, 1}

c? ← EK(md?)
d← A(guess, s, c?)
return 1 if d = d? and 0 otherwise.
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A’s advantage is AdvIND-SYM
A (λ) = |Pr[GameIND-SYM

A = 1]− 1/2|.

2. The CT-INT game. Let A be a PPT algorithm. We consider the following game, where λ ∈ N
is a security parameter:

GameCT-INTA (λ)

K
$← K(λ)

(m, s)← A(find, λ)
c← EK(m)
c′ ← A(create, λ, c)
return 1 if c′ 6= c and DK(c′) 6=⊥

0 otherwise.

A’s advantage is now defined as AdvCT-INT
A (λ) = Pr[GameCT-INTA = 1].

The notion of weak ciphertext integrity is defined in the same way but the adversary is not
allowed to see an encryption c under the challenge key K.

One ingredient to construct hybrid encryption schemes is a Key Derivation Function (KDF)
that allows deriving a key for the symmetric encryption scheme by hashing a group element. Given a
symmetric encryption scheme (E,D) with key space K and a group generator G, a KDF is specified
by a pair (Kg,Hash), where Kg is the key generation algorithm for the KDF and Hash is the
evaluation algorithm:

– given λ ∈ N a security parameter, Kg outputs a bit string dkλ called a derivation key ;
– given a derivation key dkλ and a group element X ∈ G (where G is prime order group of

cardinality p > 2λ), Hash outputs an element in the key space K(λ).

Definition 13. Let (Kg,Hash) be a Key Derivation Function. For any 0/1-valued PPT algorithm
A, we the following game where λ ∈ N is a security parameter:

GamePRF-KDF
A (λ)

G $← G(λ)

dk
$← Kg(λ)

X
$← G; K0 ← Hash(dk, X)

K1
$← K(λ)

d?
$← {0, 1}

d← A(dk,G,Kd?)
return 1 if d = d? and 0 otherwise.

A’s advantage is AdvPRF-KDF
A (λ) = |Pr[GamePRF-KDF

A (λ) = 1]− 1/2|.

The KDF (Kg,Hash) is secure if for all PPT algorithms A, the advantage of A defined by the
following experiment is a negligible function of λ.
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