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Abstract. The Diophantine Equation Hard Problem (DEHP) is a po-

tential cryptographic problem on the Diophantine equation U =
n∑

i=1

Vixi.

A proper implementation of DEHP would render an attacker to search for
private parameters amongst the exponentially many solutions. However,
an improper implementation would provide an attacker exponentially
many choices to solve the DEHP. The AA β-cryptosystem is an asym-
metric cryptographic scheme that utilizes this concept together with the
factorization problem of two large primes and is implemented only by
using the multiplication operation for both encryption and decryption.
With this simple mathematical structure, it would have low computa-
tional requirements and would enable communication devices with low
computing power to deploy secure communication procedures efficiently.
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1 Introduction

The discrete log problem (DLP) and the elliptic curve discrete log problem
(ECDLP) has been the source of security for cryptographic schemes such as
the Diffie Hellman key exchange procedure, El-Gamal cryptosystem and elliptic
curve cryptosystem (ECC) respectively [6], [10]. As for the world renowned RSA
cryptosystem, the inability to find the e-th root of the ciphertext C modulo N
from the congruence relation C ≡ Me(mod N) coupled with the inability to
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factor N = pq for large primes p and q is its fundamental source of security
[11]. Recently, suggestions have been made that the ECC is able to produce the
same level of security as the RSA with shorter key length. Thus, ECC should
be the preferred asymmetric cryptosystem when compared to RSA [16]. Hence,
the notion “cryptographic efficiency” is conjured. That is, to produce an asym-
metric cryptographic scheme that could produce security equivalent to a certain
key length of the traditional RSA but utilizing shorter keys. However, in cer-
tain situations where a large block needs to be encrypted, RSA is the better
option than ECC because ECC would need more computational effort to un-
dergo such a task [14]. Thus, adding another characteristic toward the notion of
“cryptographic efficiency” which is it must be less “computational intensive”. As
such, in order to design a state-of-the-art public key mechanism, the above two
characteristics must be adhered to apart from other well known security issues.
In 1998 the cryptographic scheme known as NTRU was proposed with better
”cryptographic efficiency” relative to RSA and ECC [9]. Much effort has been
done to push NTRU to the forefront [8].

The cryptographic scheme in this paper is based on what is defined as the
Diophantine Equation Hard Problem (DEHP). It is coupled together with the
well known integer factorization problem of two large primes. The DEHP is a new
form of cryptographic problem based on the Diophantine equation of the form

U =
n∑

i=1

Vixi. The authors propose that the DEHP as outlined in this paper

is also another cryptographic problem that has secure cryptographic qualities
coupled with the above described “cryptographic efficiency” qualities.

The layout of this paper is as follows. In Section 2, the Diophantine Equa-
tion Hard Problem (DEHP) will be described. The mechanism of the AA β-
cryptosystem will be detailed in Section 3. Continuing in Section 4, will be dis-
cussion on the security features of this cryptosystem. In Section 5 lattice based
attacks on the scheme is discussed. Section 6 will be devoted in discussing the
consequences of improper design utilizing the DEHP. That is, the possibility
of succumbing to a passive adversary attack. The underlying principle and re-
duction proofs regarding the intractability of the scheme is proposed in Section
7. A numerical example of the scheme as well as an illustration of the DEHP
will also be given in this section. Finally, we conclude the paper by comparing
“cryptographic efficiency” characteristics against RSA,ECC and NTRU schemes
in Section 8.

2 The Diophantine equation hard problem (DEHP)

The DEHP is based upon the linear diophantine equation which is of the form

U =
n∑

i=1

Vixi. The following definitions would give a precise idea regarding the

DEHP.

Definition 1. Let U =
n∑

i=1

Vix
∗
i where the integers U and {Vi}n

i=1 are known.

We define the sequence of integers {x∗i }
n
i=1 as the preferred integers used to obtain



U . The sequence {x∗i }
n
i=1 are particular elements from the set of solutions of

U =
n∑

i=1

Vix
∗
i that contains infinitely many elements. The problem to determine

the sequence {x∗i }
n
i=1 is known as the DEHP.

Definition 2. From Definition 1, for n = 2, V1 = 1 and V2 = 1 the DEHP is
known as the AA β-DEHP-2 (see Section 7).

Definition 3. The Diophantine equation given by U =
n∑

i=1

Vix
∗
i is defined to be

prf-solved when the sequence of integers {x∗i }
n
i=1 are found in order to obtain U .

The DEHP or the AA β-DEHP-2 is solved when U is prf-solved.

Example 1. Let x1 = 6143959510671614040, x2 = 6143959507200090613 be the
preferred solutions for the equation 12287919017871704653 = x1 + x2 where
x1 and x2 are 2n-bits long (i.e. this example n = 32). An attacker would
be faced with the AA β-DEHP-2 (see Section 7) of determining the preferred
integer x1 = t in order to determine the remaining preferred integer x2 =
12287919017871704653 − t that form the prf -solution set for the above Dio-
phantine equation. Since it is known that x1 is 64-bits long, the possible values
of t resides within the interval (263, 264−1). In other words, there are 264 possible
values that x1 might be.

3 The AA β-Cryptosystem

We will now define parameters needed for the renewed AAβ-cryptosystem. The
communication model is between two parties A (Along) and B (Busu).

Definition 4. The ephemeral secret keys for Along are three integers. The in-
tegers a1, a2 and a3 are 2n-bits long. The relation between the integers is:

a1 + a2 ≡ 0(mod a1 − a2) (1)

and
a2 + a3 ≡ v(mod a1 − a2) (2)

where v is 0.8125n-bits long.

Definition 5. Let p and q be two prime numbers of n-bit length. Along’s public
keys are given by

eA1 = a1 + a2 = pq (3)

and
eA2 = a1 + a3 (4)

Definition 6. Along’s private key is given by

dA1 = a1 − a2 = p (5)

dA2 = v (6)



Definition 7. Busu will generate two ephemeral session keys: k1 and k2. The
keys k1 and k2 are n

6 -bits long.

Definition 8. The message that Busu will relay to Along is a ( 4n
5 )-bit integer

m.

Definition 9. Busu will produce the following ciphertext:

C = k1eA1 + k2eA2 + m (7)

Proposition 1. (C(mod dA1))(mod dA2) = m.

Proof. We begin with:
(C(mod dA1)) = k2v + m (8)

because k2v + m < dA1. Then,

(k2v + m(mod dA2)) = m (9)

because m < dA2.�

3.1 The AA β - public key cryptography scheme

We will now discuss the AA β-cryptosystem. It is as follows: the scenario is that
Busu will send an encrypted message to Along. Along will provide Busu with his
public key pair eA1 and eA2. Busu intends to send the integer plaintext P = m
as in Definition 8. Busu will then proceed to generate the ciphertext C. Then
Busu transmits the ciphertext C to Along. Upon receiving the ciphertext from
Busu, Along by Proposition 1, can retrieve the integer plaintext P = m.

4 Security Features

In this section we will focus on the obvious objective of an attacker. That is
to retrieve the plaintext or the private key or both. Discussion would begin by
discussing the objective of trying to obtain the plaintext from the ciphertext
followed by the objective to obtain the private key embedded within the public
key.

4.1 To obtain the plaintext from the ciphertext

As defined in Definition 9, the plaintext resides within C. Thus, the attacker
has to prf -solve C via the preferred integers k1 and k2 the AA β-DEHP-1 (see
Section 7) given by

C = k1eA1 + k2eA2 + m (10)

The ability to determine the keys k1 or k2 would infer that the attacker has also
the ability to determine m in the first instance.



4.2 To obtain the private key from the public key via the
Diophantine equations

The attacker has to prf -solve eA1 and eA2 via the preferred integers a1, a2 and
a3 the AA β-DEHP-2 (see Section 7). In congruent with the ability to obtain the
plaintext from the ciphertext as discussed above, the ability to determine the
keys a1, a2 and a3 would infer that the attacker has also the ability to determine
m in the first instance.

5 Lattice based attacks

In this section we put forward two possible attacks via lattices and show that
why such attacks will not yield any information detrimental to the scheme.

5.1 Attack with Coppersmith method in the univariate case

We will reproduce Coppersmith’s theorem for the benfit of the reader.

Theorem 1. (Coppersmith) Let N be an integer of unknown factorization, which
has a divisor b ≥ Nβ. Furthermore, let fβ(x) be an univariate, monic polynimial
of degree δ. Then we can find all solutions x0 for the equation fβ ≡ 0(mod b)
with

| x0 |≤
1
2
N

β2

δ −ε

in polynomial time in (logN, δ, 1
ε ).

Case 1. We begin by observing eA1 = pq where p and q are of equal length.
Suppose p is prime integer that satisfies p > (pq)β . It is clear that β = 1

2 .
Let us now observe the polynomials x − eA2 and eA1 = pq which have a small
common root v modulo p. By the polynomial fp(x) = x2 − eA2x + (pq) we have

the parameter δ = 2. The parameter 1
2N

β2

δ −ε is an (n
4 )-bit integer while the

parameter v is a 0.8125n-bit integer. Thus, the bound is much smaller than the
root.

Case 2. A more efficient method would be just to observe the polynomial fp(x) =

x − eA2. Hence, δ = 1. The parameter 1
2N

β2

δ −ε is an (n
2 )-bit integer while the

parameter v is a 0.8125n-bit integer. Thus, the bound is still much smaller than
the root.

5.2 Gaussian heuristic

We will look at the the lattice L spanned by (1, 0, e1), (0, 1, e2), (0, 0, C). Observe
that the vector V = (k1, k2,−m) is in L. If V is short, then the LLL algorithm
will be able to detect V . This is critical since by the usage of the vector V =
(k1, k2,−m) it is obvious that the length of m is dominant when compared to



k1 and k2 hence length of V is approximately m. And by the above information
m is certainly dominant in the vector V=(k1,k2,-m). Now let us check whether
V is really short or not. The Gaussian heuristic for the lattice L is given by:

σ(L) =

√
(

3
2πe

)C1/3 (11)

One can see that σ(L) is approximately ( 2n
3 )-bits, while the length of the vector

V is ( 4n
5 )-bits. The Gaussian heuristic is much smaller than the length of the

vector V . Thus, the vector V is not considered to be short and cannot be detected
by the LLL algorithm.

6 Improper design via the DEHP

It is important to note that, an improper design of an asymmetric cryptosystem
via the DEHP would lead to succesful passive adversary attacks. To illustrate
this fact, we will produce the following two examples.

6.1 A key exchange mechanism based on the DEHP

Let Along and Busu utilize private 2 X 2 non-singular matrices A and B respec-
tively. A base generator G will be made public. It is a 2 X 2 singular matrix.
The parameter EA = AG and EB = GB will be exchanged between Along
and Busu. Then Along will compute EAB = [A]EB , while Busu will compute
EBA = EA[B]. Now both parties have the same key (i.e. key exchange). If
the assumption is that the attacker has to obtain either A or B from either
EA or EB this would be the DEHP, since G is singular. However, an attacker
could still compute A

′
6= A but A

′
G = AG and as a result is able to com-

pute A
′
EB = EAB. Thus rendering the scheme insecure. The following is a

numerical example.

Example 2. Let

G =
(

1 2
2 4

)
,A =

(
2 3
4 5

)
,B =

(
7 8
9 10

)
Along will generate

EA =
(

7 14
14 28

)
and Busu will generate

EB =
(

25 28
50 56

)
The shared key computed by both parties is

AGB =
(

175 196
350 392

)



An attacker intercepting EA could construct the matrix

A
′
=

(
7 0
14 0

)
It could be observed that AGB = A

′
GB. Hence, a passive adversary attack has

been successfully executed.

6.2 Improper integer size

Observe the equation given by

eA = a1 + a2g1 (12)

where eA and g1 are public parameters. Let g1 be of length 2n-bits, while the
private parameters a1 and a2 are n-bits long.Because of this improper choice of
size, one can obtain

a2 = floor(
eA

g1
) (13)

7 The Underlying Security Principle

We will now observe the underlying security principles that the AAβ-cryptosystem
is based upon.

7.1 The AAβ-DEHP-1

Determine the preferred integer either (k1 or k2) such that m = C−k1eA1(mod eA2)
or m = C − k2eA2(mod eA1).

7.2 The AAβ-DEHP-2

Determine the preferred integers (a1, a2, a3) belonging to the public keys eA1

and eA2.

7.3 The integer factorization problem

Let p and q be two large primes. From eA1 = a1 + a2 = pq obtain dA1 = p.

7.4 Security reduction

Proposition 2. AAβ-DEHP-2 ≡T Factoring eA1 = pq.



Proof. Let θ1 be an oracle that factors the product of primes. Call θ1(eA1) to
obtain p and q. Then we are able to construct a1 = p(q+1)

2 , a2 = p(q−1)
2 and

a3 = eA2−a1. Hence, the preferred integers (a1, a2, a3) are obtained Thus, AAβ-
DEHP-2 ≤T Factoring eA1 = pq. Let θ2 be an oracle that obtains the preferred
integers (a1, a2, a3). Then obtain p = a1 − a2 and eA1

p = q. Thus, Factoring
eA1 = pq ≤T AAβ-DEHP-2. Hence, AAβ-DEHP-2 ≡T Factoring eA1 = pq. �

Proposition 3. Decryption ≤T Factoring eA1 = pq.

Proof. Let θ1 be an oracle that factors the product of primes. Call θ1(eA1) to
obtain p and q. Then determine v ≡ eA2( modp). Now, decryption can occur.�

7.5 Indistinguishability

Proposition 4. The AAβ public key cryptosystem is IND-CPA.

Proof. The AAβ public key cryptosystem is a probabilistic cryptosystem. A
probabilitic encryption scheme is IND-CPA [16]. Thus the AAβ public key cryp-
tosystem is IND-CPA. �

7.6 Example

We will now provide a clear numerical illustration of the AAβ-cryptosystem for
n = 32-bits. Along will generate the following secret keys: a1 = 6143959510671614040,
a2 = 6143959507200090613, a3 = 5113460585870913605 and v = 66857602.
Along’s public keys are eA1 = 12287919017871704653 and eA2 = 11257420096542527645.
Observe that eA1 is product of two 32-bit primes (p = 3471523427 and q =
3539633039). Along’s private keys are dA1 = 3471523427 and dA2 = 66857602.
In the meantime Busu will generate k1 = 33 and k2 = 32. The message is M =
39152991. The ciphertext generated by Busu is C = 765738770679166291180.
Finally, (C(mod dA1))(mod dA2) = 39152991.�

8 Conclusion

The AAβ-cryptosystem has the capacity to become a novel public key cryp-
tosystem whose hard mathematical problem is based upon the difficulty of the
DEHP and the integer factorization problem of two large primes. Just like the
RSA, where the e-th root problem is considered much more difficult than fac-
toring the product of primes, the DEHP could also be considered much more
difficult than factoring the product of primes (due to the exponential number of
possibilities for the private parameters). The minimum key length for optimum
security should be set to n = 512-bits. On another note, it is known that the
implementation of RSA and ECC is O(n3) operations where n is the length of
the message block [5],[8],[17]. By this fact we can have the following table of
comparison.



Algorithm Encryption Speed Decryption Speed Expansion
RSA O(n2) O(n3) 1 - 1
ECC O(n3) O(n3) 1 - 2 (2 parameter ciphertext)

NTRU O(n2) O(n2) varies
AAβ O(n2) O(n2) 1 - 2.7

Table 2
Encryption / decryption speed and message expansion table for message block of length n

One can also note another advantage. That is, since encrypt and decrypt pro-
cedures are the basic arithmetic operation of multiplication, the scheme could
encrypt messages of large block size with ease. As a result this algorithm is ad-
vantageous relative to RSA or ECC (because of better speed) and ECC (because
of less computational effort to encrypt/decrypt messages of large block size).
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