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Abstract

We present a designated verifier CS proof system for polynomial time computations. The
proof system can only be verified by a designated verifier: one who has published a public-key
for which it knows a matching secret key unknown to the prover. Whereas Micali’s CS proofs
require the existence of random oracles, we can base soundness on computational assumptions:
the existence of leveled fully homomorphic encryption (FHE) schemes, the DDH assumption
and a new knowledge of exponent assumption.

Using our designated verifier CS proof system, we construct two schemes for delegating
(polynomial-time) computation. In such schemes, a delegator outsources the computation of a
function F on input x to a polynomial time worker, who computes the output y = F (x) and
proves to the delegator the correctness of the output.

Let T be the complexity of computing F on inputs of length n = |x| and let k be a security
parameter. Our first scheme calls for an one-time off-line stage where the delegator sends a
message to the worker, and a non-interactive on-line stage where the worker sends the output
together with a certificate of correctness to the prover per input x. The total computational
complexity of the delegator during off-line and on-line stages is poly(k, n, log T ). Compared with
previous constructions by Gennaro-Gentry-Parno and Chung-Kalai-Vadhan [GGP10, CKV10]
based on FHE, their on-line stage consists of two messages and their off-line stage has (delega-
tor’s) complexity of poly(k, n, T ). Thus, they achieve delegator complexity poly(k, n, log T ) only
in an amortized sense. Compared with the construction of [GKR08] based on poly-log PIR, our
first construction can handle any polynomial-time computable F rather than being restricted
to NC computable F . Our second scheme requires no off-line stage and has a two-message “on-
line” stage with complexity of poly(k, n, log T ). Most importantly, it achieves robust soundness
that guarantees that it is infeasible for a cheating worker to convince the delegator of an in-
valid output even if the worker learns whether the delegator accepts or rejects previous outputs
and proofs. Previously the only two-round protocol that achieves robust soundness under a
computational assumption appeared in [GKR08] and is restricted to only NC computations.
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1 Introduction

Efficient proof verification lies at the heart of complexity theory and the definition of the class
NP. Classically, this was captured by the idea of having a deterministic polynomial time (in the
size of the statement to be proved) verification procedure which receives a proof—a polynomial size
certificate—and checks for correctness. Extending classical proof systems, interactive proof systems
(IP) provided a model in which the polynomial time verification procedure—the verifier algorithm—
is randomized and can interact with an all powerful prover algorithm which may employ an adaptive
strategy in answering the verifier’s messages. This strenghening enables efficient verification of all
PSPACE computation. In another notion of probabilistically-checkable proof systems (PCPs), the
verifier is similarily randomized, but the prover is restricted to utilize a non-adaptive strategy and
the soundness of the proof is guaranteed only with respect to such provers. As a result, PCPs can
be used to prove any computation in NEXP. In yet a different line of work, interactive argument
systems and CS proof systems restricted the cheating provers in another way: they consider only
cheating provers that run in time bounded by some function in the complexity of the statement to
be proved. By relaxing the soundness requirement to hold only against computationally bounded
provers, CS proofs can handle computation up toNEXP. Overall, the works on efficient verifiability
throughout the 70’s and 80’s—from the works on NP to interactive proofs, PCPs to arguments and
CS proofs—dedicated the bulk of their attention “upwards”, trying to achieve efficient (polynomial-
time) verifiability for larger and larger classes of intractable (super polynomial-time) languages.

In contrast, more recent developments starting with the work of Goldwasser, Kalai, and Roth-
blum [GKR08] have focused on “looking downwards”, trying to obtain extremely efficient (say,
linear time) proof verification for tractable languages. This line of research is motivated by real-
world applications, in particular, the application of outsourcing computation: In today’s network,
there are computational devices of vastly different computational capabilities interacting with each
other over the network. Some of these devices are computationally weak due to various resource
constraints. To potentially allow a weak device to support a larger range of applications, including
those that are beyond its reach computationally, a natural solution is to have a weak device—called
the delegator in this case—to delegate computations that are too expensive to a more powerful
device—called the worker—that is connected with the weak device via a network. Then the delega-
tion problem is: how can a delegator be assured using its meager powers that the worker performed
the computation correctly?

The connection between the delegation problem and efficient proof verification is clear. View
the delegator as a verifier and the worker as a prover that computes the result of a (pre-specified)
polynomial time algorithm M on some input x and prove to the verifier that M(x) = y. The
input x is thought of as dictated to the prover by an outside source, or by the verifier itself. 1 The
challenge of the delegation problem is to design a proof system which achieves “two-fold” efficiency:
(1) relative efficiency of the prover, that is, the prover (i.e., the worker) can convince the verifier
(i.e., the delegator) that M(x) = y without doing much more work than evaluating M on x and
(2) absolute efficiency of the verifier, that is, the verification requires significantly less work than
evaluating M on x.

More formally, a delegation system consists of a pair of polynomial time interactive Turing
machines (D,W ) which, on input a polynomial time Turing machine M , an input x, and a security
parameter 1k, satisfy the following properties:

• The computational complexity of the Workder/Prover W is polynomial in the computational
complexity of the algorithm M .

1The honest prover is restricted to be a polynomial time algorithm without having access to an auxiliary oracle
or auxiliary input to help in the proving process, as was the case in argument systems in the cryptographic area.
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• The computational complexity of the Delegator/Verifier D is polynomial in the size of the
input x and poly-logarithmic in the computational complexity of M .

• The communication complexity of the system is poly-logarithmic in the size of the input x
and poly-logarithmic in the computational complexity of M .

• Completeness: If y is the valid output of M(x), then the Worker W convinces the Delegator
D of the correctness of y with probability close to 1.

• Soundness: No cheating worker W ′ can convince the (honest) verifier to accept an incorrect
output y′ 6= M(x) with non-negligible probability in the security parameter k.

Some remarks are in order. First, in the above formalization, we phrased the delegation problem
as receiving the input x as an input provided from the outside. In previous works, the input x
is often provided in a first message from verifer to prover, which allowed solutions in which the
communication complexity was linear in n beyond the need to communicate x. We thus purposely
stated x as an outside input to properly count the communication complexity requirement of
protocols. Obviously, if an application calls for the verifier to send the input x to the prover such a
message can be added. See Remark 2 in Section 5.2 for more detials. Second, in some settings it may
be required to keep x secret from the worker. We consider this a fundamentally different problem
which we do not address in this work. Finally, we allow the verifier to run in time polynomial in
the length of the input x. One can actually remove this restriction and allow the verifier to run in
time poly-logarithmic in the length of the input if it has access to an encoding of the input using
an error correcting code. See Remark 3 in Section 6.1 for more details.

Below for convenience, we will use the name delegator and verifier, as well as worker and prover,
interchangeably. We will also assume that the running time tx of the delegated algorithm M on
input x is bigger than the length of the input x and that of the output y = M(x).

1.1 Our Results

The delegation problem is the focus of our work. To this end, we propose two solutions.

1.1.1 Solution 1: Non-Interactive Delegation—Designated Verifier CS-Proofs

The notion of Computationally-Sound (CS) proofs of [Mic00] when restricted to the case of poly-
nomiall time computation is indeed the holy-grail of the delegation problem.

Let k be a security parameter and n is the size of the input x. CS-proofs provide a non-interactive
delegation system where to prove that y = M(x), the worker in time poly(k, tx) can generate a
certificate σ of the correctness of y that has size poly-logarithmic in the running time tx of M on
input x. The verifier on input x, after receiving the certificate σ, verifies the correctness of the
output y in time poly(k, |x| , |σ|) = poly(k, n, log tx) (actually, the verifier runs in time quasi-linear
in the input length Õ(n) · poly(k, log tx)). Additionally, the prover generates the certificate in time
poly(k, tx). We note that the CS proof provides a delegation scheme that achieves instance-based ,
complexity that requires the running time of the worker, who is delegated the computation of M
on an input x, to depend on the running time tx of M on that particular instance x (instead of the
worst-case complexity of M). A CS-proof is publically verifiable by any algorithm with access to
x, M and σ, whereas no such requirement is enforced in a delegation scheme.

Micali’s notion of CS proofs [Mic00] achieves such wondrous non-interactive delegation system,
but, with a heavy price: The construction of CS proofs needs to revert to the random oracle model.
In essence, the construction of CS proofs crushes the 4-round public-coin interactive argument
system of Kilian [Kil92] into a single message by relying on the random oracle to serve both as a
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CRHF (to compress a PCP proof as in [Kil92]), and in addition as a Fiat-Shamir-hash-functions
to remove interaction as in [FS87]. Unfortunately, the possibility of implementing Fiat-Shamir-
hash-functions by any hash function ensemble has been shown to be highly questionable [CGH04,
DNRS03, GK03], and remains to be a significant open problem in cryptography. On the other hand,
outside the random oracle model, no non-interactive delegation system is known for full polynomial
time computations, even if the delegation system can use a specific, designated, verifier.

The possibility of non-interactive delegation is clearly most appealing. One may envision a
delegator, using the computer facilities at a cloud to compute the result of an algorithm M , receives
later the result via an e-mail with a very short “certificate” of correctness that can be written down
in its entirty. Toward this goal, several works, starting with [GKR08] and followed by the work
of Gennaro, Gentry and Parno [GGP10], and that by Chung, Kalai, and Vadhan [CKV10], have
considered a relaxation in which the verifier is a designated verifier. Namely, the verifier may
register as a client of the worker and establish some information in an off-line stage (or even engage
in an interactive protocol with the worker in an off-line stage) which will enable him to verify
the correctness of the proofs provided by the prover later in an on-line stage. Intuitively, what
distinguishes a designated verifier from any other algorithm is that it knows some secret which will
enable him (and only him) to verify the correctness of the proofs and catch a cheating prover (who
does not know the secret) if it tries to prove a false statement.

Unfortunately, even with the relaxation of using a designated verifier, previous works do not
match CS proofs. Let T be the worst case complexity of computing M . The construction
of [GKR08] consists of one-time off-line stage with delegator complexity poly(log T, k) in which
the delegator posts one message to the worker of size poly(log T, k); then for every input x the on-
line stage is non-interactive (the worker sends a certificate σ of size poly(log T, k) certifying the value
of M(x) which the delegator can verify), and is a function of the instance-based efficiency of the
worker. But, it can only handle delegation of uniform NC-computable algorithms. The designated
verifier delegation schemes of [GGP10, CKV10] handle any P time computation. However, they
consist of a one-time off-line stage with delegator complexity poly(T, k) , and then an on-line two-
round interactive protocol of comunication complexity poly(log T, k, n). Thus, they only achieve
amortized delegator computation complexity (and communication complexity) poly(log T, k, n) over
many inputs x. The computational complexity of the worker in [GGP10, CKV10] depends on the
worst-case complexity of the algorithm being delegated rather than instance-based complexity.

Our first delegation system is a non-interactive designated verifier delegation scheme for all
computation in P. Additionally, the prover complexity is instance-based poly(k, tx). The del-
egators complexity in the off-line and on-line stages are respectively is Õ(n) · poly(log t, k) and
Õ(n) log poly(log T, k). Thus, the complexity guarantee is per input (not amortized).

The soundness of our protocol is based on the assumption that leveled Fully Homomorphic
Encryption (FHE) schemes exist, the intractability of DDH, and a new Knowledge of Exponent
Assumption (KEA), called q-KEA. The recent result of Brakersky and Vaikuntanathan [BV11],
followed by Gentry [Gen11], provides a leveled FHE scheme (that is, the scheme can homorphically
evaluate over ciphtertexts any circuits of depth bounded by a prior polynomial) based on the
intractability of the Learning With Errors (LWE) assumption2. In fact, rather than assuming
FHE, our construction can easily be transformed to use a PIR with receiver computation and
communication complexities poly-logarithmic in the size of the database. For simplicity, we use
FHE for the presentation.

2To achieve full homomorphism (without a prior bound on the depth of the circuits that the homomorphic
evaluation procedure can take as input), Brakersky and Vaikuntanathan [BV11] need to additionally assume that
their scheme is circular secure, that is, it is secure to encrypt the secret key using the encryption scheme itself.
However, for our application, the function to be homomorphically evaluated is fixed and thus it suffices to use a
leveled FHE scheme.
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The knowledge of exponent assumption was originally introduced by Damgard [Dam91], and
later extended by Bellare and Palacio [BP04] for showing the existence of 3-round zero-knowledge
proofs. Our q-KEA assumption generalizes their assumptions so that we say q-KEA holds for a
group G, if it is infeasible for a challenger, given a random generator g = g0, q random elements
g1, . . . , gq in the group, along with their αth powers (i.e., gα0 , . . . , g

α
q ), to generate a pair c, ĉ = cα,

without actually “knowing” coefficients a0, . . . , aq such that c =
∏q
i=0 g

ai
i . Here, “knowing” is cap-

tured by requiring that there exists a non-black-box extractor, who can depends on the code of
the challenger, to extract out these ai’s. Our assumption is similar and in fact inspired by the
assumption made by Groth [Gro10]. However, the actual assumption is incomparable with that of
Groth.

Theorem 1 (Informal, Non-Interactive Designed Verifier Delegation Scheme) Assume
the existence of a leveled fully homomorphic encryption scheme, the intractability of DDH and that
q-KEA holds. Then, there exists a delegation scheme (D,W ) with the following properties: Let k
be a security parameter,

1. For a polynomial time computable function (algorithm) M : {0, 1}n → {0, 1}∗ of worst casr
complexity T, the delegator in an off-line stage sends to the worker one message and keeps
some secret information for later on-line stage. The computation complexity of the delegator
in the off-line stage is Õ(n)poly(k, log T ) and the commnication complexity is poly(k, log T )

2. For any input x ∈ {0, 1}n, the worker in an on-line stage sends the output of the computation
y = M(x) and a proof of size poly(k, log tx), where tx is the running time of M on x. Further-
more, the worker runs in time poly(k, tx) and the delegator runs in time Õ(n)poly(k, log tx).

Compared with the original CS proofs of Micali, proofs of the delegation scheme of Theorem 1 can
only be verify by a verifier who holds the secret information generated in the off-line stage, whereas
the CS proofs are publically verifiable in the random oracle model. Therefore, we also call such
proof system a designated verifier CS proof system.

There is one issue with the soundness of our designated verifier delegation schemes which seems
– so far– to be an inherent problem in all existing (including [GKR08, CKV10, GGP10]) designed
verifier delegation schemes: the soundness of the system holds only under the restriction that the
cheating worker does not learn whether the verifier accepts or rejects previous proofs from the
prover. Alternatively stated, as soon as the delegator rejects one proof from the worker (and the
worker is aware of that), soundness can no longer be claimed. The problem is that the worker
can deviate from the protocol and generates messages to the verifier “improperly” so that by
learning the verdicts of the verifier as a feedback, it can learn some information about the secret
held by the designated verifier, which will then enable it to prove invalid statements later. We
note that this is reminiscent of the problem encountered in the context of chosen ciphertext secure
encryption schemes: Access to a decryption protocol with improperly formed ciphertexts may
reveal information about the secret key and thus can compromise the security of the scheme. In
the context of delegation, we call this the verifier rejection problem.

1.1.2 Solution 2: Two-Message Interactive Argument System

Our second solution is a two-message delegation scheme for all of P that addresses the verifier
rejection problem. Compared with our first scheme (which does suffer from the verifier rejection
problem), this scheme is interactive (consisting of two messages) and the delegator only has worst-
case complexity (the worker still has instance-based complexity). More formally, we obtain:
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Theorem 2 (Informal, Delegation Scheme without Verifier Rejection Problem) Assume
the existence of a leveled fully homomorphic encryption scheme, the intractability of DDH, and
that q-KEA holds. Then, there exists a delegation system (D,W ) with the following properties:
Let k be a security parameter,

1. For a polynomial time computable function (algorithm) M : {0, 1}n → {0, 1}∗ of worst case
complexity T , and an input x ∈ {0, 1}n, the worker and the delegator interacts with each
other in a 2-rounds protocol. The communication complexity of the protocol is poly(k, log T ).
The computational complexity of the worker and the delegator are respectively, poly(k, tx)
and Õ(n)poly(k, log T ), where tx is the running time of M on x.

2. Soundness holds even against a cheating worker that is aware of the verdicts of the delegator.
That is, it is infeasible for a cheating worker to convince the honest verifier to accept an
incorrect output y 6= M(x) even if the worker learns whether the delegator accept or reject
previous proofs for other inputs.

Let us briefly compare our interactive solution to previous interactive arguments which can
be used as delegation systems. Kilian [Kil92, Kil95] gives an 4-round argument system for any
NP computation, with communication complexity that is polylogarithmic, and verifier runtime
which is linear in the input length (up to polylogarithmic factors), This is achieved by a constant
round (four rounds) protocol, in which the prover first constructs a PCP for the correctness of the
computation, and then Merkle-hashes it down to a short string and sends it to the verifier. To
prove the soundness of his scheme, Kilian must assume the existence of strong collision-intractable
hash functions: where collisions cannot be formed in sub-exponential time3.

For uniform NC computations, [GKR08] shows how to combine their interactive proofs with
a technique of Kalai and Raz [KR08] to give a two round delegation system for polynomial time
bounded provers for NC computations based on the existence of a private information retrieval
system (PIR) which achieves poly-logarithmic communication. Such PIR were first proposed by
Cachin, Micali, and Stadler [CMS99] based on the φ-hiding assumption and most recently by
Brakersky and Vaikuntanathan [BV11] based on the intractability of the LWE assumption.

We note that a 2008 paper by Di Crescenzo and Lipmaa [CL08] proposes a two-round argument
with prover and verifier complexity and communication complexity as required for a delegation
solution, but they do not prove soundness based on a computational assumption but rather, essen-
tially their soundness proof assumes a restriction on the cheating prover: essentially if an efficient
cheating prover can convince the verifier to accept the statement x ∈ L it must be able to re-
construct a PCP proof of the statement. The question of two-round delegation argument systems
for general P time computations and for (unrestricted class) polynomial time adversaries under
computational assumptions thus remained open.

1.2 Our Techniques

The key tool that enables our construciton is an extractable collision resistant hash function. A
collision resistent hash function (CRHF) is, informally speaking, a polynomial-time computable
function H mapping binary strings of arbitrary length into reasonably short strings, so that it is
computationally infeasible to find any collision (for H), that is, any two different strings x and y
for which H(x) = H(y). In this work, we will consider CRHF that are additionally “extractable”:
Given a hash value, a preimage can be extracted efficiently. However, in general, such a construct
cannot exist, since CRHF is one-way. To circumvent this problem, we will consider non-black-box
extraction, that is, a preimage of a hash value can be extracted if the extractor “sees” the “code” of

3With standard intractability assumptions, one could get arguments of linear size communication complexity.
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the machine that outputs that hash value. However, this relaxation alone is not sufficient to allow
us to circumvent the impossibility. Consider, for instance, a hash function whose range is the set
of all k-bit binary strings. In this case, a random hash value can be generated by simply tossing
k random coins. But, given the code of such a sampling algorithm does not help invert the hash
value at all. Instead, we require that values output by an extractable CRHF have some special
structure; then, only for those valid hash values, a preimage can be extracted (in a non-black-box
way).

Not surprisingly, we can construct such an extractable CRHF based on the q-KEA assumption.
Our construction is similar to the construction of commitments with knowledge by Groth [Gro10],
which in turn is based on a variant of the Pedersen commitment scheme. Let G be a group in which
DDH and q-KEA holds, meaning that given properly sampled g0, . . . , gq in G, along with their αth

powers ĝ0, . . . , ĝq, if a challenger generates a pair c, ĉ = cα, then, there exists an extractor that
extracts coefficients a0, . . . , aq such that c =

∏q
i=0 g

ai
i . Then to hash a vector of elements e0, . . . , eq,

our CRHF simply outputs a pair c =
∏q
i=0 g

ai
i and ĉ =

∏q
i=0(ĝi)

ai . The collision resistence property
of the hash function follows from the DDH assumption, and the extractability follows from q-KEA,
since every valid output of the hash function satisfies that ĉ = cα, then by q-KEA, a pre-image
e0, . . . , eq can be extracted. Given such an extractable CRHF, next we provide an overview of our
construction of delegation schemes.

1.2.1 Overview of Our Approach

Similar to CS proofs in [Mic00], the overall approach to our construction is also to collapse rounds
of the 4-message public-coin zero-knowledge argument of Kilian [Kil92], which in turn relies on
PCP proofs and the notion of Merkle trees. So let us start by briefly reviewing them:

Probabilistic Checkable Proofs: Loosely speaking, a probabilistically checkable proof system
(PCP) for a language consists of a probabilistic polynomial-time verifier having direct access to
individual bits of a binary string. This string (called oracle) represents a proof, and typically will
be accessed only partially by the verifier. Queries to the oracle are positions on the bit string and
will be determined by the verifier’s input and coin tosses. The verifier is supposed to decide whether
a given input belongs to the language. If the input belongs to the language, the requirement is
that the verifier will always accept given access to an adequate oracle. On the other hand, if the
input does not belong to the language, then the verifier will reject with probability at least 1- ε
for some small error bound ε, no matter which oracle is used. A formal definition of PCP can be
found in section 3.3. We care about the complexity of the PCP verifier, in particular, the number
of random coins it tosses pr(n) and the number of queries pq(n) it issues on input a statement of
length n. Below we use polynomials pr and pq to denote the complexity of the PCP verifier.

Merkle Trees: A Merkle tree [Mer89] is a binary tree whose nodes are associated with values.
A leaf node can store any value, but each internal node stores a value that is the hash of the
concatenation of the values in its children through a collision-resistent hash function H. Thus, if
H produces k-bit outputs, each internal node of a Merkle tree, including the root, stores a k-bit
value.

The crucial property of a Merkle tree is that, unless one succeeds in finding a collision for H,
it is computationally hard to change any value in the tree without also changing the root value.
This property allows a party A to “commit” to n values, v1, . . . , vl (for simplicity assume l = 2d

for some integer d), by means of a single k-bit value. That is, A stores value vi in the ith leaf of a
full binary tree of depth d = log l, and uses a collision-free hash function H to build a Merkle tree,
thereby obtaining a k-bit value, rv, stored in the root.

More interestingly, A may “prove” what a particular vi was “locally” by revealing just d + 1
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values: vi together with its authentication path api, that is, the values stored in the siblings of the
nodes along the path from leaf i (included) to the root (excluded), Y1, . . . , Yd. It follows from the
collision resistance property of H again that it is infeasible for A to come up with two different
pairs of values and authentication paths that are both consistent with rv.

Kilian’s Construction: In [Kil92] Kilian presents a special zero-knowledge argument for NP,
(Pk, Vk), exhibiting a polylogarithmic amount of communication, where prover Pk uses a Merkle
tree in order to provide to Vk “virtual access” to a PCP proof. Below we describe the Kilian’s
protocol disregards the ZK property; our description is based on that presented in [BG08].

To prove a statement x ∈ L, the verifier Vk starts by sending the prover a CRHF H with output
length k. The prover on private input a witness w, constructs a PCP-proof π. In order to yield
efficient verifiability, Pk cannot send Vk the witness w nor π. Rather, Pk builds a Merkle tree with
the proof π as the leaf values (using the collision-free hash function H from the verifier) producing
a k-bit root value rv. It then “commits” itself to π by sending rv to the verier Vk. Since the Merkle
tree is a full binary tree, the depth of the tree generated will be d = log |π|; as the length of the
proof is in turn bounded polynomially by the length of the witness, we have d = O(log |w|). The
verier Vk then tosses pr(|x|) random coins r and sends them to the prover. Both the prover Pk and
the verifier Vk computes the queries q1, . . . , qs (s = pq(|x|)) by internally running the PCP verifier
on input x and r. The prover Pk answers those queries by sending back answers a1, . . . , as together
with their authentication paths ap1, . . . , aps. Vk then checks whether aj ’s authentication path is
consistent with rv, and, if so, it is assured that aj is the original value because the prover, being
polynomial-time, cannot find a collision for H. Finally, if any query answers and its corresponding
authentication path are not consistent with rv, Vk rejects. Otherwise, it runs the PCP verifier on
these answers (x, a1, . . . , as) and accepts if and only if the PCP verifier accepts. Because Vpcp only
makes pq(|x|) = poly(|x|) queries and each query will be answered by kd = O(k log |w|) bits of
authentication path, the overall amount of communication is polylogarithmic in |w|.

At a very high-level, the soundness of Kilian’s protocol follows from the fact that the Merkle
tree provides the verifier “virtual access” to the PCP proof, in the sense that given the root value
of the Merkle tree, for every query q, it is infeasible for a cheating prover to answer q differently
depending on the queries. Therefore, interacting with the prover is “equivalent” to having access to
a PCP proof oracle. Then it follows from the soundness of the PCP system that Kilian’s protocol
is sound.

Our Approach: We collapse rounds of the Kilian’s protocol in two steps. First, we “compress” the
two verifier’s messages into one, which turns the protocol into a two-message protocol (P2, V2), using
a leveled FHE scheme and assuming DDH and q-KEA. This two-message protocol essentially yields
our second delegation solution. It does not suffer from the verifier rejection problem since it does not
have an off-line stage and thus the delegator does not rely on any secret information. Therefore,
even if the worker learns the verdicts of the verifier, soundness still holds for the soundness of
interactive arguments is closed under sequential composition.

More precisely, let E = (KeyGen,Enc,Dec) be a leveled FHE scheme. To prove a statement x,
the prover P2 and the verifier V2 proceed as follows:

Verifer’s message: V2 samples a random public and private key pair, (pk, sk)← KeyGen(1k, 1L)
(where L is polylogarithmic in a bound on the length of the PCP proof of x), and a random
pr(|x|)-bit string r that will work as the random tape of the PCP verifier. It then sends a
CRHF H, pk and an encryption c of r under pk, i.e., c = Encpk(r).

Prover’s message: The prover P2 first computes the PCP proof π and builds a Merkle tree T
using H from π as in Kilian’s protocol, producing a root value rv. It then tries to compute
the PCP queries (q1, . . . , qs) based on the input x and the random coins r; however, since it
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only receives an encryption c of r, it cannot evaluate q1, . . . , qs directly. Instead, it computes
those queries fully homomorphically over x and c, producing encryptions c′ of q1, . . . , qs. It
further computes answers a1, . . . , as and the corresponding authentication paths ap1, . . . , aps
again fully homomorphically (over π, T , and c′), yielding encryptions c′′. Finally it sends
back rv and c′′.

Verifier’s decision: The verifier after receiving rv and c′′, decrypts c′′ to obtain a1, . . . , as and
ap1, . . . , aps. It then runs the same decision procedure as Vk in Kilian’s protocol.

Given the two-message protocol (P2, V2), notice that the verifier’s message is almost “oblivious”
of the input x, and only depends on its length |x| (for deciding a bound on the length of the PCP
proof for x and the number of coins tosses needed). Thus the first message can be generated before-
hand by a trusted third party and the two-message protocol can be turned into a designated verifier
delegatio system (P1, V1)—or a desigated verifier CS proof system—yielding our first delegation so-
lution. More precisely, the delegator V1 in the off-line stage generates a message (H, pk,Encpk(r))
as V2 does in the first round; V1 sends the message to the worker and keeps r and the secret key sk
as its secret information. Later in the on-line stage, the worker P1 proceeds the same as P2 does
in the second round; then the delegator decides whether to accept or reject as V2 does.

The soundness of the designated verifier CS proof (D,P, V ) follows directly from the soundness
of the protocol (P2, V2). Intuitively, it seems that the latter should follow from the semantically
security of the level FHE scheme. By the soundness of the PCP system, it is infeasible for a
cheating prover to generate a proof for a false statement that convinces an honest PCP verifier
(except from negligible probability). Furthermore, by the semantic security of the leveled FHE
scheme, even if the cheating prover additionally receives an encryption of the random tape of the
PCP verifier, it is still infeasible to generate an accepting proof. Then, as argued above for Kilian’s
protocol, since the Merkle tree provides “virtual access” to the proof, the cheating prover fails
with overwhelming probability. The above argument is indeed very tempting. However, we do not
manage to make it go through. The problem lies in the last part of the argument: unlike the case in
Kilian’s protocol where the verifier gets direct “virtual access” to the PCP proof, in our protocol,
the verifier gets encrypted answers to the PCP queries and their corresponding authenticating paths
back. Then suddenly, the cheating prover may be able to create some “rogue” connection between
the encryption of the verifier’s random tape, the root value of the Merkle tree and its encrypted
answers.

To overcome this problem, we instantiate our designated verifier CS proof system with an
extractable CRHF. We claim that such a proof system is sound. At a very high level, assume
for contradiction that there exists a cheating prover that can prove a false statement, that is,
given an encryption of the randomness of the PCP verifier, it manages to produce a root value
rv, sends back encrypted answers to the PCP verifier’s queries together with authentication paths
(also encrypted) that are consistent with rv, and its answers convince the PCP verifier. Since the
CRHF is extractable, one can extract out the values associated with the children of the root that
hash to rv. Furthermore, by applying the extractability property recursively, we can further, level
by level, extract out the values associated with the whole Merkle tree that hashes to rv. It then
follows from the collision resistence property of the hash function that this extracted tree must
“agree” with the prover’s answers, that is, the authentication paths sent by the prover must be the
same as the corresponding paths in the tree. Thus we obtain a machine that (given an encryption
of the randomness of the verifier), outputs convincing answers to PCP queries in plaintext. This
contradicts with either the soundness of PCP or the semantic security of the fully homomorphic
encryption scheme.

There is one caveat in the argumentment above. When applying the extractablity of the CRHF
to extract out a Merkle tree from a root value rv, the time of extraction soon explode. Consider,
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for instance, that if extracting the preimage of a hash value output by a t-time machine takes time
t2. Then, after applying extraction recursively for d times, the total extraction time grows double
exponentially to t2

d
. In comparison, we need to keep the extraction time “tamed”—in polynomial

time—so that the FHE scheme remains semantically secure. We resolve this problem by utilizing the
fact that our extractable CRHF has a very high “compression” rate: The ratio between the length
of the input and that of the output is k (assuming q-KEA with q = 2k−1). Therefore, we can build
a very “flat” Merkle tree by allowing each internal nodes to have k children. In this way, we can
“commit” to any polynomial length string (or proof for delegation) into a root value of a constant
depth Merkle tree. As a result, the extraction time for such a Merkle tree is still bounded by a
polynomial. Finally, we remark that since the extraction time is bounded by a polynomial, it suffices
to require our extractable CRHF to be collision resistant against polynomial time adversaries. On
the other hand, Kilian’s 4-round interactive argument system rely on a CRHF that is collision
resistant against even sub-exponential adversaries. On a very high level, this difference stems from
the fact that in our security proof, we use a strategy that finds a collision in polynomial time (by
comparing the encrypted authentication paths from the cheating prover with that in the extracted
Merkle tree from the root value from the prover), whereas the collision-finding strategy in Kilian’s
proof runs in sub-exponential time.

1.3 Other Related Works

Scaling down classical works on interactive proofs to address polynomial time languages result
in non-polynomial time provers. In particular, the work of Lund, Fortnow, Karloff and Nissan
[LFKN92] and that of Shamir [Sha92], the honest prover runs in super-polynomial time even for
log-space languages. The work of Fortnow and Lund [FL93], using algebraic methods extending
[LFKN92, Sha92], does explicitly address the question of interactive proofs for polynomial time
languages and in particular NC. Their protocol, however, has a non-polynomial time prover as in
[LFKN92, Sha92].

The more recent work of Goldwasser, Kalai, and Rothblum [GKR08] provided an interactive
proof to the delegation problem with a polynomial time prover, and verifier computation and
communication complexity poly-logarithmic in the time of the computation, for uniform NC algo-
rithms. Their protocol requires poly-logarithmic rounds of communication for NC computations.
More generally, for general (non NC) uniform circuit families, they provide an interactive protocol
where the verifier time complexity, round complexity, and total communication complexity is a
polynomial in the depth of the circut rather than its size.

The work of Babai, Fortnow, Levin and Szegedy [BFLS91] on Holographic Proofs for NP—
namely, PCP-proofs where the input is assumed to be presented to the verifier in an error-correcting-
code format—raise similar complexity goals as in the delegation problem, requiring super-efficient
verifiability (linear time in the input length and poly-logarithmic in the computation time), and
efficient provability (polynomial time in the non-deterministic time complexity of accepting the
input). However, the model of PCP in which they can obtain their results does not provide a
solution to the delegation problem, as it proves soundness only against non-adaptive provers. Let
us elaborate. [BFLS91] shows how to achieve verification time that is polylogarithmic in the length
of the computation (on top of the time taken to convert the input into an error correcting code
format), and a PCP-proof-string of length close to the computation time itself. However the
soundness of proofs in the PCP model (as well as its more efficient descendants [PS94, BSGH+06,
BSGH+05, Din07]) requires that the verifier/delegator will either ‘poses’ the entire PCP-proof-
string (although the verifier will only read a few bits of it), or somehow have a guarantee that the
prover/delegatee cannot change any bit of the PCP-proof-string after the verifier has started to
request bits of it. Such guarantee is not achievable over a network as required in the delegation
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setting.
Another related work is the recent work Chung, Kalai, Liu and Raz [CKLR11], relying on the

existence of FHE scheme, addresses the question of memory delegation. Here, a delegator sends
the entire content of its memory to a worker in an initial stage and from there on can issue some
editing commands and can quickly verify the result of computations done by the worker on the
memory. Our protocol can be used on top of the memory delegation scheme to enable the efficient
verification of P time computations on the memory either using our first or second solution.

A related construct to our extractable collision resistant hash functions is the one-way ex-
tractable functions of Canetti and Dakdouk [CD08] which required that any party that manages
to compute a value in the range of the function “knows” a corresponding preimage.

We summarize the known results in Table 1.3.

2 Outline

In Section 3 we provide some preliminaries and definitions of assumptions and primitives that we
rely on. In Section 4, we introduce the notion of extractable collision resistant hash funcitons
and provide a construction based on a new knowledge of exponent assumption called q-KEA in
Section 4.1. Using extractable collision resistent hash functions, we construct a designated verifier
CS proof system in Section 5. Finally, we obtain two schemes for delegating computation from a
designated verifer CS proof system in Section 6.

3 Preliminaries

Let N denote the set of all positive integers. For any integer n ∈ N , let [n] denote the set
{1, 2, . . . , n}, We denote by {0, 1}n the set of binary strings of length n, and |x| the length of a
binary string. We denote by PPT probabilistic polynomial time Turing machines. We assume fa-
miliarity with interactive Turing machines, denoted ITM, interactive protocols, and computational
indistinguishability; the formal definitions of interactive protocols and comutational indistinguisha-
bility are provided in Appendix A.

3.1 The DDH Assumption

let G take a security parameter k written in unary and output a description of a group (p,G) ←
G(1k) such that p is a k bit prime and G is a cyclic group of order p. The DDH assumption holds
for G if the following two ensembles are computationally indistinguishable.

•
{

(p,G)← G(1k), g ←R G− {0} , (a, x)←R Z2
p : (g, gx, ga, gax)

}
k∈N

•
{

(p,G)← G(1k), g ←R G− {0} , (a, x, r)←R Z3
p : (g, gx, ga, gr)

}
k∈N

The DDH assumption implies that for every polynomial q, the following ensembles are indistin-
guishable.{

(p,G)← G(1k), g ←R G− {0} , a←R Zp, (x1, . . . , xq(k))←R Zq(k)p :

(g, gx1 , . . . , gxq(k) , ga, gax1 , . . . , gaxq(k))
}
k∈N
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{
(p,G)← G(1k), g ←R G− {0} , a←R Zp, (x1, . . . , xq(k))←R Zq(k)p , (r1, . . . , rq(k))←R Zq(k)p :

(g, gx1 , . . . , gxq(k) , ga, gr1 , . . . , grq(k))
}
k∈N

3.2 Fully Homomorphic Encryption Schemes

A public-key encryption scheme E = (KeyGen; Enc; Dec) is said to be fully homomorphic if it
is associated with an additional polynomial-time algorithm Eval, that takes as input a public key
pk, a ciphertext x̂ = Encpk(x) and a circuit C, and outputs, a new ciphertext c = Evalpk(x̂;C),
such that Decsk(c) = C(x), where sk is the secret key corresponding to the public key pk. It is
required that the size of c = Evalpk(Encpk(x);C) depends polynomially on the security parameter
and the length of C(x), but is otherwise independent of the size of the circuit C. We also require
that Eval is deterministic, and the the scheme has perfect correctness (i.e. it always holds that
Decsk(Encpk(x)) = x and that Decsk(Evalpk(Encpk(x);C)) = C(x)). For security, we simply require
that E is semantically secure.

In a recent breakthrough, Gentry [Gen09] proposed a fully homomorphic encryption scheme
based on ideal lattices. Following this, Dijk, Gentry, Halevi and Vaikuntanathan[vDGHV10] pro-
posed an alternative construction based on the extended GCD assumption. Very recently, Brakerski
and Vaikuntanathan [BV11] proposed a new scheme based solely on the (standard) Learning With
Error (LWE) assumption, which is in turn based on the worst-case hardness of short vector problems
on arbitrary lattices. Immediately following that, Gentry [Gen11] further simplied their construc-
tion and greatly improved the efficiency of fully homomorhpic encryptions schemes. In all these
schemes, the complexity of the algorithms (KeyGen; Enc; Dec) depends linearly on the depth d of
the circuit C, where d is an upper bound on the depth of the circuit C that are allowed as inputs
to Eval. However, under the additional assumption that these schemes are circular secure (i.e.,
remain secure even given an encryption of the secret key), the complexity of these algorithms are
independent of C.

Our designated verifer CS proofs rely on the existence of a level FHE scheme. For simplicity
of our presentation, we assume that the FHE scheme has perfect completeness. We note that the
FHE schemes of both [Gen09] and [vDGHV10] indeed have perfect completeness. Furthermore,
even if the FHE scheme does not have perfect completeness, it only causes the resulting designated
verifier CS proofs to have an additional negligible completeness and soundness error.

Below, when referring to a FHE, we mean a leveled FHE with perfect completeness.

3.2.1 Private Information Retrieval

Rather than assuming FHE, our construction can easily be transformed to use a PIR with re-
ceiver computation and communication complexities poly-logarithmic in the size of the database.
In [BV11], such a PIR scheme is constructed from LWE-based FHE. Therefore PIR is, in some
sense, a weaker assumption than FHE, and yet it suffices for our construction.

3.3 Probabilistically Checkable Proofs

Loosely speaking, a probabilistically checkable proof system (PCP) for a language consists of a
probabilistic polynomial-time verifier having direct access to individual bits of a binary string.
This string (called oracle) represents a proof, and typically will be accessed only partially by the
verifier. Queries to the oracle are positions on the bit string and will be determined by the verifier’s
input and coin tosses. The verifier is supposed to decide whether a given input belongs to the
language. If the input belongs to the language, the requirement is that the verifier will always
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accept given access to an adequate oracle. On the other hand, if the input does not belong to the
language, then the verifier will reject with probability at least 1- ε for some small error bound ε,
no matter which oracle is used. Below we present the formal definition of PCP.

Definition 1 (Probabilistically Checkable Proofs). A probabilistically checkable proof system with
error bound ε for a language L consists of probabilistic polynomial-time oracle machine (called
verifier) V and two polynomials pr, pq satisfying

Completeness: For every x ∈ L there exists an oracle πx such that, Pr [V πx(x) = 1] = 1

Soundness: For every x 6∈ L and every oracle π, Pr [V π(x) = 1] ≤ ε(|x|)

Complexity: On any input of length n, V makes at most pr(n) coin tosses and at most pq(n)
oracle queries.

In this work, we do not care about the refined complexity pr and pq of the PCP system. Instead,
we will care about that a setN ⊆ NEXP (the non-deterministic CS language defined in Section 5.1)
has a PCP system with a negligible error bound, and satisfies the following additional proprieties
defined in [BG08].

Definition 2 (Additional Properties for PCP [BG08]). Let V be a PCP verifier with error bound
ε and complexity pr pq, for a language N ⊆ NEXP, and let R be a corresponding witness relation.
Consider the following properties.

Relatively-efficient oracle-construction: There exists a deterministic polynomial time machine
P , such that, for every (x,w) ∈ R, Pr [πx = P (x,w) : V πx(x) = 1] = 1. As a result, there
exists a polynomial pp such that the proof πx has length bounded by pp(|x| , |w|).

Non-adaptive Verifier: The verifier algorithm V can be decomposed into a pair of algorithms Q
and D, such that, on input x and a random tape r of length pr(|x|), the verifier runs Q(x, r)
to generate s = pq(|x|) queries q1, . . . , qs, obtains answers a1, . . . , as to those queries from the
oracle, and decides by computing and outputting D(x, r, a1, . . . , as).

The above properties are known to hold for many PCP systems. Below, we consider only PCP
system with the above properties, and denote it as (P, V = (Q,D)) with complexity pp, pr, pq.

4 Extractable Collision Resistence Hash Function

In this section, we formally define the notion of extractable collision resistant hash functions
(CRHF) and construct such a hash function based on a new knowledge of exponent assumption
called q-KEA introduced in Section 4.1.

Definition 3 (Extractable Collision Resistence Hash Function). Let {Ik}k∈N be a sequences of
sets of indexes. A tuple H = ({Hk,id}k∈N,id∈Ik , {validk}k∈N ), is an extractable collision resistence

hash function if {Hk,id} is a family of collision resistent hash functions, {validk} with validk :
Ik × {0, 1}∗ → {0, 1} is a sequence of functions that decides the validity of a hash value, and
satisfies the following:

Extractability: For every non-uniform deterministic polynomial time machine A, there exists a non-
uniform deterministic polynomial time machine E and a negligible function µ, such that, for every
k ∈ N and every auxiliary input z ∈ {0, 1}∗, the following holds.

Pr
[
id← Ik, ~v = A(1k, id, z); ~o = E(1k, id, z) :

∃j ∈ [|~v|], validk(id,~vj) = 1 and Hk,id(~oj) 6= v
]
≤ µ(k)
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In other words, an CRHF is extractable if for every machine A there exists an extractor E
that can extract out a pre-image for every valid hash value that A outputs. Next we proceed to
construct an extractable CRHF. Our construction relies on a new knowledge of exponent assumption
introduced below.

4.1 q-Knowledge of Exponent Assumption

The knowledge of exponent (KEA) assumption introduced by Damg̊ard [Dam91] says that given
g, gα it is infeasible to create c, ĉ so that ĉ = cα without knowing a so c = ga and ĉ = (gα)a. Bellare
and Palacio [BP04] extended this to the KEA3 assumption, which says that given g, gx, gα, gxα,
it is infeasible to create c and ĉ so that ĉ = cα without knowing a, b such that c = ga(gx)b and
ĉ = (gα)a, (gxα)b. This assumption has been used also in bilinear groups by Abe and Fehr [AF07]
who called it the extended knowledge of exponent assumption.

Our q-Knowledge of Exponent (q-KEA) Assumption generalizes the KEA and KEA3 assump-
tions in the following aspect: Instead of receiving only a pair of elements g, gx and their αth powers,
a challenger now is given q random elements g, gx1 , . . . gxq and their corresponding αth powers. The
assumption states that it is infeasible to create c and ĉ so that ĉ = cα without knowing a0, a1, . . . , a1
such that c = ga0

∏q
i=1 g

xiai . A similar assumption, called the q-power knowledge of exponent as-
sumption for bilinear groups, was introduced by Groth [Gro10] for constructing a short (sublinear
length) pairing-based Non-interactive Zero-Knowledge Arguments. Their assumption is almost the
same except that the challenger receives q elements of a special form g, gx1 , . . . gxq and their αth

powers. We note that the two assumptions are incomparable.

Definition 4 (q-Knowledge of Exponent Assumption). Let q be any polynomial. The q-KEA
assumption holds for a family of groups G if for every deterministic polynomial time machine A,
there exists a deterministic polynomial time machine E and a negligible function µ, such that, for
every k ∈ N and every auxiliary input z ∈ {0, 1}∗, the advantage of A in the following experiment
ExpqA,E(k, z) is bounded by µ(k).

Experiment ExpqA,E(1k, z):

1. Let (p,G) = G(1k), g0 a random generator in G, g1 . . . gq(k) random elements in G, and
α a random element in Zp; let δ = (g0, . . . , gq(k), g

α
0 , g

α
1 , . . . , g

α
q(k)).

2. A, on inputs 1k, δ and auxiliary input z, outputs (s, (c1, ĉ1), . . . , (cs, ĉs))

E, on inputs 1k, δ and auxiliary input z, outputs s′ and a sequence of exponents (aj0, . . . a
j
q(k))

for j ∈ [s′].

3. The experiement outputs 1 if and only if there exists a j ∈ [s], such that, ĉj = cαj but

cj 6=
∏q(k)
i=0 g

aji
i .

The advantage of A in the above experiment equals to the probability that the experiment
outputs 1.

4.2 Constructing Extractable CRHF

Our construction of extractable CRHF is essentially the same as the construction of commitments
with knowledge by Groth [Gro10], which in turn is based on a variant of the Pedersen commitment
scheme. Consider the following CRHF:

H =
(
{Hk,id}k∈N,id∈Ik , {validk}k∈N

)
:
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Sampling: Let (p,G) = G(1n) and q = q(k). The kth index set is defined as follows:

Ik =
{

(g0, . . . , gq, ĝ0, . . . , ĝn) :

g0 ∈ G− {0} , g1, . . . , gq ∈ G, ∃α ∈ Zp s.t. ∀i, ĝi = gαi

}
In other words, to sample a random hash function Hk,id, simply sample g0, . . . , gk at
random from G as specified above, sample α at ranodm from Zp, and output id =
(g0, . . . , gq, g

α
0 , . . . , g

α
q ).

Hashing: For every k and id = (g0, . . . , gq, ĝ0, . . . , ĝq) ∈ Ik, hash function Hk,id : Zq+1
p → G2,

on input (a0, . . . , aq) ∈ Znp , outputs c =
∏q
i=0 g

ai
i and ĉ =

∏q
i=0 ĝ

ai
i .

Verifying: On input a hash value (c, ĉ) ∈ G2 and an index id = (g0, . . . , gq, ĝ0, . . . , ĝq) ∈ Ik,
the function validk outputs 1 if there exists a α ∈ Zp such that ĝi = gαi for all i and
ĉ = cα.

The hash function Hk,id maps q+ 1 elements in Zp to two elements in G, achieving a “compression
rate” of (q + 1)/2. It follows from stardard technique that H is collision resistent assuming that
the DDH assumption holds on G; here we omit the proof.

Lemma 1. Assume that the DDH assumption holds on G. Then, {Hk,id}k∈N,id∈In is a family of
collision resistent hash function.

Furthermore, it follows directly from q-KEA that the hash function is also extractable. That is,

Proposition 1. Let q be any polynomial. Assume that the DDH assumption and q-KEA hold on
G. Then, H is a extractable CRHF with compression rate (q(k) + 1)/2.

Proof. By construction, hash function Hk,id has compression rate (q(k) + 1)/2. Then, following
Lemma 1, it only remains to show that H is extractable. Fix any non-uniform deterministic
polynomial-time machine A. It follows from q-KEA that there exists an extractor E (also non-
uniform deterministic polynomial-time) such that, for every k, z, it holds that, except from negli-
gible probability, whenever A on input a random id = (g0, . . . , gq, g

α
0 , . . . , g

α
q ) ∈ Ik, outputs a valid

hash value (cj , ĉj = cαj ), E on the same input, outputs (aj0 . . . a
j
q) such that cj =

∏q
i=0 g

aji
i . Since

(aj0 . . . a
j
q) is a valid preimage for (cj , ĉj), E is a valid extractor for A w.r.t. H.

4.3 Extractable Merkle Trees

Recall that Merkle tree is a full binary tree whose nodes are associated with value generated in
a special way according to a CRHF such that the value of an internal node is the hash of the
concatenation of the values of its children. We show that by instantiating the Merkle tree with an
extractable CRHF, we obtain a Merkle tree that is also extractable, that is, given only the root
value rv of a Merkle tree, one can extract out a Merkle tree that is consistent with rv.

Recall that our extractable CRHF H achieves a high “compression rate” (q(k) + 1)/2. When
using such a CRHF, we can afford to let each internal node have more than two children. More
precisely, a n-ary (for now, consider n to be even) Merkle tree is a n-ary tree built in the same
way as a classical Merkle tree, except that each internal node can have up to n children and its
associated value is the hash of the concatenation of the values of its n children through a hash
function with “compression rate” n. As classical (binary) Merkle trees, the root value of a k-
ary Merkle tree is a good “commitment” of the original values associated with the leaves, and a
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particular value vi can be “decommited” by revealing d(n − 1) + 1 values: vi together with its
authentication path api consisting of the values stored in the d(n − 1) siblings of the nodes along
the path from leaf i (inclusive) to the root (exclusive). To check the consistency of a pair of value vi
and authentication path api with a root value rv, the verify procedure proceeds as follows: On input
vi and api = (Y1, . . . , Yd) where each Yj consists of n − 1 values Y 1

j , . . . , Y
n−1
j , verify sets X1 = vi

and computes the values Xj for j from 2 to d by setting Xj+1 = H(Y 1
j ‖ . . . ‖Y

t−1
j ‖Xj‖Y t

j ‖Y
n−1
j ) if

ij (the jth bit of i in k-ary representation) is t; finally, verify checks whether Xd = rv and outputs
1 if and only if this holds.

We claim that Merkle trees constructed using an extractable collision resisent hash function H
is also “extractable”. This means, for every efficient challenger A, and every constant D, there
exists an efficient extractor ED such that whenever A on input a random index id, outputs a valid
root value rv, ED on receiving the same index id outputs a labeled tree T of depth D that is
consistent with rv. A tree T is consistent with a root value rv, if the following procedure outputs
1.

merklek(id,D, rv, T ) check:

1. T has depth at most D.

2. The value associated with the root of T equals to rv.

3. The value v associated with every internal node equals to the hash of the concatenation
of the values associated with its children.

4. The value v associated with every leaf on depth d < D is not a valid hash value, that is,
validk(1

k, id, v) = 0. (A node is at depth d if its distance from the root is d.)

Output 1 if all the above conditions hold, and 0 otherwise.

Lemma 2. Let H =
(
{Hk,id}k∈N,id∈Ik , {validk}k∈N

)
be an extractable CRHF with compression

rate l. Then for every non-uniform deterministic polynomial time machine A and every constant
D, there exists a non-uniform deterministic polynomial time machine ED and a negligible function
µD, such that, for every k ∈ N and every auxiliary input z ∈ {0, 1}∗, the following holds.

Pr
[
id← Ik, rv = A(1k, id, z); T = E(1k, id, z) :

validk(id, rv) = 1 and merklek(id,D, T , rv) 6= 1
]
≤ µ(k)

Proof. This lemma follows essentially by applying the extractability property of the CRHF H
recursively. Since the lemma only cares about extracting constant depth Merkle trees, we only need
to apply the extractability property for a constant number of times and thus the resulting extractor
for the Merkle tree is efficient. More precisely, fix any non-uniform deterministic polynomial time
machine A; we prove by induction that for every constant D there exists an extractor ED and
a negligible function µD satisfying the lemma. When D = 1, it follows immediately from the
extractability of the CRHF H that such E1 and µ1 exist. Then assuming that Ed and µd exist
for D = d a constant, we want to exhibit an extractor Ed+1 and a negligible function µd+1 for
D = d + 1. Fix any k ∈ N and an auxiliary input z ∈ {0, 1}∗. By our hypothesis, it holds that
except from a µd fraction of indexes id ∈ Ik, it holds that whenever the output of rv of the challenger
A(1k, id, z) is valid, the extractor Ed(1

k, id, z) outputs a labeled tree Td of depth bounded by d that
is consistent with rv, (i.e., merkle(id, d, rv, Td) = 1). Then consider a machine E′d which simply
runs Ed internally and outputs only the values associated with the leaves at depth d in Td (output
by Ed). By the extractability of H, there exists a deterministic polynomial time machine Xd and
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a negligible function µ such that, except from a µ fraction of id ∈ Ik, for every valid hash value v
output by E′d(1

k, id, z), Xd(1
k, id, z) outputs a corresponding preimage (v1 . . . vl(k)). Using Xd we

construct Ed+1 as follows. Machine Ed+1(1
k, id, z) internally runs Ed(1

k, id, z) and Xd(1
k, id, z),

obtaining outputs Td and w resepctively; it then constructs a depth d + 1 tree Td+1 by extending
Td: For every leaf node of Td at depth d, if w contains a valid preimage (v1 . . . vl(k)) of the value
associated with it, extend that leaf with l(k) children with values v1 to vl(k) respectively. If Td is
consistent with rv and Xd extracts a pre-image for every valid hash value associated with nodes
at depth d of Td, Td+1 is also consistent with rv. Therefore Ed+1 “fails” only if Ed or Xd “fails”.
By our hypothesis and and the extractability of H, we obtain Ed+1 fails with probability at most
µd+1(k) = µd(k) + µ(k).

5 Designated Verifier CS Proofs

Our designated verifier CS proofs, like CS proofs, has efficient instance-based provability and ver-
ifiablity (resepctively, polynomial and polylogarithmically in the time of the computation to be
proved). However, it is weaker in the following two aspects: First, proofs of our protocol are only
verifable by a designated verifier (whereas CS proofs are publicly verifiable), and second, our proto-
col only achieves a weaker (computational) soundness guarantee, that is, soundness only holds if the
(computationally bounded) cheating prover tries to prove an invalid polynomial-time computation
(whereas no invalid, even exponential-time, computation can be proved using CS proofs).

5.1 Defining Designated Verifier CS Proofs

We first recall the definition of CS language introduced by Micali [Mic00]

Definition 5 (CS language [Mic00]). The CS language, denoted by L, is the set of all quadruples
q = (M,x, y, t), such that M is (the description of) a Turing machine, x and y are a binary strings,
and t a binary integer such that it holds that |x| ≤ t, |y| ≤ t, M(x) = y and steps(M(x)) = t, where
steps(M(x)) denote the number of steps that M takes on input x.

The CS language essentially includes all quadruples that correspond to a valid deterministic
computation. In fact, the CS proofs are capable of proving all valid non-deterministic computation
as well. Formally, it corresponds to the following language.

Definition 6 (Non-deterministic CS language). The non-deterministic CS language, denoted by
N , is the set of all quadruples q = (M,x, t), such that M is (the description of) a Turing machine,
x is a binary string, and t a binary integer, it holds that there exists a witness w, |x| ≤ t, |w| ≤ t,
M(x,w) = 1 and steps(M(x,w)) = t. Denote by R the witness relation of N , that is,

R = {((M,x, t), w) : |x| ≤ t, |w| ≤ t, M(x,w) = 1, steps(M(x,w)) = t} .

We also denote by R(X) the set of witnesses w such that R(X,w) = 1.
In the designated verifier model, a non-interactive proof system has an associated polynomial-

time sampleable distribution D over binary strings of the form (pp, sp). During a setup phase, a
trusted party samples from D, publishes pp and privately hands the Verifier sp. The Prover and
Verifier then use their respective values during the proof phase.

Definition 7 (Designated Verifier CS Proofs). A triple of algorithms, (D,P, V ), is called a des-
ignated verifier CS proof system, if D is probablistic polynomial time, P and V are deterministic,
the second of which runs in polynomial time, and the following properties hold:
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Feasible Completeness: There exists polynomials tP and `, such that for every X = (M,x, t) ∈
N and every w ∈ R(x), every k ∈ N , and every possible output (pp, sp) of D(1k, 1|X|),
P (1k, pp,X,w) halts within tp(k, |X| , t) computational steps, outputting a proof π of length
smaller than `(k, |X|). Furthermore, it holds that,

Pr
[
(pp, sp)← D(1k, 1|X|); π ← P (1k, pp,X,w) : V (1k, pp, sp,X, π) = 1

]
Computational Soundness: For every deterministic polynomial time machine P ∗, there exists

a negligible function µ, such that for every k ∈ N and every n that is polynomially bounded
by k, it holds that:

Pr
[
(pp, sp)← D(1k, 1n); (X,π)← P ∗(1k, pp) : X 6∈ N and V (1k, pp, sp,X, π) = 1

]
≤ µ(k)

The above defintion adapts the original notion of CS proofs [Mic00] into the designated verifier
model. In this model, the property of public verifiability no longer holds; instead, only verifiers
holding certain secret information sp can verifiy the validity of the proof. Next, we further relax
the soundness property to only require it to hold when the cheating prover is trying to prove an
invalid but polynomial-time computation.

Definition 8 (Weak Soundness). We say that a designated verifier CS proof system (D,P, V ) has
weak soundness if the computational soundess property is replaced by the following:

Weak Computational Soundness: For every deterministic polynomial time machine P ∗, and
every constant c ∈ N , there exists a negligible function µ, such that for every k ∈ N and
every n that is polynomially bounded by k, it holds that:

Pr
[
(pp, sp)← D(1k, 1n); (X,π)← P ∗(1k, pp) :

X = (M,x, t) and t ≤ kc and X 6∈ N and V (1k, pp, sp,X, π) = 1
]
≤ µ(k)

Below, when referring to a designated verifier CS proof system, we mean such a proof system with
weak soundness.

Remark 1. We remark that in our definition of computational soundness, the cheating prover
only sees the public string pp. This is different from the case in the definition of designated verifier
non-interactive zero-knowledge proof system in the context of constructing CCA2 secure encryption
schemes, where the soundness needs to hold even if the cheating prover has access to a verification
oracle, which on input a statement and a proof tells the cheating prover whether this is an accepting
proof or not. One consequence of this difference is that soundness of our proof system may not hold
when a cheating prover participates in a game where it interacts with the honest verifier in many
rounds proving many statements and may learn the decision of the verifier in each round. As we
shall see later, this is relevant to the soundness of the delegation schemes that we construct from
designated verifier CS proof systems.

5.2 Constructing Designated Verifier CS Proofs

Our designated verifier CS proof system (D,P, V ) for the non-deterministic CS language N rely
on the following building blocks:
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1. An extractable collision resistent hash functions H = ({Hn,id}n∈N,id∈In , {validk}k∈N ) be with

output length k and compression rate l(k) = k.

2. A fully homomorphic encryption scheme E = (KeyGen,Enc,Dec) with perfect completeness.

3. A PCP system (Ppcp, Vpcp = (Q,D)) with complexity pp, pr, pq for N , such that, the num-
ber of random coins tossed by the verifier on an input X = (M,x, t) ∈ N is pr(|X|) =
poly(log |X| , log t), and the number of queries generated is pq(|X|) = poly(log |X| , log t).

Let k be a security parameter. To prove a statement X ∈ N , our scheme proceeds as follows:

Set-up: D on input 1k and 1|X|, do:

• Sample at random a hash function Hk,id, a pr(|X|)-bit string r, and a pair of public and
private keys of E, (pk, sk)← KeyGen(1k, 1L), where L = log(poly(pp(|X|))) is a bound
on the depth of the section circuit (introduced shortly below) on input vectors and trees
of length poly(pp(|X|)).
• Compute the encryption of r under pk, c = Encpk(r);

• Output pp = (id, pk, c) and sp = (sk, r).

Prover’s Message: P on input 1k, X = (M,x, t), a witness w, and pp = (id, pk, c), do:

• Internally run Ppcp on input X and w to generate a PCP-proof π; the length of the proof
is |π| = pp(|X| , |w|) bounded by pp(|X| , t) as |w| ≤ t.
• Build a l(k) = k-ary Merkle tree T by setting the value associated with the ith leaf

node to be equal to πi
4, and computing the values of the internal nodes using the hash

function Hk,id; let rv be the root value generated and d be the depth of the Merkle tree;

• Evaluate homomorphically the circuit Q over X and c to compute the PCP queries,
yielding c′ = Evalpk(Q; (X, c));

• Select homomorphically the answers and their corresponding authentication paths ac-
cording to c′, yielding c′′ = Evalpk(S; (π, T , c′)), where S is a selection circuit which on
input a string str, a tree T , and a vector of indexes ~q, returns for every i ∈ [|~q|], strq[i]
and the path leading from the root to the q[i]th leaf in T ;

• Outputs π = (rv, d, c′′).

Verifier’s Decision: V on input 1k, X = (M,x, t), pp = (id, pk, c), sp = (sk, r) and π =
(rv, d, c′′), do:

• Verify that the depth of the Merkle tree is correctly bounded, that is, d ≤ logk(pp(|X| , t)).
• Let s = pq(|X|); Decrypt c′′ using the secret key sk, yielding (a1, . . . , as, ap1, . . . , aps) =

Decsk(c
′′).

• Check for every i ∈ [s], whether ai, api are consistent with rv; if for any i ∈ [S],
verify(id, ai, api) 6= 1, reject and abort;

• Run D on input X, r, a1, . . . , as; accept if and only if D outputs 1.

4We assume w.l.o.g. that the length of the PCP proof π is a power of k. Otherwise, we can always make it to be
the case by padding π with 0’s.
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We analyze the efficinecy of the above scheme as follows: By construction and the relatively effi-
cient oracle construction property of the PCP system, the prover P runs in time poly(k, |X| , t).
It is easy to check that the set-up algorithm runs in time poly(k, |X|) and the verifier runs in
poly(k, |X| , log t). Finally, we bound the length of the public information pp and the proof gener-
ated by the prover. Since the PCP verifier tosses pr(|X|) = poly(log |X| , log t)) number of coins, the
length of the public information pp is bounded by poly(k, log |X| , log t). Then, since the PCP proof
has length poly(k, |X| , t), the Merkle tree generated by the prover has depth d = O(logk(k, |X| , t)),
and thus the length of the answers to the s PCP queries where s = pq(|X|) = poly(log |X| , log t) is
s(d(k − 1) + 1)k = poly(k, log |X| , log t). Therefore, the size of the proof is indeed poly(k, |X|) as
required in Definition 7.

Remark 2. As we shall see later, when constructing delegation schemes using the above designated
verifier CS proof system. We utilize the fact that the lengths of the public information pp and the CS
proof generated are both in fact poly(k, log |X| , log t), depending polylogarithmically in the length
of the input. Correspondingly, this will yield a delegation scheme with communication complexity
bounded poly-logarithmically in the complexity of the computation being delegated and length of
the input x′ of the computation, provided that the delegator and the worker receives the input
x′ from outside. From another perspective, this separates the communication complexity needed
for transferring the input (from the delegator to the worker), from that needed for verifying the
correctness of the output, which is only polylogarithmic in the input length.

5.2.1 (D,P, V ) works

Theorem 1. (D,P, V ) is a designated verifier CS proof system.

Proof. The completeness of the system follows from the perfect completeness of the fully homomor-
phic encryption scheme and the completeness of the PCP system. The computation and communi-
cation complexity of the system satisfies the definition of designated verifier CS proofs as analyzed
above. Thus it only remains to show that (D,P, V ) satisfies weak soundness.

We need to show that no prover can prove a false statement that has a polynomial time bound.
That is, for every constant C and every cheating prover P ∗, there exists a negligible function µ,
such that the following holds for every k ∈ N and n ∈ {0, 1}∗.

Pr
[
(pp, sp)← D(1k, 1n); (X,π)← P ∗(1k, pp) :

X = (M,x, t) and t ≤ kc and X 6∈ N and V (1k, pp, sp,X, π) = 1
]
≤ neg(k) (1)

Recall that a proof π of (D,P, V ) consists of three components (rv, d, c′′), where rv is the root value
of a Merkle tree and d is the depth of the tree. Towards proving the weak soundness, we show that
no prover can “cheat” by giving a proof with a constant depth d. That is, for every constant D
and every cheating prover P ∗, there exists a negligible function µ, such that the following holds

Pr
[
(pp, sp)← D(1k, 1n); (X,π)← P ∗(1k, pp) :

π = (rv, d, c′′) and d ≤ D and X 6∈ N and V (1k, pp, sp,X, π) = 1
]
≤ µ(k) (2)

We claim that if the above holds, then so does weak soundness. Assume for contradiction that the
above holds but there exits a cheating prover P ∗ and a constant C such that (1) is false. Recall
that on input a statement X = (M,x, t) and π = (rv, d, c′′), the verifier checks whether the depth
d is correctly bounded by logk(pp(|X| , t)). When t ≤ kC , d is bounded by a constant, since both t
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and |X| are polynomially bounded by k. Thus there must exist a particular constant D, such that
the probability that P ∗ cheats successfully while giving a proof with depth exactly D is polynomial,
which violates (2). Therefore, it suffice to show that no prover can prove a false statement by giving
a proof with a constant depth.

Assume for contradiction that there exists a deterministic polynomial-time cheating prover P ∗

a constant D and a polynomial function p such that there exists an infinite sequence of k ∈ N
and n ∈ {0, 1}∗, such that, P ∗ succeeds in convincing the honest verifier V of some false statement
X = (M,x, t) 6∈ N by outputting a proof with d ≤ D, with probability at least 1/p(k). Then
we construct another deterministic polynomial time machine B that distinguishes encryption to
a random value r and encryption to 0 with non-negligible probability. This violates the semantic
security of the fully homomorphic encryption scheme and then the theorem follows.

Fix any k, n for which P ∗ succeeds in cheating with probability 1/p(k). P ∗, on input 1k and
pp = (id, pk, c), outputs a statement X = (M,x, t) together with a proof π = (rv, d, c′′). Consider
a wrapper machine A that on input (1k, id, z), runs P ∗(1k, (id, z)) internally, and outputs only
the first part rv of P ∗’s output. Since the CRHF H is extractable, it follows from Lemma 2
that there exists a deterministic polynomial time machine ED, such that, there exists a negligible
function µ such that for every z ∈ {0, 1}∗, except from a µ(k) fraction of id ∈ Ik, when A(1k, id, z)
outputs a valid hash value rv, ED(1k, id, z) outputs a tree T that is consistent with rv, that is,
merklek(id,D, T , rv) = 1. Given ED, we are now ready to construct machine B.

Machine B on input 1k and pp = (id, pk, c), internally runs both P ∗(1k, pp) and ED(1k, id, z =
(pk, c)) and outputs both the outputs of P ∗ and ED, that is, (X,π = (rv, d, c′′)) and T .

Let r be the value encrypted in c under pk, and (q1, . . . , qs) = Q(X, r) the PCP queries computed
from X and r. We show that the probability that T contains a valid answer for PCP queries
(q1, . . . , qs) with respect to X is at least 1/2p(k). In other words, machine B is able to prove a false
statement “in plaintext” with probability at least 1/2p(k). This is proved through the following two
Claims, which respectively says that except from negligible probabilities, i) whenever the root value
rv output by B is a valid hash value, the tree T is consistent (w.r.t. merkle) with rv (in Claim 1),
and ii) whenever the proof π output by B contains in the encryption c′′ an authentication path
(a, ap) consistent (w.r.t. verify) with rv, and T is consistent with rv, then T contains (a, ap) (in
Claim 2).

Claim 1. There exists a negligible function µ1, such that for all k ∈ N and n ∈ {0, 1}∗,

Pr
[
(pp, sp)← D(1k, 1n), (X,π, T ) = B(1k, pp) :

pp = (id, pk, c), π = (rv, d, c′′), validk(id, rv) = 1, merklek(id,D, rv, T ) 6= 1
]
≤ µ1(k)

Claim 2. There exists a negligible function µ1, such that for all k ∈ N and n ∈ {0, 1}∗,

Pr
[
(pp = (id, pk, c), sp = (sk, r))← D(1k, 1n), (X,π = (rv, d, c′′), T ) = B(1k, pp) :

(~a, ~ap) = Decsk(c
′′), merklek(id,D, rv, T ) = 1,

∃j ∈ [|~a|] verifyk(id, aj , apj) = 1 but T does not contain aj , apj

]
≤ µ2(k)

Claim 1 follows from the fact that by construction, the tree T output by B is from ED, which
is a good extractor for wrapper A that outputs the root value from P ∗. Thus it follows directly
from the extractability of the Merkle tree that except from negligible probability whenever rv is
valid, T is consistent. Claim 2 essentially follows from the collision resistence property of the hash
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function H. Assume for contradiction that with some polynomial probability, the proof π output
by B contains in the encryption c′′ an authentication path (a, ap) consistent with rv that does not
appear in the tree T . Let q be the leaf node corresponding to (a, ap). Then consider the path
(a′, ap′) from root to leaf q in T . As long as T is consistent with rv, we must find a collision of
the hash function Hk,id on (a, ap) and (a′, ap′). This violates the collision resistence property of H.
Thus Claim 2 holds.

Combining Claim 1 and 2, we have that except from probability µ1(k) + µ2(k), the output
(X,π = (rv, d, c′′), T ) of B(1k, pp = (id, pk, c)) satisfies that when π is a convincing proof for X,
the following two conditions hold:

1. rv is valid and thus T is consistent with rv (by Claim 1).

2. c′′ is an encryption to authentication paths (aj , apj) for j ∈ [s] satisfying that each aj , apj
is consistent and (a1, . . . , as) convinces a PCP verifier with random tape r (where r is the
encrypted value in c). Thus T contains all (aj , apj) (by Claim 2 and the first condition).

Therefore T contains “in plaintext” the answers that convinces a PCP verifer with random tape
r. Then by our hypothesis, B on input 1k, id, pk and an encryption to r under pk, is able to
convince a PCP verifer with random tape r with probability at least 1/2p(k). However, when B
receives instead (1k, id, pk and) an encryption to 0 under pk, by the soundness of the PCP system,
except from negligible probability, it cannot output answers that convinces a PCP verifier (since the
verifier now has completely private random tape). Thus B distinguishes encryption to a random
string r and encryption to 0 with probability at least 1/3p(k). This violates the semantic security
of the fully homomorphic encryption scheme, and gives a contradiction.

6 Delegation without Rejection Problem

Loosely speaking, a delegation scheme is a 2-stage protocol between a delegator D and a worker
W . In an off-line stage, the delegator does some pre-processing based on the function F it wants
to compute and generates some public and secret information pp and sp. Later in an on-line stage,
the delegator can delegate the computation of F on many inputs to the worker efficiently; the
worker evaluates the function and proves to the delegator that the output it returns is correct. The
key property of a delegation scheme is that the computation and communication complexity of
the delegator in the on-line stage is polylogarithmic in the computation complexity of the function.
In other words, the delegator can verify the computation done by the untrusted worker much
(polylogarithmically) more efficiently than evaluating the function on its own. Recently, Genenaro,
Gentry and Parno [GGP10] and Chung, Kalai and Vadhan [CKV10] presented two constructions
of delegation schemes, both relying on fully homomorphic encryption schemes. Their schemes,
however, share one restriction, known as the rejection problem, that is, a cheating worker can break
the soundness of the scheme if it learns the verdict of the delegator on whether it accepts or rejects
a proof from the worker. Their solution is either to assume that the worker does not learn the
verdict or to perform the off-line stage fresh again after every time the delegator rejects a proof.
In Section 6.2.2, we construct a two-message delegation scheme that does not suffer the rejection
problem. Furthermore, the soundness of previous schemes relies on the use of fully homomorphic
encryption schemes, which makes the computational complexity of their scheme depends on the
worst case complexity of the function being computed. In Section 6.2.1, we construct a designated
verifier delegation scheme, whose soundness relies on the use of designated verifier CS proof and as
a result has instance-based complexity for the worker and the delegator in the on-line stage. That
is, the complexity of the delegator and the worker in the on-line stage depends on the complexity
of the compuation on the particular input being delegated.
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6.1 Delegation Schemes

In this section, we formally describe the model of delegation that we consider. Our model is
essentially the same as that in [GGP10, CKV10], except from the following three aspects. First,
we require that the computational complexity of the worker and the delegator in the on-line stage,
computing a function F (represented as a Turing machine M) on input x, to depend solely on
the running time t of M on this particular input x, instead of the worst case running time of M ;
we call this property instance-based complexity. Second, we require soundness of the delegation
scheme to hold even if a cheating worker learns the verdicts of the delegator in the on-line stage; we
call this property robust soundness. Third, our scheme only handles delegation of polynomial-time
computation. The latter seems counter-intuitive: the computational complexity of the delegator (in
the on-line stage) is at least polynomial in the length |x| of the input (the delegator needs to at least
read the input); if delegation can only handle computation in time polynomial in |x|, then what does
the delegator gain by engaging in delegation at all? We note that the delegator still gains since the
computational complexity of delegation is of a fixed polynomial in |x| (and logarithm of the time
of the computation), while the complexity of the delegated computation can be of an arbitrary
polynomial. Furthermore, we remark that this restriction is actually inherent for all delegation
schemes whose soundness is based on some polynomial time hardness assumptions. The reason is
that since soundness only holds against computationally bounded workers (otherwise a cheating
worker can break the polynomial time hardness assumption that soundness is based on), then the
worker, being computationally bounded, can only compute polynomial time computable functions
for the delegator. (We note that this restriction also applies to previous constructions [GGP10,
CKV10], although it is not stated explicitly.)

Definition 9 (Delegation with Robust Soundness). A delegation scheme is an interactive protocol
Del = (D = (A1, A2),W ) consisting of the following two stages:

Off-Line Stage: The delegator A1 on input a security parameter k and a polynomial-time com-
putable function F : {0, 1}n → {0, 1}m, represented as a Turing machine M and a polyno-
mial time bound T = kc for M , outputs a public string pp and a private string sp, that is,
(pp, sp) = A1(1

k, F ). We will use the notation M , n, m, and T as the Turing machine and
parameters associated with F below.

On-Line Stage: The delegator A2 and the worker W on input 1k, F and an input x ∈ {0, 1}n,
interacts in an interactive protocol. At the end of the protocol, the delegator A2 decides to
accept or reject; if it accepts, then it additionally outputs a value y.

Furthermore, Del satisfies the following properties.

Efficiency: The computational complexity of worker W and the delegator A2 in the on-line stage
is bounded by poly(k, T ) and poly(k, n,m, log T ) respectively. The total communication com-
plexity of the on-line and off-line stage is bounded by poly(k, log n,m, log T ).

Furthermore if the computational complexity of W and A2 depends on the running time t of
M on input x (i.e., resepctively poly(k, t) and poly(k, n,m, log t)), instead of the worst case
running time T of M , we say that the delegation scheme has instance-basec complexity.

Completeness: For all k, n, m, T , F and x, after running the delegation scheme (D,W ) on these
inputs as specified above, A2 accepts with probability 1.

Robust Soundness: For every cheating PPT worker W ∗, every constant C, there exists a neg-
ligible function µ, such that for every k ∈ N , every F = (M,n,m, T ) with T ≤ kC , the
probability that W ∗ wins in the following security game Sec(W ∗, 1k, F ) is bounded by µ(k).
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1. The delegator A1 executes the off-line stage by generating (pp, sp)← A1(1
k, F ).

2. The cheating worker W ∗ interacts with A2 in an arbitrary number of iterations of its
choice. In the ith iteration, W ∗ selects an input xi ∈ {0, 1}n and interacts with A2 on
input (1k, F, xi, pp, sp); after A2 outputs a verdict bi, W

∗ learns bi. If A2 accepts in
round i, that is bi = 1, let yi be value A2 outputs at the end of the protocol.

W ∗ wins in the game, if there exists an i in which A2 accepts (i.e., bi = 1) but yi 6= F (xi).

In the above defined soundness game Sec, the cheating worker learns the verdict of the delegator
immediately after each execution of the on-line stage. In contrast, previous works [GGP10, CKV10]
consider a soundness game that terminates once the delegator rejects a proof from the cheating
worker; we call delegation scheme with such soundness guarantee a delegation scheme without veri-
fication oracle.

In this work, we will also consider the following additional properties. We say that a delegation
scheme is a one-message delegation scheme, if the on-line stage contains only a single message from
the worker to the delegator (that is, A2 does not send any message). We say that a delegation
scheme is on-line if the off-line stage is empty. Furthermore, we say that a delegation scheme has
an efficient off-line stage if the computational complexity of the delegator A1 in the off-line stage is
poly(k, n,m, |M | , log T ).

Remark 3. In the above definition, the verifier runs in time polynomial in the length n of the
input x (beyond running in time polylogarithmic in the running time of the computation T ). This
seems necessarily, since the verifier needs to at least read the entire input x. However, if one is
willing to assumes that the input x is given in an error correcting code (as is done in [BFLS91]
and some follow-up works), it would be possible to achieve verifier’s computational complexity that
is poly-logarithmic in the length of x. Such a delegation scheme can be constructed using essen-
tially the same method below from a designated verifier CS proof that has verifier’s complexity of
polylogarithmic in the length of the input, which in turn can be constructed almost identically as in
Section 5 but relying on a PCP of proximity system for the non-deterministic CS language N as
in [CKLR11].

6.2 Our Constructions

We present two delegation schemes. The first scheme Del1 = (W1, D1), as previous constructions,
only satisfies soundness without verification oracle; but it improves previous works on that it has
an efficient off-line stage, a one-message on-line stage, and instance-based complexity. The second
scheme Del2 = (W2, D2) satisfies soundness with verification oracle and is further completely on-
line.

6.2.1 Designated Verifier CS Proofs for CS Language L

Our delegation schemes will rely on a designated verifier CS proof system for the (deterministic)
CS language L, which includes all quadruples X = (M,x, y, t) such that M(x) = y in t steps. (See
Definition 5 for a formal definition.) In section 5.2, we constructed a designated verifier CS proof
system (DN , PN , VN ) for the non-deterministic CS language N . We show how to transform that
scheme to a designated verifier CS proof system (DL, PL, VL) for L.

Towards this, we first show that every statementX = (M,x, y, t) ∈ L can be converted efficiently
into a statement X ′ ∈ N together with a corresponding witness w. The conversion algorithm
convert(X) proceeds as follows:
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convert(X = (M,x, y, t)): Run M on input x, producing the output y and a t-step history σ of a
computation of M outputting y on input x. Consider the following relation R.

R(X,σ) = 1 if and only if σ is the t-step history of a computation of M outputting y on input
x.

Evaluates R((M,x, y, t), σ) and records the number of steps t′ taken by R. Then set the
statement X ′ ∈ N to (R, (M,x, y, t), t′) and the witness w = σ.

Notice that R is polynomial time computable. Thus t′ = poly(|X| , |σ|) = poly(|X| , t) bounded by
tβ for some constant β. Therefore, the length of the new statement |X ′| is bounded by |X|γ for
some constant γ, and the computational complexity of convert is poly(|X| , t). Then the designated
verifier CS proof system (DL, PL, VL) for L proceeds as follows:

Set-up: DL, on input 1k and 1|X|, sets n = |X|γ and runs DN (1k, 1n) producing (pp, sp).

Prover’s Message: PL on input 1k, X = (M,x, y, t), and pp, converts X into a statement X ′ ∈ N
and its witness w using the conversion algorithm convert, runs the honest prover strategy
PN (1k, pp,X ′, w) to generate a proof π′ and outputs π = (X ′, π).

Verifier’s Decision: VL on input 1k, X = (M,x, y, t), pp, sp and π = (X ′, π′), first checks whether
X ′ is well formed and consists of R, (M,x, y, t) and t′; furthermore, it checks whether t′ ≤ tβ.
It aborts if any of the conditions does not hold. Otherwise, it runs the honest verifies strategy
VN (1k, pp, sp,X ′, π′) and accepts if and only if VN accepts.

(DL, PL, VL) is a designated verifier CS proof system for L. It is easy to see that the computational
complexity of the prover is poly(k, |X| , t) and the length of the proof is poly(k, |X|). Completeness
follows from the completeness of (DN , PN , VN ). Furthermore, weak soundness follows from the
weak soundness of (DN , PN , VN ) and the fact that VL checks that the time t′ sent by PL is correctly
bounded by tβ; this is because if a cheating prover P ∗L is able to prove a false statement X with
t ≤ kC for some C, it must prove a false statement X ′ ∈ L with some t′ ≤ tβ ≤ kCβ using
(DN , PN , VN ). This violates the weak soundness of (DN , PN , VN ).

6.2.2 One-Message Delegation with Instance-based Complexity

Let (D,P, V ) be a designated verifier CS proof system for the non-deterministic CS language L.
The delegation scheme (D1,W1) proceeds as follows:

Off-Line Stage: The delegator D1, on input 1k and a function F = (M,n,m, T ), runs the set-up
algorithm D on input (1k, 1l) with l = |M |+ n+m+ |T |, producing (pp, sp).

On-Line Stage: The worker W1 on input 1k, F , pp and an input x ∈ {0, 1}n, first evaluates M on
input x to obtain the output y = M(x) and measure the time t taken by the computation. It
then runs the honest prover strategy P (1k, pp,X = (M,x, y, t)) to generate a proof π. Finally,
W1 outputs y, (t, π).

The delegator D1 after receiving y and (t, π), checks whether t ≤ T . It aborts if t > T ;
otherwise, it runs the honest verifier strategy V (1k, pp, sp,X, π) to verify the proof, and
accepts if and only if V accepts.

The completeness of Del1 follows directly from that of the designated verifier CS proof. Further-
more, since the designated verifier CS proof system has instance based complexity. That is, the
computational complexity of the prover and verifier on input X = (M,x, y, t) are respectively

25



poly(k, t) and poly(k, |X| , t) = poly(k, |x| , |y| , log t), and the total length of the public information
and the CS proof is poly(k, log |X| , log t) = poly(k, log |x| , log |y| , log t) (See Remark 2), all inde-
pendent the worst case running time of M . The delegation scheme Del1 derived from it also has
instance based complexity. More precisely, in the on-line stage, the deletagor and the worker on
input F and x runs in time poly(k, n,m, log t) and poly(k, t), where t is the running time of M on
input x; in the off-line stage, the delegator runs in time poly(k, n,m, log T ), where T is the worst
case running time of M5. Furthermore, the total communication complexity including the public
key and the on-line proof is poly(k, log n,m, log T ). The soundness of the scheme follows from the
weak soundness of the designated verifier CS proof. However, since the latter only holds against a
cheating prover who does not see the verdict of the verifier. Scheme Del1 only achieves soundness
without verification oracle. Finally, we remark that Del1 has an efficient off-line stage with compu-
tational complexity poly(k, log n,m, log T ) independent of the complexity of the compuation, and
the on-line stage contains only a single message from the worker to the delegator.

6.2.3 On-Line Delegation Satisfying Soundness with Verification Oracle

Soundness without verification oracle means that every time after the delegator rejects a proof,
it needs to execute the off-line stage fresh again to prevent a cheating worker (aware of its deci-
sion) from cheating in later proofs. Although the delegation scheme Del1 satisfies only soundness
without verification oracle, it has a very efficient off-line stage, with computational complexity
poly(k, n,m, log T ). Therefore, the delegator can, in fact, afford to run the off-line stage every time
before delegating a computation. By doing so, soundness holds even if the cheating worker learns
the delegator’s decisions, yielding a two-message delegation scheme satisfying robust soundness.

Off-Line Stage: Empty.

On-Line Stage: The delegator D2, on input 1k and a function F = (M,n,m, T ), runs D1(1
k, F )

in off-line stage to generate (pp, sp); it sends pp to the worker.

The workerW2 on input 1k, F , pp and an input x ∈ {0, 1}n, sends back (y, π) = W1(1
k, pp, F, x).

D2 reaches a decision exactly as D1 does.
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A General Definitions

A.1 Witness Relations

We recall the definition of a witness relation for a NP language [Gol01].

Definition 10 (Witness relation). A witness relation for a language L ∈ NEXP is a binary relation
RL that characterizes L by L = {x : ∃y s.t. (x, y) ∈ RL}

We say that y is a witness for the membership x ∈ L if (x, y) ∈ RL.
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A.2 Indistinguishability

Definition 11 (Computational Indistinguishability). Let Y be a countable set. Two ensem-
bles {Ak,y}k∈N,y∈Y and {Bk,y}k∈N,y∈Y are said to be computationally indistinguishable (denoted by
{Ak,y}k∈N,y∈Y ≈ {Bk,y}k∈N,y∈Y ), if for every PPT “distinguishing” machine D, there exists a
negligible function ν(·) so that for every k ∈ N, y ∈ Y :∣∣∣Pr

[
a← Ak,y : D(1k, y, a) = 1

]
− Pr

[
b← Bk,y : D(1k, y, b) = 1

]∣∣∣ < ν(k)

A.3 Interactive Proofs

We use the standard definitions of interactive proofs (and interactive Turing machines) [GMR89]
and arguments (a.k.a. computationally-sound proofs) [BCC88]. Given a pair of interactive Turing
machines, P and V , we denote by 〈P (w), V 〉(x) the random variable representing the (local) output
of V , on common input x, when interacting with machine P with private input w, when the random
input to each machine is uniformly and independently chosen.

Definition 12 (Interactive Proof System). A pair of interactive machines 〈P, V 〉 is called an
interactive proof system for a language L if there is a negligible function ν(·) such that the following
two conditions hold :

• Completeness: For every x ∈ L, and every w ∈ RL(x), Pr [〈P (w), V 〉(x) = 1] = 1

• Soundness: For every x ∈ {0, 1}n−L, and every interactive machine B, Pr [〈B, V 〉(x) = 1] ≤
ν(n)

In case that the soundness condition is required to hold only with respect to a computationally
bounded prover, the pair 〈P, V 〉 is called an interactive argument system.
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