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Abstract. RC4 has been the most popular stream cipher in the history of symmetric key cryptography till
date. Its internal state contains a pseudo-random permutation over all n-bit words (typically n = 8) and it
attempts to generate a pseudo-random sequence of words by extracting elements of this permutation. Since
more than last twenty years, numerous cryptanalytic results on RC4 stream cipher have been published. Many
of these results are based on some non-random (biased) events involving the secret key or the state variables or
the output sequence, or a combination of them.

Though biases based on the secret key is common in RC4 literature, none of the existing ones depends on
the length of the secret key. In the first part of this paper, we report significant biases involving the length of
the secret key, for the first time in the literature.

In the second part of the paper, theoretical proofs of some significant initial-round empirical biases observed
by Sepehrdad, Vaudenay and Vuagnoux [SAC 2010] are presented. Another important result presented here is
the derivation of the complete probability distribution of the first byte of RC4 output sequence, a problem left
open for a decade since the observation by Mironov [CRYPTO 2002]. Further, the existence of positive biases
towards zero for all the initial bytes 3 to 255 is proved and exploited towards a generalized broadcast attack on
RC4 stream cipher.

The above biases discussed in this paper, like most of the existing biases in RC4 literature, are short-term
and do not last after a few initial rounds. The last part of this paper investigates the long-term manifestation of
short-term biases in RC4 output sequence. A careful analysis of the periodic structure of RC4 evolution proves
the first long-term generalization of Mantin and Shamir’s [FSE 2001] famous second-byte bias.

Keywords: Bias, Cryptography, Distinguisher, Probability Distribution, Pseudo-Random Permu-
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? This is a substantially revised and extended version of the papers [14] of FSE 2011 and [28] of SAC 2011. Sections 2 and 3.1
are based on [28] and Section 3.3 is based on [14] with major revision in the proof of Theorem 12. Sections 3.2 and 4 are
completely new technical contributions in this paper.



1 Introduction

Stream ciphers constitute a major branch of Cryptology, especially in the domain of symmetric key
ciphers. Stream ciphers claim to output a pseudo-random sequence of bits, called the keystream, and
encryption is done by masking the plaintext (considered as a sequence of bits) by the keystream.
The masking operation is just a simple XOR in general, and the ciphertext is also a sequence of
bits of the same length as that of the plaintext. For ideal information theoretic ‘perfect secrecy’ of
the scheme, it is desired that the masking is done using a one-time pad where a unique sequence
of bits is used as a mask for each plaintext-ciphertext pair. In reality however, a one-time pad is
not practical, as it requires a source of truly random sequence of bits to mask the plaintext in the
encryption operation. Instead, a computational notion of secrecy is ensured by the pseudo-random
output sequence generated by a stream cipher. Any non-random event in the internal state or the
output sequence of a stream cipher is not desired from a cryptographic point of view, and a rigorous
analysis of a stream cipher is performed to identify the presence of any such non-randomness in its
design.

The most important and cryptographically significant goal of a stream cipher is to produce a
pseudo-random sequence of bits or words using a fixed length secret key (or a secret key paired
with an initialization vector). Over the last three decades of research and development in stream
ciphers, a number of designs have been proposed and analyzed by the cryptology community. One
of the main ideas for building a stream cipher relies on constructing a pseudo-random permutation
and thereafter extracting a pseudo-random sequence from this permutation. Interestingly, even if
the underlying permutation is pseudo-random, if the method of extracting the words from the
permutation is not carefully designed, then it may be possible to identify certain biased events in
the final output sequence of the cipher.

Till date, the most popular stream cipher among the cryptologists has been RC4, which is
designed using the same principle of extracting pseudo-random words from pseudo-random permu-
tations. This cipher gains its popularity for its intriguing simplicity that has made it widely accepted
for numerous software and web applications. Our paper takes a critical look at some important non-
random events of the RC4 stream cipher, thereby illustrating some key design vulnerabilities in the
shuffle-exchange paradigm of stream ciphers.

1.1 RC4 stream cipher

RC4 is the most widely deployed commercial stream cipher, having applications in network protocols
such as SSL, WEP, WPA and in Microsoft Windows, Apple OCE, Secure SQL etc. It was (allegedly)
designed in 1987 by Ron Rivest. The design was a trade secret since then, and was anonymously
posted on the web in 1994. Later, the description was verified by comparing the outputs of the
posted design with those of the licensed systems using proprietary versions of the original cipher.
The public design was never officially claimed to be the original cipher, and hence it is also called
the ‘Alleged RC4’ or ‘ARC4’.

The cipher consists of two major components, the Key Scheduling Algorithm (KSA) and the
Pseudo-Random Generation Algorithm (PRGA). The internal state of RC4 contains a permutation
of all n-bit words (typically, n = 8), i.e., a permutation of size N = 2n words (typically, N = 256).
The key K is of the same size (N words) as well. However, the original secret key is of length
typically between 5 to 32 words, and is repeated to form the expanded key K. The KSA produces
the initial pseudo-random permutation of RC4 by scrambling an identity permutation using key K.
The initial permutation S produced by the KSA acts as an input to the next procedure PRGA that
generates the output sequence.



The practical form of the cipher is byte-oriented, i.e., it operates with n = 8 and hence N = 256.
The RC4 algorithms KSA and PRGA are as shown in Fig. 1.

RC4 KSA
(rounds = 256)

j = j + S[i] +K[i]

Swap S[i]↔ S[j]

i = i+ 1

S
(identity)

K

i = 0

j = 0

RC4 PRGA
(rounds = # bytes required)

i = i+ 1

j = j + S[i]

Swap S[i]↔ S[j]

Z = S[S[i] + S[j]]

S
(after KSA)

i = 0

j = 0

Z
(after each

round)

Fig. 1. Key-Scheduling Algorithm (KSA) and Pseudo-Random Generation Algorithm (PRGA) of RC4.

Notation: For round t ≥ 1 of RC4 PRGA, we denote the indices by it, jt, the keystream output
byte by Zt, and the permutations before and after the swap by St−1 and St respectively. After t
rounds of KSA, we denote the state variables by adding a superscript K to each variable. By SK0
and S0, we denote the initial permutations before KSA and PRGA respectively. Note that SK0 is
the identity permutation and S0 = SKN is the permutation obtained right after the completion of
KSA. In this paper, all additions in the context of RC4 are to be considered modulo N .

1.2 An overview of RC4 cryptanalysis

The goal of RC4, like all stream ciphers, is to produce a pseudo-random sequence of bits from the
internal permutation, which in turn should be pseudo-random. Hence, one of the main ideas for
RC4 cryptanalysis is to investigate for biases, that is, statistical weaknesses that can be exploited to
computationally distinguish the output sequence of RC4 from a truly random sequence of bytes with
a considerable probability of success. The target of attack may be to exploit the non-randomness in
the internal state of RC4, or the non-randomness of keyword-extraction from the internal permu-
tation. Both ideas have been put to practice in various ways in the literature, and the main theme
of attacks on RC4 has been in three directions, as follows.

1. Key recovery attack: Key recovery from permutation was first proposed in [24] and later
studied in [3, 4, 10]. Key recovery from keystream output primarily exploits the use of RC4 in
WEP and WPA. The analysis in [7,18] are applicable towards RC4 in WEP mode, and there are
quite a few practical attacks [11,34,35] on the WEP protocol as well. After a practical breach [33]
of WEP, the new variant WPA came into the picture. This too used RC4 as a backbone, and
the most recent result published in [30] mounts a distinguishing attack on RC4 in WPA.

2. State recovery attack: The state-space of RC4 is around 21700. The first important state
recovery attack was due to [12] that required a complexity of 2779. After a series of small im-
provements [21, 31, 32], the best attack with complexity 2241 appeared in [19], after which the
use of secret keys of length more than 30 bytes is not recommended any more.

3. Biases and Distinguishers: Most of the results are targeted towards specific short-term (in-
volving only the initial few bytes of the output) biases and correlations [8,9,14,16,20,22,23,27,29],
while there exist only a few results for long-term (prominent even after discarding an arbitrary
number of initial bytes of the output) biases [2, 6, 17].

Fig. 2 gives a chronological summary of the important cryptanalytic results on RC4 till date.



1995: Roos’ biases [27]

1996: Glimpse bias [9]

1998: Branch and Bound Search [12]
1998: Cycle structures [21]

2000: Digraph probabilities [6]

2001: Broadcast attack on byte 2 [16]2001: First WEP attack (FMS) [7]

2002: Non-random 1st byte [20]

2003: Partial known permutation [31]

2005: Mantin’s ABSAB bias [17]2005: Mantin’s WEP attack [18]

2006: Klein’s WEP attack [11]

2007: Modular Equations [24]
2007: PTW WEP attack [33]
2007: VX WEP attack [35]

2007: Tree search (hill climbing) [32]

2008: Nested permutation entries [26]
2008: Long-term conditional bias [2]

2008: Generative pattern [19]2008: Difference Equations [4]
2008: Bit by bit approach [10]
2008: Key Byte Grouping [1]

2009: Bidirectional search [3]
2009: WPA attack [34]

2010: More biases in key and state
variables [29]

2011: Keylength-dependent biases [28]
2011: Broadcast attack (revisited) on

bytes 3 to 255 [14]

2011: Distinguishing WPA [30]

Biases & distinguishersState recovery attacksKey recovery & WEP attacks

Fig. 2. A chronological summary of RC4 cryptanalysis.



1.3 Our contributions

In this paper, we extend and supplement the literature of RC4 cryptanalysis in three directions; we
introduce the concept of keylength dependent biases, identify new short-term biases and investigate
significant long-term manifestation of short-term biases in RC4. Sections 2, 3 and 4 contain the
technical results of this paper, summarized as follows.

Section 2: In SAC 2010, Sepehrdad, Vaudenay and Vuagnoux [29] reported the empirical bias
Pr(S16[j16] = 0 | Z16 = −16) = 0.038488 without any proof. Our detailed investigation of this
bias reveals that the number 16 comes from the secret key length of 16 bytes in which the
experiments were performed in [29] and the same bias holds for any secret key length. Along the
same line of investigation, in Section 2 of our paper, we observe and prove a family of related
conditional biases involving secret key and its length. Moreover, we establish a strong correlation
between the length l of the secret key and the l-th byte in the output sequence (typically for
5 ≤ l ≤ 30), and thus propose a method to predict the keylength of the cipher by observing the
output sequence. To the best of our knowledge, this is the first set of keylength dependent biases
discovered in RC4.

Section 3: In this section, we investigate RC4 PRGA and discuss biases in the initial rounds.
1. In Section 3.1, we provide theoretical proofs for some significant empirical biases of RC4

involving the state variables in the initial rounds, that were reported by Sepehrdad et al. [29].
2. In CRYPTO 2002, Mironov [20] observed that the 1st byte Z1 of RC4 output sequence

has a negative bias towards zero, and also found an interesting non-uniform probability
distribution (similar to a sine curve) for all other values of this byte. However, the theoretical
proof remained open. In Section 3.2, we derive the complete theoretical distribution of Z1.

3. In FSE 2001, Mantin and Shamir [16] showed that Pr(Z2 = 0) ≈ 2
N

in RC4 output sequence,
whereas this should be 1/N in case of a random sequence of bytes. They also claimed that
such bias does not exist in any other subsequent byte in the output sequence. Contrary to
this claim, in Section 3.3, we establish that all the bytes 3 to 255 of RC4 initial keystream
are biased to zero. In addition, we rigorously study the non-randomness of index j to find a
strong bias of j2 towards 4. We further use this bias to guess the internal state variable S2[2]
from Z2.

Section 4: Biases in initial rounds of RC4 has no effect if one throws away some initial bytes from
the output sequence of RC4. This naturally motivates a quest for long-term biases in the RC4
output, if any exists. In Section 4, we seek for long-term manifestation of the short-term biases
and find a new long-term conditional bias in RC4 output sequence, hitherto undiscovered in the
literature.

Before presenting the technical contribution of this paper, we shall first study the background and
some key technical concepts that are required for our results.

1.4 Preliminaries and technical background

In this paper, we focus on non-random (biased) events in RC4 and their cryptographic significance.
To utilize a biased event towards an attack on the stream cipher, one needs to identify the bias in
the very first place. In this section, we build the information theoretic tools towards this purpose.

Bias and distinguisher: For a stream cipher, if there is an event such that the probability of
occurrence of the event is different from that in case of a uniformly random sequence of bits, the



event is said to be biased. If there exists a biased event based only on the bits of the output
sequence, then such an event gives rise to a distinguisher for the cipher that can computationally
differentiate between the output sequence of the stream cipher and a truly random sequence of
bits. The efficiency of a distinguisher is judged by the number of samples required to identify the
bias. For a distinguisher to successfully identify and exploit a bias, one requires to inspect a certain
length of the output sequence so that one can collect sufficient number of samples for the event
under consideration. The less is the number of samples required, the more is the efficiency of the
distinguisher. The technical details are as follows.

Number of samples required to identify a bias: Let E be an event based on some key bits
or internal state bits or keystream bits or a combination of them in a stream cipher. Suppose,
Pr(E) = p for a uniformly random sequence of bits (i.e., for the output sequence of an ideal stream
cipher) and Pr(E) = p(1+q) for the output sequence of the stream cipher under consideration. The
cryptanalytic motivation of studying a stream cipher is to distinguish these two sequences (uniform
random sequence and output sequence of the stream cipher) in terms of the difference in the above
probabilities when q 6= 0. It requires the formal information theoretic notion of ‘relative entropy’
between two sequences.

The relative entropy between two discrete probability distributions P (.) and Q(.) is given by
the Kullback-Leibler divergence [13]

DKL(P ||Q) =
∑
x

P (x) log2

P (x)

Q(x)
,

where x runs over all the sample points. For the above-mentioned single event E with probabilities
p and p(1 + q) in two different distributions P (.) and Q(.), the relative entropy is given by

p log2

(
p

p(1 + q)

)
+ (1− p) log2

(
1− p

1− p(1 + q)

)
= p log2

(
1− q

1 + q

)
+ (1− p) log2

(
1 +

pq

1− p(1 + q)

)
≈−p

(
q

1 + q

)
+ (1− p)

(
pq

1− p(1 + q)

)
≈ pq2.

If P,Q are two distributions defined over the domain A and P ′, Q′ are two other distributions defined
over the domain B, then it can be shown that the overall relative entropy of the joint distributions
PP ′ and QQ′ is given by D(PP ′||QQ′) = D(P ||Q) + D(P ′||Q′). Applying this to n samples from
the same distribution, the relative entropy is obtained as npq2.

According to [5], the bound for false positive rate (α) and false negative rate (β) satisfy the
following inequality.

npq2 ≥ β log2

β

1− α
+ (1− β) log2

1− β
α

For α = β, this relation reduces to

n ≥
(

1

pq2

)
· (1− 2α) log2

1− α
α

.

In our context, false positive means that the test sequence is actually from the stream cipher, but
we decide it to be random and false negative means that the test sequence is actually random, but
we decide it to be from the stream cipher.



Thus for a given false positive or negative rate α (= β), one needs roughly O(1/pq2) many
samples to perform the distinguishing test. In particular, n ≥ 1/pq2 signifies α ≈ 0.2227, i.e.,
a success probability of approximately 0.7773. Since 0.7773 > 0.5 is a reasonably good success
probability, O(1/pq2) many samples are considered enough to reliably apply the distinguisher.

This gives an estimate of the number of samples needed to confirm a bias (either through
simulation or from practical data). If the biased event is a function of the bits in the output
sequence only, then the number of samples needed gives an estimate of the data complexity to
mount a distinguishing attack. We shall use this notion of sample complexity while judging the
effectiveness of any bias discussed throughout this paper.

Now we present the technical contribution of this paper in the following sections.

2 Biases based on secret key and its length

In this section, we present a family of biases in RC4 that are dependent on the length of the secret
key. In SAC 2010, Sepehrdad et al. [29] discovered several correlations in RC4 PRGA using DFT
based approach. A list of such biases was presented in [29, Fig. 10], and the authors commented:

“After investigation, it seems that all the listed biases are artifact of a new
conditional bias which is Pr[S ′16[j′16] = 0 | Z16 = −16] = 0.038488.”

However, the authors also admitted that

“So far, we have no explanation about this new bias.”

In our notation of Section 1.1, the above event is denoted as (S16[j16] = 0 | Z16 = −16). While
exploring this conditional bias in RC4 PRGA, we could immediately observe two things:

1. The number 16 in the result comes from the keylength that is consistently chosen to be 16 in [29]
for most of the experimentation. In its general form, the conditional bias should be stated as:

Pr (Sl[jl] = 0 | Zl = −l) ≈ 10

N
. (1)

It is surprising why this natural observation could not be identified earlier.

2. Along the same line of investigation, we could find a family of related conditional biases, stated
in their general form as follows:

Pr(Zl = −l | Sl[jl] = 0) ≈ 10/N (2)

Pr(Sl[l] = −l | Sl[jl] = 0) ≈ 30/N (3)

Pr(tl = −l | Sl[jl] = 0) ≈ 30/N (4)

Pr(Sl[jl] = 0 | tl = −l)≈ 30/N (5)

Note that bias (2) follows almost immediately from bias (1), and biases (5) and (4) are related in a
similar way. Moreover, bias (3) implies bias (4) as tl = Sl[l] +Sl[jl] = −l under the given condition.
However, we investigate even further to study the bias caused in Zl due to the state variables.



2.1 Dependence of conditional biases on RC4 secret key

We found that all of the aforementioned conditional biases between the two events under consider-
ation are related to the following third event that is dependent on the values and the length of the
RC4 secret key.

l−1∑
i=0

K[i] +
l(l − 1)

2
≡ −l (mod N)

We shall henceforth denote the above event by (fl−1 = −l), following the notation of Paul and
Maitra [26], and this event is going to constitute the base for most of the conditional probabilities
we consider hereafter. We consider Pr(fl−1 = −l) ≈ 1

N
, assuming that fl−1 can take any value

modulo N uniformly at random.

Extensive experimentation with different keylengths (100 million runs for each keylength 1 ≤
l ≤ 256) revealed strong bias in all of the following events:

Pr(Sl[jl] = 0 | fl−1 = −l), Pr(Sl[l] = −l | fl−1 = −l),
Pr(tl = −l | fl−1 = −l), Pr(Zl = −l | fl−1 = −l).

Each of the correlations (1), (2), (3), (4), and (5) is an artifact of these common keylength-based
correlations in RC4 PRGA. In this section, we discuss and justify all these conditional biases.

To prove the observations in this section, we shall require the following existing results from
the literature of key-correlation in RC4. These are the correlations observed by Roos [27] in 1995,
which were later proved by Paul and Maitra [26].

Proposition 1. [26, Lemma 1] If index j is pseudo-random at each KSA round, we have

Pr
(
jKy+1 = fy

)
≈
(

1− 1

N

)1+
y(y+1)

2

+
1

N
.

Proposition 2. [26, Corollary 1] On completion of KSA in the RC4 algorithm,

Pr(S0[y] = fy) = Pr(SKN [y] = fy) ≈
(

1− y

N

)
·
(

1− 1

N

) y(y+1)
2

+N

+
1

N
.

Proposition 3. [26, Corollary 1] On completion of KSA, we have for 0 ≤ y ≤ 31,

Pr(S0[S0[y]] = fy) ≈

[
y

N
+

1

N

[
1− 1

N

]2−y

+
[
1− y

N

]2
[
1− 1

N

]] [
1− 1

N

] y(y+1)
2

+2N−4

.

Note that in each of the above statements,

fy = SK0

[
y∑

x=0

SK0 [x] +

y∑
x=0

K[x]

]
=

y∑
x=0

x+

y∑
x=0

K[x] =

y∑
x=0

K[x] +
y(y + 1)

2
,

and we shall henceforth use this shorthand notation fy throughout the paper.



2.2 Proof of keylength dependent conditional biases

In this section, we will prove the four main conditional biases that we have observed. Each depends
on the event (fl−1 = −l), and can be justified as follows. In each of the following theorems, the
notation ‘x : A

α−→ B’ denotes that the value x transits from position A to position B with
probability α.

Theorem 1. Suppose that l is the length of the secret key used in the RC4 algorithm. Given fl−1 =∑l−1
i=0K[i] + l(l − 1)/2 = −l, we have

Pr(Sl[jl] = 0) ≈ 1

N
+

[
1− l

N

] [
1− 1

N

]N+l−2
[[

1− 1

N

]1+
l(l+1)

2

+
1

N

]

Pr(Sl−2[l − 1] = −l) ≈ 1

N
+

[
1− 1

N

]l−1
[[

1− l − 1

N

] [
1− 1

N

]N+
l(l−1)

2

+
1

N

]

Proof. For proving the first conditional bias, we need to trace the value 0 over KSA and the first l
rounds of PRGA. We start from SK0 [0] = 0, as the initial state SK0 of KSA is the identity permutation
in RC4. The following gives the trace pattern for 0 through the complete KSA and l initial rounds
of PRGA. We shall discuss some of the transitions in details.

0 : SK0 [0]
1−→ SK1 [K[0]]

p1−→ SKl [K[0]]
p2−→ SKl+1[l]

p3−→ Sl−1[l]
1−→ Sl[jl]

Here p1 =
(
1− l

N

) (
1− 1

N

)l−1
denotes the probability that index K[0] is not touched by iK and jK

in the first l rounds of KSA, p2 =
(
1− 1

N

)1+
l(l+1)

2 + 1
N

denotes the probability Pr(jKl+1 = fl = K[0])

(using Proposition 1) such that 0 is swapped from SKl [K[0]] to SKl+1[l], and p3 =
(
1− 1

N

)N−2
denotes

the probability that the location SKl+1[l] containing 0 is not touched by iK , jK in the remaining
N − l − 1 rounds of KSA or by i, j in the first l − 1 rounds of PRGA. So, this path gives a total
probability of p1p2p3. If this path does not hold, we assume that the event (Sl[jl] = 0) still holds at
random, with probability 1/N . Thus, the total probability is obtained as

Pr(Sl[jl] = 0) = p1p2p3 + (1− p1p2p3) · 1

N
=

1

N
+

(
1− 1

N

)
p1p2p3.

We do a similar propagation tracking for the value fl−1 = −l to prove the second result, and
the main path for this tracking looks as follows.

−l : SK0 [−l] p4−→ S0[l − 1]
p5−→ Sl−2[l − 1]

Here we get p4 = Pr(S0[l− 1] = fl−1) =
(
1− l−1

N

) (
1− 1

N

)N+
l(l−1)

2 + 1
N

using Proposition 2 directly,

and p5 =
(
1− 1

N

)l−2
denotes the probability that the index (l − 1), containing −l, is not touched

by i, j in the first l− 2 rounds of PRGA. Similar to the previous proof, the total probability can be
calculated as

Pr(Sl−2[l − 1] = −l) = p4p5 + (1− p4p5) · 1

N
=

1

N
+

(
1− 1

N

)
p4p5.

We get the claimed results by substituting p1, p2, p3 and p4, p5 appropriately. ut



If we substitute l = 16, the most common keylength for RC4, and N = 256, we get the proba-
bilities of Theorem 1 of magnitude

Pr(Sl[jl] = 0 | fl−1 = −l) ≈ Pr(Sl−2[l − 1] = −l | fl−1 = −l) ≈ 50/N.

These are, to the best of our knowledge, the best known key-dependent conditional biases in RC4
PRGA till date. The estimates closely match the experiments we performed over 100 million runs
with 16-byte keys. In the next theorem, we look at a few natural consequences of these biases.

Theorem 2. Suppose that l is the length of the RC4 secret key. Given that fl−1 =
∑l−1

i=0K[i]+ l(l−
1)/2 = −l, the probabilities Pr(Sl[l] = −l | fl−1 = −l) and Pr(tl = −l | fl−1 = −l) are approximately

1

N
+

(
1− 1

N

)
·

[
1

N
+

[
1− l

N

] [
1− 1

N

]N+l−2
[[

1− 1

N

]1+
l(l+1)

2

+
1

N

]]

·

[
1

N
+

[
1− 1

N

]l−1
[[

1− 1

N

]N−l
+

1

N

]]

Proof. Before proving the path for the target events, let us take a look at rounds l− 1 and l of RC4
PRGA when Sl−2[l − 1] = −l and Sl−1[l] = 0. In this situation, we have the following propagation
for the value −l.

−l : Sl−2[l − 1]
1−→ Sl−1[jl−1] = Sl−1[jl]

1−→ Sl[l]

In the above path, the equality holds because jl = jl−1 + Sl−1[l] = jl−1 + 0 as per the conditions.
Again, we have Sl[jl] = Sl−1[l] = 0, implying tl = Sl[l] + Sl[jl] = −l + 0 = −l as well. This explains
the same expression for the probabilities of the two events in the statement.

Note that we require both the events (Sl[jl] = 0 | fl−1 = −l) and (Sl−2[l−1] = −l | fl−1 = −l) to
occur simultaneously, and need to calculate the joint probability. Also note that there is a significant
overlap between the tracking paths of these two events, as they both assume that the first l positions
of the state SK0 are not touched by jK in the first l rounds of KSA (refer to the proof of Theorem 1
of this paper and proofs of [26, Theorem 1, Corollary 1] for details). In other words, if we assume the
occurrence of event (Sl[jl] = 0 | fl−1 = −l) (with probability p6, as derived in Theorem 1, say), then
the precondition for (Sl−2[l−1] = −l | fl−1 = −l) will be satisfied, and thus the modified conditional

probability is Pr(Sl−2[l−1] = −l | Sl[jl] = 0 ∧ fl−1 = −l) = 1
N

+
[
1− 1

N

]l−1
[[

1− 1
N

]N−l
+ 1

N

]
= p7,

say. Now, we can compute the joint probability of the two events as

Pr(Sl[l] = −l | fl−1 = −l) = p6p7 + (1− p6p7) · 1

N
=

1

N
+

(
1− 1

N

)
· p6p7.

Substituting the values of p6 and p7, we obtain the desired result. Event (tl = −l) follows immedi-
ately from (Sl[l] = −l), with the same conditional probability. ut

Substituting l = 16 and N = 256, we get the probabilities of Theorem 2 of the magnitude
Pr(Sl[l] = −l | fl−1 = −l) = Pr(tl = −l | fl−1 = −l) ≈ 20/N . These estimates closely match our
experimental results taken over 100 million runs of RC4 with 16-byte keys.

The bias in (Zl = −l) is caused due to the event fl−1[l], but in a different path than the one we
have discussed so far. We prove the formal statement next as Theorem 3.



Theorem 3. Suppose that l is the length of the secret key of RC4. Given that fl−1 =
∑l−1

i=0K[i] +
l(l − 1)/2 = −l, the probability Pr(Zl = −l) is approximately

1

N
+

[
1− 1

N

]
·

[
1

N
+

[
1− l

N

] [
1− 1

N

]N+l−2
[[

1− 1

N

]1+l

+
1

N

]]

·

[
1

N
+

[
1− 1

N

]l+1

Pr(S0[S0[l − 1]] = fl−1)

]
Proof. The proof is similar to that of Theorem 2 as both require Sl[jl] = Sl−1[l] = 0 to occur first.
Note that if Sl[jl] = Sl−1[l] = 0, we will always have

Zl = Sl[Sl[l] + Sl[jl]] = Sl[Sl−2[l − 1] + 0] = Sl[Sl−2[l − 1]].

Thus the basic intuition is to use the path S0[S0[l − 1]] = fl−1 = −l to get

−l : S0[S0[l − 1]]
p8−→ Sl−2[Sl−2[l − 1]]

p9−→ Sl[Sl−2[l − 1]]

In the above expression, p8 =
(
1− 1

N

)l−2
and p9 =

(
1− 1

N

)2
denote the probabilities of j not

touching the state index that stores the value −l. This introduces a probability
(
1− 1

N

)l
. Thus

Pr(Sl[Sl−2[l − 1]] = −l | fl−1 = −l) is cumulatively given by 1
N

+
[
1− 1

N

]l+1
Pr(S0[S0[l − 1]] =

fl−1) = p10, say. Note that one of the preconditions to prove [26, Theorem 4] is that the first
(l− 1) places of state SK0 remain untouched by jK for the first l− 1 rounds of KSA. This partially
matches with the precondition to prove Pr(Sl[jl] = 0 | fl−1 = −l) (see Theorem 1), where we
require the same for first l places over the first l rounds of KSA. Thus we derive the formula
for Pr(Sl[jl] = 0 | S0[S0[l − 1]] = −l ∧ fl−1 = −l) by modifying the result of Theorem 1 as
1
N

+
[
1− l

N

] [
1− 1

N

]N+l−2
[[

1− 1
N

]1+l
+ 1

N

]
= p11, say. The final probability for (Zl = −l | fl−1 =

−l) can now be computed as

Pr(Zl = −l | fl−1 = −l) = p10p11 + (1− p10p11) · 1

N
=

1

N
+

(
1− 1

N

)
· p10p11.

Substituting appropriate values for p10 and p11, we get the desired result. ut

Let us consider Pr(Zl = −l | Sl[jl] = 0) = Pr(Sl[Sl−2[l − 1]] = −l | Sl[jl] = 0). From the proof
of Theorem 3, it is evident that the events (Sl[Sl−2[l − 1]] = −l) and (Sl[jl] = 0) have no obvious
connection. Yet, there exists a strong correlation between them, possibly due to some hidden events
that cause them to co-occur with a high probability. We found that one of these hidden events is
(fl−1 = −l).

From the proofs of Theorems 1 and 3, we know that both the aforementioned events depend
strongly on (fl−1 = −l), but along two different paths, as follows.

0 : SK0 [0]
1−→ SK1 [K[0]]

p1−→ SKl [K[0]]
p2−→ SKl+1[l]

p3−→ Sl−1[l]
1−→ Sl[jl]

−l : SK0 [SK0 [l − 1]]
p12−→ S0[S0[l − 1]]

p8−→ Sl−2[Sl−2[l − 1]]
p9−→ Sl[Sl−2[l − 1]]

Here p12 depends on the probability Pr(S0[S0[l − 1]] = fl−1) from Proposition 3. Using these two
paths, one may obtain the value of Pr(Zl = −l ∧ Sl[jl] = 0) as

Pr(Zl =−l ∧ Sl[jl] = 0)

= Pr(fl−1 = −l) · Pr(Sl[Sl−2[l − 1]] = −l ∧ Sl[jl] = 0 | fl−1 = −l)
+ Pr(fl−1 6= −l) · Pr(Sl[Sl−2[l − 1]] = −l ∧ Sl[jl] = 0 | fl−1 6= −l).



As before, Pr(fl−1 = −l) can be taken as 1/N . If one assumes that the aforementioned two paths are
independent, the probabilities from Theorems 1 and 3 can be substituted in the above expression.
If one further assumes that the events occur uniformly at random if fl−1 6= −l, the values of
Pr(Sl[jl] = 0 | Zl = −l) and Pr(Zl = −l | Sl[jl] = 0) turn out to be approximately 5/N each (for
l = 16).

However, our experiments show that the two paths mentioned earlier are not entirely indepen-
dent, and we obtain Pr(Zl = −l ∧ Sl[jl] = 0 | fl−1 = −l) ≈ 5/N . Moreover, the events are not
uniformly random if fl−1 6= −l; rather they are considerably biased for a range of values of fl−1

around −l (e.g., for values like −l + 1, −l + 2 etc.). These hidden paths contribute towards the
probability Pr(fl−1 6= −l) Pr(Zl = −l ∧ Sl[jl] = 0 | fl−1 6= −l) ≈ 5/N2. Through a careful treatment
of the dependences and all the hidden paths, one would be able to justify the above observations,
and obtain

Pr(Sl[jl] = 0 | Zl = −l) ≈ Pr(Zl = −l | Sl[jl] = 0) ≈ 10/N.

Similar techniques for analyzing dependences and hidden paths would work for all correlations
reported in Equations (1), (2), (3), (4) and, (5).

We now shift our focus to Pr(Zl = −l | fl−1 = −l) and its implications.

First of all, notice that the value of Pr(Zl = −l | fl−1 = −l) depends on the value of Pr(S0[S0[l−
1]] = fl−1). Proposition 3 gives an explicit formula for Pr(Zl = −l | fl−1 = −l) for l up to
32. As l increases beyond 32, one may check by experimentation that this probability converges
approximately to 1/N . Thus, for 1 ≤ l ≤ 32, one can use the formula from Proposition 3, and for
l > 32, one may replace Pr(S0[S0[l− 1]] = fl−1) by 1/N to approximately compute the distribution
of (Zl = −l | fl−1 = −l) completely. In fact, after the state recovery attack by Maximov and
Khovratovich [19], that is of time complexity around 2241, choosing a secret key of length l > 30 is
not meaningful. The value of Pr(Zl = −l | fl−1 = −l) for some typical values of l are

12/N for l = 5, 11/N for l = 8, 7/N for l = 16, 2/N for l = 30.

In the list above, each conditional probability is quite high in magnitude compared to the natural
probability of random occurrence. We try to exploit this bias in the next section to predict the
length of RC4 secret key.

2.3 Keylength prediction from keystream

The huge conditional bias proved in Theorem 3 hints that there may be a related unconditional bias
present in the event Zl = −l as well. In fact, New 007 in [29, Fig. 5] reports a bias in (Zi = −i) for
i = 0 mod 16. The reported bias for i = 16 is 1.0411/N . Notice that almost all experiments of [29]
used the keylength l = 16, which encourages our speculation for an unconditional bias in (Zl = −l)
for any general keylength l of RC4 secret key. Systematic investigation in this direction reveals the
following result.

Theorem 4. Suppose that l is the length of the secret key of RC4. The probability Pr(Zl = −l) is
given by

Pr(Zl = −l) ≈ 1

N
+ [N · Pr(Zl = −l | fl−1 = −l)− 1] · 1

N2
.

Proof. We provide a quick sketch of the proof to obtain a crude approximation of this bias in Zl.
Notice that we already have a path (Zl = −l | fl−1 = −l) with probability calculated in Theorem 3.



If we assume that for all other values of fl−1 6= −l, the output Zl can take the value −l uniformly
at random, we have

Pr(Zl = −l)≈ Pr(fl−1 = −l) · Pr(Zl = −l | fl−1 = −l)
+ Pr(fl−1 6= −l) · Pr(Zl = −l | fl−1 6= −l)

=
1

N
· Pr(Zl = −l | fl−1 = −l) +

(
1− 1

N

)
· 1

N

=
1

N
+ [N · Pr(Zl = −l | fl−1 = −l)− 1] · 1

N2
.

Thus we obtain the desired result. ut

We have a closed form expression for Pr(Zl = −l | fl−1 = −l) from Theorem 3 in cases where
1 ≤ l ≤ 32 (using Proposition 3). We have also calculated some numerical values of this probability
for l = 5, 8, 16, 30 and N = 256. Using those numeric approximations, the value of Pr(Zl = −l) is

1/N + 11/N2 for l = 5, 1/N + 10/N2 for l = 8,

1/N + 6/N2 for l = 16, 1/N + 2/N2 for l = 30.

The lower bound for Pr(Zl = −l) within the typical range of keylength (5 ≤ l ≤ 30) is approxi-
mately 1/N + 1/N2, which is quite high and easily detectable. In experiments with 100 million runs
and different keylengths, we have found that the probabilities are even higher than those mentioned
above. This helps us in predicting the length of the secret key from the output, as follows.

1. Find the output byte Zx biased towards −x. This requires O(N3) many samples as the bias is
O(1/N2) for a base event with probability 1/N (recall the discussion in Section 1.4). A ‘sample’
in this case means the observation of keystream bytes Zx for all 5 ≤ x ≤ 30 for a specific key.
The bias is computed by examining these keystream bytes with different keys, which are all of
the same length l, say.

2. Check if the probability Pr(Zx = −x) is equal or greater than the value proved in Theorem 4.

3. If the above statements hold for some 5 ≤ x ≤ 30, the keylength can be predicted as l = x.

Although the bias in Zl = −l has been noticed earlier in the literature for specific keylengths,
no attempts have been made for its generalization. Moreover, to the best of our knowledge, the
prediction of keylength from the keystream has never been attempted. We have performed extensive
experiments with varying keylengths to verify the practical feasibility of the prediction technique.
This prediction technique proves to be successful for all keylengths within the typical usage range
5 ≤ l ≤ 30. As already pointed out in Section 2.2, choosing a secret key of length l > 30 is not
recommended. So, our keylength prediction effectively works for all practical values of the keylength.

3 Biases in initial rounds of RC4 PRGA

In this section, we study the short-term biases in RC4 keystream. First we discuss and prove some
empirically observed biases involving the state variables and then we continue exploring the biases
that involve only the keystream bytes.



3.1 Biases involving the state variables

In this section, we investigate some significant empirical biases discovered and reported in [29]. We
provide theoretical justification only for the biases which are of the approximate order of 2/N or
more, summarized in Table 1. Note that the authors of [29] denote the PRGA variables by primed
indices. Moreover, the probabilities mentioned in the table are the ones observed in [29], and the
values for ‘biases at all rounds (round-dependent)’ are the ones for r = 3. We provide general proofs
and formulas for all of these biases.

Table 1. Significant biases observed in [29] and proved in this paper.

Type of Bias Label as in [29] Event Probability

New 004 j2 + S2[j2] = S2[i2] + Z2 2/N

Bias at Specific New noz 007 j2 + S2[j2] = 6 2.37/N

Initial Rounds New noz 009 j2 + S2[j2] = S2[i2] 2/N

New noz 014 j1 + S1[i1] = 2 1.94/N

Bias at All Rounds New noz 001 jr + Sr[ir] = ir + Sr[jr] 2/N

(round-independent) New noz 002 jr + Sr[jr] = ir + Sr[ir] 2/N

Bias at All Rounds New 000 Sr[tr] = tr 1.9/N at r = 3

(round-dependent) New noz 004 Sr[ir] = jr 1.9/N at r = 3

New noz 006 Sr[jr] = ir 2.34/N at r = 3

In this target list, general biases refer to the ones occurring in all initial rounds of PRGA
(1 ≤ r ≤ N − 1), whereas the specific ones have been reported only for rounds 1 and 2 of PRGA.
We do not consider the biases reported for rounds 0 mod 16 in this section, as they are of order 1/N2

or less. For the proofs and numeric probability calculations in this section, we require [15, Theorem
6.2.1], restated as Proposition 4 below.

Proposition 4. At the end of RC4 KSA, for 0 ≤ u ≤ N − 1, 0 ≤ v ≤ N − 1,

Pr(S0[u] = v) =



1

N

[(
N − 1

N

)v
+

(
1−

(
N − 1

N

)v)(
N − 1

N

)N−u−1
]

if v ≤ u;

1

N

[(
N − 1

N

)N−u−1

+

(
N − 1

N

)v]
if v > u.

If a pseudo-random permutation is taken as the initial state S0 of RC4 PRGA, then we would have
Pr(S0[u] = v) = 1/N for all 0 ≤ u ≤ N − 1 and 0 ≤ v ≤ N − 1.

3.1.1 Bias at specific initial rounds

In this part of the paper, we prove the biases labeled New noz 014, New noz 007, New noz 009
and New 004, as in [29, Fig. 3 and Fig. 4] and Table 1.

Theorem 5. After the first round (r = 1) of RC4 PRGA,

Pr(j1 + S1[i1] = 2) = Pr(S0[1] = 1) +
∑
X 6=1

Pr(S0[X] = 2−X ∧ S0[1] = X)



Proof. Note that j1 = S0[1] and S1[i1] = S0[j1]. So, in the case j1 = S0[1] = 1, we will have
j1 + S0[j1] = S0[1] + S0[1] = 2 with probability 1. Otherwise, the probability turns out to be
Pr(j1 + S0[j1] = 2 ∧ j1 = S0[1] 6= 1) =

∑
X 6=1 Pr(X + S0[X] = 2 ∧ S0[1] = X). Thus, the

probability Pr(j1 + S1[i1] = 2) can be written as

Pr(j1 + S1[i1] = 2) = Pr(S0[1] = 1) +
∑
X 6=1

Pr(S0[X] = 2−X ∧ S0[1] = X),

as desired. Hence the claimed result. ut

If we consider the RC4 permutation after the KSA, the probabilities involving S0 in the ex-
pression for Pr(j1 + S1[i1] = 2) should be evaluated using Proposition 4 and the joint probability
should be estimated in the same manner as in Section 3.2.3, giving a total probability of approxi-
mately 1.937/N for N = 256. This closely matches the observed value 1.94/N . If we assume that
RC4 PRGA starts with a truly pseudo-random initial state S0, the probability turns out to be
approximately 2/N − 1/N2 ≈ 1.996/N for N = 256, i.e., almost twice that of a random occurrence.

Theorem 6. After the second round (r = 2) of RC4 PRGA, the following probability relations hold
between the index j2 and the state variables S2[i2], S2[j2].

Pr (j2 + S2[j2] = 6) ≈ Pr(S0[1] = 2) +
∑

X even, X 6=2

(2/N) · Pr(S0[1] = X) (6)

Pr (j2 + S2[j2] = S2[i2]) ≈ 2/N − 1/N2 (7)

Pr (j2 + S2[j2] = S2[i2] + Z2) ≈ 2/N − 1/N2 (8)

Proof. In Equation (6), we have j2 + S2[j2] = (j1 + S1[2]) + S1[i2] = S0[1] + 2 · S1[2]. In this
expression, note that if S0[1] = 2, then one must have the positions 1 and 2 swapped in the first
round of PRGA, and thus S1[2] = S0[1] = 2 as well. This provides one path for j2 + S2[j2] =
S0[1] + 2 · S1[2] = 2 + 2 × 2 = 6, with probability Pr(S0[1] = 2) · 1 ≈ 1

N
. If on the other hand,

S0[1] = X 6= 2, we have Pr(j2 +S2[j2] = 6 ∧ S0[1] 6= 2) =
∑

X 6=2 Pr(X+ 2 ·S1[2] = 6 ∧ S0[1] = X).
Note that the value of X is bound to be even and for each such value of X, the variable S1[2] can
take 2 different values to satisfy the equation 2 · S1[2] = 6−X. Thus, we have∑

X 6=2

Pr(2 · S1[2] = 6−X ∧ S0[1] = X) ≈
∑

X even, X 6=2

2

N
· Pr(S0[1] = X).

Combining the two disjoint cases S0[1] = 2 and S0[1] 6= 2, we get Equation (6).
In case of Equation (7), we have a slightly different condition S0[1] + 2 ·S1[2] = S2[i2] = S1[j2] =

S1[S0[1] + S1[2]]. In this expression, if we have S1[2] = 0, then the left hand side reduces to S0[1]
and the right hand side becomes S1[S0[1] + S1[2]] = S1[S0[1]] = S1[j1] = S0[i1] = S0[1] as well. This
provides a probability 1/N path for the condition to be true. In all other cases with S1[2] 6= 0,
we can approximate the probability for the condition as 1/N , and hence approximate the total
probability Pr(j2 + S2[j2] = S2[i2]) as

Pr(j2 + S2[j2] = S2[i2] ∧ S1[2] = 0) + Pr(j2 + S2[j2] = S2[i2] ∧ S1[2] 6= 0)

≈ 1

N
+

(
1− 1

N

)
· 1

N
=

2

N
− 1

N2
.

Finally, for Equation (8), the main observation is that this is almost identical to the condition
of Equation (7) apart from the inclusion of Z2. But our first path of S1[2] = 0 in the previous



case also provides us with Z2 = 0 with probability 1 (this path was first observed by Mantin and
Shamir [16]). Thus, we have Pr(j2 + S2[j2] = S2[i2] + Z2 ∧ S1[2] = 1) ≈ 1

N
· 1. In all other cases

with S1[2] 6= 0, we assume the conditions to match uniformly at random, and therefore have

Pr(j2 + S2[j2] = S2[i2] + Z2) ≈ 1

N
· 1 +

(
1− 1

N

)
· 1

N
=

2

N
− 1

N2
.

Hence the desired results of Equations (6), (7) and (8). ut
In case of Equation (6), if we assume S0 to be the initial state for RC4 PRGA, and substitute

all probabilities involving S0 using Proposition 4, we get the total probability equal to 2.36/N
for N = 256. This value closely match the observed probability 2.37/N . If we suppose that S0 is
pseudo-random, we will get probability 2/N − 2/N2 ≈ 1.992/N for Equation (6). The theoretical
results are summarized in Table 2 along with the experimentally observed probabilities of [29].

Table 2. Theoretical and observed biases at specific initial rounds of RC4 PRGA.

Label [29] Event Observed Probability Theoretical Probability

(reported in [29]) S0 of RC4 Random S0

New noz 014 j1 + S1[i1] = 2 1.94/N 1.937/N 1.996/N

New noz 007 j2 + S2[j2] = 6 2.37/N 2.363/N 1.992/N

New noz 009 j2 + S2[j2] = S2[i2] 2/N 1.996/N 1.996/N

New noz 004 j2 + S2[j2] = S2[i2] + Z2 2/N 1.996/N 1.996/N

3.1.2 Round-independent biases at all initial rounds

In this section, we turn our attention to the biases labeled New noz 001 and New noz 002 in [29],
both of which continue to persist in all initial rounds (1 ≤ r ≤ N − 1) of RC4 PRGA.

Theorem 7. At any initial round 1 ≤ r ≤ N − 1 of RC4 PRGA, the following two relations hold
between the indices ir, jr and the state variables Sr[ir], Sr[jr].

Pr(jr + Sr[jr] = ir + Sr[ir])≈ 2/N (9)

Pr(jr + Sr[ir] = ir + Sr[jr])≈ 2/N (10)

Proof. For both the events mentioned above, we shall take the path ir = jr. Notice that ir = jr
occurs with probability 1/N and in that case both the events mentioned above hold with probability
1. In the case where ir 6= jr, we rewrite the events as Sr[jr] = (ir − jr) + Sr[ir] and Sr[jr] =
(jr − ir) + Sr[ir]. Here we already know that Sr[jr] 6= Sr[ir], as jr 6= ir and Sr is a permutation.
Thus in case ir 6= jr, the values of Sr[ir] and Sr[jr] can be chosen in N(N − 1) ways (drawing
from a permutation without replacement) to satisfy the relations stated above. This gives the total
probability for each event approximately as

Pr(jr = ir) · 1 +
∑
jr 6=ir

1

N(N − 1)
=

1

N
+ (N − 1) · 1

N(N − 1)
=

2

N
.

Hence the claimed result for Equations (9) and (10). ut
The probabilities for New noz 001 and New noz 002 proved in Theorem 7 do not vary with

change in r (i.e., they continue to persist at the same order of 2/N at any arbitrary round of
PRGA), and our theoretical results match the probabilities reported in [29, Fig. 2].



3.1.3 Round-dependent biases at all initial rounds

Next, we consider the biases that are labeled as New 000, New noz 004 and New noz 006 in [29, Fig.
2]. We prove the biases for rounds 3 to 255 in RC4 PRGA, and we show that all of these decrease
in magnitude with increase in r, as observed experimentally in the original paper. Before proving
the observation New noz 006 of [29] in Theorem 8, let us first prove a necessary technical result.

Lemma 1. After the first round of RC4 PRGA, the probability Pr(S1[t] = r) is

Pr(S1[t] = r) =



N−1∑
X=0

Pr(S0[1] = X ∧ S0[X] = r), t = 1;

Pr(S0[1] = r) +
∑
w 6=r

Pr(S0[1] = w ∧ S0[r] = r), t = r;∑
w 6=t

Pr(S0[1] = w ∧ S0[t] = r), t 6= 1, r.

Proof. After the first round of RC4 PRGA, we obtain the state S1 from the initial state S0 through
a single swap operation between the positions i1 = 1 and j1 = S0[i1] = S0[1]. Thus, all other
positions of S0 remain the same apart from these two. This gives us the value of S1[t] as follows:
S1[t] = S0[S0[1]] if t = 1, S1[t] = S0[1] if t = S0[1], and S1[t] = S0[t] in all other cases. Now, we can
compute the probabilities Pr(S1[t] = r) based on the probabilities for S0, which are in turn derived
from Proposition 4. We have three cases:

– Case t = 1. In this case, using the recurrence relation S1[1] = S0[S0[1]], we can write

Pr(S1[1] = r) =
N−1∑
X=0

Pr(S0[1] = X ∧ S0[X] = r).

– Case t = r. In this situation, if S0[1] = r, we will surely have S1[r] = r as these are the positions
swapped in the first round, and if S0[1] 6= r, the position t = r remains untouched and S1[r] = r
is only possible if S0[r] = r. Thus,

Pr(S1[r] = r) = Pr(S0[1] = r) + Pr(S0[1] 6= r ∧ S0[r] = r).

– Case t 6= 1, r. In all other cases where t 6= 1, r, it can either take the value S0[1] with probability
Pr(S0[1] = t), or not. If t = S0[1], the value S0[t] will get swapped with S0[1] = t itself, i.e., we
will get S1[t] = t 6= r for sure. Otherwise, the value S1[t] remains the same as S0[t]. Hence,

Pr(S1[t] = r) = Pr(S0[1] 6= t ∧ S0[t] = r).

Combining all the above cases together, we obtain the desired result. ut

Note that estimation of the joint probabilities in Lemma 1 should be done using Proposition 4 in
the same manner as in Section 3.2.3. Now we can state and prove the main result.

Theorem 8. For PRGA rounds r ≥ 3, value of Pr(Sr[jr] = ir) is approximately

Pr(S1[r] = r)

[
1− 1

N

]r−2

+
r−1∑
t=2

r−t∑
k=0

Pr(S1[t] = r)

k! ·N

[
r − t− 1

N

]k [
1− 1

N

]r−3−k



Proof. Let us start from the PRGA state S1, that is, the state that has been updated once in the
PRGA (we refer to the state after KSA by S0). We know that the event Pr(S1[r] = r) is positively
biased for all r, and hence the natural path for investigation is the effect of the event (S1[r] = r)
on (Sr−1[r] = r), i.e, on (Sr[jr] = ir). Notice that there can be two cases, as follows.

Case I. In the first case, suppose that (S1[r] = r) after the first round, and the r-th index is not
disturbed for the next r − 2 state updates. Notice that index i varies from 2 to r − 1 during these
period, and hence never touches the r-th index. Thus, the index r will retain its state value r if

index j does not touch it. The probability of this event is
(
1− 1

N

)r−2
over all the intermediate

rounds. Hence the first part of the probability is

Pr(S1[r] = r)

(
1− 1

N

)r−2

.

Case II. In the second case, suppose that S1[r] 6= r and S1[t] = r for some t 6= r. In such a case,
only a swap between the positions r and t during rounds 2 to r − 1 of PRGA can make the event
(Sr−1[r] = r) possible. Notice that if t does not fall in the path of i, that is, if the index i does
not touch the t-th location, then the value at S1[t] can only go to some position behind i, and
this can never reach Sr−1[r], as i can only go up to (r − 1) during this period. Thus we must have
2 ≤ t ≤ r − 1 for S1[t] to reach Sr−1[r]. Note that the way S1[t] can move to the r-th position may
be either a one hop or a multi-hop route.

– In the easiest case of single hop, we require j not to touch t until i touches t, and j = r when
i = t, and j not to touch r for the next r − t− 1 state updates. Total probability comes to be

Pr(S1[t] = r)

(
1− 1

N

)t−2

· 1

N
·
(

1− 1

N

)r−t−1

= Pr(S1[t] = r) · 1

N

(
1− 1

N

)r−3

.

– Suppose that it requires (k+ 1) hops to reach from S1[t] to Sr−1[r]. Then the main issue to note
is that the transfer will never happen if the position t swaps with any index which does not lie
in the future path of i. Again, this path of i starts from r−t−1

N
for the first hop and decreases

approximately to r−t−1
lN

at the l-th hop. We would also require j not to touch the position r
for the remaining (r − 3 − k) number of rounds. Combining all, we get the second part of the
probability as

Pr(S1[t] = r)

[
k∏
l=1

r − t− 1

lN

] [
1− 1

N

]r−3−k

=
Pr(S1[t] = r)

k! ·N

[
r − t− 1

N

]k [
1− 1

N

]r−3−k

.

Finally, note that the number of hops (k + 1) is bounded from below by 1 and from above by
(r− t+ 1), depending on the initial gap between t and r positions. Considering the sum over t and
k with this consideration, we get the desired expression for Pr(Sr−1[r] = r). ut

Remark 1. In proving Theorem 8, we use the initial condition S1[r] = r to branch out the probability
paths, and not S0[r] = r as in [14, Lemma 1]. This is because the probability of S[r] = r takes a leap
from around 1/N in S0 to about 2/N in S1, and this turns out to be the actual cause behind the bias in
Sr−1[r] = r. The correction by moving to the base distribution of S1 from that of S0 eventually corrects
the mismatches observed in the graphs of [14]. We shall discuss this issue in more details in Section 3.3.

Fig. 3 illustrates the experimental observations (each data point represents the average obtained
from over 100 million experimental runs with 16-byte key in each case) and the theoretical values for
the distribution of Pr(Sr[jr] = ir) over the initial rounds 3 ≤ r ≤ 255 of RC4 PRGA. It is evident
that our theoretical formula, as proved in Theorem 8, matches the experimental observations.
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Fig. 3. Distribution of Pr(Sr[jr] = ir) for initial rounds 3 ≤ r ≤ 255 of RC4 PRGA.

Next we take a look at the other two round-dependent biases of RC4, observed in [29]. We can state
the related result in Theorem 9 (corresponding to observations New noz 004 and New 000).

Theorem 9. For PRGA rounds r ≥ 3, the probabilities Pr(Sr[ir] = jr) and Pr(Sr[tr] = tr) are
approximately

r

N2
+

N−1∑
X=r

1

N

[
Pr(S1[X] = X)

[
1− 1

N

]r−2

+
r−1∑
t=2

r−t∑
k=0

Pr(S1[t] = r)

k! ·N

[
r − t− 1

N

]k [
1− 1

N

]r−3−k
]

The proof of this result follows the same logic as in the proof of Theorem 8. A proof sketch is
presented as follows. For this proof sketch, we consider the variables jr and tr to be pseudo-random
variables that can take any value between 0 to 255 with probability 1/N . The reader may note that
this is a crude approximation, especially for small values of r, and causes minor mismatch with the
experimental observations in the final result.

Proof-sketch for Pr(Sr[ir] = jr): For this probability computation, we first rewrite the event as
(Sr−1[jr] = jr) to make it look similar to Sr−1[r] = r, as in Theorem 8. The only difference is that
we were concentrating on a fixed index r in Theorem 8 instead of a variable index jr. This produces
two cases.

Case I. First, suppose that jr assumes a value X ≥ r. In this case, the probability calculation can
be split in two paths, one in which S1[X] = X is assumed, and the other in which S1[X] 6= X. If we

assume S1[X] = X, the probability of (Sr−1[X] = X) becomes Pr(S1[X] = X)
[
1− 1

N

]r−2
, similar

to the logic in Theorem 8. If we suppose that S1[t] = X was the initial state, then one may notice
the following two sub-cases:

– The probability for this path is identical to that in Theorem 8 if 2 ≤ t ≤ r − 1.

– The probability is 0 in case t ≥ r, as in this case the value X will always be behind the position
of ir = r, whereas X > r as per assumption, i.e., the value X can never reach index X from t.



Assuming Pr(jr = X) = 1/N , this gives

N−1∑
X=r

1

N

[
Pr(S1[X] = X)

[
1− 1

N

]r−2

+
r−1∑
t=2

r−t∑
k=0

Pr(S1[t] = r)

k! ·N

[
r − t− 1

N

]k [
1− 1

N

]r−3−k
]
.

Case II. In the second case, we assume that jr takes a value X between 0 to r− 1. Approximately
this complete range is touched by index i for sure, and may also be touched by index j. Thus, with
probability approximately 1, the index jr = X is touched by either of the indices. Simplifying all
complicated computations involving the initial position of value X and the exact location of index
X in this case, we shall assume that the approximate value of Pr(Sr−1[X] = X) is 1/N . Thus, the
total contribution of Case II, assuming Pr(jr = X) = 1/N , is given by

r−1∑
X=0

Pr(jr = X) · Pr(Sr−1[X] = X) ≈
r−1∑
X=0

1

N
· 1

N
=

r

N2
.

Adding the contributions of the two disjoint cases I and II, we obtain the total probability for
(Sr[ir] = jr) as desired. One may investigate Case II in more details to incorporate all intertwined
sub-cases, and obtain a better closed form expression for the probability.

Proof-sketch for Pr(Sr[tr] = tr): In this case, notice that tr is just another random variable like
jr, and may assume all values from 0 to 255 with approximately the same probability 1/N . Thus
we can approximate Pr(Sr[tr] = tr) by Pr(Sr−1[jr] = jr) with a high confidence margin to obtain
the desired expression. This approximation is particularly close for higher values of r because the
effect of a single state change Sr−1 → Sr is low in such a case. For smaller values of r, one may
approximate Pr(Sr−1[tr] = tr) by Pr(Sr−1[jr] = jr) and critically analyze the effect of the r-th
round of PRGA thereafter. However, in spite of the approximations we made, one may note that
the theoretical values closely match the experimental observations (averages taken over 100 million
runs of RC4 with 16-byte key), as shown in Fig. 4.
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Fig. 4. Distributions of Pr(Sr[ir] = jr) and Pr(Sr[tr] = tr) for initial rounds 3 ≤ r ≤ 255 of RC4 PRGA.

Fig. 4 illustrates the experimental observations (averages taken over 100 million runs with 16-
byte key) and the theoretical values for the distributions of Pr(Sr[ir] = jr) and Pr(Sr[tr] = tr) over
the initial rounds 3 ≤ r ≤ 255 of RC4 PRGA. It is evident that our theoretical formulas approxi-
mately match the experimental observations in both the cases; the cause of the little deviation is
explained in the proof sketch above.

Note: Apart from the biases proved so far, all other unconditional biases reported in [29] are of
order 1/N2 or less, and we omit their analysis in this paper.



3.2 Probability distribution of Z1

In this section, we theoretically derive the complete probability distribution of the first keystream
byte Z1 of RC4, as observed by Mironov [20, Fig. 6] in CRYPTO 2002. The first thing to note is
that Z1 has a negative bias towards the value 0. In fact, even if the initial permutation of PRGA,
i.e., S0, is taken to be a uniformly random permutation, this negative bias in (Z1 = 0) persists.
After almost ten years, we present the theoretical proof of this observation in the next subsection.

3.2.1 Negative bias in Z1 towards zero

Note that PRGA begins with i0 = j0 = 0. In the first round, i1 = 1 and j1 = S0[i1] = S0[1].
In proving the main result, we shall utilize the existence of a special path in which Z1 can never be
equal to zero.

Theorem 10. Assume that the initial permutation S0 of RC4 PRGA is randomly chosen from the
set of all permutations of {0, 1, . . . , N − 1}. Then the probability that the first output byte of RC4
keystream is 0 is approximately 1/N − 1/N2.

Proof. First, suppose that S0[j1] = S0[S0[1]] = 0 and S0[1] 6= 1. In this case, the first output byte
Z1 is 0 with probability 0 (see Fig. 5).

X 0

0 1 2 X

i, j

0 X X 6= 0

i j

Fig. 5. The first round of RC4 when S0[S0[1]] = 0 and S0[1] 6= 1.

Let j1 be equal to X 6= 1. After the first swap, S1[1] = S0[X] = 0 and S1[X] = S0[1] = X. Now,
Z1 = S1[S1[1]+S1[X]] = S1[0+X] = X. If Z1 were 0, one must have X = 0. But this is not possible
as X and 0 belong to two different locations in the initial permutation S0, as shown in Fig. 5. Thus,

Pr(Z1 = 0 | S0[j1] = 0) = 0.

If S0[j1] 6= 0, output byte Z1 can be considered uniformly random, and thus we have

Pr(Z1 = 0 | S0[j1] 6= 0) ≈ 1/N.

As a result, the total probability that the first output byte is 0 is given by

Pr(Z1 = 0) = Pr(Z1 = 0 | S0[j1] = 0) · Pr(S0[j1] = 0)

+ Pr(Z1 = 0 | S0[j1] 6= 0) · Pr(S0[j1] 6= 0)

≈ 0 · 1/N + 1/N · (1− 1/N) = 1/N − 1/N2.

Thus, Z1 has a negative bias of 1/N2 towards the value 0, as claimed. ut



From Theorem 10, we immediately get a distinguisher of RC4 that can effectively distinguish the
output keystream of the cipher from a random sequence of bytes. Let X and Y be the distributions
corresponding to random stream and RC4 keystream respectively and define E : (Z1 = 0). Then
the bias proved above can be written as p(1 + q), where p = 1/N and q = −1/N . According to
Section 1.4, the number of samples required to distinguish RC4 from random sequence of bits with
a constant probability of success in this case is O(N3).

3.2.2 Complete distribution of Z1

In this section, we turn our attention to the complete probability distribution of the first byte
Z1. We can state and prove the main result in this direction as follows.

Theorem 11. The probability distribution of the first output byte of RC4 keystream is

Pr(Z1 = v) ≈



Pr(S0[1] = 1 ∧ S0[2] = 0)

+
∑
X 6=0,1

∑
Y ∈T0

Pr(S0[1] = X ∧ S0[X] = Y ∧ S0[X + Y ] = 0), if v = 0;

Pr(S0[1] = 0 ∧ S0[0] = 1)

+
∑
X 6=1

∑
Y ∈T1

Pr(S0[1] = X ∧ S0[X] = Y ∧ S0[X + Y ] = 1), if v = 1;

Pr(S0[1] = 1 ∧ S0[2] = v) + Pr(S0[1] = v ∧ S0[v] = 0)
+ Pr(S0[1] = 1− v ∧ S0[1− v] = v)

+
∑
X 6=1,v

∑
Y ∈Tv

Pr(S0[1] = X ∧ S0[X] = Y ∧ S0[X + Y ] = v), otherwise,

where v ∈ {0, . . . , N − 1} denotes the output, set T0 denotes {0, 1, . . . , N − 1} \ {0, X, 1 −X}, set
T1 denotes {0, 1, . . . , N − 1} \ {0, 1, X, 1 −X}, set Tv denotes {0, 1, . . . , N − 1} \ {0, X, 1 −X, v},
and all the sums range over 0 to N − 1, unless otherwise specified.

Proof. The first output byte Z1 can be explicitly written as follows:

Z1 = S1[S1[i1] + S1[j1]] = S1[S0[j1] + S0[i1]] = S1[S0[S0[1]] + S0[1]] = S1[Y +X], say,

where we denote j1 = S0[1] by X and S0[S0[1]] = S0[X] by Y . We know that state S1 is different
from S0 in at most two places, i1 = 1 and j1 = X. Thus, we need to treat separately the cases
X + Y = i1 = 1 and X + Y = j1 = X, as we have particular values of Z1 in these cases, as follows.

(X + Y = X ⇔ Y = 0) ⇒ Z1 = S1[X] = S1[j1] = S0[i1] = S0[1] = X

(X + Y = 1 ⇔ Y = 1−X) ⇒ Z1 = S1[1] = S1[i1] = S0[j1] = S0[X] = Y

Moreover, if X = 1, there is no swap at the first round of RC4, and hence S1 is identical to S0. In
this case, we have

(X = 1 ⇔ Y = X) ⇒ Z1 = S1[X + Y ] = S0[X + Y ] = S0[1 + 1] = S0[2].

One may verify that this is an exhaustive list of special cases, and in all other circumstances, we
would have Z1 = S1[X + Y ] = S0[X + Y ]. Considering all the special cases as discussed above, we



obtain the cases for Pr(Z1 = v) as follows.

Pr(Z1 = v) ≈


Pr(S0[2] = v) if (X = 1 ⇔ Y = X);
Pr(X = S0[1] = v) if (X + Y = X ⇔ Y = 0);
Pr(Y = S0[X] = v) if (X + Y = 1 ⇔ Y = 1−X);
Pr(S0[X + Y ] = v) in all other cases.

Note that Y = 0 fixes X = v in the second case and Y = 1−X fixes Y = v, i.e., X = 1− v in the
third case. Furthermore, we have two further restrictions based on the cases where X or Y equals
the output v:

– If X = v and Y 6= 0, then after the first swap, v resides in index v, but X + Y 6= v in this case.
This gives us an impossible pair [v, Y ] for all Y 6= 0.

– If Y = v and X 6= 1− v, then after the first swap, v resides in index 1, but X + Y 6= 1 for sure.
So, this constitutes another impossible pair [X, v] for all X 6= 1− v.

Note that the only possible pairs [v, 0] and [1− v, v] have already been considered earlier as special
cases. Hence, the most general form for the probability can be written as

Pr(Z1 = v) ≈ Pr(S0[1] = 1 ∧ S0[2] = v) + Pr(S0[1] = v ∧ S0[v] = 0)

+ Pr(S0[1] = 1− v ∧ S0[1− v] = v)

+
∑
X 6=1,v

∑
Y 6=0,X,1−X,v

Pr(S0[1] = X ∧ S0[X] = Y ∧ S0[X + Y ] = v)

Now, state S0 being a permutation, some of these probabilities are 0 when v takes particular
values. So, we consider the following cases depending on the value of v.

Case I. When v = 0, the probability Pr(S0[1] = v ∧ S0[v] = 0) = Pr(S0[1] = 0 ∧ S0[0] = 0) is 0
as two different places of the permutation S0 can not hold the same value. Similarly, Pr(S0[1] =
1− v ∧ S0[1− v] = v) = Pr(S0[1] = 1 ∧ S0[1] = 0) = 0. Moreover, the condition Y 6= 0 takes
into account Y 6= v, and thus we have

Pr(Z1 = 0) ≈ Pr(S0[1] = 1 ∧ S0[2] = 0)

+
∑
X 6=0,1

∑
Y 6=0,X,1−X

Pr(S0[1] = X ∧ S0[X] = Y ∧ S0[X + Y ] = 0)

Case II. Suppose that v = 1. In this case Pr(S0[1] = 1 ∧ S0[2] = v) = Pr(S0[1] = 1 ∧ S0[2] = 1) = 0
and Pr(S0[1] = v ∧ S0[v] = 0) = Pr(S0[1] = 1 ∧ S0[1] = 0) = 0. Moreover, the conditions
X 6= 1 and X 6= v are identical. Thus we have

Pr(Z1 = 1) ≈ Pr(S0[1] = 0 ∧ S0[0] = 1)

+
∑
X 6=1

∑
Y 6=0,1,X,1−X

Pr(S0[1] = X ∧ S0[X] = Y ∧ S0[X + Y ] = 1)

Case III. If v 6= 0, 1, we have no conflicts or special conditions as in the previous cases, and hence
the general form of the probability holds.

Combining all three cases, we obtain the desired theoretical probability distribution for the first
output byte Z1, where we represent the condition Y 6= 0, X, 1 − X by Y ∈ T0, condition Y 6=
0, 1, X, 1−X by Y ∈ T1, and condition Y 6= 0, X, 1−X, v by Y ∈ Tv. ut



3.2.3 Estimation of the joint probabilities and numeric values

We consider two special cases while computing the numeric values of Pr(Z1 = v). First, we in-
vestigate RC4 PRGA where S0 is fed from the output of RC4 KSA, as in practice. Next, we probe
into the scenario when the initial permutation S0 is pseudo-random. The latter case hints at the
long-term manifestation of this short-term bias in the first byte.

Recall that the observed pattern in [20, Fig. 6] depicts a negative bias at (Z1 = 0), a slight
negative bias at (Z1 = 1), and a ‘sine-curve-like’ distribution of probabilities Pr(Z1 = v) for 2 ≤
v ≤ 255. We observed that this sine-curve pattern in the probabilities is an outcome of the non-
randomness in S0 generated by the KSA routine, which can be modeled using Proposition 4.

Assume that the initial permutation S0 of RC4 PRGA is constructed from the regular KSA,
i.e., the probabilities Pr(S0[u] = v) follow the distribution mentioned in Proposition 4. However, we
require the joint probabilities like Pr(S0[1] = X ∧ S0[X] = Y ∧ S0[X + Y ] = v) in our formula
derived in Theorem 11, and these seem to be way more complicated to calculate in precise terms.
So, we devise the following estimates for these joint probabilities.

– Consider the joint probability of two events: Pr(S0[a] = X ∧ S0[b] = Y ) where a 6= b and
X 6= Y . Then we can represent this by

Pr(S0[a] = X ∧ S0[b] = Y ) = Pr(S0[a] = X) · Pr(S0[b] = Y | S0[a] = X).

The first term is straight-forward to estimate from Proposition 4. For the second term, we note
that given S0[a] = X, it is impossible to have S0[b] = X. However, the sum of the N − 1
conditionals Pr(S0[b] = Y | S0[a] = X) over all Y 6= X would still be 1. Thus, the sum of
the differences ∆PY = Pr(S0[b] = Y | S0[a] = X) − Pr(S0[b] = Y ) over all the N − 1 values
of Y 6= X would exactly balance the missing probability Pr(S0[b] = X). For simplicity, we
distribute Pr(S0[b] = X) equally over all the N − 1 many ∆PY ’s and hence estimate the second
term as

Pr(S0[b] = Y | S0[a] = X) ≈ Pr(S0[b] = Y ) +
Pr(S0[b] = X)

N − 1
.

Note that a special case of our estimation strategy when applied to uniformly random permu-
tation gives the conditional P (S0[b] = Y | S0[a] = X) as 1

N
+ 1/N

N−1
= 1

N−1
, as expected.

– Similarly, for the joint probability of three events: Pr(S0[a] = X ∧ S0[b] = Y ∧ S0[c] = Z), we
can represent it by

Pr(S0[a] = X) · Pr(S0[b] = Y | S0[a] = X) · Pr(S0[c] = Z | S0[b] = Y ∧ S0[a] = X).

While the first term is straight-forward to estimate from Proposition 4, and the second term is
estimated as before, the third term can be approximated as

Pr(S0[c] = Z | S0[b] = Y ∧ S0[a] = X) ≈ Pr(S0[c] = Z) +
Pr(S0[c] = Y )

N − 2
+

Pr(S0[c] = X)

N − 2
,

so that the sum of all conditional probabilities over Z 6= X, Y gives 1, as expected.

Then the theoretical values of Pr(Z1 = v), calculated using Theorem 11 and Proposition 4, along
with the estimations for joint probabilities discussed above, closely match the experimental obser-
vations. Fig. 6 shows the theoretical and experimental probability distributions of Z1, where the
experimental data is generated over 100 million runs of RC4 PRGA using 16 byte secret keys. The
figure clearly shows that our theoretical justification closely matches the data obtained from the
experiments. This further justifies the observation by Mironov [20].



Remark 2. As an alternative to the additive correction described above for estimating the conditionals,
one may consider multiplicative correction by normalizing the probabilities as follows:

– Estimate Pr(S0[b] = Y | S0[a] = X) as Pr(S0[b]=Y )
1−Pr(S0[b]=X)

.

– Estimate Pr(S0[c] = Z | S0[b] = Y ∧ S0[a] = X) as Pr(S0[c]=Z)
1−Pr(S0[c]=Y )−Pr(S0[c]=X)

.

Note that for uniformly random permutation, Pr(S0[b] = Y | S0[a] = X) = 1/N
1−1/N

= 1
N−1

, as expected.

However, we find that the final numeric values of Pr(Z1 = v) estimated using the two different models
(additive and multiplicative) almost coincide and the graphs fall right on top of one another. The same
holds for all the probability expressions in this paper that depend on similar conditional estimates.

If S0 is pseudo-random, our experiments also illustrated the fact that the sine-curve variation in
probabilities for Z1 is not present if RC4 PRGA starts with a pseudo-random initial permutation
S0. This can be theoretically justified as follows.

If the initial permutation S0 of RC4 PRGA is considered to be pseudo-random, then we would
have p0[u, v] = Pr(S0[u] = v) ≈ 1/N for all u, v. In the case of a pseudo-random permutation,
the joint probabilities can be computed directly (our strategy of adjustments of the conditionals
described earlier is applicable here also and leads to the same joint probabilities as those obtained
from the direct computations). Substituting all the relevant probability values, we get

Pr(Z1 = 0) ≈ Pr(Z1 = 1) ≈ 1

N
− 1

N(N − 1)
and

Pr(Z1 = v) ≈ 1

N
+

1

N(N − 1)(N − 2)
for 2 ≤ v ≤ 255,

which is almost a uniform distribution for 2 ≤ v ≤ 255. This supports our claim that KSA causes
the ‘sine-curve-like’ distribution of the first output byte. Fig. 6 shows the graph for this distribution.
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Fig. 6. The probability distribution of the first output byte Z1.



Remark 3. Theorem 10 is the special case v = 0 of Theorem 11 and hence may seem redundant.
However, we like to point out that the former has a simple and straightforward proof assuming S0 to
be random and the latter has a rigorous general proof without any assumption on S0. The result of
Theorem 10 signifies that this negative bias is not an artifact of non-random S0 produced by RC4 KSA,
rather it would be present, even if one starts PRGA with a uniformly random permutation.

3.3 Biases of keystream bytes 3 to 255 towards zero

In FSE 2001, Mantin and Shamir [16] proved the famous 2/N bias towards the value 0 for the
second byte of RC4 keystream. In addition, they made the following claims.

MS-Claim 1: Pr(Zr = 0) = 1
N

at PRGA rounds 3 ≤ r ≤ 255.
MS-Claim 2: Pr(Zr = 0 | jr = 0) > 1

N
and Pr(Zr = 0 | jr 6= 0) < 1

N
for 3 ≤ r ≤ 255. These two

biases cancel each other to produce no bias in the event (Zr = 0) in rounds 3 to 255.

MS-Claim 2 was made to justify MS-Claim 1 in [16]. In this section, contrary to MS-Claim 1,
we show (in Theorem 12) that Pr(Zr = 0) > 1

N
for all rounds r from 3 to 255. The immediate

implications are that we find 253 new distinguishers of RC4, and that the validity of MS-Claim 2
is questionable. In this context, we rigorously analyze the work of [16] to refute the aforementioned
claims, and to study the (non)-randomness of j in PRGA.

We show that all the initial 253 bytes of RC4 keystream from round 3 to 255 are biased to zero.
To prove the main result, we will require the following corollary of Theorem 8. This corollary follows
from the fact that Sr[jr] = Sr−1[ir] = Sr−1[r].

Corollary 1. For r ≥ 3, the probability Pr(Sr−1[r] = r) is approximately

Pr(S1[r] = r)

[
1− 1

N

]r−2

+
r−1∑
t=2

r−t∑
k=0

Pr(S1[t] = r)

k! ·N

[
r − t− 1

N

]k [
1− 1

N

]r−3−k

Now, we can state our main theorem on the bias of RC4 initial bytes.

Theorem 12. For 3 ≤ r ≤ 255, the probability that the r-th RC4 keystream byte is equal to 0 is

Pr(Zr = 0) ≈ 1

N
+

cr
N2

.

where cr is given by N
N−1

[N · Pr(Sr−1[r] = r)− 1] with Pr(Sr−1[r] = r) as in Corollary 1.

Proof. We prove the result by decomposing the event (Zr = 0) into two mutually exclusive and
exhaustive cases, as follows.

Pr(Zr = 0) = Pr (Zr = 0 ∧ Sr−1[r] = r) + Pr (Zr = 0 ∧ Sr−1[r] 6= r) (11)

Now we consider the events (Zr = 0 ∧ Sr−1[r] = r) and (Zr = 0 ∧ Sr−1[r] 6= r) individually to cal-
culate their probabilities. In this direction, note that

Zr = Sr[Sr[ir] + Sr[jr]] = Sr[Sr[r] + Sr−1[ir]] = Sr[Sr[r] + Sr−1[ir]] = Sr[Sr[r] + Sr−1[r]].

This expression for Zr will be used in various effects throughout the paper.



Calculation of Pr (Zr = 0 ∧ Sr−1[r] = r): In this case Sr−1[r] = r, and thus we have the probability

Pr (Zr = 0 ∧ Sr−1[r] = r) = Pr(Sr[Sr[r] + r] = 0 ∧ Sr−1[r] = r)

=
N−1∑
x=0

Pr (Sr[x+ r] = 0 ∧ Sr[r] = x ∧ Sr−1[r] = r)

=
N−1∑
x=0

Pr (Sr[x+ r] = 0 ∧ Sr[r] = x) · Pr (Sr−1[r] = r) (12)

The last expression results from the assumption that the events (Sr[x + r] = 0) and (Sr[r] = x)
are both independent from (Sr−1[r] = r), as a state update has occurred in the process. Note that
Sr−1[r] = r is one of the values that gets swapped to produce the new state Sr (location [r] denotes
[ir] at this stage), and this is why we can claim the independence of Sr[r] and Sr−1[r]. Otherwise,
if a location [s] is not same as [ir] or [jr], then Sr[s] would be the same as Sr−1[s], even after the
state update.

Now, let us compute Pr(Sr[x+r] = 0∧Sr[r] = x) = Pr(Sr[x+r] = 0)·Pr(Sr[r] = x | Sr[x+r] = 0)
independently. In this expression, if there exists any bias in the event (Sr[x+ r] = 0), then it must
propagate from a similar bias in (S0[x + r] = 0), as was the case for (Sr−1[r] = r) in Corollary 1.
However, Pr(S0[x + r] = 0) = 1

N
by Proposition 4, and thus we can safely assume Sr[x + r] to be

random as well. This provides us with Pr(Sr[x+ r] = 0) = 1
N

.
For Pr(Sr[r] = x | Sr[x + r] = 0), observe that when x = 0, the indices [x + r] and [r] in the

state Sr point to the same location, and the events (Sr[x + r] = Sr[r] = 0) and (Sr[r] = x = 0)
denote identical events. Thus in this case, Pr(Sr[r] = x | Sr[x + r] = 0) = 1. In cases where x 6= 0,
the indices [x+ r] and [r] refer to two distinct locations in the permutation Sr, obviously containing
different values. In this case,

Pr(Sr[r] = x | Sr[x+ r] = 0) = Pr(Sr[r] = x | x 6= 0) =
1

N − 1
.

For justifying the randomness of Sr[r] for x 6= 0, one may simply observe that the location [r] = [ir]
is the one that got swapped to generate state Sr from the previous state, and thus the randomness
assumption of Sr[r] is based on the randomness assumption of jr, which is validated for r ≥ 3 later
in Section 3.3.4.

According to the discussion above, we obtain

Pr (Sr[x+ r] = 0 ∧ Sr[r] = x) =


1

N
· 1 =

1

N
if x = 0,

1

N
· 1

N − 1
=

1

N(N − 1)
if x 6= 0.

(13)

Substituting these probability values in Equation (12), we get

Pr (Zr = 0 ∧ Sr−1[r] = r)

= Pr (Sr−1[r] = r)

[
N−1∑
x=0

Pr (Sr[x+ r] = 0 ∧ Sr[r] = x)

]

= Pr(Sr−1[r] = r) ·

[
1

N
+

N−1∑
x=1

1

N(N − 1)

]

= Pr(Sr−1[r] = r) ·
[

1

N
+ (N − 1) · 1

N(N − 1)

]
= Pr(Sr−1[r] = r) · 2

N
. (14)



Calculation of Pr (Zr = 0 ∧ Sr−1[r] 6= r): Similar to the previous case, we can derive the proba-
bility as follows:

Pr (Zr = 0 ∧ Sr−1[r] 6= r) =
∑
y 6=r

Pr(Sr[Sr[r] + y] = 0 ∧ Sr−1[r] = y)

=
∑
y 6=r

N−1∑
x=0

Pr (Sr[x+ y] = 0 ∧ Sr[r] = x ∧ Sr−1[r] = y)

An interesting situation occurs if x = r−y. In this case, on one hand, we obtain Sr[x+y] = Sr[r] = 0
for the first event, while on the other hand, we get Sr[r] = x = r− y 6= 0 for the second event (note
that y 6= r). This poses a contradiction (event with probability of occurrence 0), and hence we get

Pr (Zr = 0 ∧ Sr−1[r] 6= r)

=
∑
y 6=r

∑
x 6=r−y

Pr (Sr[x+ y] = 0 ∧ Sr[r] = x ∧ Sr−1[r] = y)

=
∑
y 6=r

∑
x 6=r−y

Pr (Sr[x+ y] = 0 ∧ Sr[r] = x) · Pr (Sr−1[r] = y) , (15)

where the last expression results from the fact that the events (Sr[x + y] = 0) and (Sr[r] = x) are
both independent from (Sr−1[r] = y), as a state update has occurred in the process, and Sr−1[r] got
swapped during that update.

Similar to the derivation of Equation (13), we obtain

Pr (Sr[x+ y] = 0 ∧ Sr[r] = x) =


0 if x = 0,

1

N(N − 1)
if x 6= 0.

(16)

The only difference occurs in the case x = 0. In this situation, simultaneous occurrence of the events
(Sr[x + y] = Sr[y] = 0) and (Sr[r] = x = 0) pose a contradiction as the two locations [y] and [r]
of Sr are distinct (note that y 6= r), and they can not hold the same value 0 as the state Sr is a
permutation. In all other cases (x 6= 0), the argument is identical to that in the previous derivation.

Substituting the values above in Equation (15), we get

Pr (Zr = 0 ∧ Sr−1[r] 6= r)

=
∑
y 6=r

Pr (Sr−1[r] = y)

[ ∑
x 6=r−y

Pr (Sr[x+ y] = 0 ∧ Sr[r] = x)

]

=
∑
y 6=r

Pr (Sr−1[r] = y)

0 +
∑
x 6=r−y
x 6=0

1

N(N − 1)


=
∑
y 6=r

Pr (Sr−1[r] = y)

[
(N − 2) · 1

N(N − 1)

]
=

N − 2

N(N − 1)

∑
y 6=r

Pr (Sr−1[r] = y)

=
N − 2

N(N − 1)
· (1− Pr (Sr−1[r] = r)) =

N − 2

N(N − 1)
· (1− Pr(Sr−1[r] = r)) (17)



Calculation for Pr(Zr = 0): Combining the probabilities from Equation (14) and Equation (17)
in the final expression of Equation (11), we obtain the following.

Pr(Zr = 0) = Pr(Sr−1[r] = r) · 2

N
+

N − 2

N(N − 1)
· (1− Pr(Sr−1[r] = r))

=
Pr(Sr−1[r] = r)

N − 1
+

N − 2

N(N − 1)
=

1

N
+

1

N − 1
·
(

Pr(Sr−1[r] = r)− 1

N

)
(18)

Thus, Pr(Zr = 0) ≈ 1
N

+ cr
N2 with cr = N

N−1
[N · Pr(Sr−1[r] = r)− 1], as required. ut

In Theorem 12, we have presented the bias in the probability Pr(Zr = 0) in terms of the
parameter cr, which in turn is a function of r and Pr(Sr−1[r] = r). But we are more interested
in observing the bias for specific rounds of RC4 PRGA, namely within the interval 3 ≤ r ≤ 255.
Thus, we are interested in obtaining numerical bounds on the bias for this specific interval. The
next result is a corollary of Theorem 12 that provides exact numeric bounds on Pr(Zr = 0) within
the interval 3 ≤ r ≤ 255, depending on the corresponding bounds of cr within the same interval.

Corollary 2. For 3 ≤ r ≤ 255, the probability that the r-th RC4 keystream byte is equal to 0 is
bounded as follows

1

N
+

1.347168

N2
≥ Pr(Zr = 0) ≥ 1

N
+

0.242811

N2
.

Proof. We calculated all values of cr (as in Theorem 12) for the range 3 ≤ r ≤ 255, and checked
that cr is a decreasing function in r where 3 ≤ r ≤ 255 (refer to Fig. 7). Therefore we obtain

max
3≤r≤255

cr = c3 = 1.347168 and min
3≤r≤255

cr = c255 = 0.242811.

Hence the result on the bounds of Pr(Zr = 0), depending on the bounds of cr. ut
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Fig. 7. Value of cr versus r during RC4 PRGA (3 ≤ r ≤ 255).
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Fig. 8. Pr(Zr = 0) versus r during RC4 PRGA (3 ≤ r ≤ 255).

Fig. 8 depicts a comparison between the theoretically derived vs. experimentally obtained values
of Pr(Zr = 0) versus r, where 3 ≤ r ≤ 255. The experimentation has been carried out with 1 billion
trials, each trial with a randomly generated 16 byte key.

Following the notation of Section 1.4, let P and Q denote the distributions corresponding to
random sequence and RC4 keystream respectively, and Er denote the event (Zr = 0) for r = 3 to
255. Writing p = 1

N
and q = cr

N
, to distinguish RC4 keystream from random sequence based on the

event (Zr = 0), one would need number of samples of the order of(
1

N

)−1 ( cr
N

)−2

∼ O(N3).

Combined distinguisher: We can combine the effect of all these distinguishers by counting the
number of zeros in the initial keystream of RC4, according to Theorem 13, as follows.

Theorem 13. The expected number of 0’s is approximately 0.990652 in RC4 rounds 3 to 255.

Proof. Let Xr be a random variable taking values Xr = 1 if Zr = 0, and Xr = 0 otherwise. Hence,
the total number of 0’s in rounds 3 to 255 is given by

C =
255∑
r=3

Xr.

We have E(Xr) = Pr(Xr = 1) = Pr(Zr = 0) from Theorem 12. By linearity of expectation,

E(C) =
255∑
r=3

E(Xr) =
255∑
r=3

Pr(Zr = 0).

Substituting the numeric values of the probabilities Pr(Zr = 0) from Theorem 12, we get E(C) ≈
0.990652. Hence the result. ut



For a random sequence of bytes, this expectation is E(C) = 253/256 = 0.98828125. Thus, the
expectation for RC4 is approximately 0.24% higher than that for the random case. The inequality
of this expectation in RC4 keystream compared to that in a random sequence of bytes may also be
used to design a distinguisher.

3.3.1 Critical analysis of the event (Zr = 0) given jr

Recall the expression for Pr(Zr = 0) from Theorem 12:

Pr(Zr = 0) =
1

N
+

1

N − 1
·
(

Pr(Sr−1[r] = r)− 1

N

)
≈ 1

N
+

cr
N2

. (19)

In the expression for Pr(Sr−1[r] = r), as in Corollary 1, we see that
(
N−1
N

)r−1
> 1

N
for all 3 ≤ r ≤ 255.

Thus, there is always a positive bias in Pr(Sr−1[r] = r), and in turn in Pr(Zr = 0). Further, for any
r ≥ 1, we can write

Pr(Zr = 0) = Pr(jr = 0) · Pr(Zr = 0 | jr = 0) + Pr(jr 6= 0) · Pr(Zr = 0 | jr 6= 0). (20)

One may note that MS-Claim 2 of Mantin and Shamir [16] essentially states that Pr(Zr =
0 | jr = 0) = 1

N
+ ar and Pr(Zr = 0 | jr 6= 0) = 1

N
− br for 3 ≤ r ≤ 255, where both ar, br > 0.

Plugging these values in Equation (20), we have

1

N
+

cr
N2

=
1

N

(
1

N
+ ar

)
+

(
1− 1

N

)(
1

N
− br

)
for 3 ≤ r ≤ 255.

Simplifying the above equation, we get ar = cr
N

+ (N − 1)br. Thus, if MS-Claim 2 is correct, then
we must have

Pr(Zr = 0 | jr = 0) =
1

N
+
cr
N

+ (N − 1)br =
1 + cr
N

+ (N − 1)br,

where 0.98490994 ≥ cr ≥ 0.36757467 for 3 ≤ r ≤ 255 (from Corollary 2). However, extensive
experiments have confirmed that Pr(Zr = 0 | jr = 0) ≈ 1

N
, thereby refuting MS-Claim 2 of [16].

3.3.2 Guessing state information using the bias in Zr

Mantin and Shamir [16] used the bias of the second byte of RC4 keystream to guess some in-
formation regarding S0[2], based on the following.

Pr(S0[2] = 0 | Z2 = 0) =
Pr(S0[2] = 0)

Pr(Z2 = 0)
· Pr(Z2 = 0 | S0[2] = 0) ≈ 1/N

2/N
· 1 =

1

2
.

Note that in the above expression, no randomness assumption is required to obtain Pr(S0[2] = 0) =
1/N . This probability is exact and can be derived by substituting u = 2, v = 0 in Proposition 4.
Hence, on every occasion we obtain Z2 = 0 in the keystream, we can guess S0[2] with probability
1/2, and this is significantly more than a random guess with probability 1/N .

In this section, we use the biases in bytes 3 to 255 (observed in Theorem 12) to extract similar
information about the state array Sr−1 using the RC4 keystream byte Zr. In particular, we try to
explore the conditional probability Pr(Sr−1[r] = r | Zr = 0) for 3 ≤ r ≤ 255, as follows.



Pr(Sr−1[r] = r | Zr = 0) =
Pr(Zr = 0 ∧ Sr−1[r] = r)

Pr(Zr = 0)
≈

Pr(Sr−1[r] = r) · 2
N

1
N

+ cr
N2

In the above expression, cr is as in Theorem 12. One may write

Pr(Sr−1[r] = r) =
1

N
+
cr
N
− cr
N2

,

using Equation (18) from the proof of Theorem 12, and thereby obtain

Pr(Sr−1[r] = r | Zr = 0)≈
(

1
N

+ cr
N
− cr

N2

)
· 2
N

1
N

+ cr
N2

= 2 ·
(

1

N
+
cr
N
− cr
N2

)
·
(

1 +
cr
N

)−1

≈ 2

N
+

2cr
N
.

From the expression for Pr(Sr−1[r] = r | Zr = 0) derived above, one can guess Sr−1[r] with
probability more than twice of the probability of a random guess, every time we obtain Zr = 0 in
the RC4 keystream. In Fig. 9, we plot the theoretical probabilities

Pr(Sr−1[r] = r | Zr = 0) = 2 ·
(

1

N
+
cr
N
− cr
N2

)
·
(

1 +
cr
N

)−1

against r for 3 ≤ r ≤ 255, and the corresponding experimental values observed by running the
RC4 algorithm 1 billion times with randomly selected 16 byte keys. It clearly shows that all the
experimental values are also greater than 2/N , as desired.
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Fig. 9. Pr(Sr−1[r] = r | Zr = 0) versus r during RC4 PRGA (3 ≤ r ≤ 255).



3.3.3 Attacking the RC4 broadcast scheme

Let us now revisit the famous attack of Mantin and Shamir [16] on broadcast RC4. As mentioned
in their paper,

“A classical problem in distributed computing is to allow N Byzantine generals to coordinate their
actions when up to one third of them can be traitors. The problem is solved by a multi-round
protocol in which each general broadcasts the same plaintext (which initially consists of either
“Attack” or “Retreat”) to all the other generals, where each copy is encrypted under a different
key agreed in advance between any two generals.”

In [16], the authors propose a practical attack against an RC4 implementation of the broadcast
scheme, based on the bias observed in the second keystream byte. They prove that an enemy that
collects k = Ω(N) number of ciphertexts corresponding to the same plaintext M , can easily deduce
the second byte of M , by exploiting the bias in Z2.

In a similar line of action, we may exploit the bias observed in bytes 3 to 255 of the RC4
keystream to mount a similar attack on RC4 broadcast scheme. Notice that we obtain a bias of the
order of 1/N2 in each of the bytes Zr where 3 ≤ r ≤ 255. Thus, roughly speaking, if the attacker
obtains about N3 ciphertexts corresponding to the same plaintext M (from the broadcast scheme),
then he can check the frequency of occurrence of bytes to deduce the r-th (3 ≤ r ≤ 255) byte of M .

The most important point to note is that this technique will work for each r where 3 ≤ r ≤ 255,
and hence will reveal all the 253 initial bytes (number 3 to 255 to be specific) of the plaintext M .
We can formally state our result (analogous to [16, Theorem 3]) as follows.

Theorem 14. Let M be a plaintext,and let C1, C2, . . . , Ck be the RC4 encryptions of M under k
uniformly distributed keys. Then if k = Ω(N3), the bytes 3 to 255 of M can be reliably extracted
from C1, C2, . . . , Ck.

Proof. Recall from Theorem 12 that Pr(Zr = 0) ≈ 1
N

+ cr
N2 for all 3 ≤ r ≤ 255 in the RC4 keystream.

Thus, for each encryption key chosen during broadcast, the r-th plaintext byte M [r] has probability
1
N

+ cr
N2 to be XOR-ed with 0.

Due to the bias of Zr towards zero, 1
N

+ cr
N2 fraction of the r-th ciphertext bytes will have the

same value as the r-th plaintext byte, with a higher probability. When k = Ω(N3), the attacker
can identify the most frequent character in C1[r], C2[r], . . . , Ck[r] as M [r] with constant probability
of success. ut

The attack on broadcast RC4 is applicable to many modern Internet protocols (such as group
emails encrypted under different keys, group-ware multi-user synchronization etc.). Note that Mantin
and Shamir’s attack [16] works at the byte level. It can recover only the second byte of the plaintext
under some assumptions. On the other hand, our attack can recover additional 253 bytes (namely,
bytes 3 to 255) of the plaintext.

3.3.4 Non-randomness of j in PRGA

During the PRGA round of RC4 algorithm, two indices are used; the first is i (deterministic)
and the second is j (pseudo-random). Index i starts from 0 and increments by 1 (modulo N) at
the beginning of each iteration, whereas j depends on the values of i and S[i] simultaneously. The
pseudo-randomness of the internal state S triggers the pseudo-randomness in j. In this section, we
attempt to understand the pseudo-random behavior of j more clearly.



In RC4 PRGA, we know that for r ≥ 1, ir = r mod N and jr = jr−1 + Sr−1[ir], starting with
j0 = 0. Thus, we can write the values assumed by j at different rounds of PRGA as follows.

j1 = j0 + S0[i1] = 0 + S0[1] = S0[1],

j2 = j1 + S1[i2] = S0[1] + S1[2],

j3 = j2 + S2[i3] = S0[1] + S1[2] + S2[3],
...

jr = jr−1 + Sr−1[ir] = S0[1] + S1[2] + · · ·+ Sr−1[r] =
r∑

x=1

Sx−1[x],

where 1 ≤ r ≤ N − 1, and all the additions are performed modulo N , as usual.

Non-randomness of j1: In the first round of PRGA, j1 = S0[1] follows a probability distribution
which is determined by S0, the internal state array after the completion of KSA. According to
Proposition 4, we have

Pr(j1 = v) = Pr(S0[1] = v) =


1
N

if v = 0;
1
N

(
N−1
N

+ 1
N

(
N−1
N

)N−2
)

if v = 1;

1
N

((
N−1
N

)N−2
+
(
N−1
N

)v)
if v > 1.

This clearly tells us that j1 is not random. This is also portrayed in Fig. 10.

Non-randomness of j2: In the second round of PRGA however, we have j2 = S0[1] +S1[2], which
demonstrates better randomness, as discussed next. Note that we have the following in terms of
probability for j2.

Pr(j2 = v) = Pr(S0[1] + S1[2] = v) =
N−1∑
w=0

Pr(S0[1] = w ∧ S1[2] = v − w) (21)

In the above expression, (v−w) is performed modulo N , like all arithmetic operations in RC4. The
following cases may arise with respect to Equation (21).

Case I. Suppose that j1 = S0[1] = w = 2. Then, we will have S1[i2] = S1[2] = S1[j1] = S0[i1] =
S0[1] = 2. In this case,

Pr(j2 = v) =

{
Pr(S0[1] = 2) if v = 4,
0 otherwise.

Case II. Suppose that j1 = S0[1] = w 6= 2. Then S0[2] will not get swapped in the first round, and
hence we will have S1[2] = S0[2]. In this case,

Pr(S0[1] = w ∧ S1[2] = v − w) = Pr(S0[1] = w ∧ S0[2] = v − w).

Let us substitute the results obtained from these cases to Equation (21) to obtain

Pr(j2 = v) =


Pr(S0[1] = 2) +

N−1∑
w=0
w 6=2

Pr(S0[1] = w ∧ S0[2] = v − w), if v = 4;

N−1∑
w=0
w 6=2

Pr(S0[1] = w ∧ S0[2] = v − w), if v 6= 4.

(22)



Equation (22) completely specifies the exact probability distribution of j2, where each of the prob-
abilities Pr(S0[x] = y) can be substituted by their exact values from Proposition 4 with the ad-
justment as in Section 3.2.3 for estimating the joint probabilities. However, the expression suffices
to exhibit the non-randomness of j2 in the RC4 PRGA, having a large bias for v = 4. We found
that the theoretical values corresponding to the probability distribution of j2 (as in Equation (22))
match almost exactly with the experimental data plotted in Fig. 10. For the sake of clarity, we do
not show the theoretical curve in Fig. 10.
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Fig. 10. Probability distribution of jr for 1 ≤ r ≤ 3.

Let us now evaluate Pr(j2 = 4) independently:

Pr(j2 = 4) = Pr(S0[1] = 2) +
N−1∑
w=0
w 6=2

Pr(S0[1] = w ∧ S0[2] = 4− w)

=
1

N

[(
N − 1

N

)N−2

+

(
N − 1

N

)2
]

+
N−1∑
w=0
w 6=2

Pr(S0[1] = w ∧ S0[2] = 4− w)

Following Proposition 4 and the same strategy of estimating the joint probabilities as in Sec-
tion 3.2.3, the summation term in the above expression evaluates approximately to 0.965268/N for
N = 256. Thus, we get

Pr(j2 = 4) ≈ 1

N

[(
N − 1

N

)N−2

+

(
N − 1

N

)2
]

+
0.965268

N
≈ 7/3

N
.

This verifies our experimental observation, as depicted in Fig. 10.

Guessing state information using the bias in j2: It is also feasible to use this bias of j2

to guess certain information about the RC4 state S2. In particular, we shall focus on the event
(S2[i2] = 4− Z2) or (S2[2] = 4− Z2), and prove the following bias for this event.

Theorem 15. After completion of the second round of RC4 PRGA, the state variable S2[2] equals
the value 4− Z2 with probability

Pr (S2[2] = 4− Z2) ≈ 1

N
+

4/3

N2
.



Proof. First, note that we can write Z2 in terms of the state variables as follows

Z2 = S2[S2[i2] + S2[j2]] = S2[S1[j2] + S1[i2]] = S2[S1[j2] + S1[2]].

Thus, we can write the probability of the target event (S2[2] = 4− Z2) as follows

Pr(S2[2] = 4− Z2) = Pr(S2[i2] = 4− S2[S1[j2] + S1[2]])

= Pr(S1[j2] = 4− S2[S1[j2] + S1[2]])

= Pr(S1[j2] + S2[S1[j2] + S1[2]] = 4)

The idea is to exploit the bias in the event (j2 = 4) to obtain the bias in the probability mentioned
above. Thus, we decompose the target event into two mutually exclusive and exhaustive cases:

(S1[j2] + S2[S1[j2] + S1[2]] = 4) = (S1[j2] + S2[S1[j2] + S1[2]] = 4 ∧ j2 = 4)

∪ (S1[j2] + S2[S1[j2] + S1[2]] = 4 ∧ j2 6= 4)

First event (S1[j2] + S2[S1[j2] + S1[2]] = 4 ∧ j2 = 4): The probability for the first event can be
calculated as follows.

Pr (S1[j2] + S2[S1[j2] + S1[2]] = 4 ∧ j2 = 4)

= Pr(S1[4] + S2[S1[4] + S1[2]] = 4 ∧ j2 = 4)

=
N−1∑
y=0

Pr(S1[4] + S2[y] = 4 ∧ S1[4] + S1[2] = y ∧ j2 = 4)

=
N−1∑
y=0

Pr(S1[4] + S2[y] = 4 ∧ S1[4] + S1[2] = y) · Pr(j2 = 4)

= Pr(j2 = 4)
N−1∑
y=0

Pr(S1[4] + S2[y] = 4 ∧ S1[4] + S1[2] = y)

In the last expression, the values taken from S1 are independent of the value of j2, and thus the
events (S1[4] + S2[y] = 4) and (S1[4] + S1[2] = y) are both independent of the event (j2 = 4). Also
note that if y = 4, we obtain

S1[4] + S2[y] = S1[4] + S2[4] = S1[4] + S2[j2] = S1[4] + S1[i2] = S1[4] + S1[2],

which results in the events (S1[4] + S2[y] = 4) and (S1[4] + S1[2] = y) being identical. In all other
cases, we have S1[4] + S2[y] 6= S1[4] + S1[2] and thus the values are chosen distinctly independent
at random. Hence, we obtain

Pr(S1[4] + S2[y] = 4 ∧ S1[4] + S1[2] = y) =

{ 1
N

if y = 4;
1

N(N−1)
if y 6= 4.

The probabilities in the above expression are verified through experimentation by running the RC4
algorithm 1 billion times, choosing a 16 byte key uniformly at random in each run. The probability
for the first event turns out to be

Pr (S1[j2] + S2[S1[j2] + S1[2]] = 4 ∧ j2 = 4)

= Pr(j2 = 4) ·

[
1

N
+
∑
y 6=4

1

N(N − 1)

]

=
7/3

N
·
[

1

N
+ (N − 1) · 1

N(N − 1)

]
=

7/3

N
· 2

N
.



Second event (S1[j2] + S2[S1[j2] + S1[2]] = 4 ∧ j2 6= 4): For the second event, the probability
calculation can be performed in a similar fashion, as follows.

Pr (S1[j2] + S2[S1[j2] + S1[2]] = 4 ∧ j2 6= 4)

=
∑
x 6=4

Pr(S1[x] + S2[S1[x] + S1[2]] = 4 ∧ j2 = x)

=
∑
x 6=4

N−1∑
y=0

Pr(S1[x] + S2[y] = 4 ∧ S1[x] + S1[2] = y ∧ j2 = x)

Note that the case y = x poses an interesting situation. On one hand, we obtain

S1[x] + S2[y] = S1[x] + S2[x] = S1[x] + S2[j2] = S1[x] + S1[i2] = S1[x] + S1[2] = 4,

while on the other hand, we get S1[x] + S1[2] = x 6= 4. We rule out the case y = x from the
probability calculation due to this contradiction, and get

Pr (S1[j2] + S2[S1[j2] + S1[2]] = 4 ∧ j2 6= 4)

=
∑
x 6=4

∑
y 6=x

Pr(S1[x] + S2[y] = 4 ∧ S1[x] + S1[2] = y ∧ j2 = x)

=
∑
x 6=4

∑
y 6=x

Pr(S1[x] + S2[y] = 4 ∧ S1[x] + S1[2] = y) · Pr(j2 = x).

As before, in the last expression, the values taken from S1 are independent of the value of j2, and
thus the events (S1[x] + S2[y] = 4) and (S1[x] + S1[2] = y) are both independent of the event
(j2 = x).

Another interesting case occurs if y = 4 in the above calculation. In this case, one one hand, we
have S1[x] +S2[4] = 4, while one the other hand we get S1[x] +S1[2] = 4. One may notice that S1[4]
is a value that does not get swapped to obtain the state S2. This is because the only two values to
get swapped at this stage are from the locations [i2] = [2] and [j2] = [x] 6= [4]. Thus, S2[4] = S1[4]
and we get S1[x] +S1[4] = 4 and S1[x] +S1[2] = 4, indicating S1[4] = S1[2]. As S1 is a permutation,
this case is not possible, and all other cases deal with two distinct locations of the permutation S1.
Therefore, we obtain

Pr(S1[x] + S2[y] = 4 ∧ S1[x] + S1[2] = y) =

{
0 if y = 4;

1
N(N−1)

otherwise.

In turn, we obtain the probability of the second event as follows.

Pr (S1[j2] + S2[S1[j2] + S1[2]] = 4 ∧ j2 6= 4)

=
∑
x 6=4

Pr(j2 = x)
∑
y 6=x

Pr(S1[x] + S2[y] = 4 ∧ S1[x] + S1[2] = y)

=
∑
x 6=4

Pr(j2 = x)

0 +
∑
y 6=x
y 6=4

1

N(N − 1)

 =
∑
x6=4

Pr(j2 = x)

[
(N − 2) · 1

N(N − 1)

]

=
N − 2

N(N − 1)

∑
x 6=4

Pr(j2 = x) =
N − 2

N(N − 1)
· (1− Pr(j2 = 4)) =

N − 2

N(N − 1)
·
(

1− 7/3

N2

)
.



Calculation for Pr(S2[2] = 4 − Z2): Combining the probabilities for the first and second events,
we obtain the final probability as

Pr(S2[2] = 4− Z2) =
7/3

N2
· 2

N
+

N − 2

N(N − 1)
·
(

1− 7/3

N2

)
≈ 1

N
+

4/3

N2
.

Hence the desired probability for the event (S2[2] = 4− Z2). ut

Thus, one can guess the value of S2[i2] = S2[2] with probability greater than that of a random
guess (probability 1/N). For N = 256, the result matches with our experimental data generated
from 1 billion runs of RC4 with randomly selected 16 byte keys.

Randomness of jr for r ≥ 3: Along the same line of analysis as in the case of j2, it is possible
to compute the explicit probability distributions of jr =

∑r
x=1 Sx−1[x] for 3 ≤ r ≤ 255 as well. We

do not present the expressions Pr(jr = v) for r ≥ 3 to avoid complication. However, it turns out
that jr =

∑r
x=1 Sx−1[x] becomes closer to be random as r increase. The probability distributions of

j1, j2 and j3 are shown in Fig. 10, where the experiments have been run over 1 billion trials of RC4
PRGA, with randomly generated keys of size 16 bytes.

One may note that the randomness in j2 is more than that of j1 (apart from the case v = 4), and
j3 is almost uniformly random. This trend continues for the later rounds of PRGA as well. However,
we do not plot the graphs for the probability distributions of jr with r ≥ 4, as these distributions
are almost identical to that of j3, i.e., almost uniformly random in behavior.

4 Long-term manifestation of short-term biases in RC4

The biases discussed so far are prevalent in the initial bytes of the RC4 output sequence, and are
generally referred to as the short-term biases of the cipher. It is a common practice to discard a few
hundred initial bytes of the output sequence to avoid these biases, and this motivates the search for
long-term biases in RC4 that are present even after discarding an arbitrary number of initial bytes.

There has only been a handful of results in this direction till date. The first set of results
was proposed by Fluhrer and McGrew [6] in 2000, and the biases depend upon the frequency
of occurrence of certain digraphs in the RC4 keystream. Each of these are biases of magnitude
O(1/N3) for corresponding base events with probability 1/N2. Later in 2005, Mantin [17] improved
these to obtain the best long-term distinguisher of RC4 till date, also known as the ABSAB
distinguisher. This bias is of magnitude O(e(−4−8G)/N/N3) for a base event with probability 1/N2,
and it depends on the repetition of digraphs in the keystream after a gap of G words. In 2008, Basu
et al. [2] identified another conditional long-term bias, depending on the relationship between two
consecutive bytes in the output sequence. This bias turned out to be weaker, as it is of magnitude
O(1/N3) for a base event with probability 1/N .

However, in each of these cases, the long-term biases were completely different from any short-
term bias in RC4 that we know of, and depended on digraphs or relations between consecutive bytes.
Our motivation to search for long-term biases start from a systematic investigation of long-term
manifestations of the known short-term biases, if there is any at all. In this direction, it is natural to
initiate the study with the most prominent short-term biases of RC4, namely, the biases of the first
two keystream bytes towards zero. The negative bias in the first byte Z1 towards 0 is approximately
of the magnitude 1/N2, as observed by Mironov [20] in 2002, and proved in Section 3.2. The positive
bias in the second byte Z2 towards 0 is approximately 1/N , as proved by Mantin and Shamir [16]
in 2001. We first study their long-term propagation characteristics, as follows.



4.1 Direct long-term manifestation of short-term biases

The main motivation to look for long-term manifestations of short-term biases arises from the
following structure for viewing the PRGA cycle of RC4:

{1, 2, . . . , 255}
⋃
{256}

⋃
{257, 258, . . . , 511}

⋃
{512}

⋃
· · · ,

where each long period is exactly 255 rounds, and the single rounds in between act as buffers to
initiate the next PRGA cycle. It is only the initial period that lacks the buffer round in front. The
proposed structure is illustrated in Fig. 11, where A and B denote the main cycles of PRGA.

RC4 PRGA

(255 rounds)

i0 = 0

j0 = 0

buffer

round

singleikN−1 = 255

jkN−1

A B

RC4 PRGA

(255 rounds)

ikN = 0

jkN

Fig. 11. The cycle structure considered for RC4 PRGA.

In this new structure of RC4 PRGA, we immediately observe the following.

– Each main cycle A or B of RC4 PRGA starts with i0 = 0.
– First main cycle A of RC4 PRGA has j0 = 0 to start with, and each main cycle B thereafter

starts with initial pseudo-random index jkN .
– All characteristics of the first main cycle will be repeated if jkN = 0 in any other cycle of PRGA.

One may restate the third point to obtain the most important observation for our results:

When jkN = 0, the main cycle B will be identical to the initial cycle A of RC4 PRGA.

Recall that the biases in the initial cycle A for events [Z1 = 0] (proved in Section 3.2) and [Z2 = 0]
(proved in [16, Theorem 1]) does not depend on the non-randomness of the initial permutation S0

due to KSA. Rather, they both depend only on the non-randomness of byte-extraction in PRGA,
given the initial conditions i0 = 0 and j0 = 0. Thus, if jkN = 0, these biases will be present in the
events [ZkN+1 = 0] and [ZkN+2 = 0] of the main cycle B as well. This motivates us to investigate
further for long-term biases in the bytes ZkN+1 and ZkN+2.

Investigation of long-term bias in ZkN+1: The negative bias in Z1 directly propagates to all
cycles of PRGA that start with jkN = 0. Note that the event [jkN = 0] occurs with probability
1/N as jkN is uniformly random. Theorem 10 directly implies (also evident from Theorem 11 for
KSA-generated S0) that

Pr[ZkN+1 = 0 | jkN = 0] = 1/N − 1/N2. (23)



When jkN 6= 0, we find that [ZkN+1 = 0] happens only due to a random association, and thus

Pr[ZkN+1 = 0]≈ Pr[ZkN+1 = 0 | jkN = 0] · Pr[jkN = 0] + Pr[ZkN+1 = 0 | jkN 6= 0] · Pr[jkN 6= 0]

≈ (1/N − 1/N2) · 1/N + 1/N · (1− 1/N) = 1/N − 1/N3.

The probability computed above gives us a long-term bias for the event [ZkN+1 = 0]. However, it is
a weak bias, as the magnitude of the bias is only O(1/N3) for a base event with probability 1/N .

Investigation of long-term bias in ZkN+2: Similar to the previous case, the positive bias in Z2

directly propagates to later rounds if jkN = 0. Mantin and Shamir’s observation, as in [16, Theorem
1] implies that

Pr[ZkN+2 = 0 | jkN = 0] ≈ 2/N − 1/N2. (24)

However, considering the case jkN 6= 0, we observe that ZkN+2 does not take the value 0 by uniform
random association. In particular, when SkN [2] = 0, the value of ZkN+2 is 0 with probability 0. This
case is illustrated in Fig. 12.

X 0 Y jkN = r, say

0 1 2 X r + X

i

Y 0 X SkN+1[X + Y ]

i j

Y X Z 0 SkN+2[X] 6= 0

i j

Fig. 12. The first two rounds of RC4 main cycle when SkN [2] = 0 and SkN [1] 6= 2.

Suppose that jkN = r 6= 0 at some cycle of RC4 PRGA. Then for SkN [1] = X and SkN [2] = 0,
the swap sequence is as shown in Fig. 12, and we finally obtain 0 in the (r+X)-th location of SkN+2.
But the output byte at this stage is emitted from location X of the same permutation SkN+2, and
thus it can not be 0 (note that the locations X and r+X are different as r 6= 0). This case arises for
approximately 1/N fraction of the keys (as SkN [2] is uniformly random), and for the other (1−1/N)
fraction of keys, we may obtain ZkN+2 = 0 when jkN 6= 0. Considering both cases,

Pr[ZkN+2 = 0 ∧ jkN 6= 0] =
∑
r 6=0

∑
SkN [2]6=0

Pr[ZkN+2 = 0 ∧ jkN = r]

= (1− 1/N)
∑
r 6=0

Pr[ZkN+2 = 0 | jkN = r] · Pr[jkN = r]

≈ (1− 1/N) · (N − 1) · (1/N) · (1/N) = 1/N − 2/N2 + 1/N3. (25)

Adding the contributions from the two cases jkN = 0 and jkN 6= 0, we obtain

Pr[ZkN+2 = 0] ≈ (2/N − 1/N2) · 1/N + (1/N − 2/N2 + 1/N3) = 1/N.



It is interesting to note that the second byte exhibits a strong bias in the first PRGA cycle of RC4
(as in [16]), but behaves almost uniformly random thereafter for all subsequent cycles.

Investigation of long-term bias in ZkN : Note that byte Z0 does not occur in the initial round
of PRGA, as the process starts from the byte Z1 itself. However, considering the cycle structure
of PRGA, the byte ZkN refers to the output of the buffer round (henceforth referred to as round
number kN). Lemma 2 establishes a conditional bias for ZkN , which is similar to that of ZkN+2.

Lemma 2. For any integer k ≥ 1, assume that the permutation SkN is randomly chosen from the
set of all possible permutations of {0, 1, . . . , N − 1}. Then

Pr[ZkN = 0 | jkN = 0] ≈ 2/N − 1/N2.

Proof. We have ikN = 0 in each PRGA cycle. When jkN = 0 (this happens with probability 1/N),
no swap takes place and the output is ZkN = SkN [2 · SkN [0]].

Two cases may arise from here. If SkN [0] = 0, then ZkN = SkN [0] = 0 for sure. Otherwise if
SkN [0] 6= 0, the output ZkN takes the value 0 only due to random association. Combining the cases,

Pr[ZkN = 0 | jkN = 0] ≈ 1/N · 1 + (1− 1/N) · 1/N = 2/N − 1/N2.

Hence the desired result. ut

Similar to the computation of Pr[ZkN+2 = 0 ∧ jkN 6= 0], one may also compute

Pr[ZkN = 0 ∧ jkN 6= 0] ≈ 1/N − 2/N2 + 1/N3 and Pr[ZkN = 0 | jkN 6= 0] ≈ 1/N − 1/N2 (26)

Adding the contributions from the two mutually exclusive cases jkN = 0 and jkN 6= 0, we obtain

Pr[ZkN = 0] ≈ (2/N − 1/N2) · 1/N + (1/N − 2/N2 + 1/N3) = 1/N. (27)

Thus, alike ZkN+2, the buffer-round output ZkN does not exhibit any significant bias towards zero.

4.2 Conditional long-term manifestation of short-term biases

From the previous section, we find that in the long run, ZkN and ZkN+2 do not show any bias
towards zero and ZkN+1 has a slightly negative bias towards zero. However, from Equation (24) and
Lemma 2 we see that both ZkN and ZkN+2 have a significant bias towards 0, whenever jkN = 0,
and so does ZkN+1. This motivates us to relate pairs of bytes together by eliminating the condition
on the hidden state variable jkN .

We first focus on the consecutive pair of bytes (ZkN , ZkN+1) and (ZkN+1, ZkN+2) to find a condi-
tional relation. This leads to the discovery of the following long-term biases in the RC4 keystream.

Pr[ZkN+1 = 0 | ZkN = 0] ≈ 1/N + 1/N2, Pr[ZkN+2 = 0 | ZkN+1 = 0] ≈ 1/N + 2/N2.

The above biases can also be derived as special cases of the digraph (0, 0) bias observed in [6].

Long-term bias involving non-consecutive bytes: Note that the above biases (and all others
listed in [6]) are based on relations between consecutive bytes, and they do not consider bytes with
a gap in between. We investigate the relation between ZkN and ZkN+2 with a single-byte gap, and
obtain a new long-term bias. In this section, by combining Equation (24) and Lemma 2, we show
that the event (ZkN+2 = 0 | ZkN = 0) is positively biased. This is a hitherto-undiscovered long-term
bias in RC4 that originates mainly from the long-term manifestation of Mantin and Shamir’s second
byte bias [16]. To the best of our knowledge, this is the first long-term bias of RC4 that involves
non-consecutive bytes of the output sequence.



New long-term bias in RC4: The following technical result presents our new conditional bias
between the non-consecutive output bytes ZkN and ZkN+2, as discussed earlier.

Theorem 16. For any integer k ≥ 1, assume that the permutation SkN is randomly chosen from
the set of all possible permutations of {0, . . . , N − 1}. Then

Pr[ZkN+2 = 0 | ZkN = 0] ≈ 1/N + 1/N2.

Proof. Let us first compute the joint probability Pr[ZkN+2 = 0 ∧ ZkN = 0], which is equal to

Pr[ZkN+2 = 0 ∧ ZkN = 0 ∧ jkN = 0] + Pr[ZkN+2 = 0 ∧ ZkN = 0 ∧ jkN 6= 0].

Given jkN = 0, the random variables ZkN+2 and ZkN can be considered independent. Using equa-
tion (24) and Lemma 2, we get the following for this part.

Pr [ZkN+2 = 0 ∧ ZkN = 0 ∧ jkN = 0]

= Pr[ZkN+2 = 0 | jkN = 0] · Pr[ZkN = 0 | jkN = 0] · Pr[jkN = 0]

≈ (2/N − 1/N2) · (2/N − 1/N2) · (1/N) ≈ 4/N3 − 4/N4.

From the second part, using equation (25) and equation (26), one has

Pr [ZkN+2 = 0 ∧ ZkN = 0 ∧ jkN 6= 0]

= Pr[ZkN+2 = 0 | jkN 6= 0] · Pr[ZkN = 0 | jkN 6= 0] · Pr[jkN 6= 0]

≈ (1/N − 1/N2)2 · (1− 1/N) ≈ 1/N2 − 3/N3 + 3/N4.

Adding the two expressions, we have Pr[ZkN+2 = 0 ∧ ZkN = 0] as

Pr [ZkN+2 = 0 ∧ ZkN = 0 ∧ jkN = 0] + Pr[ZkN+2 = 0 ∧ ZkN = 0 ∧ jkN 6= 0]

≈ (4/N3 − 4/N4) + (1/N2 − 3/N3 + 3/N4) ≈ 1/N2 + 1/N3.

Hence Pr[ZkN+2 = 0 | ZkN = 0] = Pr[ZkN+2 = 0 ∧ ZkN = 0]/Pr[ZkN = 0] ≈ 1/N + 1/N2. ut

The RC4 triangle of conditional biases: Fig. 13 depicts a trio of long-term biases between the
bytes, as discussed above. An arrow directed from event A to event B denotes the conditional event
[B | A], and the value on the arrow denotes the positive bias of the corresponding conditional event
with respect to the probability 1/N of random association. Note that the grey arrows in the figure
represent the biases involving consecutive bytes, and the red arrow denotes the new bias involving
non-consecutive bytes of the output, as proved in the previous section.

[ZkN = 0]

[ZkN+1 = 0] [ZkN+2 = 0]

1/N2 1/N2

2/N2

Fig. 13. The RC4 Triangle: Significant long-term biases in the RC4 keystream.



This new bias is of the order of 1/N2 for the base event with random probability of occurrence
1/N . This indicates that we have obtained a long-term bias which is more significant in comparison
to the best existing long-term biases of RC4 presented in [6, 17], which are around O(1/N3) for a
base event with probability 1/N2. To identify the new bias, one shall require approximately O(N3)
(i.e., around 224 for N = 256) conditional samples, which is equivalent to approximately O(N4)
bytes of output, as we consider only periodic intervals of length N to extract each sample.

The new long-term bias presented in this paper is the first result to observe a conditional bias
between two non-consecutive bytes (ZkN , ZkN+2). The gap between the related bytes in this case
is one, and we could not find any other significant long-term bias with this gap. An interesting
direction for experimentation and analysis would be to look for similar long-term biases with larger
gaps between the related bytes in the keystream. In the next section, we conclude the paper by
summarizing our contributions and by proposing a few potential directions for future research.

5 Conclusion

In this paper, we have explored several classes of non-random events in RC4 - from key correlations
to keystream-based distinguishers, and from short term biases to long-term non-randomness.

Key-dependent non-randomness: In practice, RC4 uses a small secret key of length l that is typically
much less than the permutation size N . Hence each secret key byte is repeated at least bN/lc times
in the KSA. This is the source of several key-correlations and biases in the keystream. However,
there were no biases reported in the literature that depends on the length l of the secret key. In this
paper, we demonstrate the first keylength-dependent biases in the lineage of RC4 cryptanalysis.

Short-term non-randomness: The permutation after the RC4 KSA is non-random. This is the source
of many biases in the initial keystream bytes, including the recent observations by Sepehrdad et
al. [29], the sine-curve like probability distribution of the first byte observed by Mironov [20], and
the second-byte bias observed by Mantin and Shamir [16]. In this paper, we prove all significant
empirical biases observed in [29] and also provide the first justification for the sine-curve distribution
of the first byte. We also extend the observation of [16] to all initial bytes 3 to 255 in the RC4
keystream, and hence generalize the broadcast attack to recover all initial bytes.

Long-term non-randomness: It is generally believed that the initial biases disappear if one discards
the first few hundred bytes from the output sequence of RC4. However, we propose the idea that the
short-term initial biases may have significant long-term manifestations. Our claim is supported by
the discovery of a new long-term bias in the RC4 keystream that originates from a long-term periodic
property of the second-byte bias. This discovery also generalizes the digraph patterns observed by
Fluhrer and McGrew [6] by introducing conditional relations between non-consecutive bytes.

Future direction: In the search for non-random events in RC4, or other stream ciphers in general,
our results open up the following interesting directions of research.

– What are the implications of using a secret key with length relatively small compared to the
internal secret state of the cipher? How is the keylength related to the biases?

– Is there a general pattern in the non-random events generated from the initial non-random state
produced by the KSA? Can we find more short-term biases in this direction?

– How does one generalize the concept of digraph biases to related bytes with arbitrary gaps in
between? Are there more long-term biases of this kind in the RC4 output sequence?
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