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Abstract

Cloud storage service is gaining popularity in recent years.
Client-side deduplication is widely adopted by cloud storage ser-
vices like Dropbox and MozyHome, to save bandwidth and storage.
Security flaws, which may lead to private data leakage, in the
current client-side deduplication mechanism are found recently by
Harnik, Pinkas, and Shulman-Peleg (S&P Magazine, ’10).

This paper presents a notion of File Based Authentication,
that is, a user authenticates himself/herself using the file he/she
possesses as the secret information. File Based Authentication can
be applied to protect confidentiality of users’ sensitive data file in
the cloud storage from both the third party attackers and the semi-
honest cloud server itself. The proposed solution enables efficient
client-side deduplication (across users) and client-side sharing of
encrypted data in the cloud storage, where the encryption key is
chosen by a user independently (without negotiation with other
owners of the same data file) and is kept secret from the cloud
storage server and its client software.

Furthermore, the surprising part is that, a secure cloud storage
system without pre-registration for users can be constructed based
on the proposed solution: All owners of a file F share an a priori
account with hash value h(F ) as identity and sensitive file F as
password, without knowledge of each other and without registration
on the cloud storage server, since the first uploading of F (in
encrypted form) to the cloud will function as the registration of
account (h(F ), F ) in the cloud storage server.
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1. Introduction

Cloud storage service is gaining popularity. To re-
duce resource consumption in bandwidth and storage,
many cloud storage services including Dropbox [16]
employs client-side deduplication [32]. That is, when
a user tries to upload a file to the server, the server
checks whether this particular file is already in the
cloud and saves the uploading process if it is. In this

way, every single file will have only one copy in the
cloud. Recently, an attack on current client-side mech-
anism in popular cloud storage service like Dropbox
is proposed [19], [18]: If the adversary somehow has
the hash value of a file stored in the cloud storage,
he could fool the cloud server that he has the file
by presenting only the hash value in the client-side
deduplication process, and thus gain access to that file
in the cloud.

Halevi et al. [18] proposed a primitive called Proofs
of Ownership (PoW) to allow an owner of a file to
prove to the server that he/she indeed has that file in
an efficient way. Informally, in a Proofs of Ownership
scheme, if an adversary somehow has some limited
knowledge on a file, he cannot gain significantly more
knowledge of that file via the client-side deduplication
process with the cloud storage server. Shortly, infor-
mation leakage should not be amplified in the client
side deduplication process.

Proofs of Ownership alone achieves strong security.
However, when deployed in a cloud storage service, the
security of the overall system is limited by other com-
ponents, like user authentication system, of the cloud
service. In a practical cloud storage service secured by
PoW [18], adversary still can obtain the large data file
from a short secret value—the user name and password
of (one of) the owner of that file. Furthermore, the root
account password of the cloud server can be considered
as a short “representation” of all files stored in the
cloud storage. Once an adversary somehow obtains the
root password, he can access every single file in the
cloud, which is a huge amplification of information
leakage.

Furthermore, all Proofs of Ownership schemes pro-
posed in Halevi et al. [18] have to trust the cloud server
and only protect the data confidentiality from third
party attackers, since these schemes cannot support
encrypted data files. However, sensitive data files are



likely to be encrypted on the client side by users before
uploaded to the cloud storage.

Different from PoW [18], this paper takes the user
authentication system into account, and aims to protect
confidentiality of users’ data in the cloud storage
against both the third party attackers and the semi-
honest cloud server itself, where a semi-honest cloud
server is curious about the content of users’ sensitive
data but will guarantee the integrity and availability
of users’ data. If the cloud server is semi-honest, our
solution achieves higher level of security, compared to
cloud storage system secured with PoW; if the cloud
server is honest, our solution achieves the same level of
security. Particularly, in our solution, there is no single
short secret value, which can “represent” all files in the
cloud. Furthermore, our solution can be incorporated
with PoW and Proofs of Storage (POR [21], [28] and
PDP [2]) in a seamless way.

It is known that cloud storage service Spi-
derOak [29] provides some sort of data deduplica-
tion over encrypted data in the cloud. However, in
SpiderOak service, users’ data files are encrypted on
the client side by SpiderOak client software which is
closed source, and apparently the encryption key is
chosen by the SpiderOak client software. In contrast,
in this paper, a user’s data file is encrypted using a
publicly available encryption algorithm with the en-
cryption key chosen by the user independently, without
any negotiation with other owners of the same file or
the cloud server. We emphasize that the encryption key
should be kept safely from the cloud server (including
the client software of the cloud service).

1.1. Our results and Contributions

Our results and contributions in this paper are sum-
marized as below.

1.1.1. File Based Authentication. This paper pro-
poses a notion of File Based Authentication. In a File
Based Authentication system, an owner of a file F can
authenticate himself/herself to the cloud server, using
the hash value h(F ) as identity and the sensitive file
F as the password, with a zero-knowledge proof. All
owners of F share the a priori account (h(F ), F ),
although they may have no knowledge of each other.

We formalize File Based Authentication, and pro-
pose a construction. We prove the security of proposed

construction in general case in random oracle model,
and in simple case in standard model. Particularly, we
employ an almost universal hash family to replace the
random oracle, and the leftover hash lemma will help
us complete the proof in the standard model.

1.1.2. Client-side Deduplication across users with
Encrypted Data. To apply File Based Authentication
in cloud storage, each data file F will be encrypt
using a short one-time key τF called trapdoor and
this trapdoor will be encrypted using the file F as
secret key. Next, the resulting ciphertexts of the data
file and the trapdoor will be uploaded to the cloud
storage—This uploading functions as registration of
account (h(F ), F ) to the cloud storage server.

If an owner, say Alice, of F tries to authenticate to
the cloud storage server Bob with account (h(F ), F ),
then Bob will reply with the ciphertext of the trapdoor
τF . Alice can recover τF by decrypting the ciphertext
with F as decryption key. With this short secret trap-
door τF , Alice may safely remove F from her local
storage. Later, Alice can retrieve F back on demand
from the cloud storage server using the trapdoor τF :
Alice downloads a ciphertext of F from Bob after
authenticating1 herself with information h(F ) and τF ,
and decrypt the ciphertext to recover F with τF as
decryption key.

Thus, client-side deduplication is completed by ex-
tracting a short secret trapdoor τF during the authenti-
cation with account (h(F ), F ) to the cloud server Bob:
Alice can obtain the correct secret trapdoor τF , if and
only if she knows the decryption key which is just the
file F .

1.1.3. Client-side Sharing. Current server-side shar-
ing mechanism may not work with encrypted data,
since the server itself has no access to the plaintext.

Our solution supports efficient client-side sharing
mechanism: To share file F with Carol, Alice just
passes the corresponding secret trapdoor τF and hash
value h(F ) to Carol in a secure channel. With the
trapdoor τF , Carol can convince Bob to accept w.r.t.
h(F ), and thus is allowed to download the ciphertext of
F from the cloud storage Bob. Then Carol can decrypt
the ciphertext using τF as decryption key to recover

1. Indeed, Alice with (h(F ), τF ) can authenticate herself to Bob
w.r.t. identity h(F ). That is the reason we call the short secret value
τF as “trapdoor” of F .



file F . We emphasize that different files are encrypted
under independent secret keys.

1.1.4. Secure Cloud Storage Service without Reg-
istration. The File Based Authentication enables a
secure cloud storage service without pre-registration:
The first uploading of a file F (in encrypted form)
to the cloud will function as registration of the user
account (id = h(F ), pin = F ) to the cloud server
automatically, and any owner of the same file F can
authenticate to the server with h(F ) as id and F as
password. The sensitive file F is the a priori shared
secret among all owners of F , although these owners
may have no knowledge of each other. Registration-
free cloud service together with anonymous network
routing [31], [13] make it much more difficult for the
cloud server to track users’ profile (like the user-file
ownership graph) and usage history.

1.2. Organization

The rest of this paper is organized as below: We
brief our main idea in the next Section 2 and introduce
the background and related works in Section 3. We
present the formulation of File Based Authentication
in Section 4, and propose a construction and prove
its security in Section 5. In Section 6, we apply
the proposed File Based Authentication scheme to
construct a secure cloud storage system which allows
client side deduplication and sharing of encrypted data.
At the end, Section 7 concludes this paper.

2. Overview

Our main idea is as below: Alice has file F in her
local storage. She chooses two strings, denoted as k
and id, randomly and independently. She encrypts the
file F with the first random string k as encryption key
using AES, to produce a ciphertext C. She somehow
encrypts both strings k and id with file F as encryption
key, using some special encryption method, to produce
a short public value t. Alice uploads (C, t) to a
cloud storage server, where this uploading functions as
registration of account (h(F ), F ) into the cloud storage
server (Assume this is the first uploading of F to the
cloud).

Another user Carol, who also has file F in local
storage, can authenticate herself to the cloud storage

server with account (h(F ), F ) in this way: Carol sends
h(F ) to the cloud storage server Bob, and Bob replies
with t. Carol decrypts t with F as decryption key to
recover the two secret strings k and id. Then Carol
can convince Bob that she has the identity id through
a Zero Knowledge Proof of Identity.

Later, Alice or Carol may authenticate to Bob with
the two strings k and id and without F . She can
download the ciphertext C of file F back from Bob
by authenticating herself using information id, and
then decrypt C with decryption key k, to retrieve
file F back. Thus, the two short secret strings k and
id serve as trapdoor for the long file F , where id
allows Alice/Carol to download the ciphertext of F
from Bob and k allows her to decrypt the ciphertext
and recover F . This short trapdoor allows Alice and
Carol to remove F from local storage (if they want to
do so), and retrieve back F through Bob on demand.

In the above description, there is an unresolved
issue: How to encrypt a short message with a long
message F as encryption key, where F may have very
low entropy compared to its bit-length? We employ an
almost universal hash family to extract a short random
value from F . Leftover hash lemma will guarantee that
the extracted short random value is statistically close
to true randomness. Then we encrypt the plaintext with
the short random value as encryption key, using a one-
time pad encryption scheme.

We remark that information leakages in the en-
cryption component, authentication component and the
randomness extraction component may have mutual
inference. The security of overall system requires rig-
orous analysis, which is very challenging.

3. Background and Related Works

3.1. Proofs of Ownership

Halevi et al. [18] proposed Proofs of Ownership
schemes to resolve the security flaw in the client-side
deduplication mechanism implemented in several cloud
storage services, including Dropbox. However, Proofs
of Ownership schemes [18] has several limitations.

First, PoW schemes [18] cannot be applied to en-
crypted data and so cannot prevent the cloud storage
server from accessing the user data stored in the cloud.
Second, although PoW alone achieves strong security, a
cloud storage server integrated with PoW schemes still



suffers from data-leakage-amplification. For example,
the user account (i.e. user id and password) of (one of)
the owner of a data file can be considered as a “short”
representation of that file. Even more worse, the root
account of the cloud storage system can be viewed as
a “short” representation of all data files stored in the
cloud storage.

3.2. Randomness Extraction

Randomness extraction [15], [24], [22], [8], [14]
studies extract short almost-uniform randomness from
a long input which has low min-entropy, or from noise
data or from physical phenomenon and so on.

3.3. Universal Hash Family and Leftover Hash
Lemma

In a ρ-Universal Hash Family [7], any two inputs is a
collision with probability at most ρ where the probabil-
ity is taken over hash function chosen uniformly from
the hash family. It turns out such hash family can serve
as a good randomness extractor, which extract a short
almost-uniform randomness from a long input with
low entropy. Leftover hash lemma [30], [4] quantifies
the amount and quality of the extracted randomness.
Performance of universal hash family is studied in [25].

Lemma 1 (Leftover Hash Lemma [30], [4]). Assume
that the family H of hash function Fs : F → {0, 1}λ
is a 1+3δ2

2λ -universal hash family. If the min-entropy of
F conditional on Z is at least λ+ 2 log(1/δ), then

SD((hs(F ), s, Z), (Uλ, s, Z)) ≤ δ,

where SD denotes the statistical difference.

3.4. Zero Knowledge Proof of Identity

Zero Knowledge Proof of Identity [17] is a proof of
knowledge of an identity which could be a uniformly
random element from a space, without revealing any
new information about this identity. We describe a
variant version of Zero Knowledge Proof of Identity
of Wu and Stinson [33] in Appendix A. Both this
variant scheme (Lemma 4) and Feige and Fiat and

Shamir (Theorem2 5 in [17]) scheme satisfy the below
property:

Definition 1 (Zero Knowledge Proof of Identity). An
ZKP of Identity scheme I = (KeyGen,Prove,Verify) is
(ε, δ)-secure, if for any PPT malicious prover P which
can convince a verifier algorithm Verify that P has the
identity id with probability at least ε, then P ′ indeed
knows the identity id with probability at least ε − δ,
where id is generated by the key generating algorithm
KeyGen.

4. Formulation

4.1. Generalized Semantic Secure Symmetric
Encryption scheme

Before defining the security requirement for a File
Based Authentication scheme, we generalize the notion
of semantic-secure for symmetric encryption scheme.
Let us define a Semantic-Secure game Gameε,ζ for a
symmetric encryption scheme (KeyGen,Enc,Dec) as
below.
Commit. The adversary A chooses a set M of equal
length bit-strings, and a distribution Π over the set
M, such that the min-entropy of distribution Π is at
least log(1/ε). The adversary A gives (M,Π) to the
challenger C.
Challenge. The challenger C samples a message M
from the set M under distribution Π. Next, the chal-
lenger randomly and independently chooses ζ number
of encryption keys ki := KeyGen(1λ), i ∈ [ζ], and
encrypts the message M under each key ki to ob-
tain a ciphertext Ci := Encki(M). All ζ ciphertexts
(C1, . . . , Cζ) are given to the adversary A.
Guess. The adversary A outputs a guess M ′ ∈M, and
wins this game if and only if M ′ = M .

Definition 2. We say a symmetric encryption scheme
(KeyGen,Enc,Dec) is (ε, δ, ζ)-Semantic-Secure under
Cross-Key Ciphertext-Only Attack, if for any PPT ad-
versary A, the probability

Pr[A wins Gameε,ζ ] ≤ ε+ δ.

2. Note that in [17], from factorization of RSA modulus n, one
can find the secret identity with noticeable probability by solving
square root and random guessing, since the identity size is only
O(log logn).



The standard semantic security can be considered
as an extreme (strong) case: (1/2, negl, 1)-Semantic-
Secure under Cross-Key Ciphertext-Only Attack.

Proxy re-encryption scheme might achieve such
(ε, δ, ζ)-semantic-security. Several negative results (e.g.
[23]) on the security of RSA scheme under this attack
model are known.

4.2. File Based Authentication: System Defini-
tion

A FBA scheme (E ,D,P1,P2,V) consists of five
algorithms E , D, P1, P2 and V .
• E(F, 1λ) → (τ, C, t): The probabilistic encoding

algorithm E takes as input a data file F and a
security parameter λ, and outputs a secret trapdoor
τ , a ciphertext C and a public token t.

• D(τ, C) → F : The deterministic decoding algo-
rithm takes as input a trapdoor τ and a ciphertext
C, and outputs a file F .

• 〈P1(F ),V(t)〉 → (τ ; b): The prover algorithm
P1 with a file F as input interacts with the verifier
algorithm V with a public token t as input. At the
end of interaction, the prover algorithm P1 gets
output τ and the verifier algorithm V gets output
b ∈ {Accept, Reject}.

• 〈P2(τ),V(t)〉 → (⊥; b): The prover algorithm
P2 with trapdoor τ as input interacts with the
verifier algorithm V with a public token t as input.
At the end of interaction, the prover algorithm P2

gets no output and the verifier algorithm V gets
output b ∈ {Accept, Reject}.

Definition 3 (Correctness). We say a FBA system
(E ,D,P1,P2,V) is correct, if the following conditions
hold: For any data file F ∈ F and any positive integer
λ, and (τ, C, t) := E(F, 1λ),
• D(τ, C) = F .
• 〈P1(F ),V(t)〉 = (τ, Accept).
• 〈P2(τ),V(t)〉 = (⊥, Accept).

4.3. File Based Authentication: Security Defi-
nition

Informally, in a FBA security game, the adversary
first plays the role of verifier and talks to owners of
file F to learn information, and then plays the role
of prover, attempting to convince an honest verifier to

accept the adversary as an owner of F , or try to find
the value of F .

The FBA security game GFBA
A (λ, ε, ζ) between a

PPT adversary A and a challenger w.r.t. FBA scheme
(E ,D,P1,P2,V) is defined as below.
Setup. The challenger chooses a file F from do-
main F, and runs the encoding algorithm to obtain
(τ0, C0, t0) := E(F, 1λ), where t0 contains a hash value
h(F ) of F as a part.
Leak. The adversary A has a one-time access to oracle
OF . We emphasize that the oracle OF is completely
ignorant to (τ0, C0, t0). After this oracle access, the
challenger sends t0 to the adversary A. Until now,
the file F has min-entropy at least log(1/ε) ≥ λ
conditional on the adversary’s view (This is our pre-
condition).
Learning. The adversary A can adaptively make
queries to the challenger, where each query is in one
of the following forms:

• Setup query: The challenger responses the i-th
setup query by running the probabilistic encoding
algorithm on F to generate (τi, Ci, ti) := E(F, 1λ)
and sending (Ci, ti) to the adversary. The adver-
sary can make at most ζ queries in this type.

• Type-I Authentication query: The challenger, run-
ning the prover algorithm P1 with input F , inter-
acts with adversary A which replaces the verifier
algorithm V , to obtain b := 〈P1(F ),A〉. The
adversary knows the value of b, and can make
polynomially many queries in this type.

• Type-II Authentication query (i): If i > 0 and
the adversary A has not made i number of setup
queries yet, the challenger ignores this query and
does nothing. Otherwise, the challenger, running
the prover algorithm P2 with input τi, interacts
with adversary A which replaces the verifier algo-
rithm V , to obtain b := 〈P2(τi),A〉. The adversary
knows the value of b, and can make polynomially
many queries in this type.

Commit. The adversary A commits to a token ti∗ with
i∗ ∈ [0, ζ].
Guess. The adversary A outputs a guess F ′ and wins
if F ′ = F .
Forge. The challenger, running the verifier algorithm
V with input ti∗ , and interacts with the adversary
A, which replaces the prover algorithm P2, (P1, re-
spectively), to obtain result (⊥, b∗) := 〈A,V(ti∗)〉,



where b∗ ∈ {accept, reject}. The adversary wins
if b∗ = accept.

We remark that we allow the adversary to make
setup query in the above security game, to capture the
possibility that a third party attacker impersonates the
cloud storage Bob to lure Alice and Carol to upload
their file F (e.g. phishing attack).

Definition 4. We say a FBA system (E ,D,P1,P2,V)
is (ε, δ, ζ)-Secure, if for any PPT adversary A, the
following conditions hold: Let F ′ and b∗ be as in the
Guess phase and Forge phase in game GFBA

A (λ, ε, ζ),
• (ε, δ, ζ)-privacy-preserving: Pr[F ′ = F ] ≤ δ.
• (ε, δ, ζ)-unforgeable: Pr[b∗ = accept] ≤ δ.

5. File Based Authentication Scheme

5.1. Overview

The idea is that: The sensitive data file is encrypted
using an encryption scheme. We allow a client to
access the private encryption key if and only if the
client indeed has access to the exactly same file.
Informally, we encrypt secret information using the
data file as the private encryption key.

5.2. Construction

Let I = (KeyGen,Prove,Verify) be a Zero
Knowledge Proof of Identity scheme. and E =
(KeyGen,Enc,Dec) be a symmetric encryption scheme
(e.g. AES). Let h be a full domain secure hash function
(e.g SHA256) and {Hs} be a keyed-hash family. Let ⊕
denote the XOR operator between two equal length bit-
strings. We construct a FBA scheme (E ,D,P1,P2,V)
as below.

5.2.1. Main Construction.

E(F, 1λ).
1) k1 := E.KeyGen(1λ) and k2 := E.KeyGen(1λ),

where k1, k2 ∈ {0, 1}λ
2) (id, PK) := I.KeyGen(1λ) , where id is uni-

formly random over {0, 1}γλ

3) s1, s2
$←− {0, 1}λ

4) τ = k1‖id
5) C := E.Enck1(F ) and Cid := E.Enck2(id)

6) t := (s1, s2, Hs1(F ) ⊕ k1, Hs2(F ) ⊕ k2,
Cid, PK, h(F ))

7) Output (τ, C, t).

D(τ, C).
1) Parse τ as k1‖id and extract k1.
2) F ′ := E.Deck1(C)
3) Output F ′.

〈P1(F ′), V(t)〉.
V1: Send t to the prover.
P1: Parse t as (s1, s2, Hs1(F ) ⊕ k1, Hs2(F ) ⊕ k2,

Cid, PK, h(F )). Compute the secret keys k′1, k
′
2

as below

k′1 := Hs1(F ′) ⊕
(
Hs1(F )⊕ k1

)
k′2 := Hs2(F ′) ⊕

(
Hs2(F )⊕ k2

)
Decrypt Cid to obtain id′ := E.Deck′2(Cid). The
secret trapdoor τ ′ = k′1‖id′.

V↔P: Run the Zero Knowledge Proof of Identity pro-
tocol I between the prover and the verifier:

b := 〈I.Prove(id′), I.Verify(PK)〉

At the end of this procedure, the prover gets
output τ ′ and the verifier gets output b ∈
{accept, reject}.

〈P2(τ ′), V(t)〉.
V1: Send t to the prover.
P1: Ignore verifier’s first message t. Parse τ ′ as

k′1‖id′ and extract id′.
V↔P: Run the Zero Knowledge Proof of Identity pro-

tocol I between the prover and the verifier:

b := 〈I.Prove(id′), I.Verify(PK)〉

At the end of this procedure, the prover gets
no output and the verifier gets output b ∈
{accept, reject}.

Notice that in the above construction, the (honest)
verifier V cannot distinguish whether he/she is talking
to prover P1 or P2.



Table 1: The differences between the alternative con-
struction and the main construction in instruction level

Alternative Construction Main Construction
Hash Hs : F→ {0, 1}γλ Hash Hs : F→ {0, 1}λ
Cid = Hs2(F )⊕ id Cid = E.Enck2(id)
No k2 Has k2

t := (s1, s2, Hs1(F ) ⊕ k1,
Cid, PK, h(F ))

t := (s1, s2, Hs1(F ) ⊕ k1,
Hs2(F )⊕k2, Cid, PK, h(F ))

All other differences implied
by the above differences

All other differences implied
by the above differences

5.2.2. Alternative Construction. The alternative con-
struction is almost the same as the main construction
in Section 5.2.1, except the following differences listed
in Table 1.

Looking from the high level, the main construction
requires that the file F has low min-entropy (at least
λ) and can be proved in general case in the random
oracle model; the alternative construction requires that
the file F has high min-entropy (at least γλ, where γ is
determined by the underlying Zero Knowledge Proof
of Identity protocol I), and can be proved in a simple
case (when adversary does not make any set up queries,
i.e. ζ = 0, in the security game), in the standard model,
by replacing random oracle with some almost universal
hash family and Leftover Hash lemma.

5.3. Security Analysis

Theorem 2 (The Main Construction is Secure). Sup-
pose hash functions h and H are random oracles,
encryption scheme E is an (ε, δ1, ζ + 1)-Semantic-
Secure under Cross-Key Ciphertext-only Attack, and
the Zero Knowledge Proof of Identity protocol I is
(ε′, δ2)-secure with ε′ > δ1 + δ2 +2−λ. Then the above
main construction (E ,D,P1,P2,V) in Section 5.2.1 is
a correct and (ε, δ, ζ)-Secure FBA where ε ≤ 2−λ,
δ = ε′ > δ1 + δ2 + 2−λ and integer ζ ≥ 0.

Proof of Theorem 2: The correctness follows
immediately from the correctness of the underlying en-
cryption scheme and Zero Knowledge Proof of Identity
scheme. We save the details. Now, we focus on the
proof of security of the proposed scheme. We show
the privacy preserving property first, and then prove
the unforgeability property.

Privacy Preserving.

Claim 1. There exists a PPT algorithm, which takes
a ciphertext C = E.Enck1(F ) as input and outputs t,
such that (C, t) is identically distributed as the last
two outputs of E(F, 1λ).

We construct the conversion algorithm as below.
1) Input is C = E.Enck1(F ).
2) Choose key k2 := E.KeyGen(1λ) independently.
3) Choose (id, PK) := I.KeyGen(1λ) inde-

pendently. Encrypt id to obtain Cid :=
E.Enck2(id).

4) Choose s1, s2, u1, u2, u3 from {0, 1}λ uniformly
and independently.

5) Program the random oracle H by setting (con-
ceptually) Hs1(F ) := u1 ⊕ k1 and Hs2(F ) :=
u2 ⊕ k2.

6) Program the random oracle h by setting h(F ) :=
u3.

7) Output is (C,Cid, h(F ), s1, s2, Hs1(F ) ⊕ k1,
Hs2(F )⊕k2), which is equal to (C,Cid, u3, s1,
s2, u1, u2).

Until now, the proof of Claim 1 is complete. Note:
In the above conversion, both k1 and F are always
unknown.

Claim 2. Let F be a file which has at least log(1/ε)
min-entropy. Let C0, C1, . . . , Cζ be (ζ+1) ciphertexts,
where each Ci = E.Encki(F ) is a ciphertext of file
F under key ki and encryption keys k0, k1, . . . , kζ
are independently and randomly chosen. There exits a
PPT algorithm B, which takes C0, C1, . . . , Cζ as input,
and can simulate the challenger in the security game
GFBA
A (λ, ε, ζ).

Algorithm B runs as below:
1) For each ciphertext Ci, i ∈ [0, ζ], run the conver-

sion algorithm specified in Claim 1 to obtain ti.
Furthermore, each identity idi w.r.t. ti is known.

2) In the Leak phase, give t0 to the adversary.
3) Choose u

$←− {0, 1}λ at random, and program
random oracle h by setting each h(F ) in ti to
the same value u.

4) For the i-th setup query made by the adversary,
i ∈ [ζ], respond with (Ci, ti).

5) For each Type-I or Type-II authentication query
made by the adversary, follow the security game,
with the secret information idi.

Notice that in GFBA
A (λ, ε, ζ), the adversary can make at

most ζ number of setup queries. Therefore, Claim 2 is



proved.
From Claim 2, we conclude that

Pr[A finds F in game GFBA
A (λ, ε, ζ)]

≤Pr[B(C0, . . . , Cζ) = F ]

≤ε+ δ1. (1)

The last inequality holds since the encryption scheme
E is (ε, δ1, ζ + 1)-Semantic-Secure.

Unforgeable. We just proved that for any PPT ad-
versary A, after interacting in the security game, the
probability that A finds the file F is at most ε + δ1.
In a similar way, we can prove that, for any PPT
adversary A, after interacting in the security game, the
probability that A finds the file id is at most 2−λ+δ1.

Recall that I is an (ε′, δ2)-secure Zero Knowledge
Proof of Identity protocol with ε′ > δ1 + δ2 + 2−λ.
Suppose the PPT adversary A can pass the authentica-
tion system with probability at least ε′, then A knows
the corresponding identity id with probability at least
ε′ − δ2 > δ1 + 2−λ. Contradiction! Therefore, no PPT
adversary A can pass the authentication system with
probability larger than or equal to ε′. That is,

Pr[A is accepted in game GFBA
A (λ, ε, ζ)] ≤ ε′. (2)

Now we combine results in privacy preserving as-
pect and the unforgeability aspect. Recall that, in
privacy preserving aspect, we just showed that

Pr[A finds F in game GFBA
A (λ, ε, ζ)] ≤ ε+ δ1. (3)

Since ε ≤ 2−λ (it is a precondition), we have

ε+ δ1 ≤ 2−λ + δ1 ≤ ε′. (4)

As a result, the proposed main construction is a (ε, δ =
ε′, ζ)-secure File based Authentication scheme.

Theorem 3 (The Alternative Construction is Secure
when ζ = 0). Suppose {Hs : F → {0, 1}γλ} is a
1+3δ21
2γλ -universal hash family, and the Zero Knowledge

Proof of Identity protocol I is (ε′, δ2)-Secure with ε′ >
2−γλ + δ1 + δ2. Then the alternative construction in
Section 5.2.2 is correct and (ε, δ, ζ)-Secure, where ζ =
0, log(1/ε) > λ + 2 log(1/δ1) and δ = ε′ > 2−γλ +
δ1 + δ2.

Notice that when ζ = 0, the adversary does not see
any ciphertexts of the file F in the FBA security game,
thus the mutual influence of information leakage in the
encryption part and the randomness extraction part are
avoided. In this simple case, we manage to prove the
proposed scheme in standard model, using some almost
universal hash function with Leftover Hash Lemma to
replace the random oracle.

Proof of Theorem 3: The proof of correctness is
straightforward. We focus on proof of security. After
Leak phase of the security game, the adversary learns
the hash function h(F ), and the file F has min-entropy
larger than or equal to log(1/ε) > λ + 2 log(1/δ1),
conditional on the view of the adversary. By the Left-
over Hash Lemma 1, the statistical difference between
the output of universal hash family {Hs} and true
randomness over {0, 1}γλ is at most δ1.

Since id is chosen uniformly randomly from
{0, 1}γλ, and protected in Hs2(F )⊕ id with Hs2(F ),
which is δ1-close to true randomness in {0, 1}γλ, no
(even if unbounded) adversary can guess the value
id with probability larger than 2−γλ + δ1. Since I
is a (ε′, δ2)-secure Zero Knowledge Proof of Identity
protocol, any PPT adversary A cannot convince the
challenger to accept in the Forge phase of the security
game with probability larger than ε′ > 2−γλ + δ1 + δ2.
Therefore,

Pr[A finds F ] ≤ Pr[A is accepted in game GFBA
A ] ≤ ε′.

(5)

5.4. Open Problem

We realize that due to the mutual influence of
information leakages in the encryption scheme and the
universal hash, the (ε, δ, ζ)-security of the constructed
FBA scheme (both main construction and alternative
construction) with ζ ≥ 1 in the standard model,
requires more rigorous analysis. We leave the construc-
tion of provable (ε, δ, ζ)-secure FBA with ζ ≥ 1 in the
standard model as an open problem.

5.5. A Concrete Instantiation

5.5.1. Encryption Scheme. Our construction requires
the underlying encryption scheme to be (ε, δ, ζ)-
Semantic-Secure.



In real world application of our proposed scheme,
we may choose AES-256 [9] (i.e. AES with 256
bits key) with random initial value as the underlying
encryption scheme. To encrypt a file F under key k,
choose a random initial value IV independently and
output ciphertext (IV,AESk(IV, F )). We emphasize
that, AES encryption method has already been used
widely, with implicitly assumed (ε, δ, ζ)-Semantic-
Security. For example, in SSL/TLS encrypted websites,
a web page is encrypted using AES with different
encryption key and different initial value per each
request of that page.

It might be possible to construct provable (ε, δ, ζ)-
Semantic-Secure encryption scheme using proxy re-
encryption scheme [6], [3].

5.5.2. Hash Function. We choose hash function
SHA256 [26] as the full domain hash function h.

We choose almost universal hash family as the
keyed-hash H, for example, the AES-based universal
hash family by Barak et al. [4].

We remark that some constructions of universal hash
family (e.g. [12]) exploit property of linear system or
modulo group/field. There might be a potential risk,
that the original input F can be recovered from many
number of hash outputs {(s,UHFs(F )}. In practice,
we can set Hs(F ) := (s, h(UHFs(F ))).

5.5.3. Zero Knowledge Proof of Identity. One choice
is the Feige and Fiat and Shamir [17] scheme, which
requires O(λ log λ) bits long identity id, and O(λ)
round complexity.

An alternative choice is the ZKP of Identity scheme
described in Appendix A, whose security is based
Knowledge of Exponent Assumption [10]. In this
scheme, the size of identity id is O(λ), and the round
complexity is 1.

We remark that in both of above schemes, the
identity is chosen from a group uniformly randomly.
With proper coding scheme, we can choose identity
uniformly randomly from a space {0, 1}λ with proper
λ.

6. Application of File Based Authentication in
Cloud Storage Service

Let (E ,D,P1,P2,V) be the File Based Authentica-
tion scheme, constructed in Section 5.2.1. In this sec-

tion, we will apply this scheme to enable a registration-
free secure cloud service, where each data file is en-
crypted on the client side, and client-side deduplication
and sharing of encrypted files are supported. Further-
more, existing Proofs of Storage schemes (i.e Proofs
of Retrievability [21], [28] and Provable Data Posses-
sion [2], [1]) and Proofs of Ownership schemes [18]
can be incorporated with the proposed cloud storage
service, in a seamless way.

We assume that the cloud storage server Bob is
semi-honest, such that he will constantly maintain the
integrity and availability of users’ files, and yet he is
curious to learn users’ sensitive data. In this section,
we only consider users’ sensitive data file F which
should be encrypted before uploaded to the cloud. In
a real implementation of our proposed solution, the
cloud server Bob should authenticate himself to each
user before each interaction. For simplicity, the below
description of our solution ignore the authentication of
Bob’s identity.

6.1. Cloud Storage Service without Registra-
tion

In a cloud storage service, many users store their
files in a cloud storage server. These users may or may
not keep a copy of their files in their local storage. They
may download files from the server on demand, and
share files among friends. To maintain a proper access
control on users’ files and prevent unauthorized access,
each user is required to register an account in the cloud
storage server before enjoying the cloud service.

A bit surprisingly, File Based Authentication can
support a secure cloud storage service without pre-
registration of user accounts. We can view our solution
in this way: all owners of a file F share the same
account (h(F ), F ) with h(F ) as identity and F as
password, although these owners may have few or no
knowledge of each other. The first uploading of F
into the cloud by some owner and the registration of
account (h(F ), F ) are in a single step. From the users’
point of view, there is no additional registration process
before using the cloud service, since the first use (w.r.t.
a file F ) of cloud service is considered as registration
by the server. Compared with the typical cloud storage
service with user registration [16], [32], our solution
together with anonymous network routing [31], [13]
can protect user privacy better, in the sense that it will



be more difficult for the cloud server to track users’
profiles and usage history.

6.2. First Upload of file F

Suppose Alice is the first user who uploads data file
F to the cloud storage server Bob. Alice chooses a
security parameter λ and runs the encoding algorithm
E to obtain (τF , CF , tF ) := E(F, 1λ). Then Alice
uploads the ciphertext CF , the public token tF and the
hash value h(F ) to Bob, and keeps the secret trapdoor
τF safely. Alice also keeps the hash value h(F ). Bob
will keep tuple (h(F ), CF , tF ) in the cloud storage.
The above single process takes two functionalities
simultaneously:

• Upload the ciphertext CF of file F to the cloud
storage server.

• Enroll account (h(F ), F ) with user name h(F )
and password F to the cloud storage server.

6.3. Subsequent Upload of file F and Client-
side Deduplication across users

Suppose Carol is one of the subsequent users who
try to upload the file F ′ to Bob. Carol sends the
hash value h(F ′) to Bob. If Bob finds a matching
tuple (h(F ′), CF ′ , tF ′) in his cloud storage, then a
duplication event occurs. Next, Carol,who is running
the prover algorithm P1(F ′), interacts with Bob, who
is running the verifier algorithm V(tF ′). At the end
of interaction, Carol obtains a secret trapdoor τF ′ and
Bob obtains b ∈ {Accept, Reject}.

The correctness of our FBA scheme guarantees that
if F ′ = F , then τF ′ = τF and b = Accept. The
security of our FBA scheme guarantees that if F ′ 6= F
and the min-entropy of file F conditional on Carol’s
view is at least ε (ε is specified in Theorem 2), then
with overwhelming high probability that τF ′ 6= τF and
b = Reject.

We remark that even if (F ′, F ) forms a collision
of hash h, i.e. h(F ′) = h(F ) and F ′ 6= F , Carol
still cannot get the trapdoor τF for F or convince
honest Bob to accept, as long as the min-entropy of
F conditional on Carol’s view is at least ε.

6.4. Retrieving F from Cloud with short trap-
door

With the hash value h(F ) and the secret trapdoor τF
at hand, Alice or Carol may remove F from her local
storage (if she wants), and retrieve F back through
the cloud storage server Bob using the trapdoor on
demand.

In order to retrieve file F , Alice authenticates to
Bob w.r.t. to user name h(F ): Alice, who is running
prover algorithm P2(τF ), interacts with Bob, who is
running the verifier algorithm V(tF ), to get output
(⊥, b) := 〈P2(τF ), V(tF )〉. Since the File Based
Authentication scheme is correct, b = accept with
certainty. After successful authentication, Alice may
request to download the ciphertext CF from Bob,
and then decrypt CF using the trapdoor τF : F :=
D(τF , CF ).

Carol may run the exactly same procedure as Alice
does to recover file F from cloud storage server Bob.

6.5. Client-side Sharing

Current sharing mechanism in cloud storage is im-
plemented on the server side: If a user Alice grants
another user Carol to access Alice’s file F , the cloud
storage server Bob will provide a soft link of F to the
user who can authenticate himself/herself with Carol’s
account id. With all files encrypted before uploaded
to the cloud, the server itself is not able to access the
content of users’ files, and cannot grant any other users
to access a particular file, neither. Therefore, the server-
side sharing mechanism does not work with encrypted
data. The cloud server can only grant users to download
the encrypted data files with no means to decrypt them.

When all data files are encrypted, our solution allows
client-side sharing between friends. To share a file
F with Carol, Alice passes the corresponding secret
trapdoor τF together with hash value h(F ) to Carol via
a secure channel. With the secret trapdoor τF , Carol
can convince the cloud storage server Bob to accept
w.r.t. h(F ), and thus can download the ciphertext CF
of file F from Bob, where CF can be decrypted using
τF . We emphasize that in our scheme, different files
will have independent encryption keys, even if they
belong to the same owner.



6.6. Proofs of Storage and Proofs of Ownership

In this paper, we focus on the privacy protection of
users’ data files stored in the cloud storage against third
party attackers, and the semi-honest cloud server, who
will keep users’ files intact but curious to know the
sensitive information in users’ file. If the data integrity
is a concern, we may straightforwardly apply existing
Proofs of Storage (PoS) schemes, including Proofs of
Retrievability schemes [21], [28] and Provable Data
Possession schemes [2], on the top of the solution pro-
posed in this paper, taking the deterministic ciphertext
CF as input file for POR or PDP scheme. Addition-
ally, the Proofs of Ownership (PoW) schemes [18] can
also be applied directly on top of our scheme by taking
the deterministic ciphertext CF as input file.

For this purpose, we request the underlying encryp-
tion scheme of the File based Encryption scheme is
deterministic. We emphasize that deterministic encryp-
tion with random initial value is allowed, as long as
the initial value will be part of the resulting ciphertext.

Applications of PoS and PoW schemes upon file
F is straightforward for the first user who uploads
file F to the cloud storage server. We will focus on
subsequent users who try to upload F to the cloud.

6.6.1. Proofs of Storage. Assume file F is in the
cloud already. Carol, an owner of F , tries to upload F
to the cloud. After interacting with the cloud storage
server, Carol will know there is a copy of ciphertext
CF of file F in the cloud already. Carol authenticates
herself to the cloud server with user name h(F )
and password F , and obtains the secret trapdoor τF .
From the trapdoor τF = kF ‖idF , Carol extracts the
encryption key kF and encrypts the file F in her local
storage to obtain a ciphertext CF := E.EnckF (F ).
Then Carol runs the setup algorithm of an existing
Proofs of Storage scheme, taking file CF as input.
Let (CF ,R,TF ) denote the output, where (CF ,R)
is the error erasure encoded file of CF and TF is the
authentication tag. Next, Carol sends both R and TF to
the cloud storage server Bob, and saves the commu-
nication bandwidth for the ciphertext CF , since Bob
has the same ciphertext already. This completes the
setup phase of the PoS scheme w.r.t. file CF between
Carol and Bob. Later, Carol can verify integrity of
file CF stored in Bob’s storage periodically, remotely
and reliably, by running the authentication algorithm of

the PoS scheme, without trusting in Bob and without
downloading CF .

We remark that, before removing F and CF from
local storage, Carol may run the authentication scheme
of PoS scheme to ensure that Bob indeed has CF .

6.6.2. Proofs of Ownership. Similar as above, Carol
can obtain the secret trapdoor τF by authenticating to
Bob with user name h(F ) and password F , and obtain
ciphertext CF by encrypting F in her local storage with
key in the trapdoor τF . Suppose the PoW has been
setup upon the ciphertext CF by some other owner of
F or by Bob. Then Carol can run the PoW scheme
to convince Bob that she indeed owns CF in local
storage. Before deleting F and CF from local storage,
Carol may require Bob to prove that he indeed owns
CF using the PoW scheme. Such mutual proofs of
ownership may prevent a faked cloud storage server
(e.g. phishing attack) luring Carol to delete her files.

7. Conclusion

In this paper, we proposed a notion of “File Based
Authentication”, i.e. the owner of a file can authenticate
himself/herself to a cloud server with the file as secret
authentication key. We gave an efficient construction
of File Based Authentication, and applied it to support
secure client-side deduplication and sharing of en-
crypted data in cloud storage service. Furthermore, File
Based Authentication implies that a secure cloud stor-
age service without pre-registration of user accounts
can be constructed. Building a secure cloud storage
service over P2P [20], [27] network by integrating our
solution with Proofs of Storage is in the future work.
The possibility of registration-free and secure cloud
computing for any other sorts of services rather than
storage remains an open problem.
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Krawczyk, and Tal Rabin. Randomness Extraction and
Key Derivation Using the CBC, Cascade and HMAC
Modes. In CRYPTO ’04, pages 494–510, 2004.

[15] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and
Adam Smith. Fuzzy Extractors: How to generate strong
keys from biometrics and other noisy data. SIAM
Journal on Computing, 38(1):97–139, 2008.

[16] Dropbox. Dropbox. http://www.dropbox.com/.

[17] Uriel Feige, Amos Fiat, and Adi Shamir. Zero Knowl-
edge Proofs of Identity. In STOC ’87: ACM symposium
on Theory of computing, pages 210–217, 1987.

[18] Shai Halevi, Danny Harnik, Benny Pinkas, and Alexan-
dra Shulman-Peleg. Proofs of ownership in remote
storage systems. In CCS ’11: ACM conference on
Computer and communications security, pages 491–
500, 2011.

[19] Shulman-Peleg A. Harnik D., Pinkas B. Side Channels
in Cloud Services: Deduplication in Cloud Storage.
IEEE Security and Privacy Magazine, special issue of
Cloud Security, 8(6), 2010.

[20] Tomas Isdal, Michael Piatek, Arvind Krishnamurthy,
and Thomas E. Anderson. Privacy-preserving P2P data
sharing with OneSwarm. In SIGCOMM, pages 111–
122, 2010.

[21] Ari Juels and Burton S. Kaliski, Jr. Pors: proofs
of retrievability for large files. In CCS ’07: ACM
conference on Computer and communications security,
pages 584–597, 2007.

[22] Hugo Krawczyk. Cryptographic extraction and key
derivation: The hkdf scheme. In CRYPTO ’10, pages
631–648, 2010.

[23] Alexander May and Maike Ritzenhofen. Solving sys-
tems of modular equations in one variable: how many
RSA-encrypted messages does eve need to know? In
PKC ’08, pages 37–46, 2008.

[24] Michael Mitzenmacher and Salil Vadhan. Why simple
hash functions work: exploiting the entropy in a data
stream. In SODA ’08: ACM-SIAM symposium on
Discrete algorithms, pages 746–755, 2008.

http://www.dropbox.com/


[25] Wim Nevelsteen and Bart Preneel. Software perfor-
mance of universal hash functions. In EUROCRYPT
’99, pages 24–41, 1999.

[26] NIST. National Institute of Standards and Technology.
Secure hash standard (SHS). FIPS 180-2, August 2002.

[27] OneSwarm. OneSwarm. http://www.oneswarm.org/.

[28] Hovav Shacham and Brent Waters. Compact Proofs of
Retrievability. In ASIACRYPT, pages 90–107, 2008.

[29] SpiderOak. SpiderOak. https://spideroak.com/.

[30] D. R. Stinson. Universal hash families and the leftover
hash lemma, and applications to cryptography and
computing. Journal of Combinatorial Mathematics and
Combinatorial Computing, 42:3–31, 2002.

[31] Paul Syverson, David Goldschlag, and Michael Reed.
Anonymous Connections and Onion Routing. In SP
’97: IEEE Symposium on Security and Privacy, pages
44–, 1997.

[32] Wikipedia. Comparison of online backup ser-
vices. http://en.wikipedia.org/wiki/Comparison of
online backup services.

[33] Jiang Wu and Doug Stinson. An Efficient Identification
Protocol and the Knowledge-of-Exponent Assumption.
Cryptology ePrint Archive, Report 2007/479, 2007.
http://eprint.iacr.org/.

Appendix A.
Zero Knowledge Proof of Identity

Here we give a simple Zero Knowledge Proof of
Identity scheme based on Knowledge of Exponent
Assumption [10], [11], [5], which can be considered
as a variant of Wu and Stinson [33].

KeyGen(1λ).
1) Find at random a group (p, g,G), where G is a

multiplicative cyclic group of prime order p and
g is a random generator of G.

2) id
$←− Z∗p.

3) PK := gid.
4) Output (id, PK).

〈Prove(id), Verify(PK)〉.
V1 : Choose a, b

$←− Z∗p. Compute h := gb. Send
(h, ha) to Prover.

P1 : Send (A,B) = (hid, (ha)id , ) to Verifier.
V1 : If Aa = B and A = PKb, then accept; otherwise

reject.

Assumption 1 (KEA [10], [11]). For any PPT algo-
rithm A which takes input (g, ga) and random coin r
and outputs (A,B) such that Aa = B with probability
at least µ, then there exists a PPT extractor algorithm
Ā which takes input (g, ga, r) and outputs x such that
gx = A with probability at least µ − ν, where ν is
negligible in the security parameter.

Lemma 4. The above construction of proof of iden-
tity scheme is (µ, ν)-secure Zero Knowledge Proof of
Identity, under Knowledge of Exponent Assumption 1.

A.1. Proof of Knowledge of Identity

By Knowledge of Exponent Assumption, if there is
a PPT algorithm which given (h, ha) outputs (A,Aa),
then there exists a PPT extractor which can find x such
that hx = A. Thus gbx = hx = A = PKb = gid×b,
which implies bx = b × id mod p and x mod p =
id.

A.2. Zero Knowledge

Since the verifier himself/herself can compute
prover’s response (A,B) = (PKb, PKab), the verifier
gains no new knowledge from the interaction.
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