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Abstract. In resetting attacks against a proof system, a prover or a verifier is reset and enforced
to use the same random tape on various inputs as many times as an adversary may want. Recent
deployment of cloud computing gives these attacks a new importance. This paper shows that argument
systems for any NP language that are both resettably-sound and resettable zero-knowledge are possible
by a constant-round protocol in the BPK model. For that sake, we define and construct a resettably-
extractable conditional commitment scheme.
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1 Introduction

Resettable zero-knowledge proofs. The notion of resettable zero-knowledge of proof systems was
proposed by Canetti, Goldreich, Goldwasser and Micali [4]. It requires that proofs be zero-knowledge
even if a prover is reset and enforced to use the same random tape on various inputs as many times
as an adversarial verifier may want. This resetting attack is motivated by attacks against smart
cards, where a stolen card can be reset as many times as an attacker wants. Recent deployment
of cloud computing gives the notion new importance, because virtual machines in a cloud are far
more easier for adversaries to reset than real machines in the user’s perimeter [10], [13], [14].

[4] shows that assuming the existence of 2-round perfectly-hiding commitments, there exist
resettable zero-knowledge proofs with a polynomial number of rounds for all NP languages. Later,
the round complexity is improved to poly-logarithmic number by Kilian and Petrank [11].

[4] also presented the notion of the bare public key (BPK) model. The only requirement in the
BPK model is that all verifiers deposit some public-key in a public file before the prover begins
the interaction. They constructed constant-round resettable zero-knowledge arguments in the BPK
model, assuming some sub-exponential hardness assumption.

Resettably-soundness. Barak, Goldreich, Goldwasser and Lindell [3] proposed the notion of resettably-
soundness, the dual notion of resettable zero-knowledge. It requires that proofs be sound even if
a verifier is reset and enforced to use the same random tape on various inputs as many times as
an adversarial prover may want. Resettably-sound zero-knowledge proofs exist only for languages
in non-uniform P . Even for arguments no resettably-sound zero-knowledge arguments exist for
language outside BPP if the simulator is black-box.

[3] constructed a constant-round resettably-sound zero-knowledge argument for NP only assum-
ing collision-resistant hash functions. In the construction, the Barak’s non-black-box constant-round
zero-knowledge argument [1], especially the fact that it has only constant-round, plays the essential
role.



By utilizing that resettably-sound zero-knowledge argument, [3] also constructed a constant-
round sequentially-sound resettable zero-knowledge argument in the BPK model. (We note that
soundness in the BPK model is divided into four subcategories; stand-alone, sequential, concurrent
and resettable soundness [12].)

Resettably-sound resettable zero-knowledge argument. How about simultaneous resettability ? Crescenzo,
Persiano and Visconti [5] showed that a constant-round concurrent-sound resettable zero-knowledge
argument is possible in the BPK model assuming some sub-exponential hardness assumption. More-
over, Deng and Lin [8] constructed a constant-round concurrent-sound resettable ZK argument in
the BPK model only assuming collision resistant (against polynomial-time adversaries) hash func-
tions.

In the plain model, Deng and Lin [7] showed that if there exist public-coin concurrent zero
knowledge arguments for NP, then there exist resettably-sound resettable zero knowledge argu-
ments for NP. However, it is not known whether there exist public-coin concurrent zero knowledge
arguments for NP.

Recently, Deng, Goyal and Sahai [6] gave a breakthrough. They gave a new non-back-box
strategy based on the Barak’s simulator and showed that there exists a both resettably-sound and
resettable zero-knowledge argument system for all languages in NP in the plain model, assuming
trapdoor permutations and collision-resistant hash function families. Its round-complexity is square
in the security parameter.

Our contribution. This paper gives the first constant-round argument system for all NP languages
in the BPK model that is both resettably-sound and resettable zero-knowledge.

First, we establish the resettably-soundness, that is, we construct a constant-round resettably-
sound concurrent zero-knowledge argument system in the BPK model. To do that, basically we
follow the design principle of Deng and Lin [8], which is a variant of Feige and Shamir construc-
tion of zero-knowledge argument. However, in the course, we define and construct a new variant
of commitment scheme, resettably-extractable conditional commitment scheme. In the commitment
scheme, simulator can extract the adversary’s commitment value even if receiving reset operations
at arbitrary moments under some “condition”. Thus, by using the resettably-extractable conditional
commitment scheme in the Deng and Lin type construction, a verifier-simulator can extract a value
committed to by a cheating committer (played by a prover) even if receiving reset operations at
arbitrary moments under some “condition”, and this leads to the resettably-soundness. We will see
depending on such “condition” can be justified and obtain a constant-round resettably-sound con-
current zero-knowledge argument. Then, we enhance the argument to be resettable zero-knowledge
too, by applying to that argument system the transformation of [6], from resettably-sound relaxed-
concurrent zero-knowledge arguments to resettably-sound resettable zero-knowledge arguments.
That results in a constant-round resettably-sound and resettable zero-knowledge argument system
for all NP languages in the BPK model.

2 Definitions

First, we recall some definitions regarding security against resetting attacks, following [4], [3].

Let (P, V ) be an interactive proof or argument system for an NP-language L. We denote the
possible number of sessions between P and V as t = poly(n). Let [t] denote a range {1, 2, . . . , t}.
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We denote statements to be proved as x = (x1, . . . , xt) with their corresponding witnesses y =
(y1, . . . , yt) (each yi witnesses xi ∈ L).

2.1 Resetting Attack by Cheating Verifiers

A resetting attack by a cheating verifier V ∗ goes as follows.

1. Choose t independent random tapes ω1, . . . , ωt. For i ∈ [t] and j ∈ [t], let P(i,j) := P (xi, yi;ωj)
denote a prover on input a statement xi, its witness yi and a random tape ωj . We call each
P(i,j) an incarnation of prover P .

2. A cheating verifier V ∗ performs a polynomial number of sessions with the incarnations P(i,j)

in a sequential manner. Here, V ∗ can adaptively select which incarnation P(i,j) it has a session
with. Same incarnation P(i,j) can be selected many times.

3. V ∗ halts with an output based on its view. We denote the output as (P (x, y), V ∗(x)).

Definition 1 (resettable WI) An interactive proof or argument system (P, V ) for an NP lan-
guage L is said to be resettable witness indistinguishable, if the following two ensemble are compu-
tationally indistinguishable in all resetting attacks by arbitrary feasible cheating verifier V ∗ :

– {(P (x, y1), V ∗(x))}(x,y1,y2),
– {(P (x, y2), V ∗(x))}(x,y1,y2).

Here, both y1 = (y1i ) and y2 = (y2i ) are sets of witnesses for x = (xi) to be xi ∈ L.

Definition 2 (resettable ZK) An interactive proof or argument system (P, V ) for an NP lan-
guage L is said to be resettable zero-knowledge, if for any feasible cheating verifier V ∗ in a resetting
attack there exists a feasible simulator M and the following two ensemble are computationally
indistinguishable :

– {(P (x, y), V ∗(x))}(x,y),
– {M(x)}(x,y).

Here, y = (yi) is a set of witnesses for x = (xi) to be xi ∈ L.

2.2 Resetting Attack by Cheating Provers

A resetting attack by a cheating prover P ∗ goes as follows.

1. Choose t independent random tapes ω1, . . . , ωt. For j ∈ [t], let V(j)(x) := V (x;ωj) denote a
verifier on input a statement x and a random tape ωj . We call each V(j)(x) an incarnation of
verifier V .

2. A cheating prover P ∗ performs a polynomial number of sessions with the incarnations V(j)(x) in
a sequential manner. P ∗ can adaptively select a statement x (not necessary in L) to be proved
and which incarnation V(j) it has a session with. Same incarnation V(j) can be selected many
times on various statements x.

Definition 3 (resettably-sound) An interactive proof or argument system (P, V ) for an NP
language L is said to be resettably-sound if for any feasible cheating prover P ∗ in a resetting attack,
the probability that some incarnation V(j)(x) accepts a false statement x (6∈ L) in some session
invoked by P ∗ is negligible.
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2.3 The BPK Model

The BPK (bare public key) model is a kind of setup assumption for proof systems proposed by [4],
aiming to make it easier to construct a simulator for concurrent or resettable zero-knowledge proof
systems.

The only requirement in the BPK model is that all verifiers deposit their public-keys in a public
file before any interaction occurs. That is,

– A public file F is a collection of records, each of which is a pair of an index and a public key of
a verifier.

– Prover P receives as inputs a statement x, its witness y, a random tape r and the public file F
with a verifier’s index.

– Verifier V , at the first stage, generates its key pair (pk, sk) and records the public key pk in
the public file F . Then, at the second stage, V receives a statement x, its secret key sk and its
random tape w as inputs and performs the protocol with P , resulting in an output of accept or
reject.

3 Known Constructions

Here, we briefly review what is known about constant-round resettable arguments and constant-
round resettably-sound arguments.

3.1 Constant-Round Resettable Arguments

By using the resettably-sound zero-knowledge argument (as seen below), it is shown that there
exists a constant-round resettable witness-indistinguishable argument of knowledge, assuming the
existence of collision-resistant hash functions (in the plain model) [3].

In the BPK model, there exists a constant-round (concurrent-sound) resettable zero-knowledge
argument for all NP languages, assuming collision-resistant hash functions [8].

3.2 Constant-Round Resettably-Sound Arguments

Every constant-round public-coin argument can be converted to a resettably-sound version, pre-
serving prover’s property such as witness-indistinguishability and zero-knowledge [3].

It is known that there exists a constant-round public-coin witness-indistinguishable (or zero-
knowledge argument) for all NP languages assuming one-way functions (or collision-resistant hash-
functions [1]).

Especially, we know that in the plain model:

– there exists a constant-round resettably-sound witness-indistinguishable argument assuming
one-way functions, and

– there exists a constant-round resettably-sound zero-knowledge argument assuming collision-
resistant hash-functions.

4 Resettably-Extractable Conditional Commitment

Now, we introduce a new variant of commitment scheme, conditional commitment scheme. Then we
see that resettably-extractable conditional commitments are possible by a constant-round protocol
in the plain model.
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4.1 Conditional commitment

In a conditional commitment scheme, a sender takes a condition x as input in addition to a string
v to be committed. For some given language L, hiding property of conditional commitment is
guaranteed only if its condition x is in L, and its binding property is assured only if its condition
x is outside from L.

More precisely, it is defined as follows. (In the sequel, notation (y1, y2)← (P1(x1), P2(x2)) means
that by running an interactive protocol (P1, P2) on input x1 for P1 and x2 for P2, parties P1 and
P2 obtains local outputs y1 and y2, respectively.)

Definition 1 (Conditional commitment). A pair of interactive efficient algorithms (S,R) is
said to be conditional commitment scheme with respect to a language L if the following three con-
ditions are satisfied :

– (Correctness) For any v ∈ {0, 1}n and any x ∈ {0, 1}n, it holds that

Pr[ (d, c)← (S(v, x), R(x)), (−, v′)← (S(d), R(c)) : v′ = v ] = 1.

– (Conditional Hiding) For any non-uniform efficient cheating receiver R∗ and any x ∈ L∩{0, 1}n,
it holds that

Pr[ (v0, v1, s)← R∗(x), b← {0, 1}, (−, b′)← (S(vb, x), R
∗(s)) : b′ = b ] ≤ 1/2 + negl(n).

– (Conditional Binding) For any efficient cheating sender S∗ and any x ∈ {0, 1}n that is not in
L, it holds that

Pr[ (d1, d2, c)← (S∗(x), R(x)), (−, v1)← (S∗(d1), R(c)), (−, v2)← (S∗(d2), R(c))

: v1 6= ⊥, v2 6= ⊥, v1 6= v2 ] ≤ negl(n).

4.2 Resettable-Extractability

Our motivation for introducing conditional commitment is in enabling resettably-extractable com-
mitment. The resettably-extractable conditional commitment scheme demands that there should
be a simulator which can extract a value committed to even by a cheating sender who can mount
a resetting attack against a victim receiver, under the constraint that the adversarial commitment
is made with respect to the condition x that is not in language L.

First, we define a resetting attack for conditional commitment schemes. For a conditional com-
mitment scheme (S,R), a resetting attack by a cheating sender S∗ goes as follows.

1. Choose t independent random tapes ω1, . . . , ωt. For j ∈ [t], let R(j) := R(ωj) denote an honest
receiver on input random tape ωj . We call each R(j) an incarnation of receiver R.

2. A cheating sender S∗ performs a polynomial number of sessions, composed of only commitment
phases, with the incarnations R(j) in a sequential manner with respect to some conditions. Here,
S∗ is supposed to be able to adaptively select a value v and a condition x for commitments and
is supposed to be able to choose which incarnation R(j) it has a session with. Same incarnation
R(j) can be selected many times on various values v and conditions x.
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Definition 4 (Resettable-extractability) A conditional commitment scheme (S,R) with re-
spect to language L is said to be resettably-extractable if for every feasible cheating sender S∗

mounting a resetting attack against an honest receiver R there exists a feasible resettable-extractor
E with output

(view, value)← E(1n),

satisfying that

1. the output view is computationally indistinguishable from the real view of S∗, and
2. the output value contains one of the committed values by S∗ with respect to some condition

x that is not in L in the simulated view view of S∗ with a noticeable probability 1/poly(n) (if
such a terminated commitment with condition outside of L exists).

4.3 Construction of Resettably-Extractable Conditional Commitment Scheme

Our construction of resettably-extractable conditional commitment scheme is based on the commit-
with-extract commitment scheme of Barak [2], that is designed to enable a straight-line extractor
of strict polynomial time.

We enhances the Barak’s commitment scheme so as to be extractable even against a cheating
sender who can perform a resetting attack to a victim receiver, as follows.

Protocol 1 – Building Blocks:
• an NP language L,
• a pseudorandom function F ,
• a trapdoor permutation f with a hardcore predicate h,
• a (computationally-hiding statistically-binding) non-interactive commitment scheme Com,
• a ZAP (two-round public-coin witness indistinguishable proof [9]) and
• a (stand-alone) constant-round zero-knowledge argument.

– Input for sender S : a condition x (∈ {0, 1}n), a value v (∈ {0, 1}n) and a random tape ωS .
– Input for receiver R : a condition x and a random tape ωR.
– The Protocol (Commitment Phase) :

1. S → R : S selects a trapdoor permutation f with a hardcore predicate h and commits to
its random tape ωS : cS ← Com(ωS). S sends f, cS to R.

2. S ← R : R computes ω∗
R = FωR(x, f, cS). (From now on to the end of the protocol, R uses

ω∗
R as its random tape instead of ωR.) R selects a random string r2 of length n2 and commits

to it : c2 ← Com(r2). R generates a first-round message σR of a ZAP. R sends c2, σR to S.
3. S → R : S selects a random string r1 of length n2 and sends to R the string r1 attached

with a ZAP showing that “r1 is taken from ωS (that is committed to under cS), or x ∈ L.
” If the attached ZAP is invalid, R aborts the protocol immediately.

4. S ← R : R sends r2 to S.
5. S ⇐ R : R proves to S using the zero-knowledge argument that “there exists a w satisfying

c2 = Com(r2;w),” where
• every S’s message (as a verifier) is coupled with a ZAP claiming that “the sent message

is computed using ωS as a random tape according to the protocol, or x ∈ L. ” If any of
the attached ZAPs is invalid, R aborts the protocol.

6. S → R : (If R’s proof is valid) S computes (r1, . . . , rn) = r = r1⊕r2 and takes those inverses
si = f−1(ri) for i = 1 to n. S computes and sends C = (v1 ⊕ h(s1), . . . , vn ⊕ h(sn)) to R.
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– The Protocol (Decommitment Phase) :

1. S → R : S sends s = (s1, . . . , sn) and v = (v1, . . . , vn) to R.
2. R : R checks whether ri = f(si) for all i = 1 to n and whether C = (v1⊕h(s1), . . . , vn⊕h(sn))

or not. If all of the equations hold R outputs v, otherwise outputs ⊥.

Theorem 1. Under the assumption that the primitives described in Building Blocks exist, Protocol
1 is resettably-extractable conditional commitment scheme.

Proof of conditional hiding:
The hiding property of Protocol 1 is inherited from the hiding property of the commit-with-extract
commitment scheme of Barak [2]. First we review the Barak’s commitment scheme (S′, R′) (in a
slightly changed form (in an unessential way) for our purpose):

– Building Blocks:

• a trapdoor permutation f with a hardcore predicate h,
• a (computationally-hiding statistically-binding) non-interactive commitment scheme Com

and
• a (stand-alone) constant-round zero-knowledge argument.

– Input for sender S′ : a value v (∈ {0, 1}n).
– Input for receiver R′ : a security parameter 1n.
– The Protocol (Commitment Phase) :

1. S′ → R′ : S′ selects a trapdoor permutation f with a hardcore predicate h. S′ sends f to
R′.

2. S′ ← R′ : R′ selects a random string r2 of length n2 and commits to it : c2 ← Com(r2). R
′

sends c2 to S′.
3. S′ → R′ : S′ selects a random string r1 of length n2. S′ sends r1 to R′.
4. S′ ← R′ : R′ sends r2 to S′.
5. S′ ⇐ R′ : R′ proves to S′ using the zero-knowledge argument that “there exists a w satisfying

c2 = Com(r2;w).”
6. S′ → R′ : S′ computes (r1, . . . , rn) = r = r1 ⊕ r2 and takes those inverses si = f−1(ri) for

i = 1 to n. S′ computes and sends C = (v1 ⊕ h(s1), . . . , vn ⊕ h(sn)) to R′.

– The Protocol (Decommitment Phase) :

1. S′ → R′ : S′ sends s = (s1, . . . , sn) and v = (v1, . . . , vn) to R′.
2. R′ : R′ checks whether ri = f(si) for all i = 1 to n and whether C = (v1 ⊕ h(s1), . . . , vn ⊕

h(sn)) or not. If all of the equations hold R′ outputs v, otherwise outputs ⊥.

Suppose some efficient cheating receiver R∗ breaks the hiding property of Protocol 1 on some
condition x ∈ L. We construct a non-uniform efficient cheating receiver (R′)∗ that breaks the hiding
property of the Barak’s commitment scheme (S′, R′) as follows.

Cheating receiver (R′)∗ on auxiliary input x and w (w is a witness to x ∈ L) works as follows :

– Invoke a copy of R∗ and receive its challenge v0, v1. Send v0, v1 as its own challenge to its
challenger S′.

– Receiving f from S′, commit to a dummy string (of sufficient length) : cS ← Com(0∗). Send
cS , f to the internal R∗.

– Receiving c2, σR from R∗, forward c2 to S′.

7



– Receiving r1 from S′, forward it to R∗, appending to it the corresponding ZAP computed from
the witness w (instead of the random tape of S′).

– Receiving r2 from R∗, forward it to S′. Then, relay the following zero-knowledge argument
between R∗ and S′. In the relay of argument, append to every message from S′ (to R∗) the
corresponding ZAP computed from the witness w (instead of the random tape of S′).

– Receiving the final commitment C from S′, forward it to R∗.
– When R∗ halts, halt with an output that R∗ output.

By the hiding property of Com and the witness-indistinguishability of ZAP, it is easy to see that
the simulated view of R∗ is indistinguishable from its real view. So, the advantage of R∗ against S
(w.r.t. x) to break the hiding property is essentially the same as the one of (R′)∗ against S′. But
this must be negligible by the hiding property of (S′, R′).

Proof of conditional binding:
The scheme uses the Blum commitment for the final commitment C and clearly it is “uncondition-
ally” (that is, even if x ∈ L or not) statistically binding.

Proof sketch of resettable-extractability:
For any feasible cheating sender S∗ with respect to conditions x 6∈ L in a resetting attack, we
construct an efficient resettable-extractor E as follows.

Resettable-Extractor E on a security parameter 1n works as follows:

– Choose t independent random tapes ω1
R, . . . , ω

t
R. For j ∈ [t], let R(j) := R(ωj

R)
– Select a random index α that indicates a pair of some incarnation R(j) and its some first message

fmsg.
– Invoke a copy of S∗.
– For each incarnation R(j), receiving the first message fmsg = (x, f, cS) from S∗, simulate R(j)

as follows:
• If the current (R(j), fmsg) does not correspond to the selected index α, simulate the behavior

of R(j) completely honestly as in a real run.
• If the current (R(j), fmsg) corresponds to the selected index α, do as follows.
∗ Check whether fmsg is fresh with respect to j or not. If it is not fresh, retrieve the

transcript of the past session between S∗ and R(j) that shares the same first message
fmsg and simulate this session by taking-and-replaying or by resuming-and-continuing
the corresponding messages from the transcript. In the following, we assume fmsg is
fresh.

∗ Generate a new random tape ω∗. Use ω∗ as a random tape for the following simulation
of R(j) for this interaction. Commit to a dummy string 0n

2
: c2 ← Com(0n

2
). Send c2, σR

to S∗.
∗ Receiving r1 with a valid ZAP (abort this interaction if any of the ZAPs is invalid),

generate a random string s = s1, . . . , sn of length n2. Compute ri = f(si) for i = 1 to
n and send r2 = r ⊕ r1 to S∗ with r = r1, . . . , rn. Then “prove” that the already-sent
c2 is a commitment to r2 using the zero-knowledge simulator, while checking the ZAPs
attached to each S∗’s message. (Abort this interaction if any of the ZAPs is invalid.)

∗ Receiving a final commitment C, compute vi = Ci ⊕ h(si) for i = 1, . . . , n, and set
value = (v1, . . . , vn).

8



– When S∗ halts, output its simulated view and value.

Only difference between E’s simulation and a real run is in the interaction indexed by α =
(R(j), fmsg).

When the first message fmsg = (x, f, cS) is not fresh with respect to j, in the real sessions, the
random tape ω∗

R = F
ωj
R
(fmsg) used by R(j) is the same as the one used in the past session between

S∗ and R(j) that shares the same first message fmsg. So, c2, r2 are replays of the ones sent in that
session. Here, we see that r1 sent from S∗ also must be a replay. In fact, since x 6∈ L, r1 must be
taken from ωS that is bound by cS in fmsg by the soundness of the attached ZAPs. (Note that
ZAPs are always resettably-sound. ) Similarly, all of the messages in the zero-knowledge argument
must be also replays by the effect of the attached ZAPs. (Since x 6∈ L, the messages from S∗ must
be computed using ωS that is bound by cS in fmsg by the soundness of the attached ZAPs. ) Thus,
we know that the above E’s simulation by taking-and-replaying or by resuming-and-continuing the
transcript of the corresponding past session is valid in the case of non-fresh fmsg.

When the first message fmsg = (x, f, cS) is fresh with respect to j, the incarnation R(j) uses a
fresh random tape ω∗

R = F
ωj
R
(fmsg) by pseudorandomness of F . Therefore, by the hiding property

of Com and the zero-knowledge property of the argument, it is easy to see the above simulation by
E is indistinguishable from the real cases. Note that the stand-alone zero-knowledge suffices here.

Thus, the simulated view of S∗ produced by E is indistinguishable from the real view of S∗.

Finally, in the interaction indexed by α = (R(j), fmsg), E knows the inverses s = (s1, . . . , sn)
of ri = f(si) and E can trivially extract value = (vi = Ci⊕h(si)) from the final commitment C. 2

A detailed proof of the resettable-extractability of Protocol 1 is given in the appendix.

Since the primitives in Building Blocks of Protocol 1 exist if trapdoor permutations (for ZAPs)
and collision-resistant hash functions (for constant-round ZKA) exist, we have :

Corollary 1. If trapdoor permutations and collision-resistant hash functions exist, then a constant-
round resettably-extractable conditional commitment scheme exists in the plain model.

5 A Constant-Round Resettably-Sound Resettable Zero-Knowledge Argument
in the BPK Model

Here we construct a constant-round argument system for all NP languages in the BPK model that
is both resettably-sound and resettable zero-knowledge.

First, making use of the resettably-extractable commitment scheme of the last section, we
construct a constant-round resettably-sound concurrent zero-knowledge argument system in the
BPK model, following the design principle of Deng and Lin [8]. (They constructed a constant-
round concurrent-sound resettable zero-knowledge argument system.)

Then, we apply to the constructed argument system the transformation of [6] that trans-
forms resettably-sound relaxed-concurrent zero-knowledge arguments into resettably-sound reset-
table zero-knowledge arguments. That results in a constant-round resettably-sound resettable zero-
knowledge argument system for any NP languages in the BPK model.
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5.1 Construction of Constant-Round Resettably-Sound Concurrent Zero-Knowledge
Argument in the BPK Model

Our resettably-sound concurrent zero-knowledge argument follows the design principle of Deng and
Lin [8]. A rough sketch of their principle follows. First, a verifier proves to a prover that it knows its
own secret key (or a dummy secret) in a witness-indistinguishable way. Then, the prover commits to
a dummy value for the verifier: c← Com(0n). Finally, the prover proves that it knows the witness
to the claimed statement or the last commitment c was to the verifier’s secret key (or the dummy
secret) also in a witness-indistinguishable manner.

In the proof of concurrent-soundness of their argument, a knowledge-extractor (played by
verifier-simulator) of the second argument plays a crucial role [8]. It extracts some witness from the
cheating prover by rewinding strategy. However, in our situation where a cheating prover P ∗ can
mount a resetting attack against a verifier (beyond a concurrent attack), such rewinding strategy
does not work: the extractor must rewind P ∗ while being get itself rewound.

We address the problem by employing the resettably-extractable conditional commitment scheme
from the last section in place of the commitment c.

Let L be an NP language. Our argument system for L in the BPK model works as follows.

Protocol 2 – Building Blocks:
• a one-way function f ,
• a constant-round resettably-extractable conditional commitment scheme rCom with respect

to L (Section 4),
• a constant-round resettable witness-indistinguishable argument of knowledge for language
{(y0, y1) : ∃α, y0 = f(α) OR y1 = f(α)} (Section 3.1),

• a constant-round resettably-sound witness-indistinguishable argument for language {(x, c, y0, y1) :
∃β, β is a witness to x ∈ L OR β = (β′, r), c = rCom(x, β′; r), y0 = f(β′) OR β = (β′, r), c =
rCom(x, β′; r), y1 = f(β′)} (Here, c = rCom(x, β′; r) means that the commitment c is a
commitment to β′ with random tape r under condition x).

– Input for prover P : a statement x (∈ L), its witness w, a public file F and an index i of a
verifier (pki = (f, y0, y1) ∈ F ).

– Input for verifier V : x and a secret key α (satisfying yb = f(α)).
– The protocol :

1. P ⇐ V : V proves to P using the resettable witness-indistinguishable argument of knowledge
that “there exists α satisfying y0 = f(α) OR y1 = f(α)”.

2. P ⇒ V : P commits to 0n for V under condition x with transcript c using the resettably-
extractable conditional commitment scheme rCom.

3. P ⇒ V : P proves to V using the resettably-sound witness-indistinguishable argument
with witness β = w that “there exists β satisfying that β is a witness to x ∈ L OR
β = (β′, r), c = rCom(x, β′; r), y0 = f(β′) OR β = (β′, r), c = rCom(x, β′; r), y1 = f(β′).”

Theorem 2. Under the assumption that the primitives listed in Building Blocks exist, Protocol 2
is a constant-round resettably-sound concurrent zero-knowledge argument of L in the BPK model.

Proof. Completeness of the protocol is immediate.
Concurrent zero-knowledge property of the protocol is proved by a standard argument in the

BPK model. Let V ∗ be any feasible cheating verifier in a concurrent attack. We construct an efficient

10



simulator Sim for V ∗ as follows.

Simulator Sim :

– Run the first phase of V ∗ and receive the public file F .

– Run the second phase of V ∗ :

• When V ∗ passes the first argument in some interaction I with public key pki, run the
stand-alone non-black-box extractor of the resettable witness-indistinguishable argument of
knowledge to extract the corresponding knowledge αi as to pki if not yet extracted. (Note
that the stand-alone extractor suffices since the target statement is only pki that is fixed in
the first phase. See [4] for the full formal argument.)

• When it is time for Sim (as a prover) to make a commitment c for some interaction I,
commit to the extracted value αi under condition x (that is a claimed statement) with
transcript c using rCom.

• When it is time for Sim (as a prover) to perform the second argument for some interaction
I, run the prover algorithm for the second argument using β = (αi, ri) as a witness.

Since F is a polynomial size, the number of invocation of the extractor by Sim is also a
polynomial. Hence, Sim runs in a polynomial time. By the conditional hiding property of rCom
(note that x ∈ L) and the witness indistinguishable property of the second argument, the simulated
view of V ∗ by Sim is easy to see indistinguishable from real view of V ∗. (Use a hybrid experiment
where c is a commitment to αi under x but the second argument uses the real witness w.) This
completes proof of the concurrent zero-knowledge property.

Now we prove the resettably-soundness of the protocol. Let P ∗ be a supposed feasible cheating
prover in a resetting attack that convinces some verifier incarnation V (x) on some x 6∈ L with
a non-negligible probability. Using P ∗ we construct an algorithm A that breaks one-wayness of
one-way function f . We can suppose that P ∗ invokes verifier incarnations V (x) only on x’s that are
not in L. (We can simulate V (x) honestly if x ∈ L and we can guess randomly which incarnation
V (x) is invoked with respect to x 6∈ L.)

Algorithm A: on input y (= f(β)),

– Choose a random b← {0, 1} and set yb = y. (This defines βb = β implicitly.)

– Select a random β1−b ← {0, 1}n and set y1−b = f(β1−b).

– Invoke P ∗ and give a public file F = (id, y0, y1) to it.

– For every incarnation V (x) that P ∗ invokes, do as follows:

• Run the prover algorithm of the first argument using β1−b as a witness.

• For P ∗’s commitment c under condition x (6∈ L) with rCom, invoke the resettable-extractor
E and simulate its receiver using the view output by E.

• Run the honest verifier algorithm for the second argument.

– Select a random incarnation Vj∗(x
∗) (with x∗ 6∈ L) that has accepted in the above simulation.

The committed value β′ under commitment c in the interaction with Vj∗(x
∗) is being extracted

as the value output by E with a noticeable probability.

– For the first component β′
1 of β′ check whether f(β′

1) = y or not. If so output β′
1 otherwise

output ⊥ and halt.
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It is obvious that A runs in a polynomial time.
Since the coin b is hidden from P ∗, the simulated first argument is the same as the real first

argument. Since the view output by the resettable extractor E of rCom is indistinguishable from
the real view even for a resetting sender, the simulated commitment c is indistinguishable from the
real commitment. The second argument is simulated honestly. Hence, the simulated view of P ∗ by
A is indistinguishable from its real view.

We evaluate the output by A. By the contradictive assumption, the incarnation Vj∗(x
∗) selected

by A is being convinced by P ∗ on x∗ 6∈ L with a non-negligible probability. Since x∗ 6∈ L, the
resettably-soundness of the second argument means that its witness β′ must be the second or third
type : β′ includes the inverse images β0 or β1 of y0 or y1, respectively (as its first component β′

1)
and means that β0 or β1 must be committed to under c with respect to condition x∗. Therefore,
the extracted value β′ from c by resettable-extractor E must include β0 or β1. By the resettable
witness indistinguishability of the first argument, we can see that this extracted value is equal to
βb at probability 1/2 except with a negligible error. Thus, we know that A outputs βb = β with a
non-negligible probability, contradicting to the one-wayness of f 2

The primitives listed in Building Blocks of Protocol 2 exist if trapdoor permutations and
collision-resistant hash functions exist. So, we have:

Corollary 2. Under the assumption that trapdoor permutations and collision-resistant hash func-
tions exist, there exists a constant-round resettably-sound concurrent zero-knowledge argument for
any NP language in the BPK model.

5.2 Transformation to Resettably-Sound Resettable Zero-Knowledge Argument

Deng, Goyal and Sahai showed a transformation that transforms any resettably-sound relaxed-
concurrent zero-knowledge argument into a resettably-sound resettable zero-knowledge argument
(The relaxed-concurrent zero-knowledge is a property that weakens concurrent zero-knowledge in
some way) [6]. The transformation works in the plain model and preserves the property of being
constant rounds. (The transformation uses a resettably-sound zero-knowledge argument as a main
building block, that is implemented by a constant-round protocol in a plain model. )

Therefore, by applying the Deng-Goyal-Sahai transformation to Protocol 2, we see that:

Corollary 3. Under the assumption that trapdoor permutations and collision-resistant hash func-
tions exist, there exists a constant-round resettably-sound resettable zero-knowledge argument for
any NP language in the BPK model.

6 Conclusion

This paper has shown that argument systems for any NP language that are both resettably-sound
and resettable zero-knowledge are possible by a constant-round protocol in the BPK model. For
that sake, we defined and constructed a resettably-extractable conditional commitment scheme.
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A Detailed Proof of the Resettable-Extractability of Protocol 1

We prove the resettable-extractability of Protocol 1. We define a sequence of experiments Real,
Hyb1, . . . , Hyb4, preserving indistinguishability among their outputs. The first experiment Real
corresponds to a real resetting attack by a cheating sender S∗ against Protocol 1 and the final
experiment Hyb4 gives us the claimed resettable-extractor for the protocol. (In the sequel ‘≡c’ (or
‘≡s’) denotes computational (or statistical) indistinguishability of both hands.)

Real :

– Choose t independent random tapes ω1
R, . . . , ω

t
R. For j ∈ [t], let R(j) := R(ωj

R).

– Invoke a copy of S∗.

– For each incarnation R(j) that S∗ invokes, simulate it as follows:

• Receiving the first message fmsg = (x, f, cS) from S∗, compute ω∗
R = Fω

R(j)
(fmsg). Use

ω∗
R as a random tape for the following simulation of R(j) for this interaction. Take a random

string r2 of length n2 and commit to it : c2 ← Com(r2). Send c2, σR to S∗.

• Receiving r1 with a valid ZAP (abort this interaction if the ZAP is invalid), send r2 to S
∗ and

prove that c2 is a commitment to r2 using the zero-knowledge argument, while checking the
ZAPs attached to each S∗’s message. (Abort this interaction if any of the ZAPs is invalid.)

• Receive C = v1 ⊕ h(s1), . . . , vn ⊕ h(sn).

– When S∗ halts, output its simulated view.
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The following Hyb1 differs from Real only around the treatment of receiver random-tape for
some selected interactions.

Hyb1 :

– Choose t independent random tapes ω1
R, . . . , ω

t
R. For j ∈ [t], let R(j) := R(ωj

R).
– Select a random index α that indicates a pair of some incarnation R(j) and its some first message

fmsg.
– Invoke a copy of S∗.
– For each incarnation R(j) receiving the first message fmsg = (x, f, cS) from S∗, simulate it as

follows:
• If the current (R(j), fmsg) does not correspond to the selected index α, simulate the behavior

of R(j) honestly as in Real.
• If the current (R(j), fmsg) corresponds to the selected index α, do as follows.
∗ Check whether fmsg is fresh with respect to j or not. If it is not fresh, retrieve the

transcript of the past session between S∗ and R(j) that shares the first message fmsg
and simulate this session by taking-and-replaying or by resuming-and-continuing the
corresponding messages from the transcript. In the following, we assume fmsg is fresh.

∗ Generate a new random tape ω∗. Use ω∗ as a random tape for the following simulation
of R(j) for this interaction. Take a random string r2 of length n2 and commit to it :
c2 ← Com(r2). Send c2, σR to S∗.

∗ Receiving r1 with a valid ZAP (abort this interaction if any of the ZAPs is invalid), send
r2 to S∗ and prove that c2 is a commitment to r2 using the zero-knowledge argument,
while checking the ZAPs attached to each S∗’s message. (Abort this interaction if any
of the ZAPs is invalid.)

∗ Receive C = v1 ⊕ h(s1), . . . , vn ⊕ h(sn).
– When S∗ halts, output its simulated view.

Claim.
Hyb1 ≡c Real.

Proof. Only difference between Hyb1 and Real is in the simulation of the interaction indexed by
α = (R(j), fmsg).

Suppose fmsg is fresh with respect to j. Then, ω∗
R = F

ω
(j)
R

(fmsg) is indistinguishable from

a fresh random-tape by pseudorandomness of F in Real. So, the simulation of Hyb1 is indistin-
guishable from the simulation of Real.

Consider the cases where fmsg is not fresh for j. In Real, the random tape ω∗
R = F

ω
(j)
R

(fmsg)

used by R(j) is the same as the one used in the past session between S∗ and R(j) that shares the
first message fmsg. So, c2, r2, that are chosen from ω∗

R, are replays of the ones sent in that session.
We see that r1 sent from S∗ must be also a replay. In fact, since x 6∈ L, r1 must be taken from

ωS that is bound by cS in fmsg by the soundness of the attached ZAPs. Note that ZAPs are always
resettably-sound.

Similarly, all of the messages in the zero-knowledge argument must be also replays. Since x 6∈ L,
the messages from S∗ must be computed using ωS that is bound by cS in fmsg by the soundness
of the attached ZAPs.

Thus, also in non-fresh fmsg case we know that the simulation by Hyb1 (that replays R(j)’s
messages in the corresponding past transcript) is indistinguishable from Real. 2
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The nextHyb2 differs fromHyb1 only in thatHyb2 uses the zero-knowledge simulator instead
of the real argument to prove that c2 commits to r2 for the interaction indexed by α = (R(j), fmsg).

Hyb2 :

– Choose t independent random tapes ω1
R, . . . , ω

t
R. For j ∈ [t], let R(j) := R(ωj

R).

– Select a random index α that indicates a pair of some incarnation R(j) and its some first message
fmsg.

– Invoke a copy of S∗.

– For each incarnation R(j), receiving the first message fmsg = (x, f, cS) from S∗, simulate it as
follows:

• If the current (R(j), fmsg) does not correspond to the selected index α, simulate the behavior
of R(j) honestly as in Real

• If the current (R(j), fmsg) corresponds to the selected index α, do as follows.

∗ Check whether fmsg is fresh with respect to j or not. If it is not fresh, retrieve the
transcript of the past session between S∗ and R(j) that shares the first message fmsg
and simulate this session by taking-and-replaying or by resuming-and-continuing the
corresponding messages from the transcript. In the following, we assume fmsg is fresh.

∗ Generate a new random tape ω∗. Use ω∗ as a random tape for the following simulation
of R(j) for this interaction. Take a random string r2 of length n2 and commit to it:
c2 ← Com(r2). Send c2, σR to S∗.

∗ Receiving r1 with a valid ZAP (abort this interaction if any of the ZAPs is invalid), send
r2 to S∗ and “prove” that c2 is a commitment to r2 using the zero-knowledge simulator,
while checking the ZAPs attached to each S∗’s message. (Abort this interaction if any
of the ZAPs is invalid.)

∗ Receive C = v1 ⊕ h(s1), . . . , vn ⊕ h(sn).

– When S∗ halts, output its simulated view.

The stand-alone zero-knowledge property shows :

Claim.

Hyb2 ≡c Hyb1.

Proof. Suppose towards the contradiction that Hyb2 and Hyb1 is distinguishable by some dis-
tinguisher D. Using D, we construct a following cheating verifier V ∗ against the zero-knowledge
property of the argument.

V∗ :

– Choose t independent random tapes ω1
R, . . . , ω

t
R. For j ∈ [t], let R(j) := R(ωj

R).

– Select a random index α that indicates a pair of some incarnation R(j) and its some first message
fmsg.

– Invoke a copy of S∗.

– For each incarnation R(j), receiving the first message fmsg = (x, f, cS) from S∗, simulate it as
follows:

• If the current (R(j), fmsg) does not correspond to the selected index α, simulate the behavior
of R(j) honestly as in Real using the tape ωj

R.
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• If the current (R(j), fmsg) corresponds to the selected index α, do as follows.

∗ Check whether fmsg is fresh with respect to j or not. If it is not fresh, retrieve the
transcript of the past session between S∗ and R(j) that shares the first message fmsg
and simulate this session by taking-and-replaying or by resuming-and-continuing the
corresponding messages from the transcript. In the following, we assume fmsg is fresh.

∗ Take a random string r2 of length n2 and commit to it: c2 ← Com(r2). Send c2, σR to
S∗.

∗ Receiving r1 with a valid ZAP (abort this interaction if the ZAP is invalid), send a
statement that c2 is a commitment to r2 towards its challenger (a prover or a simulator)
and transfer to S∗ the received proof, while checking the ZAPs attached to each S∗’s
message. (Abort this interaction if any of the ZAPs is invalid.)

∗ Receive C = v1 ⊕ h(s1), . . . , vn ⊕ h(sn).

– When S∗ halts, invoke the assumed distinguisher D on input S∗’s simulated view and output
its output.

In the above, if the proof that V ∗ receives from its challenger is a real proof (or a simulated
proof respectively), then the simulated view of S∗ is the same as the one in Hyb1 (or in Hyb2).
This implies that the above V ∗ violates the zero-knowledge property of the argument. 2

The next Hyb3 differs from Hyb2 only in that Hyb3 commits to a dummy string 0n
2
for c2

instead of r2 for the interaction indexed by α = (R(j), fmsg).

Hyb3 :

– Choose t independent random tapes ω1
R, . . . , ω

t
R. For j ∈ [t], let R(j) := R(ωj

R).

– Select a random index α that indicates a pair of some incarnation R(j) and its some first message
fmsg.

– Invoke a copy of S∗.

– For each incarnation R(j), receiving the first message fmsg = (x, f, cS) from S∗, simulate it as
follows:

• If the current (R(j), fmsg) does not correspond to the selected index α, simulate the behavior
of R(j) honestly as in Real

• If the current (R(j), fmsg) corresponds to the selected index α, do as follows.

∗ Check whether fmsg is fresh with respect to j or not. If it is not fresh, retrieve the
transcript of the past session between S∗ and R(j) that shares the first message fmsg
and simulate this session by taking-and-replaying or by resuming-and-continuing the
corresponding messages from the transcript. In the following, we assume fmsg is fresh.

∗ Generate a new random tape ω∗. Use ω∗ as a random tape for the following simulation
of R(j) for this interaction. Commit to a dummy string 0n

2
: c2 ← Com(0n

2
). Send c2, σR

to S∗.
∗ Receiving r1 with a valid ZAP (abort this interaction if any of the ZAPs is invalid),

generate and send r2 of length n2 to S∗ and “prove” that c2 is a commitment to r2 using
the zero-knowledge simulator, while checking the ZAPs attached to each S∗’s message.
(Abort this interaction if any of the ZAPs is invalid.)

∗ Receive C = v1 ⊕ h(s1), . . . , vn ⊕ h(sn).

– When S∗ halts, output its simulated view.
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As usual, the hiding property of Com means :

Claim.
Hyb3 ≡c Hyb2.

The final Hyb4 differs from Hyb3 only in the way of generating the random string r2 for the
interaction indexed by α = (R(j), fmsg).

Hyb4 :

– Choose t independent random tapes ω1
R, . . . , ω

t
R. For j ∈ [t], let R(j) := R(ωj

R).
– Select a random index α that indicates a pair of some incarnation R(j) and its some first message

fmsg.
– Invoke a copy of S∗.
– For each incarnation R(j), receiving the first message fmsg = (x, f, cS) from S∗, simulate it as

follows:
• If the current (R(j), fmsg) does not correspond to the selected index α, simulate the behavior

of R(j) honestly as in Real
• If the current (R(j), fmsg) corresponds to the selected index α, do as follows.
∗ Check whether fmsg is fresh with respect to j or not. If it is not fresh, retrieve the

transcript of the past session between S∗ and R(j) that shares the first message fmsg
and simulate this session by taking-and-replaying or by resuming-and-continuing the
corresponding messages from the transcript. In the following, we assume fmsg is fresh.

∗ Generate a new random tape ω∗. Use ω∗ as a random tape for the following simulation
of R(j) for this interaction. Commit to a dummy string 0n

2
: c2 ← Com(0n

2
). Send c2, σR

to S∗.
∗ Receiving r1 with a valid ZAP (abort this interaction if any of the ZAPs is invalid),

generate a random string s = s1, . . . , sn of length n2. Compute ri = f(si) for i = 1 to n

and send r2 = r⊕r1 to S∗ with r = r1, . . . , rn. Then “prove” that c2 is a commitment to
r2 using the zero-knowledge simulator, while checking the ZAPs attached to each S∗’s
message. (Abort this interaction if any of the ZAPs is invalid.)

∗ Receive C = v1 ⊕ h(s1), . . . , vn ⊕ h(sn).
– When S∗ halts, output its simulated view.

Since r2 distributes uniformly over {0, 1}n2
also in Hyb4, we have

Claim.
Hyb4 ≡s Hyb3.

Now it is immediate that the simulation in Hyb4 gives the claimed resettable-extractor of Pro-
tocol 1. In fact, inHyb4 we can efficiently extract the values committed under final commitments C
using the knowledge of si = f−1(ri) (i = 1, . . . , n) for the interaction indexed by α = (R(j), fmsg).
That completes the proof.
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