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Abstract. We propose a new pairing-based non-interactive perfectly zero-knowledge shuffle argu-
ment that has smaller communication and is based on more standard computational cryptographic
assumptions than the only previously known efficient non-interactive zero-knowledge shuffle argu-
ment by Groth and Lu. Differently from Groth and Lu who only prove the culpable soundness (a
weaker version of computational soundness) of their argument, we provide a proof of the compu-
tational soundness. Due to well-known impossibility results this means that we also have to use
a knowledge assumption. We first construct an efficient permutation matrix argument by using
recent non-interactive zero-knowledge techniques of Groth and Lipmaa, and then use it to con-
struct a non-interactive shuffle argument for a knowledge version of the Boneh-Boyen-Shacham
cryptosystem.
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1 Introduction

In a shuffle argument, the prover proves that two tuples of randomized ciphertexts encrypt the same mul-
tiset of plaintexts. A shuffle argument is needed in applications like e-voting and anonymous broadcast.
In the case of e-voting, shuffles are used to destroy the relation between the voters and their ballots. As
a concrete example, the voters encrypt their ballots. The ciphertexts are then sequentially shuffled by
several independent mix servers, where every server also produces a zero-knowledge shuffle argument. At
the end, all shuffle arguments are verified and the final ciphertexts are threshold-decrypted. If all argu-
ments verify, then the shuffle is correct. Moreover, as long as one mix server is honest, the shuffle remains
private (that is, one cannot relate the voters and their ballots). As a completely different application, we
point out simulatable oblivious transfer [KNP10,KNP11], where the use of shuffle makes it possible for
the client to query database elements by using permuted indexes.

A lot of research has been conducted in the area of constructing secure and efficient shuffle arguments
(see [Cha81,Nef01,FS01,Gro03] for some classic papers), with recent work resulting in shuffles that have
sublinear communication and very competitive computational complexity. However, it is also important
that the shuffle argument is non-interactive, due to the fact that non-interactive arguments are trans-
ferable (create once, verify many times without interacting with the prover). Practically all previous
shuffle arguments are interactive, and can only be made non-interactive by using a random oracle. For
example, Groth and Ishai [GI08] and Groth [Gro09] have constructed shuffle arguments with communi-
cation ©(n?/3) and @(n'/?) respectively, where n is the number of ciphertexts. However, they make use
of the Schwartz-Zippel lemma [Sch80] that requires the verifier to first provide a random input. The only
known way to make the Schwartz-Zippel lemma based arguments non-interactive is to use the random
oracle model. Unfortunately, it is well-known [CGH98,GKO03] that there are protocols that are secure in
the random oracle model but not in the plain model, given any instantiation of the random oracle. Even
if there are no similar distinguishing attacks against any of the existing shuffle arguments, it is prudent
to design alternative non-interactive shuffle arguments that are not based on random oracle model.

The only known (not random-oracle based) efficient non-interactive zero-knowledge (NIZK) shuffle
argument was proposed by Groth and Lu in [GLO7]. Their argument shuffles the ciphertexts of the
BBS cryptosystem [BBS04]. The security of the Groth-Lu argument is based on two new computational
assumptions, the permutation pairing assumption (PPA, see App. A) and the simultaneous pairing as-
sumption (SPA). While Groth and Lu proved that their assumptions are secure in the generic group

* First eprint version was published on July 21, 2011. In this second eprint version from August 20, 2011, we
include proper discussion of culpable soundness, and correct several small mistakes.
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l H |CRSH Comm.‘P’s comp,‘V’s comp.HPairing‘Soundness‘Assumption
[GLOT7] || 2n + 8|15n 4 120 O(n) O(n)||Sym. |Culp. PPA + SPA + DLIN
Sect. 5 ||Tn + 14| 6n+ 11| 17n+ 16| 28n + 18||Asym. [Sound PKE + PSDL + DLIN

Table 1. Brief comparison of existing (not random-oracle based) NIZK shuffle arguments. Here, the communica-
tion complexity and the CRS length are given in group elements, prover’s computation is given in exponentiations,
and verifier’s computation is given in (symmetric or asymmetric) bilinear pairings

model, one can argue that their assumptions are specifically constructed so as the concrete shuffle argu-
ment will be culpably sound [GOS11] (also called co-sound!, see [GL07] and Sect. 2 of the current paper).
It is therefore interesting to construct a shuffle argument from “more standard” assumptions. Moreover,
their shuffle argument has a relatively large communication complexity of 15n + 120 symmetric bilinear
group elements. (See Thl. 1 for a comparison.)

Our Contributions. We construct a new non-interactive shuffle argument that has better communi-
cation and is based on more standard computational security assumptions than the Groth-Lu argument.
(Full comparison is given later.) Recall that a permutation matrix is a Boolean matrix that has exactly
one 1 in every row and column. From a very high-level point of view, we let the prover to commit to
a permutation matrix and then present an efficient permutation matrix argument (given commitments
commit to a permutation matrix). Second, we prove that the plaintext vector corresponding to the out-
put ciphertext tuple is equal to the product of this matrix and the plaintext vector corresponding to the
input ciphertext tuple, and thus is correctly formed. Both parts are involved. In particular, coming up
with a characterization of permutation matrices that allows an efficient cryptographic implementation
was not an easy task.

In [TW10], Terelius and Wikstrom constructed an interactive permutation matrix argument based
on the fact that a matrix is a permutation matrix exactly if its every column sums to 1 and its every row
has exactly one non-zero element. To verify that the committed matrix satisfies these properties, they
used the Schwartz-Zippel lemma with the verifier sending a random vector to the prover. This introduces
interaction (or the need to use a random oracle). Unfortunately, we do not know how to prove efficiently
in NIZK that a commitment commits to a unit vector. We propose a superficially similar permutation
matrix argument. It is based on the (related) fact that a matrix is a permutation matrix exactly if every
column sums to 1 and every row has at most one non-zero element. However, we do not explicitly use
the Schwartz-Zippel lemma, which makes it possible for us to create a NIZK argument without using
the random oracle model.

Cryptographically, the new permutation matrix argument is based on the recent techniques of
Groth [Grol0] and Lipmaa [Lipl1l] who proposed a perfectly NIZK argument for circuit satisfiability
based on two subarguments (for Hadamard product and permutation). The problem with using their
techniques directly is that in their subarguments, the prover has quadratic computational complexity;
this is not acceptable in our case. Instead, we propose two new basic arguments (a zero argument, see
Sect. 3.1, and a sparsity argument, see Sect. 3.2), and then combine them in Sect. 3.3 to form a per-
mutation matrix argument. The zero argument (the prover can open the given commitment to the zero
tuple) can be interpreted as a knowledge of the discrete logarithm argument. On the other hand, the
sparsity argument (the prover can open the given commitment to a tuple where at most one coordinate
is non-zero) is conceptually new, at least up to our knowledge. Interestingly, like the basic arguments
of [Lip11], the new sparsity argument relies on the existence of a dense progression-free set.

In Sect. 5, we combine the new permutation matrix argument with a knowledge version of the
BBS [BBS04] cryptosystem to obtain an efficient non-interactive zero-knowledge shuffle argument. In-
formally, by the KE assumption [Dam91], in the knowledge BBS cryptosystem (defined in Sect. 4) the
ciphertext creator knows both the used plaintext and the randomizer. Since it is usually not required that
the ciphertext creator also knows the randomizer, the knowledge BBS cryptosystem satisfies a stronger

! The current version of [GOS11] uses the name culpable soundness, since the notion of co-soundness already
has several different meanings. The definition of culpable soundness in [GOS11] and in the current paper is
the same as the definition of co-soundness in say [GLOT7].
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than usual version of plaintext-awareness. While this version of plaintext-awareness has not been consid-
ered in the literature before, it is also satisfied by the Damgard’s Elgamal cryptosystem from [Dam91].

In a shuffle argument, a part of the witness is the permutation ¢ : [n] — [n] that can be described
in ©(nlogn) bits. Thus, all communication-©(n) shuffle arguments are sublinear in the witness size.
To overcome the impossibility result of [AF07,GW11] (that basically state that one cannot construct
computationally sound and perfectly zero-knowledge sublinear arguments based on any non-falsifiable
assumptions), Groth and Lu [GL07] proved culpable soundness [GL07,GOS11] of their argument under
purely computational assumptions.

Our basic arguments (the zero argument, the sparsity argument, and the permutation matrix ar-
gument) cannot be proven to be computationally sound since their “languages” are based on a per-
fectly hiding commitment scheme, see Sect. 3. Therefore, we prove that these arguments are culpably
sound under purely computational assumptions. Unfortunately, the way knowledge commitments are
used in [Grol0,Lip11], while being useful in constructing very efficient arguments, makes the definition
of culpable soundness dependent on the construction of the concrete argument. (See [Lipll] for more
discussion.) This can be seen say in Sect. 3.3, where the definition of the culpable soundness of the per-
mutation matrix argument already looks somewhat convoluted. We could use a similar definition of the
culpable soundness of the shuffle argument and prove that the new shuffle argument is culpably sound by
using only standard computational assumptions. Instead (mostly since the definition of computational
soundness is more standard), we chose to prove computational soundness of the shuffle argument under
a previously known knowledge assumption. In particular, this is also the reason why we need to use the
knowledge BBS cryptosystem.

Apart from the knowledge assumption, the security of the new shuffle argument is based on the DLIN
assumption [BBS04] (which is required for the CPA-security of the BBS cryptosystem), and on the power
symmetric discrete logarithm (PSDL, see Sect. 2) assumption from [Lipll]. The PSDL assumption is
much more standard(-looking) than the SPA and PPA assumptions from [GLOT].

Thl. 1 provides a brief comparison between the Groth-Lu shuffle argument and the new shuffle
argument. We have omitted the precise computational complexity of the Groth-Lu argument (it has not
been stated in [GLOT7], but it seems to be higher than that of the new shuffle argument). Significant
speedups can be achieved in both cases by using efficient multi-exponentiation algorithms. The new
protocol uses asymmetric pairings e : G; x Go — Gr, while [GL07] uses symmetric pairings with
G1 = Go. This means in particular that the difference in efficiency is larger than seen from Tbl. 1. First,
asymmetric pairings themselves are much more efficient than symmetric pairings. Second, if asymmetric
pairings were used in the Groth-Lu shuffle, one would have to communicate two different versions (one in
group G; and another one in group Gs) of some of the group elements. On the other hand, the Groth-Lu
shuffle uses the BBS cryptosystem (where one ciphertext is 3 group elements), while we use the new
knowledge BBS cryptosystem (6 group elements). This difference however is quite small compared to
the achieved reduction in the argument size. Another drawback of our scheme as compared to [GLO7] is
that it uses a lifted cryptosystem, and thus can be only used to shuffle small plaintexts. This is however
fine in our imagined applications like e-voting (where the plaintext is a candidate number) or oblivious
transfer (where the plaintext is an index to the database). Many of the existing e-voting schemes (for
example, [CGS97]) are based on (lifted) Elgamal and thus require the plaintexts to be small. For a
meaningful computational comparison, one should implement the shuffle arguments.

2 Preliminaries

Notation. Let [n] = {1,2,...,n}. If y = A, then let log; y := z. To help readability in cases like

Ap—1@ . . . . .
gS”‘m o ), we also sometimes write exp(h,x) instead of h®. Let k be the security parameter. By using

notation that is common in additive combinatorics [TV06], if A is a set, then let 2- A = {2\ : A € A}
and 24 = {A+ X : A\, X € A}. Thus, for example,

2AN\2- A={ A+ N AN eAAN#EN} .
We say that A = (A1,...,\n) C Z is an (n, K)-nice set, if 0 < Ay < -+ < A\; < --- < Ay = poly(k). Let

Sy be the set of permutations from [n] to [n]. For a set of integers A = {A1,..., A, } with A; < Aj4q, let
(ai)iea = (axr,,---,ax,). We sometimes denote (a;)ic[n) as a.
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Progression-Free Sets. A set A = \j,..., A\, of positive integers is progression-free [TV06], if no
three elements of A are in arithmetic progression, that is, \; + A; = 2\, only if i = j = k. Let r3(n)
denote the cardinality of the largest progression-free set that belongs to [n]. Recently, Elkin [Elk10]

showed that rs(n) = 2((n - log;/4 n)/2%V21°82™) On the other hand, it is known from [Sanl0] that
r3(n) = O(n(loglogn)®/logn). Thus, according to Sanders [San10], the minimal y such that r3(y) = n
is w(n), while according to Elkin, y = n'*°(1), According to [Lipll], for any fixed n > 0, there exists
y = n't°(M such that y contains a progression-free subset A of odd integers, with |A| = n.

Now, while the efficiency of arguments from [Lip11] directly depend on the choice of the progression-
free set, in our case the only thing dependent on this choice is the tightness of most of our security
reductions; see the definition of PSDL below, or the proofs of Thm. 2, Thm. 4 and Thm. 5. Due to this,
one may opt to use a less dense (but easy to construct) progression-free set, like that defined by Erdés
and Turdn [ET36]. This set is defined to be the set T'(n) of all integers up to n that have no number
2 in their ternary presentation. Clearly, |T(n)| ~ n'°®s2 ~ n%63, One can then obtain a dense set of
progression-free odd integers by mapping every a in T'(n) to 2a + 1.

Bilinear groups. Let Gy (1) be a bilinear group generator that outputs a description of a bilinear group
gk := (p,G1,G2,Gr, €, 91, 92) < Gbp(1¥) such that p is a k-bit prime, Gy, G, and Gr are multiplicative
cyclic groups of order p, e : G; X Go — Gr is a bilinear map (pairing), and g; < G; \ {1} is a random
generator of G, for ¢t € {1,2}. Additionally, it is required that (a) Va,b € Z, e(g¢,95) = e(g1,92)%,
(b) e(g1,92) generates Gr, and (c) it is efficient to decide the membership in G;, Gy and Gr, the
group operations and the pairing e are efficiently computable, generators of G; and Go are efficiently
sampleable, and the descriptions of the groups and group elements each are O(k) bit long.

One can represent an element of G1/Go/Gr in respectively 320/160/1920 bits, by using an optimal
(asymmetric) Ate pairing [HSVO06] over a subclass of Barreto-Naehrig curves [BN05,PSNB10].

Decisional Linear Assumption (DLIN). We say that a bilinear group generator Gy, is DLIN (deci-
sional linear) secure [BBS04] in group Gy, for ¢ € {1, 2}, if for all non-uniform polynomial time adversaries
A,
- gk < Gpp(17), (f, h) < (G2, (0,7) Zf, 1 - gk < Gop(17), (£, h) + (G})?, (0,7, 2) + Zi :
Algk; f,h, 7,07, g7%T) =1 Algks f, b, f7, 07, g7) =1

A-Power Symmetric Discrete Logarithm Assumption. Let A be an (n, k)-nice set for some n =
poly(x). We say that a bilinear group generator Gy, is A-PSDL secure [Lipl1], if for any non-uniform
probabilistic polynomial-time adversary A,

is negligible in k.

Pr[gk = (pa GI>G27 GT7 6791792) <~ gbp(lm)u T < Zp : A(gk7 (9%17951)1611) = LL']

is negligible in k. (Note that A also has access to gfo since it belongs to gk.) A version of PSDL
assumption in a non pairing-based group was defined in [GJMO02]. Lipmaa [Lip11] proved that the A-
PSDL assumption holds in the generic group model for any (n, )-nice set A given that n = poly(k).
More precisely, any successful generic adversary for A-PSDL requires time £2(1/p/A,) where A, is the
largest element of A. Thus, the choice of the actual security parameter depends on A,, and thus also on

A

Non-Interactive Zero-Knowledge for Group-Specific Languages. Let Gy, be a bilinear group
generator, and let gk <— Gy, (1) = (p, G1, G2, Gr, €, g1, g2) be a bilinear group. Let R = {(gk; C,w)} be an
efficiently computable (group-specific) binary relation such that |w| = poly(|C|). Here, C' is a statement,
and w is a witness. Let L = {(gk; C) : (3w) (gk; C,w) € R} be a (group-specific) NP-language. Shuffle
(see Sect. 5 for its formal definition) has a natural a group-specific language, since one proves a relation
between elements of the same bilinear group.

A non-interactive argument for R consists of the next probabilistic polynomial-time algorithms: a
bilinear group generator Gyp, a common reference string (CRS) generator G, a prover P, and a verifier V.
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For gk < Gpp(17) and crs < Gs(gk), P(gk, crs; C, w) produces an argument 7. The verifier V(gk, crs, C; )
outputs either 1 (accept) or 0 (reject). If the verifier only accesses a small part crs,, of crs, we say that crs,
is the verifier’s part of the CRS and we will give just crs, as an input to V. In the arguments to come,
crs is considerably longer than crs,. In the case where efficiency is not important (like in the security
definitions), we give the entire crs to V.

A non-interactive argument (Gpp, Gers, P, V) is perfectly complete, if for all gk < Gy, (17), all crs «+
Gers(gk) and all (C,w) such that (gk; C,w) € R,

V(gk,crs; C, P(gk,crs; Cow)) =1 .

A non-interactive argument (Gpp, Gers, P, V) is adaptively computationally sound, if for all non-uniform
probabilistic polynomial-time adversaries A, the probability

Pr[gk < Gpp(17), crs < Ges(gk), (C, ) < A(gk,crs) : (gk; C) & L A V(gk,crs; O, m) = 1]

is negligible in k. The soundness is adaptive in the sense that the adversary sees the CRS before producing
the statement C.

A non-interactive argument (Gpp, Gers, P, V) is perfectly witness-indistinguishable, if it is impossi-
ble to tell which witness was used by the prover. That is, if gk € Gpp(17), crs € Ges(gk) and
((gk; C,wo), (gk; C,wy)) € R?, then P(gk,crs; C,wo) = P(gk, crs; C,wp) as a distribution.

A non-interactive argument (Gpp, Gers, P, V) is perfectly zero-knowledge, if there exists a probabilistic
polynomial-time simulator S = (81, S2), such that for all stateful interactive non-uniform probabilistic
polynomial-time adversaries A,

gk — gbp(ln)v Crs <— gcrs(gk)7 gk — gbp(ln)v (CI’S, td) < Sl (gk)v
Pr | (C,w) + A(gk,crs), ™ < P(gk,crs; C,w) :| =Pr | (C,w) + A(gk,crs), m + Sa(gk,crs; C, td) :
(gk;C,w) € RANA(m) =1 (gk;C,w) € RANA(m) =1

Here, td is the simulation trapdoor.

A-Power Knowledge of Exponent Assumption (A-PKE). Abe and Fehr showed in [AF07] that
no statistically zero-knowledge non-interactive argument for an NP-complete language can have a “di-
rect black-box” security reduction to a standard cryptographic assumption unless NP C P/poly. See
also [GW11]. In fact, the soundness of NIZK arguments (for example, of the argument that a computa-
tionally binding commitment scheme commits to 0) seems to be an unfalsifiable assumption in general.

Similarly to [Grol0,Lip11], we will base the soundness of our NIZK arguments on A-PKE, an explicit
knowledge assumption. This assumption, proposed by Groth [Grol0] for A = [n], and then generalized
to arbitrary A by Lipmaa in [Lip11], is a generalization of the KE assumption of Damgard [Dam91] and
of the KEA3 assumption of Bellare and Palacio [BP04a].

For two algorithms A and X 4, we write (y;z) < (A||X4)(z) if A on input x outputs y, and X4
on the same input (including the random tape of A) outputs z. Let A be an (n, k)-nice set for some
n = poly(k). Fix t € {1,2}. The bilinear group generator G, is A-PKE secure in group G, if for
any non-uniform probabilistic polynomial-time adversary A there exists a non-uniform probabilistic
polynomial-time extractor X 4, such that

gk = (pv GlaGQaGT7ea91792) <~ gbp(ln)v (a,x) — Z?}?
A
t

Prlers e (g8, (97,98 iea), (e, 65 (ai)icqoyua) < (Al|Xa)(gk;crs) ¢ =c* Nc# H gue
ie{0}uA

is negligible in . Note that the element a is output since g; belongs to the CRS, and thus the adversary
has access to (gf ', g*") for i € {0} U A.

Groth [Grol0] proved that the A-PKE assumption holds in the generic group model in the case \; = ;
his proof can be straightforwardly modified to the general case. We later need the special case where
A = (), that is, the CRS contains only ¢, and the extractor returns ag such that ¢ = gi°. This KFE
assumption (in a bilinear group) is similar to Damgard’s original KE assumption [Dam91], except that
it is made in a bilinear group setting.
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Trapdoor Commitment Schemes in the CRS Model. A commitment scheme (Geom,Com) in a
bilinear group consists of two probabilistic polynomial-time algorithms: a randomized CRS generation
algorithm Geom, and a randomized commitment algorithm Com. Here, G! . (1%), t € {1,2}, produces a
CRS ck;, and Com®(ck; a;r) outputs a commitment value A € G;. A commitment scheme (Geom,Com)
is computationally binding in group Gy, if for every non-uniform probabilistic polynomial-time adversary
A, the probability

. cky giom(ln)v ((11,7“1,0,277“2) — .A(th) :
(a1,m1) # (az,rs) A Com’(cks; ar;71) = Com’(cks; az;rs)

is negligible in k. A commitment scheme (Geom,Com) is perfectly hiding in group Gy, if for any ck; €
Glom(17) and any two messages a; and az, the distributions Com®(cks; a1;-) and Com’(cks; aq;-) are
equal.

We use the next variant of the knowledge commitment scheme from [Grol0] as modified by Lip-
maa [Lipll]:
CRS generation G, (17): Let A be an (n, x)-nice set with n = poly (k). Define \g = 0. Given a bilinear

com
group generator Gy, set gk := (p,G1,G2,Gr, e, g1,92) < Gpp(17). Choose random «,z < Z,. The
CRS is cky  (gk; 9¢, (gtis 9ti)ie[n))» Where gy = gfxi and §;; = g{”ki. Note that g; = g0 is a part of
gk.
Commitment: To commit to @ = (ai,...,a,) € Z; in group Gy, the committing party chooses a

random 7 < Zj, and defines
n n
Com'(cki;asr) = (97 - [T gt a7 - T o8) -
i=1 i=1

Thus, for f(x) =7+ > i, a;z*t, Com’(cks;a;r) = (gtf(r), gtaf(z)).

As shown in [Lipl1], the knowledge commitment scheme in group G; is statistically hiding, and
computationally binding under the A-PSDL assumption in group G;. If the A-PKE assumption holds
in group Gy, then for any non-uniform probabilistic polynomial-time committer A there exists a non-
uniform probabilistic polynomial-time extractor X 4 that, given as an input the input of A together with
A’s random coins, extracts the contents of the commitments.

A trapdoor commitment scheme has three additional efficient algorithms: for trapdoor CRS gener-
ation 7dG(17%,t) = (crs*,td) with crs* having the same distribution as G!.,(1¥), randomized trapdoor
commitment 7dCom’(crs*,td;r) = Com®(crs*;0;r), and trapdoor opening 7dOpen(crs*; a;r) = ' such
that Com®(crs*;0;r) = Com?(crs*;a;r’). Clearly, the knowledge commitment scheme is also perfectly
trapdoor, with the trapdoor being td = z: after trapdoor-committing A < Com®(ck;0;7) = g} for
7 < Zp, the committer can open it to any (a;r’) where 1’ is chosen so that 7’ + Y a;z* = 7.

Adaptive Rg,ji-Soundness. To avoid knowledge assumptions, one can alternatively relax the notion
of soundness. Following [GOS06] (the full version), Rgyk-soundness is a weaker version of soundness,
where it is required that an adversary who knows that (gk;C) ¢ L should not be able to produce a
witness wgyiie such that (gk; C, wguik) € Rguite (see [GLO7] or [GOS11] for a longer explanation).

More formally, let R = {(gk; C,w)} and L = {(gk;C) : (3w)(gk; C,w) € R} be defined as earlier.
Let Rguit = {(gk; C, wgui)} be an efficiently computable binary relation. A non-interactive argument
(Gobp, Gers, P, V) is (adaptively) Rgyi-sound, if for all non-uniform probabilistic polynomial-time adver-
saries A, the probability

- gk < Gbp(17), crs <= Gers(gk), (C, wguir, ) < A(gk, crs) :
(gk; C, wguilt) € Rguiit A V(gk, crs; C, 7T) =1
is negligible in k.

For the notion of Rgi:-soundness to make sense for relation R, one obviously has to define Rgyjic very
carefully. As it comes out, the use of knowledge commitments, while making arguments more efficient,
makes the definition of Ry more tricky. To understand the difficulty, note that the last property of the
knowledge commitment scheme as defined on page 6 (under the PKE assumption, for every adversarial
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committer A there exists an extractor X 4 that can open the commitment, given access to A’s secret coins
and inputs) is needed to prove the soundness of NIZK arguments that are based on this commitment
scheme. If we want to prove Rgyii-soundness (so that we will not have to rely on a knowledge assumption),
we have to modify Rgiix so that the Rgir--witness contains openings corresponding to all used knowledge
pseudo-commitments. Here, (A4, A%) is a knowledge pseudo-commitment if and only if secret a «— Z,, was

used while creating some elements (g?wki )ic A belonging to the common reference string, where A" C Z.
The opening of such a pseudo-commitment is defined as in the case of the PKE assumption.

This obviously makes the language Rguiir dependent on the construction of the NIZK argument, and
thus seems to give a circular argument. Nevertheless, the next can be seen to be prudent engineering
approach. First, we construct an argument of knowledge that is sound under the PKE assumption.
This argument makes use of knowledge commitments. Second, we eliminate the PKE assumption by
requesting the adversary herself (instead of the extractor) to return the openings of the commitments.
By doing that, one can argue that the security proof becomes more clear since instead of the general
PKE assumption, we rely on the more concrete assumption that an adversary who knows what is inside
certain (pseudo-)commitments cannot break the argument.

Groth-Lipmaa Arguments. In [Grol0], Groth proposed several efficient NIZK arguments that he
proved to be sound under the power computational Diffie-Hellman assumption and the PKE assumption.
Groth’s arguments were later made more efficient by Lipmaa [Lip11], who also showed that one can use
somewhat weaker security assumptions (PSDL instead of PCDH).

Groth [Grol0] and Lipmaa [Lip11] proposed two basic arguments (for Hadamard product and permu-
tation). In both cases, Lipmaa showed that by using results about progression-free sets one can construct
a set Ay with [As] = n'*+°() Clearly, together with a trivial Hadamard addition argument, one obtains
a complete set of arguments that can be used to construct NIZK arguments for any NP language.
(See [Grol0,Lip11] for discussion.) However, this is always not the most efficient way to obtain a NIZK
argument for a concrete language. In Sect. 3 we define new basic arguments that enable us to construct
a very efficient permutation matrix argument and thus also a very efficient shuffle argument.

Public-key cryptosystem. A public-key cryptosystem (Gpke, £nc, Dec) is a tuple of efficient algorithms,
where Gpic(17) generates a secret/public key pair (sk, pk), randomized encryption algorithm Encpi(p;7)
produces a ciphertext ¢, and deterministic decryption algorithm Decg(c) produces a plaintext p. It is
required that for all (sk, pk) € Gpke(1%) and for all valid p and r, Decg(Encok(p; 7)) = p. Since we work
in a bilinear group, we assume that G, is first used to produce gk, and then Gpi. gets gk as an input.
Assume that the randomizer space R is efficiently sampleable. A public-key cryptosystem
(Gpke, €nc, Dec) is CPA-secure, if for all stateful non-uniform probabilistic polynomial-time adversaries

)

Pr [ (sk, pk) <= Goke(1%), (10, p11) <= A(pk), b <= {0, 1} ,7 < R : A(pk, Encor(pu; 1)) =0 | — %

is negligible in k.

3 New Subarguments

In this section we present some subarguments that are required to construct the final shuffle argument.
However, we expect them to have independent applications and thus we will handle each of them sepa-
rately.

3.1 New Zero Argument

In a zero argument, the prover aims to convince the verifier that he knows how to open knowledge
commitment A; € G; to the all-zero message tuple 0 = (0,...,0). Alternatively, one aims to prove
the knowledge of the discrete logarithm of A;, that is, that A; = g; for some some 7. By using the
homomorphic properties of the knowledge commitment scheme, the prover can use the zero argument to
show that A; can be opened to an arbitrary constant.



8 Helger Lipmaa and Bingsheng Zhang

The idea of this argument can be derived from [Grol0,Lip11]. Intuitively, we set (only for this ar-
gument) n = 0 and show that A = Ay is a commitment to a length-0 tuple. For this, we only have to
include to the CRS the elements g; and go. (The case t = 1 can be handled dually.)

CRS generation Gos(1%): Let gk := (p,G1,Ga,Gr,e,91,92) < Gop(17). Let & < Z,. Denote §; «+ g for

t € {1,2}. The CRS is
crs < (g1, 92) -

The commitment key is cks < (gk; g2), and the verifier’s part of the CRS is crs, « g1.

Common input: A; < g5 € Gos.

Argument generation Po(gk, crs; Az, 7): The prover defines A gs. The prover sends m < Ay € G to the
verifier as the argument.

Verification Vy(gk,crsy; Az, m = /12): The verifier accepts if e(g1, A2) = e(g1, Az)

Protocol 1: New zero argument in group Go

The next theorem is basically a tautology, since the KE assumption states that the prover knows r.
However, since any (As, A3) is a commitment of 0 (and thus, (gk; A2, A2) € L) for some r, we cannot
claim that Prot. 1 is computationally sound (even under a knowledge assumption). Therefore, we prove
R, ..-soundness of this argument, where

o (gkocrs; Ay, wly = (a,1), Ay) : (Az, Ag) = Com®(cka; a;r)A
guite (@ # 0) A Vo(gk,crs; Ay, Ay) =1

0
guilt

Theorem 1. The non-interactive zero argument in Prot. 1 is perfectly complete, perfectly zero-knowledge

and adaptively Rguilt—sound,

Proof (Sketch). PERFECT COMPLETENESS is straightforward. PERFECT ZERO-KNOWLEDGE: since the
adversary knows ¢, it can compute Ay < AS.

ADAPTIVE RJ;-SOUNDNESS: assume that there exists an adversary A that can break the Rp-
soundness of this argument. That is, A can create (Ay, (a,r), Ay) such that (As, Ay) = Com?(a;r),
o h h i o oq i .

a # 0, and e(g1, A2) = e(g1, A2). But then (Ay, Ag) = (g5 - [17-, 5 ", g5 - [1i—y g5°° ") with A # 0 for
some I € [n]. Since (gk,crs) contains g5° only for ¢ € {0}, the adversary has thus broken the (-PSDL
assumption. But the (-PSDL assumption is straightforwardly true, since then the input of the adversary

does not depend on x at all. Thus, the argument in Prot. 1 is unconditionally adaptively Rgu”t—sound. O

Lemma 1. The CRS length in Prot. 1 is 1 element from the group Gi and 1 element from the group
Go. The argument size in Prot. 1 is 1 element from the group Go. Prover’s computational complexity
is dominated by 1 exponentiation. The verifier’s computational complezity is dominated by 2 bilinear
PALTINgGS.

Proof. Straightforward. O

3.2 New Sparsity Argument

Assume that As € Go. In a sparsity argument in Go, the prover aims to convince the verifier that he
knows an opening As = g5 - [}, g‘;)\ such that there exists I € [n] such that for i # I, a; = 0, while a;
can take any value, including 0. Alternatively, since Z, has no zero divisors, this means that the prover
aims to convince the verifier that a;a; = 0 for every ¢,j € [n] such that ¢ # j. A new sparsity argument
is depicted by Prot. 2. Sparsity argument in G; is defined dually.

Similarly to the zero argument, we cannot prove the computational soundness of this argument, since

for every a, there exists r such that A> = g5 [[;c(, gg/"wki. Instead, we prove Rglj-soundness, where
(gka Crs; (A27 AQ)a ((ai)iGAa T, (fi/)iE/I)v TP = (A17 Al? F7 F)) :
spa ) (As, Ay) = Com?(ckg;a;r) A (Fi, 5 € n])(i # 5 A a;a; # 0)A

uilt * = , _
£ log,, F' = Z Fi2" A Vepa (g, crs; (Ag, Ag), m°P%) =1
ieA
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Here, A is as defined in Prot. 2.
We note that the definition of R ﬁllt is quite natural, except the part of f/ that is needed because of
the concrete proof technique. Note that both [Grol0] and [Lip11] prove the culpable soundness of their

basic arguments with respect to similar languages. Intuitively, nglt includes only f! for i € A (resp., a;

for i € A) since ga; (resp., g1;) belongs to the CRS only for i € A (resp., i € A).

System parameters: Let n = poly(k). Let A = {)\; : i € [n]} be an (n,k)-nice progression-free set of odd
integers. Denote Ao := 0. Let A = {0} U AU (2 A).

CRS generation Ges(17): Let gk := (p,G1,G2,Gr,e,91,92) + Gup(17). Let &,z < Z,. Denote g; « g7,
i gfi and gi; gf‘”l fort € {1,2} and i € A. The CRS is

crs < (1, G2, (914, Gri)iea, (92i, §2i)ic Au(2-4)) -

Set cke + (gk; Gt, (gti, Gei)ica) for t € {1,2}, and let crs, < (g1, g2) be the verifier’s part of crs.
Common input: (As, As) = Com?(cke;a;r) = (g5 - g5F, G5 - Gof) € G3, with I € [n]. B
Argument generation Pspq(gk, crs; (Az2, A2), (a,r)): The prover defines Ay < g - gif, A < gi - gi%, F «

2rar —2ray _—a

g§ “Gax; g;’z)\l7 and I« §2 - 05 /\1 92?2)\1. The prover sends 7% < (A1, A1, F, F) € G1 x G3 to the
verifier as the argument.
Verification Vip, (gk, crsy; (Az, A2), mP%): Vspa accepts iff e(A1,g2) = e(gi,A2), e(A1,g92) = e(A1,52),
e(g1, A2) = e(g1, Az), e(g1, F) = e(g1, F), and e(A1, Az) = e(g1, F).

Protocol 2: New sparsity argument

Theorem 2. The sparsity argument in Prot. 2 is perfectly complete and perfectly witness-
indistinguishable. Let A be a progression-free set of odd integers. If the bilinear group generator Gpp

is A-PSDL secure, then Prot. 2 is adaptively Ryli-sound.

Proof. Let n < e(A1,As) and h < e(g1,g2). WITNESS-INDISTINGUISHABILITY: follows from the fact
that there is exactly one possible argument 7°P® that satisfies the verification equations.

PERFECT COMPLETENESS. All verifications but the last one are straightforward. For the last verifi-
cation e(Aq, A2) = e(q1, F), note that

1ogh77:(r+iaix’\i)(r+2ajm)‘j):zn: z": aax’\J’A“&-r +2rZa3: +Za2 2
i=1

J=1 i=1 j=1:5%#1 i=1 i=1

5€24\2:4 seA

Thus, log;, 7 is equal to a sum of some powers x° of z for § € 24\ 2- A and § € A. If the prover is
honest, then a;a; = 0 for i # j, and thus log, 7 is a formal polynomial that has non-zero monomials ~yz°
with only § € A. Since then a; = 0 for i # I, we get that log), n = 72+ 2raja* + a2z = = log,, F'. Thus,
if the prover is honest, then the third verification succeeds.

ADAPTIVE Rgmlt SOUNDNESS: Assume that A is an adversary that can break the adaptive Rgm,t
soundness of the sparsity argument. Next, we construct an adversary A’ against the A-PSDL assumption.
Let gk < Gbp(17) and = < Z,. The adversary A’ receives crs « (gk' (gf’,gg’)le/;) as her input, and
her task is to output z. She sets & < Z,, crs’ < (g1, g2, (91 N )zeA, (92 .95 1)ieAu(2‘A))’ and then
forwards crs’ to A. Clearly, crs’ follows the distribution imposed by Ges(1%). Both A and A’ set ck; +

(gk: e, (92", g% )ica) for t € {1,2}. According to the definition of Ryl A(gk;crs’) returns

((A27A2) gullt = ((ai)iea, (fi/)iE/T)vﬂ—spa = (AlvAl’Fv F)) :
Assume that A was successful, that is, for some i,j € [n] and i # j, a;a; # 0. Since (Ag, A3) =
Com?(cko; a;r) and Vspa(gk, crs’s (Az, As), m°P%) = 1, A’ has expressed log), n = log,, I as a polynomial
f(z), where at least for some i € 24\ 2- A, 2° has a non-zero coefficient.
On the other hand, by the definition of the language Rgmlt, log,, ' = ZJ‘E/I flz® = f'(x). Since A is a
progression-free set of odd integers, then (24\2-A)NA = () and thus if i € A then i & 24\ 2- A. Therefore,
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all coefficients of f’(x) corresponding to any 2%, i € 24\ 2+ A, are equal to 0. Thus f(X) = f; X and
f(X) =>2,c4 [i X" are different polynomials with f(z) = f’(x) = log,, F. Therefore, A" has succeeded
in creating a non-zero polynomial d = f — f’, such that d(z) = >, 4 d;xt = 0.

Next, A’ can use an efficient polynomial factorization [vVHN10] algorithm in Z,[X] to efficiently
compute all 2),, + 1 roots of d(x). For some root y, g¥ = 9%1' A’ sets =« y, thus violating the A-PSDL
assumption. a

Note that the efficiency of the culpable soundness reduction depends on 2)\,,, the largest element of A.

Theorem 3. Consider Prot. 2. The CRS consists of 2n + 1 elements of Gy and 4n + 1 elements of
G, with the verifier’s part of the CRS consisting of only 1 element of Gy and 1 element of Go. The
communication complexity (argument size) of the argument in Prot. 2 is 2 elements from Gy and 2
elements from Gg. Prover’s computational complexity is dominated by 10 exponentiations. Verifier’s
computational complezity ts dominated by 10 bilinear pairings.

Proof. Tt is clear that the size of the CRS is ©(44) = O(n). The statement about the length of the
common reference string follows from the fact that AN (2-A) = (. From the CRS, the verifier clearly
only needs to access g; and go. The statements about prover’s and verifier’s computational complexity
follow straightforwardly. O

3.3 New Permutation Matrix Argument

In this section, we will design a new permutation matriz argument where the prover aims to convince the
verifier that he knows a permutation matrix P such that (co;, €2;) € G3 are knowledge commitments to
P’s rows. We assume that if ¢ is a permutation then the corresponding permutation matrix Py is such
that (Py);; = 1iff j = ¢(9). Thus (Py-1);; = 1 iff i = 4(j). We base our argument on the next lemma.

Lemma 2. An n X n matriz P is a permutation matriz if and only if the next two conditions hold:
(a) the sum of elements in any single column is equal to 1, and (b) no row has more than 1 non-zero
elements.

Proof. First, assume that P is a permutation matrix. Then every column has exactly one non-zero
element (namely, with value 1), and thus both claims hold. Second, assume that (a) and (b) are true.
Due to (a), every column must have at least one non-zero element, and thus the matrix has at least n
non-zero elements. Due to (b), no row has more than 1 non-zero elements, and thus the matrix has at
most n non-zero elements. Thus the matrix has exactly n non-zero elements, one in each column. Due
to (a), all non-zero elements are equal to 1, and thus P is a permutation matrix. O

We now use the sparsity argument and the zero argument to show that the committed matrix satisfies
the claims of Lem. 2. Therefore, by Lem. 2, P is a permutation matrix.
Similarly to the case of the zero and sparsity arguments, we prove that Prot. 3 is Rgﬁt

Rf;ﬁt is equal to

-sound, where

(gk,crs; (c2,E2), ((ai)iea,ras (Piyris (f1;)jed)icm)s ™™ = (7°, (c16 €16, Fyy Fi)iepn) )
((H 02i> /D,7r0> = Com?(ckg; a;7,) A (Vi € [n])(cai, E2i) = Com?(cka; Py; i) A
i=1

(Vi € [n]) log,, F; = Z f{jxj A (a # 0V (i € [n])P; is not sparse) A
jeA

me (gkﬂ Crs; (Cz, 62)7 me) =1

Here, D is as defined in Prot. 3.

Again, while the definition of Rgﬁt is argument-dependent (in particular, it gives us a clue that
the permutation matrix argument consists of a zero argument and of a sparsity argument), this def-
inition is also quite natural. Namely, if we make the A-PKE assumption, we will have an extractor

that—given access to the common input and to the adversary’s random coins—returns the witness
((ai)ie/la Ta, (Ra Ty (fz‘/j)je/T)iE[n])'



A More Efficient Computationally Sound NIZK Shuffle Argument 11

Setup: let gk := (p, G1,G2,Gr, e, g1, g2) + Gop(17). , v
Common reference string Gus(gk): Let &, &, @ + Zp, & + g7, Gt gE, g — gfl, and g <+ gft. Let
D « H?:l g2,); and D « H?:l ‘62,)\7:. Let

crs < (g1, g2, 91, 92, (914, Gri)iea, (92:, G2i)ic au(z-a), (§2:)ica, D, D)

cki = (gk; G, (gei» Gei)ica), cka = (gk; g2, d2), and crs, = (41, G2, d1, G2)-

Common input: (czi,c2i) = Com?(ckz; Pi;7i) = (95" - 92,30+ 95" - G20y )) for i € [n].

Argument Generation Py (gk, crs; (cz,€2), (P,7)): Let ¢2; = gy’ - g2,5,,;, for i € [n]. Construct a zero argu-
ment 7% = ([T, é2:)/D for ( ", ¢2:)/D. For i € [n], construct a sparsity argument m;?* = (c14, 1, Iy, F})
that (cai, €2;) commits to a sparse row. Send 7™ <« (7°, w°P%) to the verifier.

Verification V. (gk, crsy; (cz2, €2); 7P™): The verifier checks n + 1 arguments (7%, 7w°P®).

Protocol 3: New permutation matrix argument in group G, with P = P,

Theorem 4. The argument in Prot. 3 is a perfectly complete and perfectly zero-knowledge permutation
matriz arqgument. Let A be a progression-free set of odd integers. If the A-PSDL assumption holds, then

Prot. 3 is adaptively Ry -sound.

Proof. PERFECT COMPLETENESS: follows from the completeness of the sparsity and zero arguments and
from Lem. 2. For this we note that (D, D) = Com?(cky; 1;0) and thus (ITiZ, 2/ D, T, é9:/ D) commits
to 0 if and only if every column of P sums to 1.

ADAPTIVE Rgmt—SOUNDNESS: Let A be a non-uniform probabilistic polynomial-time adversary that
creates (ca,€2), witness ((a;)ica,Ta, (P, T4, (fi’j)je/j)ie[n]), and an accepting NIZK argument 7.

Since the zero argument is Rgu”t—sound, verification of the argument 7° shows that every column of
P sums to 1. Here the witness is wgu“t = (a,r,) with @ = Y"1 | P; — 1. By the A-PSDL assumption, the
sparsity assumption is Rgﬁﬁt—sound. Therefore, verification of the arguments 75P%
of P has exactly one 1 (here the witness is w;"™* = (Pi, 74, (f;);e4)). Therefore, by Lem. 2 and by the
culpable soundness of the sparsity and zero arguments, P is a permutation matrix.

PERFECT ZERO-KNOWLEDGE: the simulator creates a correctly formed CRS together with a simula-
tion trapdoor, so that the trapdoor commitments can be opened to any values. Due to the trapdoor, the
simulator can simulate the zero and sparsity arguments. More precisely, he uses P equal to the identity
matrix to simulate both the zero and the sparsity arguments. To show that this argument 7" simulates
the real argument 7P™, note that 7™ is perfectly indistinguishable from the simulated NIZK argument
7’ where one makes trapdoor commitments but opens them to real witnesses when making product and
permutation arguments. On the other hand, also 7’ and «” are perfectly indistinguishable, and thus so

are ™™ and 7”. m|

shows that every row

Lemma 3. Consider Prot. 3. The CRS consists of 2n + 2 elements of Gy and 5n + 4 elements of Go.
The verifier’s part of the CRS consists of 2 elements of Gy and of 2 elements of Go. The communication
complezity is 2n elements of G1 and 2n + 1 elements of Gy. The prover’s computational complexity is
dominated by 10n + 1 exponentiations. The verifier’s computational complexity is dominated by 10n + 2
Pairings.

Proof. Straightforward. For example, in a single sparsity argument, the prover’s (resp., the verifier’s)
computational complexity is dominated by 10 exponentiations (resp., pairings). In the case of the zero
argument, the prover’s (resp., the verifier’s) computational complexity is dominated by 1 exponentiation
(resp., 2 pairings). O

4 Knowledge BBS Cryptosystem

Boneh, Boyen and Shacham [BBS04] proposed a cryptosystem II = (Gpke, Enc, Dec) that we will call
the BBS cryptosystem. We will use a “knowledge” version of this cryptosystem so that according to the
KE (that is, the )-PKE) assumption, the party who produces a valid ciphertext must know both the
plaintext and the randomizer. We give a definition for group Gy, the knowledge BBS cryptosystem for
group Go can be defined dually.
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Setup (17): Let gk < (p,G1,Gz2,Gr, €, 91,92) < Gbp(17).

Key Generation Gy (gk): Set (&1, dg, ds3) < Zi, g1 gf“, gél) — gg‘l, §£2) — gS‘Q, gé‘” — g§‘3. The
secret key is sk := (sky,sks) « (Z;)Z, and the public key is pk + (gk;§1,§§1>,§§2),g§3),f, 1, h,ﬁ),
where f zg}/Skl, f=f% h= gi/SkZ’, and h = ho2.

Encryption Encp(p; 0, 7): To encrypt a message p € Z, with randomizer (o,7) € Zg, output the
ciphertext u = (uy, ug, ug, 1, U2, U3), where u; = 7, ug = h", uz = gf+U+T, @ = f7, and @y = A7,
and U3 = §’1‘+U+T.

Decryption Decg(uq, us, us, i1, to, ig): if e(uhgél)) = e(t,g2), e(u2,§£2)) = e(lg,92) and
e(ug,gg?’)) = e(@i3, g2), then return the discrete logarithm of ¢! « wus/(u5"u$?). Otherwise, return

L.

Since Encpk (15 01, T1)-Encpk(p2; 02, T2) = Encpk(p1+p2; 01402, T1+72), the knowledge BBS cryptosystem
is additively homomorphic (with respect to element-wise multiplication of the ciphertexts). In particular,
one can re-encrypt (that is, blind) a ciphertext efficiently: if o and 7o are random, then Encp(p; 01, 71) -
Encpk(0; 02, 72) = Encpk(pt; 01 + 02,71 + T2) is a random encryption of 4, independently of oy and 73.

We need the cryptosystem to be lifted (that is, the value p be in exponent) for the soundness proof
of the new shuffle argument in Sect. 5 to go through; see there for a discussion. Thus, to decrypt, one
has to compute discrete logarithms. Since this is assumed to be intractable, in real applications one has
to assume that p is small. Consider for example the e-voting scenario where p is the number of the
candidate (usually a small number). One can now either

— use a range proof [Bou00,LAN02,Lip03,CCS08,RKP09,CLS10] (in the e-voting scenario, range proofs
are only given by the voters and not by the voting servers, and thus the range proof can be relatively
less efficient compared to the shuffle argument) to guarantee that votes are correctly formed. This
approach is prudent in case case, since invalid ballots can be removed from the system before starting
to shuffle (saving thus valuable time otherwise wasted to shuffle invalid ciphertexts), or

— discard the ballots if the ciphertext does not decrypt.

Both approaches have their benefits, and either one can be used depending on the application.

The inclusion of 73 to the ciphertext is required because of our proof technique. Without it, the
extractor in the proof of of the soundness of the new shuffle argument can extract p only if p is small.
Therefore, security would not be guaranteed against an adversary who chooses u3 without actually
knowing the element u.

PRA1-Security. It is easy to see that the knowledge BBS cryptosystem, like the original BBS cryp-
tosystem, is CPA-secure under the DLIN assumption. Moreover, under a knowledge (KE, that is, (-PKE)
assumption the encrypting party knows the tuple (u, o, 7): there exists an extractor that returns o (resp.,
T or i), given access to (uy, 1) (resp., (ug,U2) or (us,us)) and the encrypter’s random coins. For this it
is required that values &1, s and a3 are chosen independently at random.

Thus, under the KE assumption in group Gy, the knowledge-BBS cryptosystem satisfies PRA1-
security, a version of plaintext-awareness (more precisely, PAl-security as defined in [BP04b]), where the
extractor extracts both the plaintext and the randomizer. We will not give a formal definition of the
PRA1-security in this paper.

5 New Shuffle Argument

Let IT = (Gpke; Enc, Dec) be an additively homomorphic cryptosystem. Assume that u; and u} are valid
ciphertexts of IT. We say that (u},...,u}) is a shuffle of (uy,...,u,) iff there exists a permutation ¢ € S,,
and randomizers rq,...,r, such that uj = uy@) - Encpe(0;74) for i € [n]. (In the case of the knowledge
BBS cryptosystem, r; = (04, 7;).) In a shuffle argument, the prover aims to convince the verifier in zero-
knowledge that given (pk, (u;, u;)ic[n)), he knows a permutation ¢ € S,, and randomizers r; such that
uj = Uy () - Encp(0;7;) for i € [n].

In this section, we construct an efficient shuffle argument that works with the knowledge BBS cryp-
tosystem of Sect. 4; the argument can be generalized to other scenarios. Assume that the ciphertexts
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Common reference strlng Similarly to the permutation matrix argument, let &, &, < Zp, gt <+ gt , gt — gt ,
gt,<—gt,andgtl<—gt Let D < T, g2, andD(—]_[ZIgQA
In addition, let sk1,5k2 < Zy and &1, &2, &3 < Zp. Let [ gl/Skl h +— gl/Sk2 f— % h h% g « 972,

3 e g8, g g5, and 3§Y  gi°. The CRS is

— _ o o _ — o N~ o~ ~(2)
crs == (g1, G2, 91, G2, (914, Gui)ie s (92is Goi)ic av(a 4y, (§2i)iens Dy D, 31,87, 352,587, £, Fo by h)

The commitment keys are cke < (gk; g, (gti, Gri)ica) and cokg + (gk;g2). The public key is pk =
(gk; gl,gé ),g§2),§é3), ,f h, il), and the secret key is sk = (skq, skz).
Common input: (pk, (ui, uf)icln)), where u; = Encpu(pi; 04, 7) and ui = Encpk Ly (s); Twi) + 0%, Ty + 71)-
Argument P (gk, crs; (pk, (wi, ui)icin)), (¥, (07,7 )icin))): the prover does the following.
Let P = P,-1 be the n x n permutation matrix corresponding to the permutation Pl
For i € [n)], let r; < Z, and (c2;,C2;) + Com?(cke; Py;ri) = (gh' 28,100 92 G20, )
Generate a permutation matrix argument 7™ for inputs (cz2, €2).
Set (Ro, Ry) + 72, (CoyCo) Comz(ckg,al, .o, 00 Ry, and (cr, &) < Com?®(cka; 71, ..., 7h; Ry).
Compute (uo,tq) 4 (fR izt 1u117fR :L 17]:{) (ur,@ir) < (hRT ’ :L 1“127hR ?:1 ﬂg),
(Upay Ups) 4= (9?6+RT ’ H:L L Uiss Gr ) H, L Ug5)-
6. The argument is

Al

7TSh <~ ((021762i)i€[n]aﬂ-pm7caaéa7c7'767auoaaoau‘maT’ul—Laﬁu) . (1)

Verification Vs, (gk, crs; (pk, (us, u L)le[n]),ﬂ'Sh): the verifier does the following.

1. Check that e(gl,cg) =e(g1,% ) and e(gi,c-) = e(g1,¢-). // (¢o,Co) and c;, &) are correct.

2. Check that e(uq, §5") = e(io, 32), e(ur, 35”) = e(iir, 32), and e(uy, §5”) = (i, G2).

3. For i € [n], check that e(un, ;") = e(fin,go). e(wer,33”) = el g2). e(uins”) = elis,g2).
e(uhr, 35") = e(itly, g2), e(uin, 35) = e(iil, g2), and e(uis, 35") = e(iis, g2). // Ciphertexts are cor-
rect.

4. Check the permutation matrix argument 7?™

5. Check that the next three equations hold:

(a) e(fico) - TIiey e(uir, cai) = e(uo, g2) - TT7—, e(uin, g2i),
(b) e(h,cr) - [T, e(uiz, c2i) = e(ur, g2) - T[], e(uia, g2i), and
(c) elg1scocr) - [T, e(uis, c2i) = e(uu, g2) - [ 11, e(uis, g20)-

=

Protocol 4: New shuffle argument

(w1, Uin, Wiz, Uit , Usa, Uiz), where ¢ € [n], are created as in Sect. 4. Then, the shuffled ciphertexts with
permutation ¢ € S, and randomizers (07, 7;);c[, are

(R
i =(ujy, Ui, Ugg, Uiy, Ugn, Ujz) = Uy - ENCoi(05 07, 7)) = Encok (kyp(iy; (i) + 0% Ty(iy +77) -
Let P = Py-1 denote the permutation matrix corresponding to the permutation 1.

The new shuffle argument is described in Prot. 4. Here, the prover first constructs a permutation
matrix and a permutation matrix argument 7. After that, he shows that the plaintext vector of v
is equal to the product of this permutation matrix and the plaintext vector of w;. Importantly, we
can prove the adaptive computational soundness of the shuffle argument. This is since while in the
previous arguments one only relied on (perfectly hiding) knowledge commitment scheme and thus any
commitment could commit at the same time to the correct value (for example, to a permutation matrix)
and to an incorrect value (for example, to an all-zero matrix), here the group-dependent language contains
statements about a public-key cryptosystem where any ciphertext can be uniquely decrypted. Thus, it
makes sense to state that (pk, (u;, u} )ie[n]) is mot a shuffle. To prove computational soundness, we need to
rely on the PKE assumption. It is also nice to have a shuffle argument that satisfies a standard security
notion.

In a real life application, the adversary (for example, a malicious mix server) can get the ciphertexts
u; from a third party (from voters, or from another mix server), and thus does not know their discrete
logarithms. However, in such a case we can still prove soundness of the full mixnet (including the voters
and all mix servers) if we give the adversary access to secret coins of all relevant parties. The use of
knowledge BBS guarantees that the encrypters — voters — know the plaintexts and the randomizers,
and thus the knowledge BBS can be seen as a white-box non-interactive knowledge argument. One could
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instead opt to use some somewhat less efficient but black-box non-interactive knowledge argument. In
this case, the adversary would not have to have access to voters’ secret coins, and one could just use the
lifted BBS cryptosystem instead of the knowledge BBS cryptosystem.

We note that Groth and Lu made a similar, though somewhat weaker, assumption in [GL0O7] where
they prove culpable soundness against adversaries who also output and thus know the secret key of the
cryptosystem. Thus, the adversary can decrypt all the ciphertexts, and thus knows the plaintexts (but
does not have to know the randomizers). As argued in [GLO7], this is reasonable in the setting of mixnet
where the servers can usually threshold-decrypt all the results.

Theorem 5. Prot. 4 is a non-interactive perfectly complete and perfectly zero-knowledge shuﬁ‘le ar-
gument of the knowledge BBS ciphertexts. Assume that p is sufficiently small so that log,, g gi' can be
computed in polynomial time. If the A-PSDL, the DLIN, the KE (in group Gi), and the A-PKE (in
group Gz ) assumptions hold, then the argument is also adaptively computationally sound.

We recall that (-PKE is equal to the KE assumption (in the same bilinear group). Thus, if A-PKE is
hard then also A-PKE and KE are hard (in the same group).

Proof. PERFECT COMPLETENESS: To verify the proof, the verifier first checks the consistency of the
commitments, ciphertexts and the permutation matrix argument; here one needs that the permutation
matrix argument is perfectly complete. We now have to show that if the prover is honest, then the three
last verification equations hold.

Assume that the prover is honest. The verification equation in step 5a holds since

3

e(f.co) - [ [ e(wir, c2i) =e(f, g5 Hgm (w65 - e(f7 20, 1)
i=1

i=1

3

n
Huzth He(faw(i)+oi792i) = e(uo'agQ) : H e(U;thi) .
=1

i=1

The equations in steps 5b and 5c¢ can be verified similarly.

ADAPTIVE COMPUTATIONAL SOUNDNESS: Let A be a non-uniform probabilistic polynomial-time ad-
versary that, given gk and a crs, creates a statement (pk = (gk; gl,gél),g;),g;’)7 £y fohyh), (us,u )16[71])
and an accepting NIZK argument 7*" (as in Eq. (1) in Prot. 4), such that the plaintext vector (u});c(n
is not a permutation of the plaintext vector (u;);e[n- B

Assume that the DLIN assumption holds in G;, the KE assumption holds in G; and A-PKE (and
thus also A-PKE and KE) assumption holds in Gy. We now construct an adversary A’ that breaks the
A-PSDL assumption.

Recall that 7P™ contains values 7% and 7;** = (c14,¢14, Fi, Fi). By applying the relevant knowl-
edge assumption, we can postulate the existence of the next non-uniform probabilistic polynomial-time
knowledge extractors that return certain values:

— By the KE assumption in group G;, there exists a knowledge extractor that, given
(wij, Uij, uiz, U;;)jer3) and access to A’s random coins, returns with all but a negligible probabil-
ity values p;, oy, 7;, p, o} and 77, such that u; = Encpu(ps; 04, 7) and u; = Encpe(us; o}, 77). Note
that it might be the case that u; # u;.

— By the A-PKE assumption in group G, there exists a knowledge extractor that, given (cy, o, ¢r, Cr)
and access to A’s random coins, returns openings

(*,R,) and (7*,R;) ,

such that (c,,é,) = Com?(cks;0*; Ry) and (c;,&;) = Com?(cke; 7*; R;). It does not have to hold
that o] = oy + o} and 7] = 7y + 77 for i € [n].

— By the KE assumption in group G;, there exists a knowledge extractor that, given
(Uo, Ug, Ur, Ur, Uy, U,) and access to A’s random coins, returns openings

(’UU,’UT, Uu) s

such that (uy, i) = (£, f*), (ur, ;) = (h7,h*), and (u,,d,) = (97*,37*). (Thus, it is not
necessary that the adversary created the values u,, u, and u, correctly, it is just needed that she
knows their discrete logarithms.)
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— By the KE assumption in group G, there exists a knowledge extractor that, given (([];_, c2:)/D, )
and access to A’s random coins, returns an opening

((ai)ica,Ta)

such that (]} c2:)/D, %) = Com?(cko; @; 7).
— By the A-PKE assumption in group Gs, for every i € [n] there exists a knowledge extractor that,
given (c14,¢;1) and access to A’s random coins, returns an opening

((Pij)jeasri)

such thai_l (Ch‘, Eﬂ) = COHI1 (Ckl; Pi; Ti)-
— By the A-PKE assumption in group Gg, for every i there exists a knowledge extractor that, given
(F;, F;) and access to A’s random coins, returns openings

(fi/j)je/T

such that log,, F; =3, 1 [
Let a be A’s output. Based on A and the last three type of extractors, we can build an adversary A’
that returns a together with ((ai)ie4,7a, (Ps, 74, (f{;)jeA)iem))- Since the permutation matrix argument
is RguIIt -sound and 7P™ verifies, we have that ca = (c2i)ic[n) commits to a permutation matrix. Thus,
there exists ¢ € S, such that for every i € [n], co; = exp(ge,r; + x’\w’lﬁ‘))).
Assume now that the equation in step 5a holds. Then

n

e(uaa 92) :e(fa CU) : H e(uila 021)/ H e(u/ila 921)

i=1 %

Il
—

R, ofati o T I G - ol M
—e(f, gh B ) T et gyt T O T et 08™)

1 =1
_ Ro+3" o+ 3" (oy)+or —al)ati
76(f >t Doia( P (i) ) ,92) .

:]:

.
Il

Since uy = fU7, S0 (0yiy+0of —o))aN+Ro+ > 1 01— Ve = 0. If 0} # 04+ 0} for some i € [n],
then the adversary has succeeded in creating a non-trivial polynomial f*(X) = Z?:l fiX Ao 4 fo, with
[ =oypw+of—o}and f§ = Ry + .. | 0i7i — Vo, such that f*(z) = 0. By using an efficient polynomial
factorization algorithm, one can now find all A, + 1 roots of f*(X). For one of those roots, say y, we
have g = g5. A’ can now return y = z. Since (gk, crs) only contains f* for i = 0, the adversary has
thus broken the (-PSDL assumption, an assumption that is true unconditionally since the adversary’s
input does not depend on x at all. Thus, o] = oy + o for i € [n].

Analogously, by the verification in step 5b, > (7y) + 77 — /)2 + Ry + Y1, 777 — vy = 0, and
thus, 7/ = 7y(;) + 7, for all i € [n].

Finally, by the verification in step 5c,

n n
e(uy, g2) =e(g1, cocr) - [ | eluis, cai)/ [ [ e(wia, i)
1=1 1=1
n
s

n
Ry+R- Ty (o7 )at itoit+Ti w10 itoitT g
=e(91, 9o HRA L (ol ) I | ettt exp(ga, 7 + 2t @)/ | I e(gh Tt 93 )

=1 =1
Thus,
n n n
10gg, uy =Ry + Ry + Y (07 +77)2™ + Y (s + 04 + 1) (s + 2 710) = > (i} + o + 7))
=1 =1 =1

Ai

M=

=Ro + R ) (i + 01+ 7)1 +

i=1

(M) — e+ oy +op — ol + TGy T T — 7))

N
Il
—

M:

=R, + R, + Z(/”Ll +o,+ 1) +

i=1

(Mw(z) - ﬂz)

s
I
—
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If puj # prp(;) for some i € [n], then the adversary has succeeded in creating a non-trivial polynomial
FHX) = 0 fE XN+ fg, with f =500 (g — 1) and fg = Ro + Re + 350 (ki + 03 + 73)ri — vy,
such that f*(z) = 0. By using an efficient polynomial factorization algorithm, one can now find all A,, +1
roots of f*. For one of those roots, say y, we have gy = ¢%. Since (gk, crs) only contains g¥ for i € A,
the adversary has thus broken the A-PSDL assumption. Therefore, due to the A-PSDL assumption,
1 = piy(qy for i € [n].2

Thus, u}, = fov® 1o ul, = hTe@+7i Uy = gfw”)—w”’(“+U"*+T“’(”+T: and similarly for elements ;;,
and therefore, {u}} is indeed a correct shuffle of {u;}.

ZERO-KNOWLEDGE: The simulator construction is given in Prot. 5. Next, we give an analysis of the
simulated proof. Note that ¢,, ¢, and co; are independent and random variables in G, exactly as in the
real run of the protocol. With respect to those variables, we define uq, v, and u, so that they satisfy

the verification equations. Thus, we are now only left to show that the verification equations in steps 5a,
5b and 5c hold.

Inputs: gk and CRS as in Prot. 4 and (pk, (ui, ui)ic[n])
Output: 75"
Simulation:

1. Pick random z;, 71, 7i2 < Zp.
2. Set co < ]y 95°, cr < [T, 952, c2i < g5° and Ca; < G5
3. Set

=

(£ it i)™ ) T (7 - <a21>“"')> ,
1 2
(A - (a;2>“"')> ,

s
T2 Z; I \N—x7
(h g (i) ) ;
A n A
Ti1+7i2 z; I N—x ~Ti1+Trie  ~2Z; ~/ \N—x
(gll 2ugt - (u3) ) 7H (91l 2z (Ugs) )

1 7
i=1

(Ue, U ) <

Il
-

7

-
=

(wr, Ur) <

<
1
Il
—

=

Il
i

(quau) <_<

7

4. Complete the remaining part of the proof and simulate 7™ by using the trapdoor opening of commitments.
5. Set " ((c2i, C2i)ign), TP, Coy Coy Cry Cry Uy Thory Uy Ty Uy Ty

Protocol 5: Simulator construction

i=1
n n n

=e(JT (g () =), g2) - [] eula, 920) = e(ua, g2) - [ eluily. g2:) -

i=1 =1 =1

e(f,co) - [ ] ewir, c20) =e(f, [ [ 95™) - [] eCuin, 57) = e(JT 7 - [ [ wii. 92)
1=1 =1 1=1

Similarly, e(h, c-) T e(wiz, c2i) = e(ur, g2) [T;; e(ujz, g2:) and e(g1, cocr) T, e(uiz, c2i) = e(uy, g2)-
[T, e(u}s, g2i). Thus all three verification equations hold, and therefore the simulator has succeeded in
generating an argument that has the same distribution as the real argument. O

Theorem 6. Consider Prot. 4. The CRS consists of 2n + 7 elements of G and 5n+ 7 elements of Go,
in total Tn + 14 group elements. The communication complezity is 2n + 6 elements of G1 and 4n + 5
elements of Go, in total 6n+ 11 group elements. The prover’s computational complexity is dominated by
17n + 16 exponentiations. The verifier’s computational complexity is dominated by 28n + 18 pairings.

2 For the argument in this paragraph to go through, we need the knowledge BBS cryptosystem to be lifted and
the plaintexts to be small. Otherwise, the adversary will not know the coefficients of f'(X), and thus one could
not use a polynomial factorization algorithm to break the A-PSDL assumption. Thus, a crafty adversary might
be able to break soundness by choosing g} from which she cannot compute p.
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Proof. The communication complexity: |7P™|; in addition, 6 elements from G; and 2n + 4 elements from
Gs. The prover’s computational complexity follows from that of the permutation matrix argument, to
which the shuffle argument proper adds 7n 4+ 15 exponentiations. Finally, the shuffle argument proper
adds 18n + 16 bilinear pairings to the verifier’'s computational complexity of the permutation matrix
argument. The rest is straightforward. a

We note that in a mix server-like application where several shuffles are done sequentially, one can
get somewhat smaller amortized cost. Namely, the output ciphertext u; of one shuffle is equal to the
input ciphertext u; of the next shuffle. Therefore, in step 3, one only has to check the correctness of the
ciphertexts u} in the case of the very last shuffle. This means that the verifier’s amortized computational
complexity is dominated by 22n + 18 pairings (that is, one has thus saved 6n pairings).
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A  PPA Assumption from [GLO7]

Purely for comparison reasons, we will state next the definition of the permutation pairing assumption
from [GLOT7]. Since the original definition was given in the symmetric setting, we assume here that
G=G; =Gy,and g = g1 = go.

Definition 1 (PPA Assumption [GLO7]). The permutation pairing assumption holds for Gy, if for
all non-uniform probabilistic polynomial-time adversaries, the probability

gk = (va»Ga GTvgvg) — gbp(lﬁ)v (1'17 ceey (En) — ZZ? (aiﬂ bl)?é[n] — A(gkv (gmlvg$$)7€[n]) :

n n

Pr Haig*“ =1A Hbig*"’”? = 1A (Vi € [n])e(a;,a;) = e(g,b;)A
i=1 i=1

(a)iepn) is not a permutation of (g%);em]

is negligible in K.



