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Abstract

Program Obfuscation is the problem of transforming a program into one which is functionally
equivalent, yet whose inner workings are completely unintelligible to an adversary. Despite
its immense cryptographic utility, program obfuscation has proved to be a hard and elusive
goal, as evidenced by the wide-ranging impossibility results, starting with the work of Barak
et al. (CRYPTO 2001). There is a limited, although steadily increasing, set of positive results
in this area, including obfuscation of point functions, proximity testing, testing of hyperplane
membership, and obfuscating re-encryption programs.

The presence of auxiliary inputs about secrets is a practical and omnipresent concern in cryp-
tography, and the case of program obfuscation is no different. Achieving program obfuscation
was hard to begin with; achieving secure obfuscation in the presence of auxiliary information
about the program is downright daunting. In particular, virtually no positive results are known
in this setting.

In this work, we define a specific form of auxiliary input security, called collusion-resistant
obfuscation. Informally, we consider a setting where the program to be obfuscated is composed of
many “pieces”, each one chosen by a different party. The question then is: does the obfuscation
remain secure, even if the adversary gets hold of the pieces of the program belonging to a subset
of the parties? Thus, the auxiliary input here is simply the various pieces of the program.

Following the work of Hohenberger et al. (TCC 2007), we consider the notion of average-case
secure obfuscation and define collusion resistance with respect to this notion. We then show how
to obfuscate a natural and complex cryptographic functionality called functional re-encryption.
Informally, the functional re-encryption functionality for a public-key encryption scheme and a
policy function F with n possible outputs is one that transforms (“re-encrypts”) an encryption
of a message m under an “input public key” into an encryption of the same message m under
one of the n “output public keys”, namely the public key indexed by F (m). We show how to
obfuscate functional re-encryption for any policy function F (with a polynomial-size domain)
using bilinear maps.

In a nutshell, our result shows how to achieve a meaningful relaxation of the highly useful
yet elusive notion of auxiliary input security, for a sophisticated cryptographic functionality.
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1 Introduction

Informally, a program obfuscator is an algorithm that transforms a program into another, function-

ally equivalent program whose inner workings are “completely unintelligible”. Starting from the

formalization of program obfuscation in the work of Barak, Goldreich, Impagliazzo, Rudich, Sahai,

Vadhan and Yang [BGI+01], the problem has received considerable attention in the cryptographic

community. A method of obfuscating programs is an exceedingly valuable tool, both in theory and

practice.

Despite its potential for far-reaching applications, the area of program obfuscation is wrought

with impossibility results. The seminal work of Barak et al. [BGI+01] demonstrated a class of

circuits which cannot be obfuscated even under a weak notion of obfuscation, thereby diminishing

the hope of achieving general-purpose obfuscation. Further impossibility results for obfuscation

of more natural functionalities was shown in [GK05, Wee05, HMLS07, BC10]. Positive results for

obfuscation, on the other hand, had been largely limited to relatively simple class of functions

such as point functions [Can97, CMR98, LPS04, Wee05, GK05, CD08], proximity testing [DS05],

encrypted permutations [AW07] and more recently, testing hyperplane membership [CRV10].

Hohenberger et al. [HRSV07] showed how to obfuscate a complex cryptographic functionality

called re-encryption [BBS98, AFGH05]. Informally, a re-encryption program associated with two

public keys transforms an encryption of a message m under the first of these keys to an encryption

of the same message m under the second public key. Hohenberger et al. (and independently,

[HMLS07]) also introduce a strong definition of (average-case) secure obfuscation which we will use

and build on in this work. Following [HRSV07], Hada [Had10] showed how to securely obfuscate

an encrypted signature functionality.

Despite the slow and steady stream of positive results for obfuscation, we seem to have relatively

few techniques and paradigms for obfuscation. In particular,

• The key point that enables obfuscation in both [HRSV07] and [Had10] is that they obfuscate

functionalities that compute a function “inside a ciphertext”. For example, in [HRSV07],

this is the decryption function and in [Had10], it is the signature function. Not surprisingly,

it has been noted that given a fully homomorphic encryption scheme [RAD78, Gen09], the

functionalities of [HRSV07, Had10] can be easily obfuscated. Thus, we would like to find

other paradigms for obfuscating complex functionalities.

• Both re-encryption and obfuscated signatures can be thought of as access control mechanisms.

The catch, though, is that both of them embody an “all-or-nothing” form of access control –

for example, in the case of re-encryption, neither the re-encryptor nor the recipient alone can

decrypt a ciphertext created by the initiator although together, the two of them can learn

the entire contents of the ciphertext. We would like to consider functionalities that capture

a finer grained delegation of access.

• An issue that is important in both theory and practice is the presence of auxiliary inputs. Most

positive results on obfuscation (including [HRSV07, Had10], but also others) do not achieve

any form of security against auxiliary inputs that depend on the function being obfuscated.

Indeed, this task seems quite hard, as indicated by impossibility results of [GK05] (for some
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limited positive results against auxiliary inputs, see [BC10]). Can we achieve obfuscation

against a large, meaningful class of auxiliary inputs?

In this work, we make progress on the above lines of inquiry. Firstly, we (slightly) weaken

the definition of secure obfuscation in the presence of auxiliary inputs, and introduce the notion

of collusion resistant obfuscation. Secondly, we show how to obfuscate a natural and complex

cryptographic functionality called functional re-encryption in a way that satisfies this notion of

security. This functionality captures a finer grained delegation of access, and also protects against

collusion between various participating parties.

1.1 Collusion Resistant Obfuscation

Consider the following scenario. A department would like to create a login program that will grant

access to several users - say, Alice, Bob, and Carol, who have different passwords. The department

would like to obfuscate this program and give it to the server that will run it. Now, we would like

to guarantee that this obfuscation remains secure even if, for example, Alice were to collude with

the server. One can view Alice’s password as being specific auxiliary information that an adversary

obtains about the program. Note that this is a restricted form of auxiliary information as we do

not allow an adversary to learn, say specific bits of Bob or Carol’s passwords. In this work, we are

interested in the notion of average-case secure obfuscation (as defined by [HRSV07, HMLS07]) and

hence in the above example we assume that all passwords are chosen uniformly at random.

One can generalize the above functionality and obtain a general definition of collusion resistant

obfuscation. We would like to obfuscate a function family {Cn} that has the following particular

form. Any CK ∈ Cn is parameterized by a set of “secret” keys K = {k1, k2, · · · , k`} (in addition to

any other parameters that the circuit might take) that are chosen at random from some specified

distribution. Now, define a subset of keys represented through a set of indices T ⊆ [`], where [`]

denotes the set {1, 2, · · · , `}. We would like to construct an obfuscation of the circuit, denoted by

Obf(CK), so that Obf(CK) is a “secure obfuscation” of CK (in the sense of [HRSV07]) even against

an adversary that knows the set of keys {ki}i∈T .

1.2 Functional Re-encryption

Functional re-encryption is an expressive generalization of re-encryption [BBS98, AFGH05]. A

functional re-encryption functionality is parameterized by a policy function F : D → [n] (i.e, F has

domain D and has n possible outputs) chosen from some class of functions, an input public key pk

as well as n output public keys. The functionality receives as input a ciphertext of message m with

“identity” id under the input public key pk. 1 It decrypts the ciphertext using the secret key sk to

get m and id, and then re-encrypts m under the “appropriate” output public key p̂kF (id). Following

our desiderata from before, one could think of functional re-encryption as a form of fine-grained

delegation of access.

To motivate the functional re-encryption functionality, consider the following scenario: Alice

wishes to have her e-mail server “route” her incoming mail to one of a set of n recipients. The

1This is a slight generalization of the description given earlier in the abstract where the function F is applied to
the entire message. We choose to view the message as an identity on which the function F is applied, and a separate
“payload” for conceptual cleanliness.
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particular recipient to which the ciphertext should be routed depends on both the contents of the

ciphertext – essentially, the identity id – as well as Alice’s access policy encoded by her function F .

The e-mail server does this by “re-encrypting” the contents of the ciphertext under the appropriate

public key. The minimal requirement from such a system is that the “re-encryption mechanism”

hide both the message as well as Alice’s access policy – it should merely provide a means for the

server to do the appropriate routing. 2

One (not particularly appealing) way for Alice to do this would be to give the e-mail server

her secret key and her access policy which lets the server decrypt all incoming messages and figure

out where to route them. Unfortunately, this “solution” completely fails our minimum requirement

above. Ideally, Alice would like to “obfuscate” the trivial functional re-encryption program above

and give it to the server. We show how to securely obfuscate functional re-encryption which,

informally speaking, guarantees that any “attack” that the server can carry out given the obfuscated

functional re-encryption program, it could have carried out given oracle access to the functional

re-encryption program (which is no power at all!)

Furthermore, in reality, we could reasonably expect the server to collude with some of the

recipients to learn additional information about messages as well as Alice’s access policy function

F . Clearly, collusion helps the server – he can use a recipient’s decryption key together with the

re-encryption program to learn the output of F on certain inputs. Our strong notion of collusion-

resistant secure obfuscation guarantees that this is the only information that the server could

possibly learn by colluding. In this situation, the auxiliary input is the secret keys of the colluding

recipients.

Selectively delegating access is indeed the central theme of a recently introduced notion of

predicate encryption [KSW08, SSW09]. In fact, (predicate-hiding, public key) predicate encryption

schemes can be used to solve Alice’s dilemma. This is done by completely ignoring the email server

and giving each of the recipients a “little secret key” that is just powerful enough to decrypt the

appropriate ciphertexts (dictated by the access policy). Aside from the fact that there are no

known public-key predicate hiding encryption schemes (nor even good definitions of them), this

solution has two drawbacks – first, there is no way to revoke access from a recipient other than by

having Alice choose a fresh key for herself (which could be quite expensive). Second, this solution

requires all recipients to be aware of the existence of an access policy, while the solution based on

functional re-encryption is completely transparent to the recipients – i.e., they continue using their

already registered public keys, and they do not even have to know the existence of the functional

re-encryption mechanism.

1.3 Overview of Results and Techniques

Collusion resistant obfuscation. We define the notion of collusion resistant obfuscation that

guarantees security against a natural form of auxiliary inputs. This notion of auxiliary input

security might be realizable (without random oracles) for many common cryptographic tasks.

Functional Re-encryption. As a starting point, it is easy to see that even functional re-

encryption can be obfuscated given a fully homomorphic encryption (FHE) scheme. However,

2Of course, since the e-mail server does not know who the recipient is, it either sends the resulting ciphertext to
all the recipients or publishes it on a bulletin board from which the intended recipient can then access it.
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if the adversary obtains the re-encryption program together with the secret key of any of the re-

cipients (by colluding with the appropriate recipient), it can recover the entire input secret key.

That is, the scheme is totally insecure against collusion between the re-encrypter and even a single

recipient.

To overcome the drawbacks of the solution for functional re-encryption from FHE, we construct

a scheme that is secure even against a re-encrypter that may collude with some subset of the

recipients. We show, informally:

Theorem 1 (Informal). Under the Symmetric External Diffie-Hellman assumption (or, alterna-

tively the decisional linear assumption+the SDHI assumption), there exists an encryption scheme

such that for any function F : D → R, there is a collusion-resistant average-case secure obfuscation

of the functional re-encryption program w.r.t. F . The size of the input ciphertext in the encryption

scheme O(|D| ·poly(λ)), and the size of the output ciphertext is O(poly(λ)) (i.e., independent of the

domain and the range of F ).

We now present the ideas behind our construction at a very high level. One can think of a

functional re-encryption program as a program that must achieve two goals - a) it must “hide”

the policy function F , and b) it must also “hide” the input secret key (that it uses to decrypt the

input ciphertext). These two goals must simultaneously be achieved while maintaining the right

functionality. Informally, the main innovation in our work is a technique to hide the policy function

- this combined with techniques from [HRSV07] allows us to achieve both goals simutaneously. We

shall now describe this first technique in more detail.

Let G,H,GT be groups such that there is a bilinear map e : G×H→ GT . Let a1, · · · ,ad ∈ Zdq
be vectors that denote elements in the domain D of function F and let â1, · · · , ân ∈ Zq denote

elements in the range R of F . Now consider a function OF that maps elements in Gd to elements

in GT in the following way. OF is parameterized by random generators g ∈ G and h ∈ H. Upon

input gai , OF maps it to e(g, h)âF (i) . Informally, we shall now show how to publish a program that

achieves the functionality provided by OF, but at the same time hides F .

The program computes a vector α ∈ Zdq such that the inner product 〈ai,α〉 = âF (i) for all

i. Note that this is indeed possible as α is a solution to a system of d equations in d variables.

The program description simply contains hα. On input gai , the program computes and outputs∏d
j=1 e(g

aij , hαj ) = e(g, h)〈ai,α〉 = e(g, h)âF (i) , which is the output as desired.

Unfortunately, this solution does not completely hide the function. Note that if F (1) = F (2)

(say), then an adversary can learn this by simply running the above program and checking if the

output is the same on both the inputs. To get around this problem, we modify the program in

the following way. The program picks random wi, for all i, and computes two vectors α,β ∈ Zdq
such that the inner product 〈ai,α〉 =wiâF (i) and 〈ai,β〉 =wi, for all i (in our actual solution we

require the R.H.S of the second equation to be wi − 1 instead of wi, but we will ignore that for

now). The program description now contains hα, hβ. On input gai , the program computes and

outputs
∏d
j=1 e(g

aij , hαj ) = e(g, h)wiâF (i) , as well as
∏d
j=1 e(g

aij , hβj ) = e(g, h)wi . Now, on two

different inputs (of F ) that have the same output, the above program outputs elements of the

form (e(g, h)xa, e(g, h)x) and (e(g, h)ya, e(g, h)y), for random a, x and y. However, these tuples are

indistinguishable from random, even given e(g, h) and e(g, h)a, (by DDH) and hence an adversary

cannot tell if F (1) = F (2). This construction now ensures that F is completely hidden.
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Now, note that if we let {gai}, 1 ≤ i ≤ d be the input public key and e(g, h)âj be the output

public key, then one can potentially use the above construction to build a scheme that converts an

encryption of message m under gai to one under e(g, h)âF (i) . This is precisely what we do. Our

encryption schemes are ElGamal-like, the input encryption key contains a set of vectors gai , · · · , gad ,

and an input encryption of message m with identity i uses the key gai . Finally, in order to obtain

a secure obfuscation, we apply techniques from [HRSV07] to re-randomize both input and output

ciphertexts.

Obfuscating Functional Re-encryption for Arbitrary Policy Functions? A natural ques-

tion raised by our result is whether it is possible to achieve collusion-resistant obfuscation of func-

tional re-encryption for arbitrary (polynomial-time computable) policy functions F (in particular,

functions F with domains of super-polynomial size). We show that this goal is impossible to achieve.

In particular, we show that a collusion-resistant obfuscation with respect to a policy function F

already contains within it a [BGI+01]-style obfuscation (a so-called “predicate obfuscation”) of the

policy function F . In some sense, this is not entirely surprising, and corresponds to the intuition

that a collusion-resistant obfuscation of functional re-encryption allows computation of the func-

tion F 3, and yet hides all internal details of F except the input-output behavior. Together with

the impossibility result of [BGI+01] for obfuscating general (families of) functions, this shows that

there are classes of (polynomial-time computable) policy functions for which it is impossible to

construct collusion-resistant secure obfuscation of functional re-encryption. See Appendix D for a

formal statement and proof this result.

The next question to ask is whether there is any non-trivial policy function (with a domain of

super-polynomial size) for which this goal can be achieved. We now argue that this requires some

new innovation on the question of constructing public-key predicate encryption schemes which

satisfy a strong security notion called predicate-hiding. Predicate encryption schemes were defined

by Katz, Sahai and Waters [KSW08], following [SW05, GPSW06] (in particular, the predicate-

hiding property was defined in the work of Shi, Shen and Waters [SSW09]). Constructions of

predicate encryption schemes (even ones that do not achieve predicate-hiding) are known only for

simple classes of functions such as inner products [KSW08]. Moreover, in the public-key setting,

we do not know how to achieve (any reasonable definition of) predicate-hiding, even for simple

functions.

2 Collusion Resistant Secure Obfuscation

2.1 Average-case Secure Obfuscation

Throughout this paper, we will implicitly assume that the adversary (as well as simulator) can

obtain arbitrary polynomial-size independent auxiliary input z. We remark that our construction

is secure even against this presence of such auxiliary information. We now recall the notion of

average-case secure obfuscation introduced in [HRSV07] below.

3A collusion-resistant obfuscation of functional re-encryption allows computation of the function F since given an
output secret key ŝki and the re-encryption program, one can test if F (id) = i for any id in the domain of F . Simply

encrypt a random message with identity id, run it through the re-encryption program and decrypt it using ŝki. If
this returns the same message that was encrypted, then conclude that F (id) = i.
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Definition 1. An efficient algorithm Obf that takes as input a (probabilistic) circuit C from the

family {Cn} and outputs a new (probabilistic) circuit, is an average-case secure obfuscator, if it

satisfies the following properties:

- Preserving functionality: With overwhelming probability Obf(C) behaves “almost identically”

to C on all inputs. Formally, there exists a negligible function neg(λ), such that for any input

length n and any C ∈ Cn:

Pr
coins of Obf

[∃x ∈ {0, 1}n : C ′ ← Obf(C); SD(C ′(x), C(x)) ≥ neg(λ)] ≤ neg(λ)

where SD(X ,Y) denotes the statistical distance between two distributions X and Y.

- Polynomial slowdown: There exists a polynomial p(n) such that for sufficiently large input

lengths n, for any C ∈ Cn, the obfuscator Obf only enlarges C by a factor of p. That is,

|Obf(C)| ≤ p(|C|).

- Average-case Virtual Black-Boxness: For any efficient adversary A, there exists an efficient

simulator S, and a negligible function neg(λ), such that for every efficient distinguisher D,

and for every input length n:∣∣∣Pr[C ← Cn : DC(A(Obf(C))) = 1]− Pr[C ← Cn : DC(SC(1λ)) = 1]
∣∣∣ ≤ neg(λ)

The probability is over the selection of a random circuit C from Cn, and the coins of the

distinguisher, the simulator, the oracle, and the obfuscator.

2.2 Average-case secure obfuscation with collusion

Consider the case where we would like to obfuscate a function family {Cn} that has the following

particular form. Any CK ∈ Cn is parameterized by a set of “secret” keys K = {k1, k2, · · · , k`} (in

addition to any other parameters that the circuit might take) that are chosen at random from some

specified distribution. Now, define a (non-adaptively chosen) subset of keys represented through

a set of indices T ⊆ [`], where [`] denotes the set {1, 2, · · · , `}. We would like to construct an

obfuscation of the circuit, denoted by Obf(CK), so that Obf(CK) is a “secure obfuscation” of CK
(in the sense of [HRSV07]) even against an adversary that knows the set of keys {ki}i∈T .

We accomplish this using a definition that is similar in spirit to the notion of obfuscation against

dependent auxiliary inputs [GK05]. More precisely, in addition to their usual inputs and oracles, we

give both the adversary and the simulator access to a (non-adaptively chosen) subset {ki}i∈T ⊆ K
of the keys. This can be seen as auxiliary information about the circuit CK ← Cn. The formal

definition of collusion-resistant secure obfuscation is as follows.

Definition 2. An efficient algorithm Obf that takes as input a (probabilistic) circuit and outputs

a new (probabilistic) circuit, is a collusion-resistant (average-case) secure obfuscator for the family

{Cn} if it satisfies the following properties:

- “ Preserving functionality” and “ Polynomial Slowdown”, as in Definition 1.
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- Average-case Virtual Black-Boxness against Collusion: For any efficient adversary A, there

exists an efficient simulator S, and a negligible function neg(λ), such that for every input

length n, every efficient distinguisher D, and any subset T ⊆ [`]:∣∣∣Pr[CK ← Cn : DCK(A(Obf(CK), {ki}i∈T )) = 1]−

Pr[CK ← Cn : DCK(SCK(1λ, {ki}i∈T )) = 1]
∣∣∣ ≤ neg(λ)

The probability is over the selection of a random circuit CK from Cn, and the coins of the

distinguisher, the simulator, the oracle, and the obfuscator.

Remarks on the Definition.

Handling Malicious Choice of Keys: An even stronger attack model allows the adversary to obtain

an obfuscation of a circuit CK where some of the keys in {ki}i∈T are adversarially chosen. Further,

one could allow the adversary to select the set T adaptively, after seeing the public keys and/or

the obfuscated program. We postpone a full treatment of these issues to future work.

2.2.1 Securely obfuscating Functional Re-encryption

We would like to obtain a collusion-resistant average-case obfuscator for the functional re-encryption

functionality. A Functional Re-encryption (FR) functionality associated to a function F : D → R,

an input public/secret key pair (pk, sk), and output public keys p̂k1, . . . , p̂k|R|
4 is a functionality

that takes as input a ciphertext c = I-Enc(pk, id,m) and re-encrypts m under the output public

key p̂kF (id). More precisely, we are interested in a family of circuits

FR = {FRλ,F,D,R : λ > 0 and D,R ⊆ {0, 1}∗ and F : D → R}

where each circuit C
pk,sk,p̂k1,...,p̂k|R|

∈ FRλ,F,D,R is a probabilistic circuit indexed by a key pair

(pk, sk)← I-Gen(1λ), and public keys (p̂ki, ?)← O-Gen(1λ), and works as follows:

C
pk,sk,p̂k1,...,p̂k|R|

, on input c :

Computes (id,m)← I-Dec(sk, c), and outputs ĉ← O-Enc(p̂kF (id),m).

If I-Dec(sk, c) returns ⊥ then outputs random elements according to the format of ĉ.

C
pk,sk,p̂k1,...,p̂k|R|

, on a special input keys:

Outputs pk, p̂k1, . . . , p̂k|R|.

In other words, all public keys included in the circuit C
pk,sk,p̂k1,...,p̂k|R|

are considered public knowl-

edge, and the only pieces of information we are interested in protecting are the input secret key

sk and the function F . Also, note that we are interested in guaranteeing security for arbitrarily

chosen F and not F chosen at random.

The set of secret keys that will parameterize a functional re-encryption functionality is K =

{ŝk1, · · · , ŝk|R|}. The definition of collusion-resistant average-case secure obfuscation guarantees

4Without loss of generality, and for simplicity of notation, we will often assume that the domain D = {1, 2, . . . , d}
and the range R = {1, 2, . . . , n} throughout the paper.
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security against an adversary who not only knows the re-encryption program, but also has access

to a subset {ŝki}i∈T ⊆ K of the output secret keys. This scenario endows the adversary with

considerable power and knowledge. For instance,

• The adversary will inevitably be able to decrypt all ciphertexts c = I-Enc(pk, id,m), where

F (id) ∈ T , simply by using the re-encryption program to convert the ciphertext c into an

encryption of m under the output public key p̂kF (id), and then decrypting it using ŝkF (id).

• Moreover, the power to selectively decrypt a subset of the input ciphertexts gives the adver-

sary information about the access policy function F itself. For instance, the adversary can

determine if F (id) = i whenever i ∈ T .

3 Preliminaries

We let λ be the security parameter throughout this paper. By neg(λ) we denote some negligible

function, namely a function µ such that for all c > 0 and all sufficiently large λ, µ(λ) < 1/λc. For

two distributions D1 and D2, D1
c
≈ D2 means that they are computationally indistinguishable (to

be precise, this statement holds for ensembles of distributions).

We let [`] denote the set {1, · · · , `}. We denote vectors by bold-face letters, e.g., a. Let G be a

group of prime order q. For a vector a = (a1, a2, · · · , a`) ∈ Z`q and group element g ∈ G, we write

ga to mean the vector (ga1 , ga2 , · · · , ga`). For two vectors a and b where a and b are either both

in Z`q or both in G`, we write ab to denote their component-wise product and a/b to denote their

component-wise division. In case b ∈ Z`q, we let ab denote their component-wise exponentiation.

For a vector a and scalar x, xa = ab,a/x = a/b, and ax = ab, where b = (x, x, · · · , x) of dimension

`.

Assumptions. We assume the existence of families of groups {G(λ)}λ>0, {H(λ)}λ>0 and {G(λ)
T }λ>0

with prime order q = q(λ), endowed with a bilinear map eλ : G(λ)×H(λ) → G(λ)
T . When clear from

the context, we omit the superscript that refers to the security parameter from all these quantities.

The mapping is efficiently computable, and is bilinear – namely, for any generators g ∈ G and

h ∈ H, and a, b ∈ Zq, e(ga, hb) = e(g, h)ab. We also require the bilinear map to be non-degenerate,

in the sense that if g ∈ G, h ∈ H generate G and H respectively, then e(g, h) 6= 1.

We assume the Symmetric External Diffie-Hellman Assumption (SXDH)), which says that the

decisional Diffie-Hellman (DDH) problem is hard in both of the groups G or H. That is, the

following two ensembles are indistinguishable:{
(q,G,H,GT , e)← BilinSetup(1λ); g ← G; a, b← Zq : (q,G,H,GT , e, g, g

a, gb, gab)

}
c
≈{

(q,G,H,GT , e)← BilinSetup(1λ); g ← G; a, b, c← Zq : (q,G,H,GT , e, g, g
a, gb, gc)

}
and a similar statement when g ∈ G is replaced with h ∈ H. In contrast, the assumption that DDH

is hard in one of the two groups G or H is simply called the external Diffie-Hellman assumption

(XDH). These assumptions were first proposed and used in various works, including [Ver04, BBS04,

Sco02, GS08]. In this work, we use the SXDH assumption. We remark that all our results can be
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obtained, albeit less efficiently, under a combination of the decisional linear assumption (DLIN) and

the strong Diffie-Hellman indistinguishability (SDHI) assumptions. We defer a complete treatment

of this extension to the full version.

4 Collusion-Resistant Functional Re-encryption

We are now ready to present our construction of a functional re-encryption scheme from the symmet-

ric external Diffie-Hellman (SXDH) assumption. We first construct our basic encryption schemes in

Section 4.1. In Section 4.2, we present the description of a program that implements the functional

re-encryption scheme. Finally, in Section 4.3, we prove that our functional re-encryption program

satisfies the notion of collusion-resistant average-case secure obfuscation.

4.1 Construction of the Encryption Schemes

A functional re-encryption scheme transforms a ciphertext under an input public key into a cipher-

text of the same message under one of many output public keys. In our construction, the input

and the output ciphertexts have different shapes – namely, the input ciphertext lives in the “source

group” G whereas the output ciphertext lives in the “target group” GT . We now proceed to de-

scribe our input and output encryption schemes which are both variants of the ElGamal encryption

scheme.

Parameters. The public parameters for both the input and the output encryption scheme consist

of the description of three groups G, H and GT of prime order q = q(λ), with a bilinear map

e : G × H → GT . Also included in the public parameters are two generators – g ∈ G and h ∈ H.

Let M =M(λ) ⊆ G denote the message space of both the input and output encryption schemes.

We assume that |M| is polynomial in λ.

The Input Encryption Scheme. We first construct the input encryption scheme, which is

parameterized by d = d(λ) which is an upper bound on the size of the domain of the policy function

that we intend to support. We will also use a NIZK proof system; we note that [GS08] provides a

efficient scheme for the type of statements we use, which is perfectly sound and computationally

zero-knowledge based on SXDH.

1. I-Gen(1λ, 1d): Pick random vectors a1, · · · ,ad from Zdq . We also generate crs, a common refer-

ence string (abbreviated CRS) for the NIZK proof system. Output pk = (crs, g, ga1 , · · · , gad),

and sk = (a1, · · · ,ad). We remark that the public key pk can be viewed as being made up of

d public keys pki = (g, gai) of a simpler scheme.

2. I-Enc(pk, i ∈ [d],m): To encrypt a message m ∈ M, with “identity” i ∈ [d], choose random

exponents r and r′ from Zdq , and compute:

(a) C = grai ; D = grm, and

(b) C′ = gr
′ai ; D′ = gr

′

(c) π, a proof that these values are correctly formed, i.e. that they correspond to one of the

vectors gai contained in the public key.
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Output the ciphertext (E,E′, π) where E = (C, D) and E′ = (C′, D′). (Looking ahead,

we remark that E looks like an encryption of message m under pki, while E′ looks like

an encryption of 0 under pki. E′ is used only by the re-encryption program for input re-

randomization, and is ignored by the decryption algorithm I-Dec.)

3. I-Dec(sk, (E,E′)): If any of the components of the ciphertext E′ is 1G or if the proof π does

not verify, output ⊥.5 Ignore E′, π subsequently, and parse E as (C, D). Check that for some

i ∈ [d] and m ∈M, D · (C1/ai)−1 = (m, · · · ,m). If yes, output (i,m). Otherwise output ⊥.

The Output Encryption scheme. We now describe the output encryption scheme.

1. O-Gen(1λ): Pick â← Zq. Let p̂k = hâ and ŝk = â.

2. O-Enc(p̂k,m): To encrypt a message m ∈M ⊂ G1,

• Choose random numbers r, s← Zq.

• Compute Ŷ = (hâ)r and Ŵ = hr.

• Output the ciphertext as
[
F̂ , Ĝ, Ĥ

]
:=
[
e(gs, Ŷ ), e(gs, Ŵ ) · e(m,hs), hs

]
.

3. O-Dec(ŝk = â, (F̂ , Ĝ, Ĥ)): The decryption algorithm does the following:

• Compute Q̂ = Ĝ · F̂−1/â.

• For each m ∈M, test if e(m, Ĥ) = Q̂. If so, output m and halt.

4.2 Obfuscation for Functional Re-encryption

We now describe our scheme for securely obfuscating the functional re-encryption functionality for

the input and output encryption schemes described above.

The Functional Re-encryption Key. The obfuscator gets an input secret key sk, the n output

public keys p̂ki, and the description of a function F : [d]→ [n]. It outputs a functional re-encryption

key which is a description of a program that takes as input a ciphertext of message m ∈ M and

identity i ∈ [d] under public key pk, and outputs a ciphertext of m under p̂kF (i).

The obfuscator does the following:

1. Pick z ← Zq and wi ← Zq for all i ∈ [d] uniformly at random.

2. Solve for α = (α1, . . . , αd) and β = (β1, . . . , βd) such that for all i ∈ [d]:

〈ai,α〉 = wi · âF (i) and 〈ai,β〉 = wi − 1

The re-encryption key consists of the tuple (Z,A,B) where Z = hz, A = hzα and B = hzβ. We

remark that computing the re-encryption key does not require knowledge of the output secret keys.

5This “sanity check” is to ensure the security of the re-encryption program. Note that if (E,E′) is honestly
generated, this event happens only with negligible probability.
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The Functional Re-encryption Program. Given the functional re-encryption key (Z,A,B)

and an input ciphertext (E,E′) where E = (C, D) and E′ = (C′, D′), the functional re-encryption

program performs the following steps:

1. Sanity Check: If any of the components of the input ciphertext E′ is 1G or if the proof π does

not verify, output (F̂ , Ĝ, Ĥ) for random F̂ , Ĝ ∈ GT and random Ĥ ∈ H. The sanity check is

to ensure that the next step – namely, input re-randomization – randomizes the ciphertext

E.

2. Input Re-Randomization: Pick a random exponent t ← Zq and compute Ĉ = C(C′)t and

D̂ = D(D′)t.

Note that the random exponent t is used to re-randomize the encryption of 0, and this re-

randomized encryption of 0 is multiplied with the encryption of m to get a re-randomized

encryption of m.

3. The main Re-encryption step: Write Ĉ := (Ĉ1, . . . , Ĉd), A := (A1, . . . , Ad) and B :=

(B1, . . . , Bd). Compute

F =

d∏
j=1

e(Ĉj , Aj) and G =

d∏
j=1

e(Ĉj , Bj) · e(D̂, Z)

4. Output Re-randomization: Pick a random exponent s ← Zq and compute F̂ = F s, Ĝ = Gs

and Ĥ = Hs.

Output the ciphertext (F̂ , Ĝ, Ĥ).

Preserving functionality. Let the input ciphertext be (C, D,C′, D′, π). Given that π verifies,

we know these values will be of the form C = grai , D = grm and C′ = gr
′ai , D = gr

′
. (If π does

not verify, then both the functionality and the above program will output random group elements.)

Let the re-encryption key be (Z,A,B) where Z = hz, A = hzα and B = hzβ.

• First, the input re-randomization step computes Ĉ = C(C′)t = g(r+tr′)ai=gr̂ai and D̂ =

D(D′)t = gr+tr
′
m = gr̂m, where we defined r̂

∆
= r + tr′.

• Second, the main re-encryption step computes F =
∏d
j=1 e(Ĉj , Aj) = e(g, h)r̂z〈ai,α〉 =

e(g, h)r̂zwiâF (i) and

G =
d∏
j=1

e(Ĉj , Bj) · e(D̂, Z)

= e(g, h)r̂z〈ai,β〉 · e(gr̂m,hz) = e(g, h)r̂z(wi−1) · e(gr̂, hz) · e(m,hz) = e(g, h)r̂zwi · e(m,hz)

• After the output re-randomization step (using randomness s), the ciphertext looks like F̂ =

e(gσ, hâF (i)ρ), G = e(gσ, hρ) · e(m,hσ) and H = hσ, where ρ = r̂wi and σ = sz are both

uniformly random in Zq, even given all the randomness in the input ciphertext. The claim
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about ρ being uniformly random crucially relies on the “sanity check” step in the re-encryption

program.

Thus, the final ciphertext is distributed exactly like the output of O-Enc(p̂kF (i),m).

Semantic security of encryption schemes. We show that the input and output encryption

schemes are semantically secure (in particular, the input scheme hides both the message and the

“identity”) under the DDH assumption over different groups, even given the re-encryption program.

We present a detailed proof in Appendix C.

4.3 Proof of Collusion-resistant Secure Obfuscation

We show that our construction is a collusion-resistant average-case secure obfuscator for the func-

tional re-encryption functionality. In order to satisfy collusion-resistance, the encryption as well

as the obfuscation scheme have to be modified somewhat. The modifications do not affect the

functionality or the security of the scheme, and are merely artifacts that seem necessary to show

that our functional re-encryption scheme meets the rigorous demands of being a secure obfuscation.

A necessary modification to the encryption and obfuscation schemes. Consider the case

where a corrupt recipient that holds secret key ŝkj colludes with the re-encryption program. Now,

essentially, this recipient has access to a program that selectively decrypts input ciphertexts that

are encrypted with an identity i such that F (i) = j. However, the simulator only has oracle access

to such a program. Hence, in order to put the simulator on an equal footing with the adversary

we need to give the simulator the power to selectively decrypt input ciphertexts. One way to do

this is to cheat and give the simulator ski (the vector ai in our construction) for all i such that

F (i) = j. (Note that ski is a secret key that allows for the selective decryption of ciphertexts with

identity i, but not any other ciphertext.). For ease of exposition, we shall for now assume that the

simulator obtains ski for all i such that F (i) ∈ T . However, we would not like to resort to this

cheat — we show in Appendix B how this can be avoided.

Towards showing that our obfuscation satisfies the collusion-resistant secure obfuscation

definition, we first construct a simulator.

Simulator. Let C ← FRλ,F,d,n be a functional re-encryption circuit for the function F : [d]→ [n],

parameterized by the input keys (pk, sk) and the output keys (p̂kj , ŝkj) for all j ∈ [n]. Let T ⊆ [n]

be a set of corrupted receivers. We construct a simulator S that gets as input the secret keys of all

the corrupted receivers ŝkj (for j ∈ T ), and has oracle access to the functionality C.
First, consider the case where none of the receivers is corrupted. Then, the simulator works as

follows. Recall that the obfuscated re-encryption program consists of the tuple (hz, hzα, hzβ) where

z is uniformly random, and α and β are solutions to some linear equations involving the input

and output secret keys. The simulator, instead, simply picks α and β uniformly at random (with

no relation to the input or the output keys). It then runs the adversary on this “junk functional

re-encryption program” (along with the secret keys of the corrupted receivers). Under the SXDH

assumption, we manage to show that this is indistinguishable from the obfuscated program that the
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adversary expects to get (even if the adversary is also given oracle access to the real re-encryption

circuit C).
If some of the receivers are corrupted, the simulator cannot choose α and β at random any

more. Indeed, since the distinguisher has the corrupted output keys, it can check if the α and β

(in the exponent) satisfy the equations involving the corrupted keys, namely {ŝkj}j∈T . Thus, the

simulator has to choose α and β as uniformly random solutions to a set of equations that involve

the corrupted keys. It turns out that this can be done efficiently since the simulator knows the keys

of the corrupted receivers as well. As mentioned before, for ease of exposition, we shall also provide

the simulator with {skj}j∈F−1(T ). However, we show how this can be removed in Appendix B.

Without further ado, let us present the simulator SC(1λ, T , {ŝki}i∈T , {skj}j∈F−1(T )) that works

as follows:

1. Query the oracle C on input the string “keys” to get all the public keys, including the input

public key pk = (g, ga1 , · · · , gad); and the output public keys p̂k1 = (h, hâ1), · · · , p̂kn =

(h, hân).

2. Sample random z, w1, . . . , wd from Zq. Sample random α,β from Zdq such that

∀i s.t. F (i) ∈ T : 〈ai,α〉 = wiâF (i) and 〈ai,β〉 = wi − 1

Note that this can be done efficiently using the knowledge of the vectors ai that we obtained

in Step 1, as well as the numbers âF (i) which are part of the corrupted secret keys. Compute

Z = hz, A = hzα, and B = hzβ . Output the tuple (Z,A,B) as the re-encryption key.

We now show that the output of the simulator described above is indistinguishable from an

obfuscation of the re-encryption functionality (given in Section 4.2), even to a distinguisher that

has the corrupted receivers’ secret keys and oracle access to the re-encryption functionality. This

proves that the obfuscation scheme we constructed in section 4.2 is a collusion-resistant average-case

secure obfuscation satisfying Definition 2. More formally, we show:

Theorem 2. Assuming SXDH, for any PPT distinguisher D and any corrupted set T ⊆ [n],

DC
[
Obf(C), {ŝkj}j∈T

]
c
≈ DC

[
SC(1λ, T , {ŝkj}j∈T )

]
where Obf is the obfuscator, and C ← FRλ,F,d,n is a uniformly random re-encryption circuit param-

eterized by (pk, sk)← I-Gen(1λ) and (p̂ki, ŝki)← O-Gen(1λ).

We now describe a sketch of the proof of this theorem. For the formal proof, see Appendix A.

Proof. (sketch.) At a high level, the proof will go through the following steps:

• Step 1: For simplicity, let us first consider the case when there is no collusion – that is,

neither the distinguisher nor the simulator has access to any of the output secret keys. Later,

we will point out the necessary modifications to achieve collusion-resistance.

We first show (in Lemma 1) that the re-encryption key is indistinguishable from random

group elements to any distinguisher D who is given the public keys for the input and output
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encryption scheme (but no oracle access). In other words, we will show that constructing a

re-encryption key (Z,A,B) where Z = hz,A = hzα and B = hzβ with α,β being solutions

to the equations

〈ai,α〉 = wiâF (i) and 〈ai,β〉 = wi − 1 for all i ∈ [d] (1)

is indistinguishable from constructing a re-encryption key with uniformly random α and β.

This follows from two ideas – first, under the DDH assumption in group H, it is hard to

distinguish between (h, hα, hβ) where α and β are solutions to Equations 1, from the case

where they are solutions to the same set of equations with the right-hand sides replaced by

uniformly random elements in Z∗q . 6 Next, we note that choosing α,β as a solution to a set

of equations with uniformly random right-hand side is equivalent to simply choosing random

α,β. This completes the first step - in Appendix A we show that this generalizes to the

case where T is non-empty, and the simulator’s α,β are chosen as a random solution to the

resulting underconstrained set of equations.

• Step 2: Next, we will provide our distinguisher D with oracle access to a random oracle

that simply returns random group elements of the same format as the output ciphertext

of the re-encryption program. (The only exception is that, when it receives a ciphertext

encrypted under id such that F (id) ∈ T , it honestly performs the re-encryption.) We show,

in Lemma 2, that the re-encryption key is indistinguishable from random group elements to

this distinguisher DRO as well.

This follows from Step 1 fairly easily once we note that the distinguisher in Step 1 could easily

simulate this random oracle itself.

• Step 3: In Lemma 3, we will provide our distinguisher D with oracle access to either the

re-encryption oracle or the random oracle, and argue that D will not be able to determine

which oracle it is given, even if it is also given the real re-encryption key.

The main intuition behind this proof is that, based on SXDH, we can show that honestly

generated outputs ciphertexts are indistinguishable from random tuples. This is fairly easy

to see: consider public key hâ, and the following tuple
[
e(gs, hw), e(gs, hr) · e(m,hs), hs

]
for

random â, s, r ∈ Zq. If w = âr, this is a valid encryption of m, if w is a random element of

Zq, then this is a random tuple from GT ×GT ×H.

A fairly straightforward hybrid argument then shows that a real encryption oracle for pub-

lic keys p̂k1, . . . , p̂kn is indistinguishable from a random oracle which only produces valid

ciphertexts for p̂ki with i ∈ T (even when the distinguisher is given ŝki for i ∈ T ).

Finally, we note that we can generate a real re-encryption key and perfectly simulate either

the real re-encryption oracle or the random re-encryption oracle given only p̂k1, . . . , p̂kn, and

either the encryption oracle or the random oracle described above. We conclude that the

real re-encryption oracle and random re-encryption oracle are indistinguishable even given

the real re-encryption key (and ŝki for i ∈ T ).

6Note that the right-hand sides of Equation 1 are not random as such – for example, consider the case where
F (1) = F (2) = 1. Then, the right-hand sides of the four equations corresponding to i = 1 and i = 2 are w1â1, w1 −
1, w2â1, w2 − 1, which are clearly correlated.
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• Step 4: In Lemma 4, we will again provide our distinguisher D with oracle access to either

the re-encryption oracle or the random oracle and argue that it will not be able to determine

which oracle it is given, this time when given the simulated re-encryption key instead.

Again, this follows from Step 3, when we note that the distinguisher in Step 3 could easily

ignore the re-encryption key it is given and instead run the simulator to generate a simulated

one.

We have argued that the distinguisher has the same behavior given the real re-encryption key

and real re-encryption oracle or the real re-encryption key and random oracle (Step 3), that it

has the same behavior given the real re-encryption key and random oracle or the simulated re-

encryption key and random oracle (Step 2), and that it has the same behavior given the simulated

re-encryption key and random oracle or the simulated re-encryption key and real re-encryption

oracle (Step 4). Putting everything together, we conclude that the real re-encryption key and

simulated re-encryption key are indistinguishable, even given access to the real re-encryption oracle.

Thus, we obtain the proof of Theorem 2.
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A Formal Proof of Collusion-resistant Secure Obfuscation (Theo-
rem 2)

For any function F : [d] → [n], subset T ∈ [n], security parameter λ, and distinguisher algorithm

D, we define two distributions Real-C(D, 1λ, F, T ) and Sim-C(D, 1λ, F, T ) as follows. Informally,

Real-C(D, 1λ, F, T ) is the distribution that describes the output of the distinguisher D given the

obfuscated functional re-encryption program, and Sim-C(D, 1λ, F, T ) is the distribution describing

the output of the distinguisher given the simulated program (where in both cases the distinguisher
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is also given oracle access to the re-encryption circuit). We will show that these two distributions

are indistinguishable under the SXDH assumption, which shows that our obfuscation method

achieves the notion of collusion-resistant secure obfuscation (Definition 2).

Real-C(D, 1λ, F, T ):

1. Choose random g from G and h from H. Choose random vectors a1, · · · ,ad from Zdq and

exponents â1, · · · , ân from Zq. Generate a CRS crs for the NIZK proof system.

2. Set pk = (crs, g, ga1 , · · · , gad), sk = (a1, . . . ,ad), and p̂k1 = (h, hâ1), · · · , p̂kn = (h, hân).

3. Let C ∈ FRλ,F,[d],[n] be the corresponding circuit, i.e. C = C
pk,sk,p̂k1,...,p̂kn

.

4. Run the real re-encryption key generation procedure to generate a re encryption key (Z,A,B).

I.e., pick z, w1, . . . , wd at random from Zq. Choose vectors α = α1, · · · , αd and β = β1, · · · , βd
at random from Zdq with the restriction that

〈ai,α〉 = wiâF (i) and 〈ai,β〉 = wi − 1 for all i ∈ [d]

Compute Z = hz, A = hzα, and B = hzβ.

5. Let b be the output DC(pk, p̂k1, · · · , p̂kn, (Z,A,B), {âj}j∈T , {aid}id∈F−1(T )).

6. Output b.

Sim-C(D, 1λ, F, T )

1. Choose random g from G and h from H. Choose random vectors a1, · · · ,ad from Zdq and

exponents â1, · · · , ân from Zq. Generate a CRS crs for the NIZK proof system.

2. Set pk = (crs, g, ga1 , · · · , gad), sk = (a1, . . . ,ad), and p̂k1 = (h, hâ1), · · · , p̂kn = (h, hân).

3. Let C ∈ FRλ,F,[d],[n] be the corresponding circuit, i.e. C = C
pk,sk,p̂k1,...,p̂kn

.

4. Run SC(1λ) to obtain (Z,A,B), I.e. pick z, w1, . . . , wd at random from Zq. Choose vectors

α = α1, · · · , αd and β = β1, · · · , βd at random from Zdq with the restriction that

〈ai,α〉 = wiâF (i) and 〈ai,β〉 = wi − 1 for all i ∈ F−1(T )

Compute Z = hz, A = hzα, and B = hzβ.

5. Let b be the output DC(pk, p̂k1, · · · , p̂kn, (Z,A,B), {âj}j∈T , {aid}id∈F−1(T )).

6. Output b.

Theorem 3. Assuming SXDH, for all F , T , and PPT D, the distributions Real-C(D, 1λ, F, T ) and
Sim-C(D, 1λ, F, T ) are indistinguishable.
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Proof. We prove this through a series of steps.

Step 1:

We begin by considering the following two distributions:

• RealInput(1λ, F, T ), which proceeds as Real-C(D, 1λ, F, T ) except that the output is[
crs, g, ga1 , · · · , gad , h, hâ1 , · · · , hân , (hz, hzα, hzβ), {âi}i∈T , {aid}id∈F−1(T )

]
for α,β chosen from Zdq such that 〈ai,α〉 = wiâF (i) and 〈ai,β〉 = wi − 1 for all i ∈ [d] (for
randomly chosen wi’s).

• SimInput(1λ, F, T ), which proceeds as Real-C(D, 1λ, F, T ) except that the output is[
crs, g, ga1 , · · · , gad , h, hâ1 , · · · , hân , (hz, hzα, hzβ), {âi}i∈T , {aid}id∈F−1(T )

]
for uniformly random α,β ∈ Zdq subject to the condition that

〈ai,α〉 = wiâF (i) and 〈ai,β〉 = wi − 1 for all i such that F (i) ∈ T

where, as before, the wi’s are randomly chosen. The difference between the two distributions
is that in SimInput(1λ, F, T ), the vectors α and β are required to satisfy only a subset of the
constraints (namely, ones that correspond to i ∈ F−1(T )). In particular, if the corrupted set
T is empty, then α and β are truly random vectors.

Lemma 1. Assuming SXDH, for all F , T , RealInput(1λ, F, T ) and SimInput(1λ, F, T ) are indis-
tinguishable.

Proof. Consider the following hybrid distribution, in which α and β are chosen to satisfy a random
set of equations:

• HybridInput(1λ, F, T ), which proceeds as Real-C(D, 1λ, F, T ) except that the output is

(crs, g, ga1 , · · · , gad , h, hâ1 , · · · , hân , (hz, hzα, hzβ), {âi}i∈T , {aid}id∈F−1(T ))

for α,β chosen as a random solution to:{
〈ai,α〉 = wiâF (i) for all i ∈ F−1(T )

〈ai,α〉 = yi for all i /∈ F−1(T )

}
and 〈ai,β〉 = wi − 1 for all i ∈ [d]

where the wi’s and yi’s are chosen at random from Zq.

First, it is easy to see that the distributions HybridInput(1λ, F, T ) and SimInput(1λ, F, T ) are
really the same distribution. This is because in both distributions, for every i ∈ F−1(T ), the
right-hand side of the two equations – one involving α and the other involving β – use the same
randomness wi, whereas for i /∈ F−1(T ), the right-hand sides are random and independent (in fact,
they are independent of âF (i) as well).

We now claim that HybridInput(1λ, F, T ) and RealInput(1λ, F, T ) are computationally indistin-
guishable, assuming SXDH. This finishes the proof of the lemma.
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Claim 1. Assuming SXDH, for all F , T , HybridInput(1λ, F, T ) and RealInput(1λ, F, T ) are indis-
tinguishable.

Proof. This can be proved via a series of hybrids Ht(1λ, F, T ), for 0 ≤ t ≤ d.

• Ht(1λ, F, T ) proceeds as Real-C(D, 1λ, F, T ) except that the output is

(crs, g, ga1 , · · · , gad , h, hâ1 , · · · , hân , (hz, hzα, hzβ), {âi}i∈T , {aid}id∈F−1(T ))

for α,β chosen as a random solution to:
〈ai,α〉 = wiâF (i) for all i ∈ F−1(T )

〈ai,α〉 = wiâF (i) for all i > t

〈ai,α〉 = yi for all i /∈ F−1(T ) such that i ≤ t

 and 〈ai,β〉 = wi−1 for all i ∈ [d]

where the wi’s and yi’s are chosen at random from Zq.

Clearly, H0(1λ, F, T ) = RealInput(1λ, F, T ), and Hd(λ, F, T ) = HybridInput(1λ, F, T ). We will
argue that for all t = 1, · · · , d, the distributions Ht−1(λ) and Ht(λ) are indistinguishable by SXDH.

Note that if F (t) ∈ T , then the two distributions are identical. For all other cases, suppose
there is a PPT adversary A that can distinguish the two distributions. Then we construct an
adversary B that acts as a distinguisher for SXDH. B gets as input a tuple (h,X1 = hx1 , X2 =
hx2 , X3 = hx3) where either x3 = x1x2 (corresponding to an SXDH instance) or x3 is uniformly
random (corresponding to a non-SXDH instance). B works as follows:

1. Choose random a1, · · · ,ad from Zdq , and random âj from Zq for all j 6= F (t). Generate a CRS
crs for the NIZK proof system.

2. Choose random w1, · · · , wt−1, wt+1, · · · , wd (all wi’s except wt) and random
y1, · · · , yt−1, yt+1, · · · , yd (all yi’s except yt) from Zq.

3. Choose A = (A1, . . . , Ad) ∈ Hd and B = (B1, . . . , Bd) ∈ Hd as a random solution to:
∏d
j=1A

aij
j = hwiâF (i) for all i ∈ F−1(T )∏d

j=1A
aij
j = hwiâF (i) for all i > t∏d

j=1A
aij
j = hyi for all i /∈ F−1(T ) such that i < t

 and
d∏
i=1

B
aij
j = hwi−1 for all i 6= t

and
d∏
j=1

A
atj
j = X3 and

d∏
j=1

B
atj
j = X2 · h−1

4. Choose a random z ← Zq, and generate the distribution[
crs, g, ga1 , · · · , gad , h, hâ1 , · · · , hâF (t)−1 , X1, h

âF (t)+1 , · · · , hân , (hz,Az,Bz), {âi}i∈T , {aid}id∈F−1(T )

]
Feed this distribution to A and output whatever A outputs.
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Note that we replaced hâF (t) by X1, thus implicitly setting âF (t) = x1. We also set
∏d
j=1B

atj
j =

hwt−1 = X2 · h−1 = hx2−1, thus implicitly setting wt = x2. Finally, we also set
∏d
j=1A

atj
j = X3 =

hx3 . Thus, we implicitly set yt = x3.
If X3 = hx1x2 , then we have perfectly simulated Ht−1, and otherwise we have perfectly simulated

Ht. Thus a PPT algorithm A that distinguishes between the hybrids Ht−1 and Ht directly results in
B being able to break SXDH with the same advantage.

Step 2:
Now, we provide the distinguisher with access to an oracle RO that behaves as follows:

• on input (C, D,C′, D′, π), where C,C′ are from Gd
1 and D,D′ are from G1, it checks whether

I-Dec(sk, (C, D,C′, D′, π)) produces a pair (id,m), where m ∈M and id ∈ F−1(T ). If so, it
behaves as the honest re-encryption functionality would and produces a valid encryption of
m under public key p̂kF (id). Otherwise it returns [F̂ , Ĝ, Ĥ], where F̂ , Ĝ are chosen at random

from GT and Ĥ is chosen at random from H.

Let Real-RO(D, 1λ, F, T ) (resp. Sim-RO(D, 1λ, F, T )) be the distribution which proceeds as in
Real-C(D, 1λ, F, T ) (resp. Sim-C(D, 1λ, F, T )), but where the distinguisher is given access to RO
rather than the real re-encryption circuit C. I.e. replace step 5 with:

5. Let b be the output DRO(pk, p̂k1, · · · , p̂kn, (Z,A,B), {âj}j∈T , {aid}id∈F−1(T )).

We consider the resulting distributions Real-RO(D, 1λ, F, T ) and Sim-RO(D, 1λ, F, T ), and show
the following.

Lemma 2. Assuming SXDH, for all F, T , and all PPT algorithms D, distributions
Real-RO(D, 1λ, F, T ) and Sim-RO(D, 1λ, F, T ) are indistinguishable.

Proof. Note that the oracle RO can be perfectly simulated given access to {aid}id∈F−1(T ). (This
is because decryption of a ciphertext ((C, D), (C′, D′), π) simply verifies π, and then tests whether
D · (C1/ai)−1 produces a valid message for each possible i. To test for i ∈ F−1(T ), the oracle will
only need to use the corresponding values of ai.) Hence, for every distinguisher DRO, there exists
a distinguisher D′ that does not use the help of any oracle whose output distribution is identical
to DRO. D′ simply simulates RO and internally runs D. Lemma 1 implies that RealInput(1λ, F, T )
and SimInput(1λ, F, T ) are indistinguishable and hence it also implies the lemma.

Step 3:
We now argue that it doesn’t matter whether D is given oracle access to the real re-encryption

circuit C or to the RO oracle, even when it is also given access to the real obfuscated re-encryption
program.

Lemma 3. Assuming SXDH, for all F, T , and all PPT algorithms D, distributions
Real-C(D, 1λ, F, T ) and Real-RO(D, 1λ, F, T ) are indistinguishable.
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Proof. We prove this through a sequence of hybrid experiments that use hybrid oracles
O1, · · · ,On+1. In Hybrid experiment Real-Oi(D, 1

λ, F, T ), we give the distinguisher D, oracle ac-
cess to hybrid Oi. We now describe the oracle Oi. Oi does the following: On input ciphertext
(C, D,C′, D′) if the ciphertext is an encryption of m with identity id, such that F (id) ≥ i, it out-
puts whatever RO outputs on the same input and otherwise outputs whatever C outputs on the
same input. Note that On+1 = C and O1 = RO.

Let Real-Oi(D, 1
λ, F, T ) be the distribution which proceeds as in Real-C(D, 1λ, F, T ), but where

the distinguisher is given access to Oi rather than the real re-encryption circuit C.
We will show, under the SXDH assumption, that Real-Oi(D, 1

λ, F, T ) is indistinguishable
from Real-Oi+1(D, 1λ, F, T ) for all 1 ≤ i ≤ n. Since On+1 = C and O1 = RO, we have
Real-On+1(D, 1λ, F, T ) = Real-C(D, 1λ, F, T ) and Real-O1(D, 1λ, F, T ) = Real-RO(D, 1λ, F, T ),
which will prove the lemma.

We now proceed to show that, given a distinguisher such that Real-Oi(D, 1
λ, F, T ) and

Real-Oi+1(D, 1λ, F, T ) produce noticeably different outputs, we will construct an adversary A that
will break the SXDH assumption. Now, A takes as input a SXDH instance, which is a tuple
(h̄, Ā = h̄ā, R̄ = h̄r̄, W̄ ), and has to decide whether W̄ = h̄ār̄ or h̄w̄ for random ā, r̄, w̄ ∈ Zq. A does
the following:

1. A chooses random g from G, and samples sk = (a1, · · · ,ad) at random from Zdq , as well as âj
from Zq for all 1 ≤ j ≤ n, j 6= i. It generates a CRS crs for the NIZK proof system.

2. A sets pk = (crs, g, ga1 , · · · , gad), p̂ki = (h̄, Ā), and p̂kj = (h̄, hâj ), for j 6= i. A creates a valid
re-encryption key (Z,A,B).

3. A runs DO(pk, p̂k1, · · · , p̂kn, (Z,A,B), {âj}j∈T , {aid}id∈F−1(T )) where O is defined below.

When D queries the oracle O on input (C, D,C′, D′), A responds as below:

(a) If input is not of the right format, or if the sanity check fails, then output (F̂ , Ĝ, Ĥ) for
random F̂ , Ĝ ∈ GT , and random Ĥ ∈ H.

(b) Decrypt ciphertext using sk to obtain messagem as well as id. If the decryption algorithm
outputs ⊥, then output a random tuple from GT×GT×H. Otherwise continue as follows.

(c) If F (id) ∈ T , proceed as in the real re-encryption program. If not, proceed as follows:

(d) If F (id) 6= i, then output whatever Oi+1 does on this input.

(e) If F (id) = i, proceed as follows:

• Re-randomize input ciphertexts as in the real re-encryption program: Pick a random
exponent t← Zq and compute Ĉ = C(C′)t and D̂ = D(D′)t.

• Write Ĉ := (Ĉ1, . . . , Ĉd), A := (A1, . . . , Ad) and B := (B1, . . . , Bd). Again, we
compute the main re-encryption step as in the real re-encryption program:

F =

d∏
j=1

e(Ĉj , Aj) and G =

d∏
j=1

e(Ĉj , Bj) · e(D̂, Z)

• Here we add an additional step: Pick random exponent v from Zq and set:

F ′ = F · e(g, W̄ v) and G′ = G · e(g, R̄v)
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• Finally, we re-randomize the output ciphertext as in the real re-encryption program:
Pick a random exponent s← Zq and compute F̂ = F ′s, Ĝ = G′s and Ĥ = Hs.

• Output ciphertext (F̂ , Ĝ, Ĥ).

4. A outputs whatever D outputs.

Let us consider the two cases: when the tuple that A receives is a SXDH instance and when it
is a random instance.

Case 1: A receives an SXDH instance.
Now, when W̄ = h̄ār̄, we show that A perfectly simulates Real-Oi+1(D, 1λ, F, T ), providing

D with a real re-encryption key and oracle access to Oi+1. Now, (h̄, Ā) can be interpreted as a
randomly generated public key for the output encryption scheme. Hence the honest re-encryption
key created (Z,A,B) has the correct distribution, so D receives the right input.

Now, let us consider A’s responses to D’s oracle queries. The only thing that A does differently
is in steps 3e and 3d above. When D queries a ciphertext (C, D,C′, D′) that is an encryption
of message m with identity id, such that F (id) = i, then A re-randomizes the ciphertext using
elements e(g, W̄ v = hār̄v) and e(g, R̄v = hr̄v). If the initial ciphertext used randomness r, r′, then
the result will be identical to running the real re-encryption program, but choosing t′ = t − r̄/r′
in the input re-randomization step. Thus A perfectly simulates oracle Oi+1 in this case. When D
queries a ciphertext (C, D,C′, D′) that is an encryption of message m with identity id, such that
F (id) 6= i, O simply outputs whatever Oi+1 does, thus simulating oracle Oi+1 in this case as well.
We conclude that when A receives an SXDH instance, it perfectly simulates Real-Oi+1(D, 1λ, F, T ).

Case 2: A receives a random tuple.
Similarly, when the tuple that A receives is not a SXDH instance (and is random), then we show

that O perfectly simulates Oi. When D queries a ciphertext (C, D,C′, D′) that is an encryption of
message m with identity id, such that F (id) 6= i (or when the sanity check fails), then O outputs
whatever Oi+1 outputs, which is the same as what Oi outputs on such encryptions. We now
consider the case when D queries a ciphertext (C, D,C′, D′) that is an encryption of message m
with identity id, such that F (id) = i.

Let us denote C = gσ, D = gν , (similarly, C′ = gσ
′
,D′ = gν

′
), and W̄ = gw̄. Now, after the

input re-encryption step, we obtain Ĉ = g(σ+tσ′), Ĥ = gν+tν′ . Hence, we have:

- E ←
∏d
j=1 e(Ĉj , Aj) = e(g, h)z

∑d
j=1 αj(σj+tσ′j)

- G← e(D̂, Z) = e(g, h)z(ν+tν′)

The final output of the oracle consists of terms (F̂ , Ĝ, Ĥ), where

- F̂ = e(g, h)w(w̄vz+
∑d

j=1 αj(σj+tσ′j))

- Ĝ = e(g, h)w(z(ν+tν′)+r̄v).

- Ĥ = hzw.
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Ĥ is uniformly random, since w is chosen at random from Zq. F̂ , Ĝ are uniformly random
since t, v are random, and from the fact that ν ′ 6= 0 (since the sanity check ensures that H ′ 6= 1).
Hence O perfectly simulates Oi in this case. We conclude that, for all i, Real-Oi(D, 1

λ, F, T ) ≈
Real-Oi+1(D, 1λ, F, T ), and thus Real-RO(D, 1λ, F, T ) is indistinguishable from Real-C(D, 1λ, F, T ).

Combining everything, we get the proof of Lemma 3.

Step 4:
Finally, we argue that no distinguisher can distinguisher the real re-encryption oracle from RO,

when given the simulated circuit (and the appropriate public and secret keys).

Lemma 4. Assuming SXDH, for all F, T , and all PPT algorithms D, distributions
Real-RO(D, 1λ, F, T ) and Sim-RO(D, 1λ, F, T ) are indistinguishable.

This follows trivially from Lemma 3, since the distinguisher there could easily ignore the obfus-
cated program he is given and run S to generate a simulated one instead.

Combining Lemmas 1, 2, 3, and 4 concludes the proof of Theorem 3.

B A Necessary Modification to the Encryption and Obfuscation
Schemes

Let us assume that the corrupt recipient holds secret key ŝkj and that F (i) = j. Now clearly, a

corrupt recipient (that colludes with the re-encryption program) has the ability to decrypt input

ciphertexts that have id = i. That is, the corrupt recipient can simply take I-Enc(pk, i,m), feed

this as input into the re-encryption program, obtain O-Enc(p̂kj ,m) as output and then decrypt this

to obtain m. So, in order to simulate the re-encryption program correctly, the simulator would

need to be able to produce encryptions of message m under p̂kj whenever the input ciphertext

has id = i = F−1(j). This calls for some sort of selective decryption of input ciphertexts. Thus,

we would like to ensure that a simulator can selectively decrypt ciphertexts with id = i such that

F (i) = j, so that the simulator can ensure that the output ciphertext is correct. However, we

would not want to give the simulator the ability to decrypt other input ciphertexts. Luckily for us,

the secret key ski = ai is exactly such a key that allows for the selective decryption of messages

with id = i. In Appendix A, we “cheat” and endow our simulator with additional power by giving

it ski as well. In this section we shall see how to remove this cheat. We would like to modify our

construction so that the simulator, which knows ŝkj , can also learn ski using just the oracle access

to the functional re-encryption functionality.

Our idea is to modify the input encryption scheme in the following manner. We will publish

k∗i = I-Enc(pk, i, ski) as part of the input public key, so that the simulator can feed k∗i to the

re-encryption oracle, obtain O-Enc(p̂kj , ski) as output, and, using knowledge of ŝkj , recover ski. At

a first glance, it seems that this might require the input encryption scheme to be circular secure.

However, we note that this need not be the case. We only need to publish a specific string k∗i ,

as part of the public key, that “denotes” an encryption of sk with id = i. Hence, we modify the

input encryption scheme so that the public key now includes randomly chosen k∗i for all i ∈ D.

Furthermore, we modify the input decryption algorithm so that it will now check if the input

ciphertext is k∗i for any i ∈ D and if so output ski; otherwise the input decryption algorithm works
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as before. This modification now allows the simulator to learn ski, using which the simulator can

construct an appropriate re-encryption key and program.

Next, we need to ensure that the real re-encryption program outputs an encryption of ski
under p̂kj when fed with k∗i (as the adversary now also has access to a string that denotes an

encryption of ski with id = i). To do this, we will modify the re-encryption scheme to include

qi = O-Enc(p̂kF (i), ski) for all i ∈ D as part of the re-encryption key. Next, we modify the re-

encryption program so that now, for all i ∈ D, on input k∗i , the program will re-randomize qi and

output this instead. On all other input ciphertexts, the re-encryption program works as before.

We note that the proof in section A implies that the modified scheme is a collusion-resistant

secure obfuscation. To see this, note that given {skid = aid}id∈F−1(T ), one can easily simulate

access to an oracle for the modified encryption functionality. (The only difference is that when the

adversary queries the oracle on one of the values k∗i included in the public key, we compute and

return O-Enc(p̂kF (i), ski).) Similarly, given access to the modified oracle, one can easily compute

ski for all i ∈ F−1(T ) simply by calling the oracle to obtain O-Enc(p̂kF (i), ski) and decrypting

the result. Thus, any distinguisher that can distinguish the real and simulated game for this

modfied re-encryption scheme can distinguish equally well between games Real-C(D, 1λ, F, T ) and

Sim-C(D, 1λ, F, T ), so the proof in section A implies security for the modified scheme.

C Semantic Security of Input and Output Encryption schemes
based on SXDH

We show that the input encryption scheme (with public key pk) is semantically secure (i.e., it hides

both the message and the “identity”) under the SXDH assumption. Furthermore, we show that this

holds even if the adversary is given oracle access to a functional re-encryption oracle for randomly

chosen output public keys p̂k1, . . . , p̂kn and an adversarially chosen policy function F , as well as

a subset of the corresponding secret keys {ŝkj}j∈T (where the “corrupted set” T is arbitrary, but

independent of the keys). Of course, we cannot guarantee any security if the challenge ciphertext

is encrypted using a identity i ∈ [d] such that F (i) ∈ T . This is simply because the adversary can

use her oracle to re-encrypt the challenge ciphertext under the public key p̂kF (i), and then recover

the message using the secret key ŝkF (i). Thus, informally, we only require that semantic security

holds as long as the identity i used in the challenge ciphertext is such that F (i) /∈ T .

Conceptually, the proof proceeds in two steps: first, we show that the extra ability that the

adversary obtains (in the form of the functional re-encryption oracle and some of the output secret

keys) can be simulated using the knowledge of some “relevant parts” of the input secret key sk.

More precisely, recall that the input secret key sk is composed of d vectors ai ∈ Zdq , one for each

i ∈ [d]. We show that the view of an adversary who knows the output secret key ŝkj (and has

access to the functional re-encryption oracle) can be simulated using the “keys” {ai : F (i) = j}.
Thus, it suffices to show that I-Enc(pk, i0,m0)

c
≈ I-Enc(pk, i1,m1), even given the vectors at

for all t ∈ [d] \ {i0, i1}. This follows easily from the DDH assumption over the group G. Recall

that a ciphertext of the identity-message pair (ib,mb) under the input encryption scheme consists

of the pair (E,E′) where E = (graib , grmb) for a uniformly random r (and E′ is the corresponding

encryption of 0). Now, under the DDH assumption over G, E looks like a tuple of uniformly random

group elements, which hides both the “identity” ib as well as the message mb.
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Semantic security of the output encryption scheme (with public key p̂k) follows directly from

the DDH assumption in the group H. Note that the presence of a re-encryption oracle (with p̂k

as one of the output public keys) does not affect the semantic security since the oracle can be

simulated using just p̂k (and in particular, without any knowledge of ŝk).

We now present the proofs in detail.

C.1 Security of the Input Encryption Scheme

We first formally define what we mean by the security of the input encryption scheme. Roughly

speaking, we would like the input encryption scheme with respect to a public key pk to be se-

mantically secure (i.e., it hides both the “identity” and the message). Furthermore, we would like

the semantic security to hold even if the adversary is given access to a functional re-encryption

oracle for some (adversarially specified) function F : [d]→ [n], randomly chosen output public keys

p̂k1, . . . , p̂kn, as well as a subset of the corresponding secret keys {ŝkj}j∈T . Of course, we cannot

guarantee any security if the “challenge” id∗ is such that j = F (id∗) ∈ T . This is simply because

the adversary can first get the challenge ciphertext re-encrypted under p̂kj (using the re-encryption

oracle) and then use the secret key ŝkj to recover the message. Thus, informally, we require security

to hold as long as this event does not happen which leads us to the notion of collusion-resistant

indistinguishability of encryptions, defined below.

Definition 3 (CR-Indistinguishability of Encryptions). Let ΠI = (I-Gen, I-Enc, I-Dec) be the
input encryption scheme, and ΠO = (O-Gen, O-Enc, O-Dec) be the output encryption scheme. Let
the random variable CR-INDb(ΠI ,ΠO, F,A, λ), where F : [d] → [n] is a function, b ∈ {0, 1}, A =
(A1, A2, A3) is a tuple of p.p.t. algorithms and λ ∈ N, denote the result of the following probabilistic
experiment: (Let C := C

F,sk,p̂k1,...,p̂kn
denote the functional re-encryption functionality for an input

key-pair (pk, sk) and output public keys p̂k1, . . . , p̂kn.)

CR-INDb(ΠI ,ΠO, F,A, λ) :

(T ⊆ [n], state1)← A1(1λ)
(pk, sk)← I-Gen(1λ, 1d)

(p̂kj , ŝkj)← O-Gen(1λ) for all j ∈ [n]; Let C := C
F,sk,p̂k1,...,p̂kn

(m0,m1, id0, id1, state2)← AC2(pk, p̂k1, . . . , p̂kn, {ŝkj}j∈T , state1)
s.t. |m0| = |m1| and id0, id1 ∈ [d] and F (id0), F (id1) /∈ T

y ← I-Encpk(mb, idb)
b′ ← AC3(y, state2)
Output b′

(I-Gen, I-Enc, I-Dec) satisfies collusion-resistant indistinguishability under a chosen-plaintext at-
tack with respect to (O-Gen, O-Enc, O-Dec) if ∀ p.p.t. algorithms A = (A1, A2, A3), all d = d(λ) ∈ N,
n = n(λ) ∈ N, and all functions F : [d]→ [n], the advantage of A, defined as below is negligible:

Adv(ΠI ,ΠO, F,A, λ)
∆
=
∣∣Pr[CR-IND0(ΠI ,ΠO, F,A, λ) = 1]− Pr[CR-IND1(ΠI ,ΠO, F,A, λ) = 1]

∣∣
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Note that ultimately we would like to achieve a stronger security guarantee by guaranteeing the

indistinguishability of encryptions in the experiment above, even when the adversary A2 is given the

real functional re-encryption program (as opposed to oracle access to the functional re-encryption

functionality). However, showing the theorem stated below will suffice for us, as we can combine

this together with Theorem 2 to obtain the stronger security guarantee.

Theorem 4. Under the SXDH assumption, the input encryption scheme ΠI =
(I-Gen, I-Enc, I-Dec) when modified as described in appendix B satisfies Definition 3 (collusion-
resistant indistinguishability under CPA attacks).

Proof. Define the following oracle RO that behaves as follows:

• On input (C, D,C′, D′, π), where all the vectors are from Gd
1 and D,D′ ∈ G, it checks

whether I-Dec(sk, (C, D,C′, D′, π)) produces (id,m) for any m ∈M and id ∈ F−1(T ). If so,
it behaves as the honest re-encryption functionality would and produces a valid encryption of
m under public key p̂kF (id). Otherwise it returns [Ê, Ĝ, Ĥ], where Ê, Ĝ are chosen at random

from GT and Ĥ is chosen at random from H.

• On input k∗id (for one of the k∗i values included in pk), if F (id) ∈ T it returns

O-Enc(p̂kF (id), skid).7 If F (id) /∈ T , it returns [Ê, Ĝ, Ĥ], where Ê, Ĝ are chosen at random

from GT and Ĥ is chosen at random from H.

First, consider the following experiments H1
b , b = 0, 1 which is identical to CR-INDb, except that

adversary A2 gets oracle access to RO instead of C. Formally,

H1
b (ΠI ,ΠO, F,A, λ) :

(T ⊆ [n], state1)← A1(1λ)
(pk, sk)← I-Gen(1λ, 1d)

(p̂kj , ŝkj)← O-Gen(1λ) for all j ∈ [n]; Let RO := RO
F,sk,p̂k1,...,p̂kn

(m0,m1, id0, id1, state2)← ARO2 (pk, p̂k1, . . . , p̂kn, {ŝkj}j∈T , state1)
s.t. |m0| = |m1| and id0, id1 ∈ [d] and F (id0), F (id1) /∈ T

y ← I-Encpk(mb, idb)
b′ ← ARO3 (y, state2)
Output b′

Proposition 1. ∀ p.p.t algorithms A = (A1, A2, A3), all d = d(λ) ∈ N, n = n(λ) ∈ N, all functions
F : [d]→ [n], and all b ∈ {0, 1}:∣∣Pr[H1

b (ΠI ,ΠO, F,A, λ) = 1]− Pr[CR-INDb(ΠI ,ΠO, F,A, λ) = 1]
∣∣

is negligible.

7Recall that in our scheme, the partial decryption key skid is aid.
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Proof. Lemma 3 shows that the output of C is indistinguishable from the output of RO even given
the real re-encryption program. The proof of this proposition trivially follows from this lemma and
from the semantic security of the output encryption scheme (shown in section C.2).

Next, consider the following experiments H2
b , b = 0, 1 which is identical to H1

b , except that
adversaries A2, A3 get partial decryption keys for the input encryption scheme {ski}i∈F−1(T ) =
{ai}i∈F−1(T ), but do not get any oracle access. Formally,

H2
b (ΠI ,ΠO, F,A, λ) :

(T ⊆ [n], state1)← A1(1λ)
(pk, sk)← I-Gen(1λ, 1d)

(p̂kj , ŝkj)← O-Gen(1λ) for all j ∈ [n]

(m0,m1, id0, id1, state2)← A2(pk, p̂k1, . . . , p̂kn, {ŝkj}j∈T , {ski}i∈F−1(T ), state1)

s.t. |m0| = |m1| and id0, id1 ∈ [d] and F (id0), F (id1) /∈ T
y ← I-Encpk(mb, idb)
b′ ← A3(y, state2)
Output b′

Proposition 2. ∀ p.p.t algorithms A = (A1, A2, A3), all d = d(λ) ∈ N, n = n(λ) ∈ N, all functions
F : [d]→ [n], and all b ∈ {0, 1}:∣∣Pr[H2

b (ΠI ,ΠO, F,A, λ) = 1]− Pr[H1
b (ΠI ,ΠO, F,A, λ) = 1]

∣∣ = 0

.

Proof. The proof of this proposition follows from the fact that (1) the reduction in H2
b can perfectly

simulate RO to adversary A2, by simply decrypting the input ciphertext using all secret keys
{ski}i∈F−1(T ) (If some decryption succeeds, then the simulator honestly performs the re-encryption
and otherwise returns random group elements like RO does.), and (2) the reduction in H1

b can
easily produce ski for i ∈ F−1(T ) just by sending a k∗i query to RO, and decrypting the resulting

ciphertext using ŝkF (i).

At this point, we can show that H2
0 is indistinguishable from H2

1 by showing that

I-Enc(pk, id0,m0)
c
≈ I-Enc(pk, id1,m1) for any id0, id1 /∈ F−1(T ).

Proposition 3. Assuming SXDH, ∀ p.p.t algorithms A = (A1, A2, A3), all d = d(λ) ∈ N, n =
n(λ) ∈ N, all functions F : [d]→ [n]:∣∣Pr[H2

0 (ΠI ,ΠO, F,A, λ) = 1]− Pr[H2
1 (ΠI ,ΠO, F,A, λ) = 1]

∣∣
is negligible.

Proof. The proof of this proposition is shown via a sequence of intermediary hybrid experiments.
First, consider a hybrid experiment H3

b , which is identical to H2
b , except that A3 gets as input a

valid ciphertext y that now contains a simulated zero-knowledge proof, that the ciphertext is valid,
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instead of the real zero-knowledge proof. Such a simulated zero-knowledge proof can be provided
by the simulator using the trapdoor to crs. By the computational zero-knowledge of the proof
system, it follows that experiment H3

b is indistinguishable from experiment H2
b .

Next, consider a hybrid experiment H4, which is identical to H3
b , except that A3 gets as in-

put random group elements (as opposed to a valid ciphertext y), along with the simulated zero-
knowledge proof. We will now show that H3

b is indistinguishable from H4 for b = 0, 1. We shall
show that if an adversary A = (A1, A2, A3) can distinguish between H4 and H3

b , then we can con-
struct an adversary B that can break SXDH. To do this, we will go through a sequence of hybrids
from H3

b to H4. Note that y = (C, D,C′, D′) where C,C′ ∈ Gd and D,D′ ∈ G. In hybrid Wj (for
0 ≤ j ≤ d), adversary A3 will be given the first j elements of C as well as group element D correctly
and the remaining d − j elements of C will be random elements. In hybrid Vj (for 0 ≤ j ≤ d),
the adversary A3 will be given random C, D, correctly generated D′ and C′ such that the first the
first j elements are generated correctly and the remaining d− j are chosen at random. Note that
Wd = H3

0 , W0 = Vd, and V0 = H4. We will now show the indistinguishability of Wj and Wj+1 for
any 0 ≤ j ≤ d. (Indistinguishability of Vj and Vj+1 follows from a very similar argument.)

Assume that adversary A = (A1, A2, A3) can distinguish between Wj and Wj+1. B receives as

input a tuple (ḡ, Ā = ḡā, B̄ = ḡb̄, C̄ = ḡc̄) and has to decide whether c̄ = āb̄ or random. B receives
(T , state1) from A1. B sets g = ḡ, and picks random vectors ski = ai for all i ∈ T . For each i /∈ T
B proceeds as follows: it chooses aik ∈ Zq at random for all k 6= j. Then it chooses random ωi and
implicitly sets aij = ωiā. Finally, it uses these values to compute gai (using Āωi in place of gaij ).
Let pk = ga1 , . . . gad for the values derived this way.
B now provides A2 with (pk, {ŝkj}j∈T , {ski}i∈F−1(T ), state1). B receives (m0,m1, id0, id1, state2)

from A2. If m0 = ski or m1 = ski for some i /∈ F−1(T ), B aborts. (This
should happen only with negligible probability, because A is only ever given gski = gai ;
if A can produce ski = ai, then A breaks the discrete logarithm assumption.) For all
other messages, B chooses random r′ ∈ Zq and random Rj+1, . . . , Rd ∈ G, and cre-
ates the ciphertext as C = (B̄aidb1 , · · · , B̄aidb(j−1) , C̄, Rj+1, · · · , Rd), D = B̄m0, C′ =

(ḡaidb1r
′
, . . . , ḡaidb(j−1)r

′
, Āωir

′
, ḡaidb(j+1)r

′
, ḡaidbdr

′
), and D′ = ḡr

′
. B sends (C, D,C′, D′) as y to

A3 along with a simulated proof that y is a valid ciphertext. Now, clearly, if the tuple that B
receives is a SXDH tuple, then the ciphertext that A3 receives is according to Wj+1 and if the
tuple that B receives is random, then the ciphertext that A3 receives is according to Wj . Hence, if
A = (A1, A2, A3) can distinguish between Wj and Wj+1, then B can distinguish between a SXDH
tuple and random tuple. Thus, Wj is indistinguishable from Wj+1 for all 0 ≤ j ≤ d − 1. Sim-
ilarly, we can show that each Vj is indistinguishable from Vj+1. We conclude, by DDH, H3

b is
indistinguishable from H4 for both values of b, so H3

0 is indistinguishable from H3
1 .

Recall that we argued that it follows from the computational zero-knowledge property of the
proof system that hybrid H3

b is indistinguishable from hybrid H2
b . Hence, we have H2

0 is indistin-
guishable from H2

1 , thus proving the lemma.

Combining Propositions 1, 2 and 3 gives us the proof of Theorem 4.
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C.2 Security of the Output Encryption Scheme

We show the semantic security of the output encryption scheme assuming SXDH. In other words,

we show that for any two messages m0,m1, the distributions O-Enc(p̂k,m0) and O-Enc(p̂k,m1) are

computationally indistinguishable.8

Theorem 5. Assuming SXDH, for a randomly chosen public key p̂k, and for any two messages
m0,m1, the distributions O-Enc(p̂k,m0) and O-Enc(p̂k,m1) are computationally indistinguishable.

Proof. The semantic security of the output encryption scheme follows directly from the hardness
of the DDH assumption in the group H.

More formally, we show that if an adversary A can distinguish an encryption of m0 from an
encryption of m1 under p̂k with non-negligible probability, then we can construct an adversary A′
that will break the SXDH assumption with advantage ε as well. A′ works as follows:

• A′ receives as input a tuple (h,A = hâ, R = hr,W ) (where h is a random generator of the
group H, and â, r are random exponents). The goal of A′ is to determine whether W = hâr

or not.

• A′ picks a random generator g of group G and sends the public key p̂k = (g, h, hâ) to A.

• On receiving two messages m0 and m1 from A, A′ flips a bit b at random and picks an
exponent s at random from Zq. A′ sends the ciphertext

Cb := (e(gs,W ), e(gs, R) · e(mb, h
s), hs)

as the encryption of mb to A.

• Now A replies with a bit b′. A′ simply outputs 1 if b = b′ (i.e., guessing that W = hâr) and
outputs a random bit otherwise (i.e., guessing that W is random).

It is easy to see that when W is random, the ciphertext Cb is independent of b and hence the success
probability of A in this case is exactly 1

2 .

In the case when W = hâr, the ciphertext Cb has the same distribution as O-Enc(p̂k,mb). Hence,
the adversary A has advantage at least ε. It is easy to see that A′ succeeds in determining whether
W = hâr with non-negligible advantage.

D Functional Re-encryption and General Predicate Obfuscation

In this section, we show a connection between collusion-resistant (average-case) secure obfuscation

of functional re-encryption and program obfuscation of the family of functions Fλ = {F : Dλ →
Rλ}λ>0 satisfying the predicate obfuscation definition of Barak et al. [BGI+01].

More precisely, we show that if there is an obfuscator for the circuit family FRF that achieves

the notion of average-case secure obfuscation against collusion, then there is an obfuscator for the

8Note that if we show the plain semantic security of the output encryption scheme with public key p̂k, it auto-
matically follows that the semantic security holds even in the presence of a functional re-encryption oracle for which
p̂k is an output public key. This is simply because the functionality of such a functional re-encryption oracle can be
implemented using just p̂k, and in particular, without any knowledge of the secret key ŝk.
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circuit family F that achieves the predicate obfuscation definition of Barak et al. [BGI+01]. Since

there is no general-purpose obfuscator that satisfies the predicate obfuscation definition [BGI+01],

this shows that one cannot have a general purpose obfuscator (satisfying the definition of collusion

resistance) for functional re-encryption for general functions (with large domain).

Predicate Obfuscation. We define a slightly relaxed notion of predicate obfuscation where the

obfuscated program is a probabilistic circuit which is allowed to err with negligible probability

on every input. This relaxation, called “approximate functionality”, was already considered in

[BGI+01]. In particular, their impossibility result holds even with such a relaxation.

Definition 4 (Predicate Obfuscation [BGI+01]). An efficient algorithm O is a predicate obfuscator
for the family C = {Cλ}λ>0, if it has the following properties:

• (Approximately) Preserving Functionality: There exists a negligible function neg(λ), s.t. for
all input lengths λ, for any C ∈ Cλ:

Pr[(O(C))(x) 6= C(x)] ≤ neg(λ)

The probability is taken over a uniformly random choice of x ∈ {0, 1}λ and over O’s random
coins.

• Polynomial Slowdown: There exists a polynomial p(λ) such that for sufficiently large input
lengths λ, for any C ∈ Cλ, the obfuscator O only enlarges C by a factor of p: |O(C)| ≤ p(|C|).

• Predicate Virtual Black-box: For every polynomial sized adversary circuit A, there exists a
polynomial size simulator circuit S and a negligible function neg(λ), such that for every input
length λ, for every C ∈ Cλ:∣∣∣Pr[A(O(C)) = 1]− Pr[SC(1λ) = 1]

∣∣∣ ≤ neg(λ)

The probability is over the coins of the adversary, the simulator and the obfuscator.

We show the connection between functional re-encryption for a family of functions F and

predicate obfuscation of F below:

Theorem 6. Assume that there is a semantically secure encryption scheme E = (Gen,Enc,Dec),
a family of functions Fλ = {F : Dλ → {0, 1}} and an obfuscator O for the family Cλ,F ={
CF,pk,sk,pk0,pk1 : F ∈ Fλ

}
that satisfies the notion of collusion-resistant average-case secure obfus-

cation. Then, there is a predicate obfuscator for the family Fλ that satisfies the definition above.

Proof. Let O be a collusion-resistant average-case secure obfuscator for the family CF . The obfus-
cator OF for the family of functions Fλ =

{
F : Dλ → {0, 1}

}
λ>0

, on input a function F ∈ Fλ,
proceeds as follows:

• Choose an input public/secret key pair (pk, sk)← Gen(1λ) and two output public/secret key
pairs (pkb, skb)← Gen(1λ) (for b ∈ {0, 1}).

• Run the obfuscator O on input the functional re-encryption circuit CF,pk,sk,pk0,pk1 to get an
obfuscated program Ψ.
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• Output Ψ′ = (Ψ, pk, sk0) as the obfuscated program for F .

On input x ∈ Dλ, the obfuscated program Ψ′ works as follows:

• Choose a uniformly random message m←M.

• Compute a ciphertext c← Enc(pk, id = x,m) and let ĉ← Ψ(c) be the output of the obfuscated
re-encryption program Ψ on input c.

• Let m′ ← Dec(sk0, ĉ). If m′ = m, output 0, else output 1.

Since both the obfuscator O and the obfuscated program Ψ run in time poly(|F |, λ), so does the
obfuscator OF and the obfuscated program Ψ′. In Claim 2, we show that OF indeed computes
F correctly (i.e., preserves functionality) and in Claim 3, we show that OF satisfies the predicate
virtual black-box property.

Claim 2. The obfuscator OF computes F correctly.

Proof. Fix any input x ∈ D. First, note that by the “preserving functionality” property, the
ciphertext ĉ computed by the obfuscated program OF is statistically close to a uniformly random
encryption of m under the output public key pkF (x).

Secondly, for two uniformly random public/secret key pairs (pk0, sk0) and (pk1, sk1), and for
any message m ∈M and any x ∈ D,

Pr[Dec(sk0,Enc(pk1, x,m)) = m] ≤ 1/|M|+ neg(λ)

where the probability is over the coins of the encryption algorithm. In other words, trying to
decrypt an encryption of m under pk1 using the secret key sk0 will almost never yield the correct
answer. Since we can assume without loss of generality that |M| has superpolynomial size, it
follows that for every input x, OF computes F correctly with probability 1− neg(λ).

Claim 3. The obfuscator OF satisfies the virtual black-box property in Definition 4.

Proof. For every PPT adversary AF , we construct a simulator SF such that

Pr[Ψ′ ← OF (F ) : AF (Ψ′) = 1]− Pr[SFF (1λ) = 1] ≤ neg(λ)

Consider the (secure obfuscation) adversary A that simply outputs its input, and a distinguisher
D that runs AF on its input. Then,

Pr[DFRF,pk,sk,pk0,pk1 (A(O(FRF,pk,sk,pk0,pk1), sk0)) = 1] = Pr[AF (O(FRF,pk,sk,pk0,pk1), sk0) = 1] (2)

Now, by the definition of average-case secure obfuscation, we are guaranteed a simulator S such
that

Pr[DFRF,pk,sk,pk0,pk1 (A(O(FRF,pk,sk,pk0,pk1), sk0)) = 1] ≈ Pr[DFRF,pk,sk,pk0,pk1 (SFRF,pk,sk,pk0,pk1 (1λ, sk0)) = 1](3)

Now, the simulator SF , on input 1λ and oracle access to F , works as follows:

1. Choose public/secret key pairs (pk, sk) and (pk0, sk0), and run S on input (1λ, sk0).
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2. Handle S’s oracle queries to FRF,pk,sk,pk0,pk1 as follows:

(a) On query a ciphertext c from S, decrypt c using sk and obtain the value of x ∈ D and
m ∈M.

(b) Next, query the F -oracle with x and learn F (x) ∈ {0, 1}.
(c) Construct the ciphertext ĉ = Enc(pkF (x),m) and return it to S as oracle FRF,pk,sk,pk0,pk1 ’s

response.

3. Finally, run AF on whatever S outputs, and output the resulting bit.

This is a perfect simulation of the view of S, and thus:

Pr[DFRF,pk,sk,pk0,pk1 (SFRF,pk,sk,pk0,pk1 (1λ, sk0)) = 1] = Pr[SFF (1λ) = 1] (4)

Putting together the three equations 2, 3 and 4, we get:

Pr[AF (Ψ′) = 1] ≈ Pr[SFF (1λ) = 1]

showing that Ψ′ is a predicate obfuscation of F .

Claims 2 and 3, together complete the proof of Theorem 6.

Remarks

• The proof can be generalized to functions over a larger, yet polynomial-size, range. Recall

that the notion of functional re-encryption as defined makes sense only for functions with

polynomial size range, and thus, this is the best we can hope for.

• Barak et al. [BGI+01] show impossibility of predicate obfuscation for a family of functions

with large, superpolynomial, range. Thus, their result cannot be used directly to rule out the

possibility of functional re-encryption for all (polynomial-time computable) function families.

However, the result of [BGI+01] can easily be extended to show the impossibility of predicate

obfuscation for a family of functions with polynomial range. This result does not contradict

our result, as their result only rules out a general obfuscator where the obfuscator runs in

time O(poly(|F |)) for any function F . Note that this is not the case for our positive results,

as we restrict the function F to have polynomial sized domain.
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