
Hardness of Computing Individual Bits for
Pairing-based One-way Functions

Alexandre Duc and Dimitar Jetchev

Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

Abstract. We prove that if one can predict any of the bits of the input to a clas-
sical pairing-based one-way function with non-negligible advantage over a random
guess then one can efficiently invert this function and thus, solve the Fixed Argu-
ment Pairing Inversion problem (FAPI-1/FAPI-2). The latter has implications for
the security of various pairing-based schemes such as the identity-based encryp-
tion scheme of Boneh–Franklin, Hess’ identity-based signature scheme, as well
as Joux’s three-party one-round key agreement protocol. Moreover, if one can
solve FAPI-1 and FAPI-2 in polynomial time then one can solve the Computa-
tional Diffie–Hellman problem (CDH) in polynomial time. Our result implies that
all the bits of the pairing-based one-way function are hard–to–compute, assum-
ing that CDH is hard. Our argument uses a list-decoding technique via discrete
Fourier transforms due to Akavia–Goldwasser–Safra.

Keywords: One-way function, hard–to–compute bits, bilinear pairings, fixed argument
pairing inversion problem, Fourier transform.

1 Introduction

One-way functions are functions that are easy to compute but hard to invert. Yet, the
definition of a one-way function does not say much about the security of a particular
predicate over the input of this function. What if, for instance, the least significant bit is
easy to compute? In this case, one might be able to leak partial information if one hides
the secret key using this one-way function. Hence, proving that partial information is
hard to predict is of primary interest.

In this paper, we study the security of the individual bits of the input to pairing-
based one-way functions. More precisely, if ê : G × G → GT is a cryptographic pairing
where GT is the target group, one can consider the function fQ(R) := ê(R,Q) for a
fixed Q ∈ G (here, R ∈ G). This function is conjectured to be one-way and is essential in
Boneh and Franklin’s identity-based encryption scheme (IBE) [5]. The one-wayness of fQ
(a problem known as the Fixed Argument Pairing Inversion 2 (FAPI-2)) is also needed
in Joux’s three-party one-round key agreement protocol [14] and for the identity-based
signature scheme by Hess [12] to be unforgeable. This problem and potential approaches
to solve it is studied in [7]. More generally, the hardness of fQ is linked to the hardness
of the bilinear Diffie–Hellman problem (BDH) [5].

In our main result (Theorem 1), we consider cryptographic pairings ê on a subgroup
G of the points of an elliptic curve and show that if there exists an algorithm that
takes as input fQ(R) for some hidden element R ∈ G and predicts (with non-negligible

2

advantage over a random guess) the kth bit of the x-coordinate of R, then we can
invert fQ (here, the advantage is measured over a random point R in the group as
well as a random short Weierstrass equation representing the elliptic curve). Our proof
uses methods developed by Akavia et al. [2] based on list-decoding via discrete Fourier
transforms. We introduce a special code, the elliptic curve multiplication code, similar to
the multiplication code presented in [2] but whose predicates are evaluated over different
short Weierstrass equations. We show that, given access to the kth bit of the x-coordinate
of R, we have access to a noisy codeword that can be list-decoded to recover R resulting
in an inversion of the one-way function.

1.1 Previous Work

The first hard–to–compute predicate in a one-way function was found by Blum and
Micali [4] for the discrete logarithm (DL) one-way function over a finite field Fp. Subse-
quently, the question of constructing predicates that are hard–to–compute from one-way
functions was studied extensively in numerous papers. For instance, H̊astad and Näslung
showed that every bit in the RSA [19] one-way function is hard–to–compute [10] using a
result of Alexi, Chor, Goldreich and Schnorr [3]. Similarly, for the DL one-way function,
H̊astad, Schrift and Shamir showed that all the bits are hard–to–compute if the DL is
taken modulo a Blum integer [11] following the work of Schrift and Shamir [21]. By
changing the way the bits are represented, Schnorr showed that almost all of the bits in
the DL function are hard–to–compute [20]. A similar hardness result (independent of the
bit representation) was proven in [10]. The last two results also hold for the elliptic curve
discrete logarithm (ECDL). For the elliptic curve Diffie–Hellman problem, the hardness
of the LSB of the x- and y-coordinates is studied as well [6,13].

However, all these results apply to a specific one-way function and have to be sig-
nificantly modified to be used on another OWF (or sometimes cannot be modified at
all). Thus, finding generic hard–to–compute predicates that apply to sets of one-way
functions is highly desirable. The first such predicate was the Goldreich–Levin pred-
icate [9]. Given a OWF f : {0, 1}n → R, Goldreich and Levin define another OWF
f ′ : {0, 1}n ×{0, 1}n → R×{0, 1}n by f ′(x, y) := (f(x), y). For this OWF, the predicate
P (x, y) :=

∑n
i=1 xiyi is hard–to–compute.

In 2003, Akavia, Goldwasser and Safra presented a new method to prove that some
predicates are hard–to–compute for a one-way function [2]. Their work follows the work
by Goldreich and Levin. Using their methodology, security results can be proven for entire
classes of one-way functions. Furthermore, it is elegant to use and hides the cumbersome
bit manipulations that appeared in the previous proofs. Their method relies on the
construction of a code that encodes the preimages of the one-way function we try to
invert. This means that given a one way function f : D → R and a predicate P (x) for
x ∈ D, we construct a code CP that associates to x ∈ D a codeword CP

x ∈ CP . If the
code verifies two properties, namely if the code is recoverable and Fourier-concentrated,
then the code is list decodable. Intuitively, a code is list-decodable when, given access
to a corrupted codeword w, there is a PPT algorithm that lists all the codewords that
are close to w with some non-negligible probability. This means that given a corrupted
version of a codeword CP

x , one can recover x in polynomial time.
The method is used to prove the security of certain bits in RSA, in the Rabin cryp-

tosystem [18], in the DL problem and in the ECDL problem. More precisely, one can

3

prove the security of the O (log log n) least and most significant bits of those functions,
where n is the size of the group corresponding to the domain of the one-way function.

In 2009, Morillo and Ràfols [16] extended these results and were able to prove the
security of all bits in RSA, Rabin and DL for prime orders or RSA moduli using a careful
analysis of the Fourier coefficients of the function that maps an element Z/nZ to the
value of the kth bit of its corresponding representative in [0, n− 1]. They also extended
the result to the Paillier [17] trapdoor permutation.

The remaining of the paper is organized as follows: in Section 2 we introduce basic
definitions and present our main theorem and its implications. In Section 3, we describe
the framework used to prove our theorem. In Section 4 we prove our main theorem. We
conclude in Section 5.

2 Main theorem

2.1 Preliminaries

Let p be a prime and let E be an elliptic curve over Fp. In order to discuss the individual
bits of a point on E, we first need to fix a short Weierstrass equation W : y2 = x3+ax+b,
a, b ∈ Fp, 4a

3+27b2 6= 0 representing E. Let W(E) be the set of all such short Weierstrass
equations. Two short Weierstrass equations y2 = x3 + ax + b and y2 = x3 + a′x + b′

represent the same elliptic curve E over Fp if and only if there exists an element λ ∈ F
×
p

such that a′ = λ4a and b′ = λ6b. Hence, the set W(E) is in bijection with F
×
p . For a point

R ∈ E(Fp) and W ∈ W(E), the x- and y-coordinates of R on the short Weierstrass model
W are denoted by (RW)x and (RW)y, respectively. Once a short Weierstrass equation
W : y2 = x3+ax+b is fixed, we denote the short Weierstrass equation y2 = x3+λ4ax+λ6b
by Wλ.

Next, we call a function ν : N → R negligible if for every constant c, there exists k0 ∈ N

such that ν(k) < k−c for all k > k0. A function ρ : N → R will be called non-negligible1

if 1/ρ(n) ≥ poly(log n) for a polynomial independent of n.
Let X be a finite set and let D be a probability distribution on X. We write x ∈D X

if the element x is drawn according to the distribution D from X. We next recall some
basic notions from cryptography:

Definition 1 (One-way function). A function f : X → R is a one-way function
(OWF) if the following conditions hold:

– Given x ∈ X, one can compute f(x) in polynomial time in log |X|,
– For every probabilistic polynomial time (PPT) (in log |X|) algorithm A, we have

Pr[f(z) = y|y = f(x), z = A(y)] < νA(log |X|) , where the probability is taken over
x ∈ X chosen uniformly at random and where νA is a negligible function. In other
words, the advantage to invert f for every PPT (in log |X|) algorithm A is negligible.

Remark 1. When we are dealing with complexities, we see domains in their bit repre-
sentation as would a computer do. For instance, in the above definition, we can see the
function f as f : {0, 1}n → {0, 1}m for m,n ∈ N. Then f is one-way if one can compute

1 Note that a function being non-negligible is a stronger requirement than a function not being
negligible.

4

f(x) in poly(n) time and if there is no PPT algorithm that can fin a preimage in poly(n)
time.

Definition 2 (majg). Given a boolean function g : X → {a1, a2}, we define

majg := max
b∈{a1,a2}

Pr
x∈UX

[g(x) = b] .

In other words, majg is the probability of the most probable of the two outcomes. This
notion is useful when we deal with biased predicates.

Remark 2. For the rest of the paper, we will be using the majority values of the predicates
Bk on Fp that return the kth least significant bit. If x ∈ Fp is viewed as an element of
[0, p − 1] then we will be using δp(k) := majBk

for the probability of occurrence of the
majority value.

Definition 3 (Hard–to–compute predicate). A boolean predicate P : X → {0, 1} is
hard–to–compute with respect to a one-way function f : X → R if there is no PPT (in
log |X|) algorithm A that can compute P (x) from f(x) with a non-negligible advantage
over the majority value, i.e., such that

Pr
x∈UX

[A(f(x)) = P (x)] ≥ majP +
1

poly(log |X|)
,

for some polynomial that is independent of |X|.

Intuitively, such a predicate is one bit of information derived from the preimage of f that
is not efficiently predictable with non-negligible advantage over a random guess.

Remark 3. Note that very often, the term hard–core predicate is misused for hard–to–
compute predicate. In this paper, we will never use the term hard–core predicate (which,
to the best of our knowledge, means that every algorithm that predicts P has negligible
advantage over a random guessing; the latter is a strong definition and is not suitable
for computational purposes). This was also pointed out in [1, Defn.2.5]

2.2 Pairing-based One-way Functions

We define now a pairing-based function. For an integer n, let E[n] be the subgroup of
points of E of prime order n (the points in E[n] are defined over the algebraic closure Fp

of Fp). Let k be the smallest integer for which n | pk − 1 (also known as the embedding
degree) and let µn be the subgroup of order n of F×

pk . Let e : E[n] × E[n] → µn be a

bilinear pairing, e.g., the Tate or the Weil pairing. Let G := 〈S〉 for an S ∈ E(Fp). To
avoid having e(P,Q) = 1 for all P,Q ∈ G, we need to suitably twist e and define what
we refer to as a cryptographic pairing:

Definition 4 (Cryptographic pairing). Let ξ : E → E be a non-trivial endomorphism
defined over an extension field of Fp (ξ is often referred to as a distortion map). We define
the cryptographic pairing ê : G×G → µn as

ê(R,Q) = e(R, ξ(Q)) , R,Q ∈ G .

5

Here, if G is a cyclic subgroup and if R,Q ∈ G then e(R,Q) will be trivial since e is
bilinear and alternating. The role of the endomorphism ξ is to distort Q in such a way
that e(R, ξ(Q)) 6= 1.

A typical example of a cryptographic pairing (see [5]) is a twisted version of the Weil
pairing. More precisely, let p ≡ 2 mod 3 and q > 3 be two primes such that q divides
p− 1 and let E be the elliptic curve over Fp defined by y2 = x3 + 1. Let G be the cyclic
group generated by a random P ∈ E(Fp) of order q. The distortion map is defined as
ξ(Qx, Qy) = (ζQx, Qy), for ζ ∈ Fp2 , ζ /∈ Fp such that ζ2 + ζ + 1 = 0 (such a ζ exists as
long as X2 +X + 1 has a zero in Fp[X] which is equivalent to p ≡ 2 mod 3). One could
think of ζ as distorting one of the points so that it is mapped to a point that is outside
of the group G and that is defined over a non-trivial extension of Fp.

Definition 5 (Pairing-based one-way function). Let E be an elliptic curve over Fp

with Weierstrass equation y2 = x3 + ax2 + b and let G ⊂ E[n] be a cyclic subgroup. Let
Q ∈ G be a fixed generator and let ê : G × G → µn be a cryptographic bilinear pairing.
We define a function fQ : G → µn by fQ(R) := ê(R,Q), for Q ∈ G. The preimage R will
often be referred to as a hidden point.

The function fQ(R) is believed to be one-way [7,14,5].

2.3 Main Result on Hard–to–compute Bits

For a prime field Fp, let Bk : Fp → {±1} be the predicate returning the value of the kth
bit of x ∈ Fp viewed as an integer in {0, 1, . . . , p− 1}. Suppose that E is an elliptic curve
over Fp and G ⊂ E(Fp) is a cyclic subgroup of order n of cryptographically meaningful
size (i.e., n = Θ(p)).

Let Q be a generator of G and let R ∈ G be a hidden point. Suppose that we
have an imperfect oracle that takes as input a short Weierstrass equation W ∈ W(E)
and the value fQ(R) ∈ µn and predicts Bk((RW)x) with non-negligible advantage over
the majority value δp(k) (here, the advantage is taken over a random short Weierstrass
equations W ∈ W(E) and over a random point R ∈ G). We then show that we can
efficiently invert fQ.

Before we state precisely the theorem, we rigorously define the advantage of the
bit-prediction oracle B:

Definition 6 (Advantage). We say that B has advantage ǫ in predicting the predicate
Bk of the x-coordinate of the input R ∈ G of the pairing-based one way function if

Advx,kQ (B) :=

∣∣∣∣∣∣
Pr

W∈UW(E)
R∈UG,z

[B(W,Q, fQ(R); z) = Bk((RW)x)]− δp(k)

∣∣∣∣∣∣
> ǫ ,

where z is a random variable corresponding to the random coins used by the oracle B.
Similarly, we define the advantage of predicting the kth bit of the y-coordinate of the
input point R to fQ.

We are now ready to state the main theorem:

6

Theorem 1. Let k ≥ 0 be an integer and let ǫ ∈ (0, 1). Let E, G and Q be as above
(i.e., G is cyclic of order n = Θ(p) and Q ∈ G is a generator). Let B = B(W,Q, u; z)
be an algorithm that takes as input W ∈ W(E), Q ∈ G, u ∈ µn and outputs an element

of {±1} in time t. Assume that Advx,kQ (B) > ǫ . Then there exists an algorithm A that

inverts fQ : G → µn in time t · T (log p, 1
ǫ) for some polynomial T that is independent of

p, E, G, ǫ and Q.

Remark 4. One can see from the above theorem that if ǫ = poly(log p) and if t =
poly(log p) then one can invert the function fQ efficiently (in time polynomial in log p).
This means that either the kth bit of the input to fQ is hard–to–compute or the function
is invertible.

Remark 5. Note that the definition of the function fQ does not depend on the choice of
a short Weierstrass equation W ∈ W(E), but only on the curve E itself. Yet, in order
to talk about the individual bits of a point R, one needs to specify a short Weierstrass
equation in order to obtain the representation of R. Note that our result is on average as
our argument exploits in an essential way the freedom to change the short Weierstrass
equation. This is why we assume that algorithm B works on a non-negligible fraction
of all the short Weierstrass equations W . Ideally, one wishes to fix a short Weierstrass
equation W and prove similar hardness result only on W . This last question appears
to be very difficult and out of reach with the current techniques that one has so far for
showing hardness of bits.

2.4 Consequences of our Result

Our main result implies that either every bit of the input of fQ is hard–to–compute or
that fQ can be inverted efficiently, i.e., FAPI-2 is easy. The hardness of FAPI-2 has been
related to various problems [7,14].

Definition 7 (BDH). Let ê : G × G → GT be a bilinear pairing, let P be a generator
of G and let n be the order of G. The Bilinear Diffie–Hellman problem (BDH) is the
following problem: given 〈P, aP, bP, cP 〉, a, b, c ∈ Z/nZ, compute ê(P, P)abc.

The following relations holds. The hardness of BDH implies the hardness of the compu-
tational Diffie-Hellman problem (CDH) in both G and GT which imply the hardness of
FAPI-2. Recall that CDH in G consists in computing abP given 〈aP, bP, P 〉. The hard-
ness of FAPI-2 implies also the hardness of the discrete logarithm in GT . Hence, our
result implies that if we assume that CDH is hard in both groups, every bit of the input
of fQ is hard–to–compute. Many cryptographic schemes relies on the hardness of BDH
or FAPI-2. We show what implication an easy FAPI-2 would have.

Boneh–Franklin’s Identity-based Encryption Scheme. The security of this well-known
scheme [5] relies on the hardness of BDH. If FAPI-2 is easy, then an adversary can
recover the secret key of any user of the system. Recall that in IBE, the secret key is
computed as dID := sQID, where QID is a point dependent on the identity of the owner
of the key and s is the master key. Two points are also public parameters of the scheme: P
which is a generator of G and Ppub := sP . Hence, ê(Ppub, QID) = ê(sQID, P) = ê(dID, P)
and using an inversion algorithm to invert fP , one can recover the secret key of the user

7

associated with ID. Note that if the algorithm is imperfect, one can easily add some
randomness by trying to invert ê(Ppub, QID)r for a random r instead.

Hess’ Identity-based Signature Scheme. In a similar fashion, one can forge signatures [7]
in Hess’ identity-based signature scheme [12]. if FAPI-2 is easy. In this scheme, let s be
the master key and P , Q := sP be parameters and h,H hash functions. A signature of
a message m consists in a pair (u, v) where v := h(m, r), r := ê(R,P)k for a random k, a
random R and where u := vSID + kR, with SID = sH(ID). The signature is verified if
r = ê(u, P) · ê(H(ID),−Q)v. To forge a signature, an adversary selects a random r and
selects v = h(m, r). Then, using the algorithm for fP he inverts rê(H(ID), Q)v = ê(u, P).

Joux’s Tripartite Protocol. In this scheme [14], three parties, A, B and C, pick two
elements P,Q ∈ G such that ê(P,Q) 6= 1 and broadcast respectively (aP, aQ), (bP, bQ)
and (cP, cQ) in one round after which every party can compute the shared secret key
ê(P,Q)abc (here, a, b and c are random secrets selected by A, B and C, respectively).
Using an algorithm for fQ on ê(aP, bQ), one can recover abP . The shared secret key is
then ê(abP, cQ).

3 Hard–to–compute Predicates via List Decoding

3.1 Fourier Transforms

In order to describe the general method of Akavia–Goldwasser–Safra, we briefly recall
some basic notions related to Fourier transforms.

Let G be a finite abelian group. If f, g : G → C are functions then their inner product
is defined as 〈f, g〉 := 1/|G|

∑
x∈G g(x)·h(x).The ℓ2-norm on the space C(G) of all complex

valued functions h : G → C is then ‖f‖2 :=
√
〈f, f〉. A character of G is a homomorphism

χ : G → C
×, i.e., χ(x + y) = χ(x)χ(y) for all x, y ∈ G. The set of all characters of G

forms a group Ĝ, the character group. The elements of Ĝ form an orthonormal basis
for the space C(G) (the Fourier basis). One can then describe a function f ∈ C(G) via
its Fourier expansion

∑
χ∈Ĝ〈f, χ〉χ. Equivalently, one can define the Fourier transform

f̂ : Ĝ → C of f by f̂(χ) = 〈f, χ〉. The coefficients f̂(χ) in the Fourier basis {χ}χ∈Ĝ

are the Fourier coefficients of f . When G = Z/nZ, the characters of G are defined by
χα(x) := ωαx

n , for α ∈ Z/nZ and ωn := exp(2πi/n). The weight of a Fourier coefficient

f̂(χ) is |f̂(χ)|2. Using these definition, we can define heavy characters with respect to a
function f :

Definition 8 (Heavy characters). Given a function f : G → C and a threshold τ ,
we denote by Heavyτ (f) the set of characters for which the weight of the corresponding
Fourier coefficient of f is at least τ . In other words,

Heavyτ (f) := {χ ∈ Ĝ : |f̂(χ)|2 ≥ τ}.

We will frequently approximate a function f ∈ C(G) using subsets Γ ⊂ Ĝ of characters

via its restriction: f|Γ :=
∑

χ∈Γ f̂(χ)χ.

8

3.2 Codes, Fourier Concentration and Recoverability

Throughout, we consider bits that take values in {±1} instead of {0, 1} where we sub-
stitute −1 for 0. When working on an abelian group G, we consider binary codewords
of length |G|. Every codeword corresponding to an element x ∈ G will be represented by a
function Cx : G → {±1}. IfG = Z/nZ then Cx is represented by (Cx(0), Cx(1), . . . , Cx(n−
1)). We now state the formal definition of concentration:

Definition 9 (Concentration). Let ǫ > 0 be a real number. A function f : G →

{±1} is called Fourier ǫ-concentrated if there exists a set of characters Γ ⊆ Ĝ of size
poly(log |G|, 1/ǫ) (for a polynomial that does not depend on |G|, ǫ or the function f)
such that ‖f − f|Γ ‖2 ≤ ǫ.

A code C = {Cx : G → {±1}} is ǫ-concentrated if each of its codewords Cx is Fourier
ǫ-concentrated. In other words, we can approximate with an error at most ǫ every code-
word using a polynomial number (in log |G| and 1/ǫ) of characters χ ∈ Ĝ. A function is
called Fourier concentrated if it is ǫ-concentrated for every ǫ > 0. A code is called Fourier
concentrated if all of its codewords are Fourier concentrated.

We can also state the definition of a recoverable code:

Definition 10 (Recoverable code). A code C = {Cx : G → {±1}} is recoverable if

there exists an algorithm that takes as input a character χ ∈ Ĝ and a threshold τ and
outputs (in time polynomial in log |G| and 1/τ) the list {x ∈ G : χ ∈ Heavyτ (Cx)} of all
codewords having χ as a τ -heavy coefficient.

Using the orthogonality of the characters χ ∈ Ĝ, one shows [2, Lem.1] that if a code
C is concentrated, then a word wx : G → C and a close codeword Cx have at least one
heavy Fourier coefficient in common. We show here a slight modification of this lemma.

Lemma 1 ([2, Lem.1]). Let f : Z/nZ → {±1} be a Fourier concentrated function and
let g : Z/nZ → {±1} such that

Pr
x∈Z/nZ

[f(x) = g(x)] ≥ majf +ǫ , (1)

for some ǫ > 0. Then there exists a threshold τ such that 1/τ is polynomial in 1/ǫ and
log n, and ∃χ 6= 0, χ ∈ Heavyτ (f) ∩Heavyτ (g) .

Proof. Let majf =: 1/2 + β, for some β > 0. Equation (1) implies that 〈f, g〉 ≥ 2β + 2ǫ.

We also have
∣∣∣f̂(0)

∣∣∣ = 2majf −1 = 2β. Since f is Fourier concentrated, there is a set of

characters Γ with |Γ | ≤ poly(log n, 1/ǫ) such that ‖f − fΓ ‖2 =: ǫ. Since a Fourier basis
is orthonormal, we have by Cauchy–Schwarz

∑

α:χα∈Γ

f̂(α)ĝ(α) = 〈f|Γ , g|Γ 〉 ≥ 〈f, g〉 − 〈f − f|Γ , g − g|Γ 〉

≥ 2β + 2ǫ−
∣∣‖f − fΓ ‖2 · ‖g − gΓ ‖2

∣∣ ≥
∣∣∣f̂(0)

∣∣∣+ 2ǫ− ǫ · 1

≥
∣∣∣f̂(0)ĝ(0)

∣∣∣+ ǫ. (2)

9

The last inequality holds since 0 ≤ f̂(0) ≤ 1 and ‖g − gΓ ‖ ≤ 1. Hence, there exists

an α 6= 0 such that χα ∈ Γ and
∣∣∣f̂(α)ĝ(α)

∣∣∣ ≥ ǫ
|Γ | . Note that the term

∣∣∣f̂(0)ĝ(0)
∣∣∣ in (2)

is to avoid α = 0. Since f and g are binary functions we have
∣∣∣f̂(α)

∣∣∣ ,
∣∣∣ĝ(α)

∣∣∣ ≥ ǫ
|Γ | =: τ .

It is now clear that 1/τ is polynomial in ǫ and 1/n. ⊓⊔

In Section 4, we will apply this lemma in the following way: every preimage x ∈ G of
the one-way function we try to invert corresponds to a codeword Cx. First, we recover
a noisy version wx of Cx by using the prediction oracle. If the code is concentrated, the
words wx and Cx share at least one heavy coefficient. Thus, if we can compute this heavy
coefficient in polynomial time and if the code is recoverable, then we can recover x in
polynomial time.

One recovers the heavy coefficient via the following theorem in the case G = Z/nZ:

Theorem 2 ([2, Thm.6]). There exists a learning algorithm over Z/nZ that, given a
function w : Z/nZ → {±1}, 0 < τ and 0 < δ < 1, returns a list of O (1/τ) characters
containing Heavyτ (w) with probability at least 1− δ and that has running time 2

Õ

(
log(n) ln2

(1/δ)

τ5.5

)
.

Remark 6. In the language of Akavia et al. [2, §2.3], the group G is a learnable domain.
It turns out that any finite abelian group G is a learnable domain [1]. A more efficient
learning algorithm that improves upon the above theorem is presented in [8].

4 Proof of Theorem 1

We will reduce the proof of Theorem 1 to a list-decoding problem that will be solved using
the methods summarized in Section 3. The first step is to properly define a code that
reflects our input recovery problem. We explain in Section 4.1 and Appendix A that the
straightforward definition of such a code does not quite work since the Fourier transforms
of the codewords are difficult to analyze from the point of view of concentration and
recoverability. In order to overcome this difficulty, we use an idea motivated by the work
of Boneh and Shparlinski on the Hidden Number Problem that modifies the prediction
oracle via extra randomization while still keeping the non-negligible advantage. This leads
us to the definition of the Elliptic Curve Multiplication Code (ECMC) (Definition 11).

4.1 The Elliptic Curve Multiplication Code (ECMC)

Let Bk : Fp → {±1} be the binary predicate that returns 1 if the kth least significant bit
of the argument is 1 and -1 otherwise. A natural way to associate a code to this predicate
is to fix a (base) short Weierstrass equation W ∈ W(E) and a hidden point R and define
the codewords

CBk,W
R : Fp → {±1} , CBk,W

R (λ) = Bk(λ
2 · (RW)x) = Bk((RWλ

)x) .

2 A function is Õ (f(n)) if it is O
(
f(n) · log(f(n))k

)
for some k.

10

The above definition is natural since the isomorphism class W(E) of short Weierstrass
equations consists precisely of the equations Wλ where λ ∈ F

×
p , so each codeword encodes

the kth bit of all representations of the point R ∈ G on the equations fromW(E). In order
to study how concentrated these codes are, one needs precise estimates of the Fourier
coefficients of these functions. Yet, the only tool we are aware of that gives such estimates
are standard estimates from analytic number theory on Gauss sums (see Appendix A).

Unfortunately, these are not sufficient to get any information about how concentrated
the code is. If one is able to replace the square term λ2 with a linear term in λ, one could
obtain a much better control on the code (see Appendix B). As mentioned above, we use
an idea of Boneh and Shparlinski [6, §5] that modifies the prediction oracle via further
randomization while keeping the advantage non-negligible.

The idea works as follows: suppose that B is the prediction oracle from the statement
of Theorem 1. Recall that given a hidden point R ∈ G, the oracle returns an element of
{±1} in such a way that Advx,kQ (B) > ǫ for any generator Q ∈ G.

If F2
p ⊂ Fp is the set of squares in Fp, let r : F

2
p → Fp be a function satisfying r(λ)2 = λ

that is chosen uniformly at random among all such functions. The observation of Boneh
and Shparlinski is that one can define an auxiliary prediction oracle B′ using B as follows:

B′(Wλ, fQ(R); z) =

{
B(Wr(λ), fQ(R); z) if λ ∈ F

×
p is a square in F

×
p

µ ∈Dk
{±1} otherwise,

where Dk denotes the distribution for the predicate Bk. We now associate a code to the
modified oracle B′ rather than to the original oracle B and thus, arrive at the following
definition (we include the more general case of binary predicates that are not necessarily
the predicates Bk):

Definition 11 (Elliptic curve multiplication code (ECMC)). Let E be an elliptic
curve over Fp and let P : Fp → {±1} be a binary predicate. Let G ⊂ E(Fp) be a cyclic
subgroup. Given a (base) short Weierstrass equation W : y2 = x3 + ax + b representing

E, the elliptic curve multiplication code is the code CP,W = {CP,W
R : Fp → {±1}}R∈G

defined by

CP,W
R (λ) = P (λ · (RW)x) ,

where RW denotes the tuple (x, y) representing the point R on W .

Remark 7. Reducing the quadratic term λ2 with λ is a big advantage since (as we will
show in Section 4.2 and Appendix B), the Fourier transform of Bk(λ) is simpler than
the Fourier transform of Bk(λ

2), so it is easier to show that the code CBk,W is Fourier
concentrated and recoverable and, thus, apply the techniques of Akavia et al. to obtain
a list-decoding algorithm.

Lemma 2. Let W ∈ W(E) be a fixed (base) short Weierstrass equation and let B be
the prediction algorithm from the statement of Theorem 1. There exists a set S of points
R ∈ G with

|S| ≥
ǫ

4
(
1− δp(k)−

ǫ
4

) |G| (3)

11

such that for every R ∈ S, given fQ(R), we have access to a corrupted codeword wR,W

satisfying

Pr
λ∈UFp

[wR,W (λ) 6= CBk,W
R (λ)] ≤ (1− δp(k))−

ǫ

2
, ∀R ∈ S . (4)

Proof. Recall that our prediction algorithm B satisfies:

Pr
W,R;z

[B(W, fQ(R); z) = Bk((RW)x)] > δp(k) + ǫ . (5)

The latter is equivalent to

Pr
λ,R;z

[
B(Wλ, fQ(R); z) = Bk(λ

2 · (RW0
)x)
]
> δp(k) + ǫ . (6)

Given a hidden point R ∈ G, define wR,W as follows:

wR,W (λ) =

{
B(Wr(λ), fQ(R); z) if λ is a square

µ ∈Dk
{±1} otherwise,

where r : F2
p → Fp is chosen uniformly at random among all function r : F2

p → Fp satis-
fying r(λ)2 = λ and where z is the random coin used by B. Using the randomness of r,
we estimate

Pr
λ,R;z

[
wR,W (λ) = CBk,W

R (λ)
]
=

=
1

2
Pr

λ∈UF
2
p,

R;z

[
wR,W (λ) = CBk,W

R (λ)
]
+

1

2
Pr

λ/∈F
2
p,

R;z

[
wR,W (λ) = CBk,W

R (λ)
]

=
1

2
Pr

λ′∈UFp,
R;z

[
B(Wλ′ , fQ(R); z) = Bk(λ

′2 · (RW))
]
+

1

2
δp(k)

>
1

2
(δp(k) + ǫ) +

1

2
δp(k) = δp(k) +

ǫ

2
. (7)

Next, let S ⊆ G be the subset of all points R ∈ G that satisfy

Pr
λ;z

[wR,W (λ) = CBk,W
R (λ)] > δp(k) +

ǫ

4
.

Points in this set satisfy (4). We now show that the set S satisfies (3). Using (7), we
arrive at

δp(k) +
ǫ

2
<

1

|G|

∑

R∈G

Pr
λ;z

[
wR,W (λ) = CBk,W

R (λ)
]

=
1

|G|

∑

R∈S

Pr
λ;z

[
wR,W (λ) = CBk,W

R (λ)
]
+
∑

R∈G\S

Pr
λ;z

[
wR,W (λ) = CBk,W

R (λ)
]

<
1

|G|

(∣∣S
∣∣+
∣∣G\S

∣∣
(
δp(k) +

ǫ

4

))
=

|S|

|G|

(
1− δp(k)−

ǫ

4

)
+
(
δp(k) +

ǫ

4

)
.

Since δp(k) 6= 1, we obtain (3). ⊓⊔

12

Remark 8. If 1/ǫ = poly(log p) then the above lemma tells us that the kth bit is pre-
dictable with non-negligible advantage over a random guess for a polynomial fraction of
all the points R ∈ G.

In the next section, we explain in more detail the two major properties of the ECMC
associated to the kth bit predicates, namely, Fourier concentration and recoverability.
This is done via the methods developed in [16].

4.2 Fourier Concentration of ECMC

In order to gain more control on the size of the Fourier coefficients B̂k(α), and thus, be
able to pick the heavy ones, we use another clever idea of Morillo and Ràfols: since p is

odd, we can assume that α ∈

[
−
p− 1

2
,
p− 1

2

]
. Consider the following two cases for α:

– When α ≥ 0, we consider δα,k := 2kα− (p− 1)/2 mod p and let λα,k ∈ [0, 2k−1 − 1]
be the unique integer for which 2kα = (p− 1)/2 + δα,k + pλα,k .

– When α < 0, we consider δα,k = 2kα + (p + 1)/2 mod p and let λα,k ∈ [0, 2k−1 − 1]
be the unique integer for which 2kα = −(p+ 1)/2 + δα,k + pλα,k .

In both cases, there are unique integers µα,k ∈ [0, r] and rα,k ∈ [0, 2k − 1] such that
ap
(
α2k − (p− 1)/2

)
= µα,k2

k + rα,k , where ap(x) = min(x mod p, p − x mod p) for
y mod p being taken in [0, p− 1]. From here, one characterizes (see Appendix B for the

details) the asymptotic behavior of |B̂k(α)| by |B̂k(α)|
2 < O

(
1/(λ2

α,kµ
2
α,k)

)
.

The idea of having the above representation (λα,k, µα,k) is that it is very convenient
for picking the heavy Fourier coefficients: one simply has to pick the coefficients α for
which (λα,k, µα,k) is in a box [0, 1/τ]× [0, 1/τ] for τ = poly(log p).

4.3 Recoverability of ECMC and End of Proof

Fix a short Weierstrass equation W ∈ W(E). According to Lemma 2, there exists a
subset S ⊂ G of size determined by (3) and the property that for any R′ ∈ S, we have
access to a corrupted codeword wR′,W satisfying (4). The problem is that our hidden
point R ∈ G need not be in S. In order to fix this, we will repeat the following procedure:
we pick a random multiple s ∈ [1, n − 1] and set R′ = sR. It is clear that R′ is again a
hidden point and (at least if s is invertible modn), knowing R′ is equivalent to knowing
R. Thus, if s is chosen uniformly at random, we have 1/poly(log p)-chance of obtaining
R′ in the set S.

Suppose for the moment that R′ happens to be in S. One can then use Lemma 1 to
deduce that there exists 0 < τ < 1 for which 1/τ is polynomial in log p and ǫ such that

the noisy codeword wW,R′ and the actual codeword CBk,W
R′ share a τ -heavy Fourier coef-

ficient. Then, we apply the learning algorithm of Akavia et al. (Theorem 2) to efficiently
compute all τ -heavy Fourier characters χβ for the noisy codeword wR′,W . We then run
the recovery algorithm (Algorithm 1) for each of these τ -heavy Fourier coefficients to
decode the hidden R′ and thus, obtain the possible R’s by computing s−1R′. Assuming
that wW,R′ is Fourier concentrated, we will only have to run this algorithm poly(log p)
times, so we get a polynomial time (in log p and 1/ǫ) recovery procedure for R′.

13

Of course, we have no way of knowing whether R′ ∈ S unless we try to recover it
via the above recovery procedure. Yet, by using the random choice of s ∈ [1, n− 1] and
repeating the procedure log p times, we will obtain (with high probability) a point R′ in
the set S guaranteed by Lemma 2 and thus, will prove Theorem 1.

The method used in our proof is very close to the list-decoding method of Akavia et
al. [2, Lem.5] and was successfully used by Morillo and Ràfols [16, §6]. The reason it works

is that the codeword CBk,W
R is τ -concentrated in ΓW,R = {χβ : β ≡ α·(RW)x mod p, χα ∈

Γ} where Γ is the set of additive characters χα : Fp → C
× where (λα,k, µα,k) is in

a small square of size O (1/τ) and lower-right corner at (0, 0), i.e., Γ = {χα : λα,k =
O (1/τ), µα,k = O (1/τ)}. Here, we will take τ such that 1/τ = poly(log p).

Algorithm 1 The recovery algorithm

Input: An additive character χβ of Fp, a threshold parameter τ with 1/τ ∈ poly(log p) and
z ∈ µn such that z = fQ(R) for a hidden point R.

Output: The hidden point R ∈ G such that fQ(R) = z.
1: Calculate Γ ← {α ∈ Fp : λα,k = O (1/τ), µα,k = O (1/τ)}.
2: for α ∈ Γ\{0} do
3: Compute x← βα−1 mod p
4: if y ∈ Fp exists so that R = (x, y) ∈W (Fp) and fQ(R) = z then

5: return R
6: end if

7: end for

8: return false.

Algorithm 2 Pairing-based OWF inversion algorithm

Input: An elliptic curve E/Fp, a cyclic subgroup G ⊂ E of prime order n = Θ(p), an element
z = fQ(R) ∈ µn for a hidden point R ∈ G and access to a (noisy) prediction oracle B for
Bk((RW)x) for W ∈ W(E).

Output: The input point R ∈ G such that fQ(R) = z.
1: Fix a (base) short Weierstrass equation W ∈ W(E).
2: Choose τ such that 1/τ = poly(log p)
3: Choose a random function r : F2

p → Fp.
4: repeat

5: Choose a random s ∈ [1, n− 1] and set R′ := sR (still a hidden point)
6: Apply the algorithm of Theorem 2 to compute Heavyτ (wR′,W) for the function (noisy

codeword) wR′,W from Lemma 2 defined via r and B.
7: for χβ ∈ Heavyτ (wR′,W) do
8: Run Algorithm 1 with z′ := zs to try to recover R′

9: if Algorithm 1 does not fail then
10: break

11: end if

12: end for

13: until R′ is recovered
14: return R← s−1R′

14

The above algorithm works in time polynomial in log p because 1) the algorithm
from Theorem 2 works in polynomial time (in log p); 2) the set S from Lemma 2 is a
polynomial fraction of all points in G and hence, a randomly chosen multiple will be
recoverable with probability 1/poly(log p) (so, we need on average poly(log p) trials to
exit the repeat loop). This completes the proof of Theorem 1.

5 Conclusions

In conclusion, we proved that all the bits of the pairing-based one-way function are hard–
to–compute assuming that CDH is hard. We proved our result for the x-coordinate of
the point but the result can trivially be extended to the y-coordinate. In [2] the hard-
ness result is proven for every segment predicates and not only to some particular bits.
Intuitively, a segment predicate over Z/nZ is a predicate that splits Z/nZ in poly(log n)
segments, or a multiplicative shift of it. Our work can easily be extended to prove the
hardness of these predicates using the same ECMC code.

Acknowledgments. We are grateful to Dan Boneh, David Freeman, Rosario Gennaro,
Florian Hess, Arjen Lenstra, Amin Shokrollahi, Igor Shparlinski, Martijn Stam, Serge
Vaudenay and Ramarathnam Venkatesan for helpful discussions.

References

1. Akavia, A.: Learning Noisy Characters, Multiplication Codes, and Cryptographic Hardcore
Predicates. Ph.D. thesis, Massachusetts Institute of Technology (2008)

2. Akavia, A., Goldwasser, S., Safra, S.: Proving Hard-Core Predicates Using List Decoding.
In: FOCS. pp. 146–. IEEE Computer Society (2003)

3. Alexi, W., Chor, B., Goldreich, O., Schnorr, C.P.: RSA and Rabin Functions: Certain Parts
are as Hard as the Whole. SIAM J. Comput. 17(2), 194–209 (1988)

4. Blum, M., Micali, S.: How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits. SIAM J. Comput. 13(4), 850–864 (1984)

5. Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing. In: Kilian
[15], pp. 213–229

6. Boneh, D., Shparlinski, I.: On the Unpredictability of Bits of the Elliptic Curve Diffie–
Hellman Scheme. In: Kilian [15], pp. 201–212

7. Galbraith, S.D., Hess, F., Vercauteren, F.: Aspects of Pairing Inversion. IEEE Transactions
on Information Theory 54(12), 5719–5728 (2008)

8. Gilbert, A., Muthukrishnan, S., Strauss, M.: Improved time bounds for near-optimal sparse
Fourier representations. In: Proceedings of SPIE. vol. 5914, p. 59141A. Citeseer (2005)

9. Goldreich, O., Levin, L.A.: A Hard-Core Predicate for all One-Way Functions. In: STOC.
pp. 25–32. ACM (1989)

10. H̊astad, J., Näslund, M.: The Security of Individual RSA Bits. In: FOCS. pp. 510–521 (1998)
11. H̊astad, J., Schrift, A.W., Shamir, A.: The Discrete Logarithm Modulo a Composite Hides

O(n) Bits. J. Comput. Syst. Sci. 47(3), 376–404 (1993)
12. Hess, F.: Efficient Identity Based Signature Schemes Based on Pairings. In: Nyberg, K.,

Heys, H.M. (eds.) Selected Areas in Cryptography. Lecture Notes in Computer Science, vol.
2595, pp. 310–324. Springer (2002)

15

13. Jetchev, D., Venkatesan, R.: Bits Security of the Elliptic Curve Diffie–Hellman Secret Keys.
In: Wagner, D. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 5157, pp. 75–92.
Springer (2008)

14. Joux, A.: A One Round Protocol for Tripartite Diffie–Hellman. In: Bosma, W. (ed.) ANTS.
Lecture Notes in Computer Science, vol. 1838, pp. 385–394. Springer (2000)

15. Kilian, J. (ed.): Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, Lec-
ture Notes in Computer Science, vol. 2139. Springer (2001)

16. Morillo, P., Ràfols, C.: The Security of All Bits Using List Decoding. In: Jarecki, S., Tsudik,
G. (eds.) Public Key Cryptography. Lecture Notes in Computer Science, vol. 5443, pp. 15–
33. Springer (2009)

17. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In:
EUROCRYPT. pp. 223–238 (1999)

18. Rabin, M.: Digitalized signatures and public-key functions as intractable as factorization
(1979)

19. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-
key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

20. Schnorr, C.P.: Security of Allmost ALL Discrete Log Bits. Electronic Colloquium on Com-
putational Complexity (ECCC) 5(33) (1998)

21. Schrift, A.W., Shamir, A.: The Discrete Log is Very Discreet. In: STOC. pp. 405–415. ACM
(1990)

22. Shparlinski, I.: (2010), Private communication

A The Fourier transform of LSB(λ2 mod p)

Let P = LSB be the predicate associated to the list significant bit (only for this section,
P will take values in {0, 1} coinciding with the values of LSB). We explain how one could
analyze directly the code

C(λ) = LSB((RWλ
)x) = LSB(λ2 · (RWλ

)x)

via Fourier transforms and why the concentration of this code is more difficult to establish
than the ECMC (analyzed in Appendix B). The argument below was suggested to us by
Shparlinski [22].

Let p = 2m+ 1, let ωp(x) := exp(2πix/p) and let u = (RW)x ∈ Fp. Observe that for
any 0 ≤ k ≤ m

p−1∑

a=0

ωp(a(2k + 1− λ2)) =

{
p if λ2 ≡ 2k + 1 mod p

0 otherwise .

We thus have

C(λ) =
1

p

m−1∑

k=0

p−1∑

a=0

ωp(a(2k + 1− λ2)) . (8)

The Fourier transform is then Ĉ(α) =

p−1∑

λ=0

ωp(λα)C(λ), so by (8) we have

Ĉ(α) =
1

p

p−1∑

a=0

p−1∑

λ=0

ωp(λα− λ2au)
m−1∑

k=0

ωp(a(2k + 1)) .

16

Since

∣∣∣∣∣

p−1∑

λ=0

ωp(λα− λ2au)

∣∣∣∣∣ = p1/2 (the latter is a Gauss sum), we have

|Ĉ(α)| ≤ p−1/2

p−1∑

a=0

∣∣∣∣∣
m−1∑

k=0

ωp(a(2k + 1))

∣∣∣∣∣ .

The double sum is known to be O (p log p), so we have |Ĉ(α)| = O
(
p1/2 log p

)
. Unfor-

tunately, the latter is only an upper bound and is not enough to prove concentration
and moreover, to find an efficient way to detect the heavy coefficients (as we did for the
linearized version in Appendix B).

B The Fourier transform of Bk(λu mod p)

Let ωp = exp (2πi/p) and let Bk : Fp → {±1} be the predicate determined from the
kth least significant bit (i.e., Bk(x) = 1 if the kth bit of x considered as an element of
[0, p − 1] is 1 and Bk(x) = −1 otherwise). Without loss of generality, we assume that
(RW)x 6= 0.

B.1 Fourier Concentration of CP,W
R and of P

Recall that if P is an arbitrary predicate (in our case, we restrict to P = Bk for some k),

then the elliptic curve multiplication code is CP,W
R (λ) = P (λ · (RW)x) for any λ ∈ F

×
p .

We extend the function CP,W
R to Fp by CP,W

R (0) = −1. Hence, we will do Fourier analysis
on the additive group Fp of order p.

Note that if the function CP,W
R is ǫ-concentrated in Γ = {χα} where the α’s are

elements of Fp ≃ Z/pZ then P is ǫ-concentrated in the set ΓW,R = {χβ : β ≡ α ·
(RW)x mod p}. Thus, the question of Fourier-concentration for the ECMC corresponding
to a predicate P reduces to the question of the Fourier-concentration of the predicate
itself. We thus need to analyze the Fourier coefficients of Bk : Fp → {±1}.

Bk is Fourier Concentrated. One way to analyze Bk is to note that it is block-
alternating, that is, it looks like

k = 0 : 1 −1 1 −1 1 −1 1 −1 . . .
k = 1 : 1 1 −1 −1 1 1 −1 −1 . . .
k = 2 : 1 1 1 1 −1 −1 −1 −1 . . .

...

One can then try to compute and estimate the Fourier coefficients of the function repre-
sented by each row and then try to analyze the large coefficients.

Morillo and Ràfols [16] significantly simplify this computation by noticing that if the
argument x was simple an integer (not an integer modp) then Bk(x) + Bk(x + 2k) is

17

identically zero and hence, is a constant function. This fails mod p, but it does not fail
too much, so one still has good control over the coefficients. More precisely, let

g(x) =
Bk(x) +Bk(x+ 2k)

2
. (9)

First, observe that the Fourier transform of Bk(x) is easily related to the one of g(x) by
the simple identity

ĝ(α) =
ω2kα
p + 1

2
B̂k(α), α ∈ Z/pZ . (10)

Next, write p = 2k+1r±m for a unique 0 ≤ m < 2k and r ∈ Z. The Fourier transform ĝ
is easy to compute by considering the following two cases:

Case 1: p = 2k+1r −m. In this case,

g(x) =

{
1 if x ∈ [2k+1(r − 1) + 2k −m, 2k+1(r − 1) + 2k − 1],

0 else,
(11)

so one computes

ĝ(α) =

1
pω

−α(2k+1(r−1)+2k−m)
p

ω−αm
p −1

ω−α
p −1

if α 6= 0,

m
p otherwise.

(12)

Case 2: p = 2k+1r +m. Here,

g(x) =

{
1 if x ∈ [2k+1r, 2k+1r +m− 1],

0 else,
(13)

and in this case,

ĝ(α) =

1
pω

−α(2k+1r)
p

ω−αm
p −1

ω−α
p −1

if α 6= 0,

m
p otherwise.

(14)

In the two cases, one obtains (using (10))

|B̂k(α)|
2 =

1

p2

sin2
(

mαπ
p

)

sin2
(

απ
p

)
cos2

(
2kαπ

p

) . (15)

Remark 9. It is possible to arrive at this formula directly from analyzing the rows without
introducing the function g(x), but one has to be extra careful when calculating the Fourier
transform — especially with the last incomplete block of 2k digits.

Equation (15) allows Morillo and Ràfols to obtain a precise asymptotic bound for

|B̂k(α)|. Recall from Section 4.2 that ap(x) = min(x mod p, p−x mod p), where y mod p

is taken in [0, p− 1]. Since for x ∈ [−π, π] we have x2 −
x4

3
≤ sin2 x ≤ x2, one gets

π2

(
1−

π2

12

)
ap(β)

2 ≤ p2 sin2
(
βπ

p

)
≤ π2ap(β)

2 . (16)

18

It is now easy to deduce that

(
1

π2
−

1

12

)
ap(mα)2

ap(α)2ap(2kα− p
2)

2
≤
∣∣∣B̂k(α)

∣∣∣
2

≤
1

π2(1− π2

12)
2

ap(mα)2

ap(α)2ap(2kα− p
2)

2
.

In order to gain more control on the size of the Fourier coefficients B̂k(α), and thus,
be able to pick the heavy once, we use another idea of Morillo and Ràfols: since p is odd,

we can assume that α ∈

[
−
p− 1

2
,
p− 1

2

]
and let λα,k and µα,k be as in Section 4.2.

One can now give a lower bound for the desired denominator

ap(α)
2ap

(
2kα−

p− 1

2

)
≥ λ2

α,kµ
2
α,kr

222k+2 1

4
. (17)

From here, one characterizes the asymptotic behavior of |B̂k(α)| by

|B̂k(α)|
2 < O

(
1

λ2
α,kµ

2
α,k

)
. (18)

The upshot of having the above representation is that it is very convenient for picking
the heavy Fourier coefficients: one simply has to pick (λα,k, µα,k) in the box [0, 1/τ] ×
[0, 1/τ] for some 0 < τ < 1 satisfying 1/τ = poly(log p) and then one can easily show
that the function fu(λ) = Bk(λu mod p) is τ -concentrated for every u ∈ F

×
p .

	Hardness of Computing Individual Bits for Pairing-based One-way Functions

