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Abstract. Higher-order side channel attacks is a class of powerful tech-
niques against cryptographic implementations. Their complexity grows
exponentially with the order, but for small orders (e.g. 2 and 3) recent
studies have demonstrated that they pose a serious threat in practice.
In this context, it is today of great importance to design software coun-
termeasures enabling to counteract higher-order side channel attacks for
any arbitrary chosen order. At CHES 2010, Rivain and Prouff have in-
troduced such a countermeasure for the AES. It works for any arbitrary
chosen order and benefits from a formal resistance proof. Until now,
it was the single one with such assets. By generalizing at any order a
countermeasure introduced at ACNS 2010 by Genelle et al. , we propose
in this paper an alternative to Rivain and Prouff’s solution. The new
scheme can also be proven secure at any order and has the advantage of
being at least 2 times more efficient than the existing solutions for orders
2 and 3, while maintaining the RAM consumption lower than 200 bytes.

1 Introduction

In the late nineties, attacks called Side Channel Analysis (SCA for short) have
been exhibited against cryptosystems implemented in embedded devices. Since
then, they have been refined and, in particular, their initial principle has been
generalized in order to exploit several leakage points simultaneously. This led
to the introduction of the higher-order SCA concept, which exploit leakage ob-
servations resulting from the handling of several intermediate variables during
the cryptosystem processing. One way to make them ineffective at order d is
to randomize the algorithm such that the probability distribution of any vector
of d observations is independent of the key. To perform this randomization, a
standard technique is based on secret sharing [21] and is often called masking in
the context of side channel analysis. We talk about additive (resp. multiplicative)
masking when any value is expressed as a sum (resp. product) of shares.

As side channel attacks, masking can be characterized by the number of
random shares per variable. This number is called the masking order. A dth-
order masking can always be theoretically defeated by a (d+1)th-order SCA, but



noise effects imply that the difficulty of carrying out such an attack in practice
increases exponentially with its order [3,20]. For this reason, the masking order
is today a well accepted security criterion and many works have studied how
to apply dth-order masking to protect any kind of cryptosystem at any order
d. In particular, block cipher software implementations have been a privileged
target either to demonstrate the efficiency of an attack [14] or to argue on the
effectiveness of a countermeasure [4, 6, 15, 18, 19]. It is actually a matter of fact
that any improvement of an attack against, or a countermeasure for, a standard
block cipher such as AES has an important and direct impact on the (public or
military) embedded security industry.

1.1 Related Works

Protecting a block cipher software implementation by masking at any order d

reveals some issues which are very close to those tackled out in the Multi-Party

Computation or Private Circuits area [2,5]. The main difficulty lies in performing
all the algorithm steps by manipulating the shares separately, while being able
to re-build the expected result. As we will see, non-linear layers – crucial for the
block cipher security – are particularly difficult to protect. Only a few proposals
have been made regarding this issue in the context of embedded security. For
d = 2, there only exist three methods that perfectly thwart 2O-SCA [18–20].
For d > 2, several methods have been proposed [19, 20], but except [19] all
those attempts have been shown to be flawed, which has raised the need for
solutions with formal resistance proof. Solution in [19], which is dedicated to the
AES, benefits from such a proof and, when applied for d = 2, it is much more
efficient than [20] and [18]. However, the time efficiency is still low (around 200 K-
cycles in a classical smart card 8-bit architecture) and, even, becomes prohibitive
when d = 3 (greater than 300 K-cycles). Alternative solutions are therefore
missing, which would have equivalent security but would be more efficient. It is
all the more important that second and third order SCA have been substantially
improved during the last years and have even been successfully put into practice
[11, 13, 14, 17, 23].

1.2 Our Results

In this paper, we are interested in masking to the order d, block ciphers whose
design involves affine operations and power functions defined on a finite field.
The classic strategy is to mask the message additively and to calculate the
masks propagation through the various transformations. While calculating the
propagation of additive masks through affine operations is easy, this is no longer
the case for the power functions. The approach proposed in [19] is to express
a power function in terms of squares and multiplications. The computation of
the propagation of the additive masks through a multiplication requires little
memory and can be managed regardless of the order d. However, this step is
very time consuming (quadratic in the order d). A natural idea to achieve better



performance is to mask affine functions additively and power functions multi-
plicatively. In this case, the calculation of the masks spreading is fast and requires
little memory. When applied at order d, the only potentially costly part lies in
the conversion of additives masks into multiplicative ones (and vice versa) since
this conversion must be done without manipulating d-tuple of shares dependent
on sensitive data. This strategy has already been followed to define implementa-
tions with assumed security at order d = 1 [1,9,22]. Unfortunately, none of them
was perfectly thwarting first-order SCA and, even, [1] and [22] were shown to be
flawed. Finally, Genelle et al. have proposed in [7] a satisfactory solution with
formal security proof and good performances. This is an encouraging step but
the extension of [7] to any order poses several problems. Firstly, it requires to
calculate a Dirac function in a secure manner w.r.t. higher-order SCA. Secondly,
it implies to generalize the conversion functions that map additive maskings
into multiplicative ones and conversely. In a recent work, the authors of [8] have
solved the first issue efficiently. In this paper, we solve the second one and we
prove the security of our proposal. Having solved the two issues related to the
generalization of Genelle et al. ’s work at any order, we are now able to design
a masking scheme for any block cipher combining affine transformations and
power functions. When applied to secure the software implementation of the
AES at order d = 2 (resp. d = 3), we achieve a time efficiency around 70K cycles
(resp. 180K cycles) at the cost of a RAM memory consumption lower than 200
bytes in both cases. Since this amount of RAM is almost always acceptable in the
nowadays embedded systems, this secure AES implementation is, to the best of
our knowledge, the first one that makes 2nd and 3rd order security achievable,
even in very constraint contexts.

1.3 Road Map

In Sect. 2, we first introduce a few basics and notations related to the additive
and multiplicative maskings in finite fields. Then, in Sect. 3 we present the core
principle of our approach, we recall how the computation of a Dirac function
can be secured at any order d and we present two new conversion algorithms
enabling to securely convert an additive masking into a multiplicative one and
conversely. Eventually, in Sect. 4 we apply our masking scheme to the AES and
compare its efficiency with that of the state of the art solutions.

2 Basics and Notations

2.1 Notations

The bit-length of the elements involved in the algorithmic description of the
cryptosystem will be denoted by n. By default, any variables in this paper are
assumed to be in a vector space of some dimension m over GF(2n). The field ad-
dition in GF(2n) is denoted by ⊕ and the field multiplication by ⊗. To operate on
elements of GF(2n)m, the two previous laws are extended: the addition continues



to be a bitwise addition and the multiplication between two vectors in GF(2n)m

corresponds to the componentwise product. For two vectors (x1, . . . , xm) and
(y1, . . . , ym) in GF(2n)m, the result of the latter product is a vector (z1, . . . , zm)
in GF(2n)m whose coordinates satisfy zi = xi ⊗ yi. The inverse of an element
(x1, . . . , xm) ∈ (GF(2n)⋆)m for the componentwise product will be simply de-
fined as the vector (x−1

1 , . . . , x−1
m ), where for every i, x−1

i is the inverse of xi for
the multiplicative law ⊗ of GF(2n)⋆. For convenience, we will keep the notations
⊕ and −1 for the extensions of the field operations ⊕ and −1. On the other
hand and to avoid any ambiguity, we will denote by

.
⊗ the extension of the field

operations ⊗ into a componentwise multiplication. To differentiate vectors in
GF(2n)m from elements of GF(2n), we shall write the vector in bold. Namely,
by convention x shall denote a vector in GF(2n)m, whereas x shall denote an
element of GF(2n).

2.2 Basics on Masking

When higher-order masking is involved to secure the physical implementation
of a cryptographic algorithm, every sensitive variable x occurring during the
computation is randomly split into d + 1 shares x0, . . . , xd in such a way that
the following relation is satisfied for a group operation ⊥:

x0 ⊥ x−1
1 ⊥ . . . ⊥ x−1

d = x , (1)

where, xi
−1 denotes the inverse of xi w.r.t. to ⊥.

Usually, the d shares x1, . . . , xd (called the masks) are randomly picked up
and the last one x0 is processed such that (1) is satisfied. When d random masks
are involved per sensitive variable, the masking is said to be of order d. The
so-called additive masking assumes that ⊥ is the addition ⊕ in GF(2n)m. In
this case, we have x−1

i = xi for every i. The (d + 1)-tuple (x0, . . . ,xd) is called
a (d + 1)-additive sharing of x and the transformation (x, (xi)i>1) 7→ x0 =
x⊕x1 ⊕ . . .⊕xd is called dth-order additive masking. In multiplicative masking,
the operation ⊥ is the componentwise product

.
⊗ in the group (GF(2n)⋆)m. The

(d + 1)-tuple (x0, . . . ,xd) is called (d + 1)-multiplicative sharing of x and the

transformation (x, (xi)i>1) 7→ x0 = x
.
⊗x1

.
⊗. . .

.
⊗xd is the dth-order multiplicative

masking of x. Note that the multiplicative masking is only defined for vectors x
with only non-zero coordinates. In what follows, we shall simply say masking if
there is no ambiguity on the nature of the operation or if the text is applicable
for the two kinds of maskings.

When dth-order masking is involved to secure an implementation composed
of elementary transformations in the form y ← Op(x), a so-called dth-order

masking scheme must be designed to replace them by new transformations taking
at input a sharing (x0, . . . ,xd) of x and returning a sharing (y0, . . . ,yd) of y.
The dth-order security of such a design holds if and only if it can be proved
that every d-tuple of manipulated intermediate results during the computation
is independent of any sensitive variable of the implementation (including x and
y).



3 Higher-Order Masking

We formally define a block cipher as a cryptographic algorithm that transforms
a plaintext block into a ciphertext block from a secret key. The transformation
is done by operating several elementary operations on a so-called internal state,
viewed as a vector in GF(2n)m and initially filled with the plaintext. In this
section, we show how to secure at any order d a block cipher composed of trans-
formations Op that are either affine or are bijective power functions defined w.r.t.
to the same field operation laws ⊕ and ⊗ over GF(2n). Affine transformations
will be assumed to be defined over the vector space GF(2n)m. Power functions
will be assumed to operate on a vector in GF(2n)m coordinate by coordinate.

3.1 Core Idea.

As usually done when applying masking, each calculation y← Op(x) is replaced
by a sequence of elementary calculations that securely construct a (d+1)-sharing
(y0, . . . ,yd) of y from the (d + 1)-sharing (x0, . . . ,xd) of x. To define those se-
quences of elementary operations we use the fact that linear transformations
are automorphisms of (GF(2n)m,⊕), while bijective power functions are auto-

morphisms of (GF(2n)m,
.
⊗). Hence, depending of its (affine or multiplicative)

nature, we involve either an additive or a multiplicative sharing of the internal
state to secure the operation Op.

Affine Transformations processing. If Op is a linear transformation defined over
GF(2n)m, then the sensitive variable x is assumed to be represented by a (d+1)-
additive sharing (x0, . . . ,xd). In this case, securing the calculation y ← Op(x)
simply consists in replacing it by d+1 applications of Op, one for each share xi.
After denoting by yi the value Op(xi), we have

⊕d

j=0 yj = y. We conclude that
(y0, . . . ,yd) is a (d + 1)-sharing of y. Moreover, it is obvious that no d-tuple of
intermediate data is sensitive during this processing. For affine transformations
the processing is done similarly, except for d even where only the linear part of
Op is applied to the last share xd.

Power Functions processing. If Op is a power function over GF(2n)m, then the
sensitive variable x is assumed to be non-zero and represented by a (d + 1)-
multiplicative sharing (z0, . . . , zd). In this case, y ← Op(x) is simply replaced
by d + 1 elementary calculations of Op, one on each multiplicative share zi.

This results in d + 1 shares yi = Op(zi) that satisfy y0

.
⊗

.
⊗

d

j=1y
−1
j = y and

are thus a (d + 1)-multiplicative sharing of y. It can be easily checked that ev-
ery d-tuple of intermediate variables involved in the processing is independent
of any sensitive variable, since all the zi (and yi) are manipulated independently.

The application of the most appropriate masking for each elementary oper-
ation enables to efficiently secure each (affine or non-linear) layer of the block
cipher. Nevertheless, the mix of additive and multiplicative maskings arises the
two following issues:



Issue 1: the proposed power functions processing involves multiplicative shar-
ings and the latter ones can only be defined for an element x in (GF(2n)⋆)m,
whereas the block cipher internal state is defined in GF(2n)m. A dth-order
secure scheme for the mapping of an element of GF(2n)m into an element
of (GF(2n)⋆)m (and vice versa) must therefore be defined. Moreover, the
mapping must be reversible at any time during the block cipher processing.

Issue 2: since affine functions and power functions are processed alternatively,
special transformations must be defined to convert additive sharings into
multiplicative ones and conversely. Moreover those transformations must
themselves be dth-order secure to not decrease the overall security of the
block cipher implementation.

The first issue has been solved in [8]. We give in Sect. 3.2 the outlines of the
solution that essentially relies on the secure processing of a Dirac function. The
second issue is tackled out in Sect. 3.3, where we propose two algorithms that
transform an additive masking (AM for short) into a multiplicative masking (MM
for short) and conversely. All those transformations are eventually combined in
Sect. 3.4 to secure a block cipher round transformation according to the following
diagram.

Linear Op

Linear Op GF(2n∗)m 7→ GF(2n)m

GF(2n)m 7→ GF(2n∗)m

Power Op

AM to MM

MM to AM

Additively masked

Additively masked

Multiplicatively masked

3.2 Issue 1: Mapping Elements of GF(2n)m Into (GF(2n)⋆)m

The solution of Issue 1 proposed in [8] consists in transforming any zero value
into a non-zero one, keeping track of this modification if applied. Let us denote
by δ0 the Dirac function defined in GF(2n) by δ0(x) = 1 if x = 0 and δ0(x) = 0
otherwise. To map any x ∈ GF(2n) into GF(2n)⋆, the element is simply added
with its dirac value δ0(x). After extending the Dirac function to GF(2n)m by
setting δ(x) = (δ(x0), . . . , δ(xm−1)), we get a function x 7→ x⊕δ(x) mapping any
element of GF(2n)m into an element of (GF(2n)⋆)m. To secure the processing
of the latter transformation against dth-order SCA, the vector x is represented
by a (d + 1)-additive sharing (x0, . . . ,xd) and a secure processing is applied to
output an additive sharing (∆0, . . . , ∆d) of δ(x). The details of the processing,



as long a proof of its security against dth-order SCA are given in [8]. We call this
processing SecDirac in the following.

3.3 Issue 2: Conversion Functions.

In this section, we show how to build dth-order secure transformations passing
from the (d + 1)-additive sharing (x0, . . . ,xd) of x ∈ (GF(2n)⋆)m to its (d +
1)-multiplicative sharing (z0, . . . , zd) and conversely. These transformations are
respectively called AMtoMM(·) and MMtoAM(·) and act as follows:

– AMtoMM(x⊕
⊕d

i=1
xi,x1, . . . ,xd)→ (x

.
⊗

.
⊗

d

i=1zi, z1, . . . , zd),

– MMtoAM(x
.
⊗

.
⊗

d

i=1zi, z1, . . . , zd)→ (x⊕
⊕d

i=1
xi,x1, . . . ,xd).

To process the AMtoMM transformation, the general strategy developed here-
after consists in converting sequentially each additive mask of x into a multiplica-
tive one. To preserve the security order of the scheme at each step, an additive
mask is added to the multiplicatively masked representation of x prior to remove
one of the remaining multiplicative masks. The strategy followed for the MMtoAM
is exactly the same, except that the roles of the additive and multiplicative masks
are reversed.

In the hereafter detailed descriptions of the transformations we will use three
ordered sets SMV , SAM and SMM that will be respectively dedicated to the
storage of the masked value, the additive shares and the multiplicatives shares.

At the beginning of the AMtoMM processing, let us associate the (d+1)-additive
sharing (x0, . . . ,xd) of x with the sets SMV = {x0}, SAM = {x1, . . . ,xd} and
SMM = ∅. The conversion of the (d + 1)-additive sharing to a multiplicative one
(z0, . . . , zd) may be viewed as a sequence of updatings of those three sets such
that, at the end, SMV = {z0}, SAM = ∅ and SMM = {z1, . . . , zd}. To perform
such a conversion, the following treatment is repeated for every i ∈ [1; d]:

1. Masking multiplicatively the element in SMV and all the shares in SAM by
zi.

2. Inserting the multiplicative mask zi at the end of SMM .

3. Removing the first element of SAM and adding this value to the masked
value in SMV .

For the MMtoAM method, the (d + 1)-multiplicative sharing (z0, . . . , zd) of x
is associated with the sets SMV = {z0}, SMM = {z1, . . . , zd} and SAM = ∅ and
the conversion consists in repeating the following treatment for every i ∈ [1; d]:

1. Masking additively the element of SMV with xi.

2. Inserting the mask xi at the end of SAM .

3. Removing the first component, i.e. zi, of SMM and multiplying by z−1
i the

element of SMV and all the additive shares in SAM .



This straightforward strategy is dth-order secure when d = 1 or d = 2 but not
when d is higher. Indeed, it can be observed that the process of AMtoMM (resp.

MMtoAM) leads to the computation of the value xd

.
⊗

.
⊗

d

i=1zi (resp. x1

.
⊗

.
⊗

d

i=1z
−1
i ).

Hence, if xd 6= 0 (resp. x1 6= 0), then the secret value x may be recovered from

xd, xd

.
⊗

.
⊗

d

i=1zi and x
.
⊗

.
⊗

d

i=1zi (resp. x1, x1

.
⊗

.
⊗

d

i=1z
−1
i and x

.
⊗

.
⊗

d

i=1zi).
In both cases, this means that 3 shares are sufficient to recover x which implies
that the straightforward schemes are never 3rd-order secure.

In order to solve this issue, we slightly modify our approach. In place of the
third step in the sequence related to AMtoMM, we mask at order 1 all the shares
in SAM with new fresh random values, except for the last share which stays
unchanged. We remove all those elements from SAM and we add them to the
element in SMV . Finally, we insert all the new fresh random masks into SAM .
For the MMtoAM transformation, we do not replace the third step of the sequence
and instead, we add a fourth step during which all the shares in SAM are masked
at order 1 with new fresh random values. We remove then all those values from
SAM and we add them to the element in SMV . Finally, we insert all the new
fresh random masks into SAM .

We present in Alg. 1 the sequence of the different steps required for the
conversion of an additive masking into a multiplicative one.

Algorithm 1. Secure AMtoMM(·)

Input(s): A (d + 1)-additive sharing (x0, . . . ,xd) of x

Output(s): A (d + 1)-multiplicative sharing (z0, . . . , zd) of x

1. z0 ← x0

2. for i = 1 to d do

2.1. zi ← rand((GF(2n)⋆)m)

2.2. z0 ← z0

.

⊗ zi

2.3. for j = 1 to d− i do

2.3.1. U ← rand(GF(2n)m)

2.3.2. xj ← zi

.

⊗ xj

∗∗ Refreshing of the additive share

2.3.3. xj ← xj ⊕ U

2.3.4. z0 ← z0 ⊕ xj

2.3.5. xj ← U

2.4. xd−i+1 ← zi

.

⊗ xd−i+1

2.5. z0 ← z0 ⊕ xd−i+1

3. return (z0, z1, . . . , zd)

Alg. 2 describes the different steps to convert a multiplicative sharing into
an additive one.



Algorithm 2. Secure MMtoAM(·)

Input(s): A (d + 1)-multiplicative sharing (z0, . . . , zd) of x

Output(s): A (d + 1)-additive sharing (x0, . . . ,xd) of x

1. x0 ← z0

2. for i = 1 to d do

2.1. xi ← rand(GF(2n)m)

2.2. x0 ← x0 ⊕ xi

2.3. x0 ← x0

.

⊗ z−1

i

2.4. for j = 1 to i do

2.4.1. xj ← xj

.

⊗ z−1

i

2.4.2. U ← rand(GF(2n)m)

∗∗ Refreshing of the additive share

2.4.3. xj ← xj ⊕ U

2.4.4. x0 ← x0 ⊕ xj

2.4.5. xj ← U

3. return (x0,x1, . . . ,xd)

Remark 1. The security of AMtoMM and MMtoAM algorithms is not affected if ad-
ditive masks are not refreshed during the two first steps. This optimization was
not presented for the sake of clarity. Also, in our application (see Sect. 4), we
will only handle the inverse of the multiplicative shares (z1, . . . , zd). Therefore,
AMtoMM and MMtoAM can be input with (z0, z

−1
1 , . . . , z−1

d ) instead of (z0, . . . , zd),
so that the inverse of the zi does not need to be computed inside the algorithms.

The following proposition states the completeness of AMtoMM and MMtoAM al-
gorithms.

Proposition 1 (Completeness). If (x0, . . . ,xd) is a (d+1)-additive sharing of

x, then algorithm AMtoMM(x0, . . . ,xd) outputs a (d + 1)-multiplicative sharing of

x. If (z0, . . . , zd) is a (d+1)-multiplicative sharing of x, then MMtoAM(z0, . . . , zd)
outputs a (d + 1)-additive sharing of x.

Proof. The proof is given in Appendix A.

In the following proposition we prove that the processings of AMtoMM and
MMtoAM are dth-order secure, meaning that they perfectly thwart dth-order SCA.

Proposition 2 (Security). AMtoMM(·) and MMtoAM(·) are dth-secure.

Proof. The proof is given in Appendix B.



3.4 Full scheme.

In this section we apply the principle presented in Sect. 3.1 and the functions
introduced in Sect(s) 3.2 and 3.3 to secure the processing of a block cipher
round. We assume that this round is parameterized by a secret round key
k ∈ GF(2n)m and operates a transformation of the form λ′ ◦ γ ◦λ on an internal
state x ∈ GF(2n)m. Functions λ and λ′ are assumed to be automorphisms of

(GF(2n)m,⊕) and function γ is assumed to be an automorphism of (GF(2n)m,
.
⊗)

(e.g. a transformation processing bijective power functions – not necessarily the
same – to the n-bit coordinates of the input vector). In the following algorithm,
we assume that the round key k ∈ GF(2n)m and the internal state x ∈ GF(2n)m

have been previously additively shared into (k0, . . . ,kd) and (x0, . . . ,xd) respec-
tively. In the right-hand column of the following algorithm description, we added
an expression of the form · ← · to explicit to which variable (on the left) relies
the sharing (on the right).

Algorithm 3. dth-order secure processing of λ′ ◦ γ ◦ λ(x⊕ k)

Input(s): A (d + 1)-additive sharing (k0, . . . ,kd) of k and a (d + 1)-additive sharing
(x0, . . . ,xd) of x

Output(s): A (d + 1)-additive sharing (x0, . . . ,xd) of x = λ ◦ γ ◦ λ′(x⊕ k)

∗∗ Secure processing of the round-key addition

1. for i = 0 to d do

xi ← xi ⊕ ki

[x⊕ k← (x0, . . . ,xd)]
∗∗ Secure processing of λ

2. for i = 0 to d do

xi ← λ(xi)

[λ(x⊕ k)← (x0, . . . ,xd)]
∗∗ Secure mapping from GF(2n)m into (GF(2n)⋆)m

∗∗ The (d + 1)-additive sharing (∆0, . . . , ∆d) of δ(x⊕ k) is saved in memory

3. (x0, . . . ,xd)← SecDirac(x0, . . . ,xd)

[λ(x⊕ k)⊕ δ(λ(x⊕ k))← (x0, . . . ,xd)]
∗∗ Secure conversion of the additive masking into a multiplicative one

4. (z0, . . . , zd)← AMtoMM(x0, . . . ,xd)

[λ(x⊕ k)⊕ δ(λ(x⊕ k))← (z0, . . . , zd)]
∗∗ Secure processing of γ

5. z0 ← γ(z0)

6. for i = 1 to d do

zi ← γ(zi)

[γ ◦ λ(x⊕ k)⊕ δ(λ(x⊕ k))← (z0, . . . , zd)]
∗∗ Secure conversion of the multiplicative masking into an additive one

7. (x0, . . . ,xd)← MMtoAM(z0, . . . , zd)

[γ ◦ λ(x⊕ k)⊕ δ(λ(x⊕ k))← (x0, . . . ,xd)]
∗∗ Secure mapping from (GF(2n)⋆)m into GF(2n)m

8. for i = 0 to d do



xi ← xi ⊕∆i

[γ ◦ λ(x⊕ k)← (x0, . . . ,xd)]
∗∗ Secure processing of λ′

9. for i = 0 to d do

xi ← λ′(xi)

[λ′ ◦ γ ◦ λ(x⊕ k)← (x0, . . . ,xd)]

10. return (x0, . . . ,xd)

Completeness Steps 1 and 2 process linear operations/transformations. They
have been specified according to the Affine Transformations processing described
in Sect. 3.1. Namely, each elementary transformation is processed to each share
separately and the completeness holds thanks to the linearity of λ (namely
⊕d

i=0 λ(xi) = λ(x)). Step 3 securely transforms the (d + 1)-additive sharing
of λ(x ⊕ k) into a (d + 1)-additive sharing of λ(x ⊕ k) ⊕ δ(λ(x ⊕ k)) and the
(d + 1)-additive sharing (∆0, . . . , ∆d) of δ(λ(x ⊕ k)) is reserved for future use
(at Step 8). Then, the additive masking (x0, . . . ,xd) of λ(x ⊕ k) ⊕ δ(λ(x ⊕ k))
is converted into a multiplicative one (z0, . . . , zd). Since λ(x⊕ k)⊕ δ(λ(x⊕ k))
is now masked multiplicatively, the computation of γ(λ(x ⊕ k) ⊕ δ(λ(x ⊕ k)))
is simply performed by applying γ to each multiplicative share zi. After Step 6,
(z0, . . . , zd) is a multiplicative sharing of γ(λ(x ⊕ k) ⊕ δ(λ(x ⊕ k))), that is a
multiplicative sharing of γ(λ(x⊕ k))⊕ δ(λ(x⊕k)) since γ maps any coordinate
of x ∈ GF(2n)m into 0 if it equals 0 and into 1 if it equals 1. The multiplicative
sharing is hence transformed into an additive one at Step 7. Eventually at Step
8, the additive sharing (∆0, . . . , ∆d) of δ(λ(x ⊕ k)) is added to get the additive
sharing of γ(λ(x ⊕ k)). Step 9 updates the additive sharing to take the linear
transformation λ′ into account, which results in the expected additive sharing
of λ′(γ(λ(x ⊕ k))).

Security The security of Alg. 3 w.r.t. dth-order SCA can be deduced from the
local resistance of its main steps. Steps 1, 2, 5-6, 8 and 9 operate a transforma-
tion or an operation on each share of the (d + 1)-sharing of the internal state
independently. They are therefore secure against dth-order SCA. The security
of SecDirac has been proved in [8] and is a direct consequence of the security
proof in [10]. Eventually, transformations AMtoMM and MMtoAM have been proved
to be secure against dth-order SCA in Sect. 3.3. We deduce that Alg. 3 thwarts
dth-order SCA for any d.

Complexity We list in Tables 1 and 2 the complexity of Alg. 3 in terms of
the following elementary operations: (n, n)-matrix transpositions M⊺ required
for the secure Dirac computation (see [8]), n-bit operations AND, XOR and ⊗ and
transformations λ, γ and λ′ over GF(2n)m. To have interpretable results we con-
sider separately the operations related to: (1) the secure mapping from GF(2n)m

to (GF(2n)⋆)m (i.e. SecDirac), (2) the conversion functions (Algorithms 1 and



2) and (3) the remaining transformations in Alg. 3 (right-hand column of Table
2).

Table 1. Complexity of Algorithm SecDirac.

Order SecDirac

M⊺
XOR AND

1 2m/n 28m/n + 2m 28m/n
2 3m/n 84m/n + 3m 63m/n
3 4m/n 168m/n + 4m 112m/n
d (d + 1)m/n (14d + n)(d + 1)m/n 7(d + 1)2m/n

Table 2. Complexity of the masking conversions and Algorithm 3.

Order AMtoMM MMtoAM Algorithm 3

XOR ⊗ XOR ⊗ λ γ λ′
XOR

1 m 2m 3m 2m 2 2 2 4m
2 4m 5m 8m 5m 3 3 3 6m
3 9m 9m 15m 9m 4 4 4 8m
d md2 md

2
(3 + d) md(2 + d) md

2
(3 + d) d + 1 d + 1 d + 1 2m(d + 1)

Remark 2. For our implementations reported in Sect. 4 (in this case we had
m = 16 and n = 8), we experimented that the cost of the n-bit operations
XOR and AND was equal to 1 clock cycle. The cost of ⊗ was equal to 22 and
that of M⊺ was equal to 148. Moreover, we implemented the functions λ, λ′ and
γ thanks to ROM lookup tables and hence, each computation costed around m

clock cycles (considering that one table access costs one clock cycle).

As it can be checked in Table 2, the complexity of the secure processing of the
non-linear function γ (Steps 3 to 8 in Alg. 3) essentially corresponds to the sum
of the complexities of SecDirac and Algorithms AMtoMM and MMtoAM. Neglecting
the cost of the matrix transposition and assuming m = 16 and n = 8 (as it is the
case for the AES), our secure processing of γ requires 74d2+104d+30 operations3

XOR or AND and 16d2 +48d operations ⊗. For comparison, the cost of Rivain and
Prouff’s solution [19] to secure the AES non-linear layer (which corresponds
to our transformation γ) is 128d2 + 192d operations XOR and 64d2 + 128d + 64
operations ⊗, neglecting the cost of the look-up table accesses. In view of the two

3 The two operations are considered globally since they have the same cost.



costs above, our solution is clearly more efficient than that in [19]. In particular,
the number of operations ⊗ is divided by around 4, which is an important
improvement considering that the latter operation is costly (around 20 times
more costly than a XOR or a AND).

4 Application to the AES

The AES-128 is a cryptosystem that iterates 10 times a same round transfor-
mation on a 16-bytes internal state initially filled with the plaintext (i.e. pa-
rameters n and m in Sect. 3.4 equal here 8 and 16 respectively). The round
is composed of a key addition AddRoundKey, a nonlinear layer SubBytes which
applies the same substitution-box (s-box) to every byte of the internal state and
linear transformations ShiftRows and MixColumns. The s-box is defined as the
left-composition of a linear transformation λA over GF(256) with the power
function f : x ∈ GF(256) 7→ x254 ∈ GF(256), followed by the addition of a con-
stant term. The SubBytes transformation can thus also be represented as the left
composition of the two transformations A = (λA, . . . , λA) and Inv = (f, . . . , f),
both defining a componentwise transformation of the internal state, followed
by the bitwise addition of a constant term c ∈ GF(2n)m. While A, ShiftRows
and MixColumns are automorphisms of (GF(2n)m,⊕), the transformation Inv

defines an automorphism of (GF(2n)⋆)m,
.
⊗). In view of this description, it is

clear that the AES round can be rewritten as a composition of transformations
satisfying the assumptions done in the introduction of Sect. 3: λ is defined as
the identity function over GF(2n)m, γ is the function Inv and λ′ is the function
MixColumns ◦ ShiftRows ◦ A. The masking scheme presented in Sect. 3.4 can
thus be applied to protect the AES rounds.

In this section, we compare the efficiency of our proposal with that of the
state of the art solutions when applied to secure the AES. All the implementa-
tions presented below involve the same code to process the linear transformations
λ′ and AddRoundKey. Namely, we use a (d + 1)-additive masking such as pre-
sented previously in this article. We chose to protect all the rounds of the AES
processing. To secure the γ transformation, we chose to select few methods from
the literature for d = {1, 2, 3}. In what follows, we give details on the methods
we chose in each category.

For d = 1, we selected four methods. First we chose the table re-computation

method [12] since it achieves the best timing performance. The second chosen
method is the tower field method [15], which offers the best memory perfor-
mance. Then, since the work of this paper is the generalization of the 1st-order
multiplicative masking scheme proposed in [7], we implemented it as well. Even-
tually, we chose to implement the dth-order SCA secure scheme proposed in [19].
Though it is less efficient than the others for d = 1, choosing it enables to com-
pare our proposal with another method which can be applied generally for any
order d.



For d = 2, only few methods exist that are perfectly SCA secure. Actually,
only the works [20], [18] and [19] propose such kind of schemes. We chose to
implement all of them.

For d = 3, only [19] proposes a solution in this category.

Table 3 lists the timing/memory performances of the different implementa-
tions. We wrote the codes in assembly language for an 8051 based 8-bit architec-
ture with bit-addressable memory. RAM consumption related to implementation
choices (e.g. use of some local variables, use of pre-computed values to speed-up
some computations, etc.) are not taken into account in the performances report-
ing. Also, ROM consumptions (i.e. code sizes) are not listed since they are not
prohibitive for almost all current embedded devices. Eventually, cycles numbers
are multiple of 103.

Table 3. Comparison of secure AES implementations

Method Reference cycles (103) RAM (bytes)

Unprotected Implementation

1. No Masking Na. 2 32

First-Order Masking

2. Re-computation [12] 10 256

3. Tower Field in GF(22) [15,16] 77 42

4. Multiplicative Masking [7] 22 256

5. Secure exponentiation for d = 1 [19] 73 24

6. Our scheme for d = 1 This paper 25 50

Second-Order Masking

7. Double Re-computations [20] 594 512 + 28

8. Single Re-computation [18] 672 256 + 22

9. Secure exponentiation for d = 2 [19] 189 48

10. Our scheme for d = 2 This paper 69 86

Third-Order Masking

11. Secure exponentiation for d = 3 [19] 326 72

12. Our scheme for d = 3 This paper 180 128

Remark 3. For d = 1 (Implementations 2 to 5), improvements have been added
to the original proposals. They essentially amount to preprocess a part of the
masking material, which is possible since the latter one does not need to be
changed during the algorithm processing when only first-order SCA are consid-
ered.

We observe that only two methods achieve better timing performances than
our proposal and that this occurs only in the case d = 1. As expected, the re-



computation remains the most efficient method when 256 bytes of RAM are avail-
able. We can also note that the original countermeasure involving multiplicative
masking [7] stays better than our countermeasure (which merely generalizes it
at any order). The difference is due to the tabulation of the Dirac function used
in [7] which implies a faster processing than the algebraic implementation of
this function but at the cost of memory. Except those two particular cases, it
turns out that our proposal is the most efficient one: it is at least 2.9 times
faster for d = 1, 2 and 1.8 times faster for d = 3. Even if our scheme requires
more RAM than [19], the consumption stays lower than 200 bytes and is therefore
acceptable for almost all embedded systems (even the low cost ones).

Memory and timing performances of the solution [19] and those of our pro-
posal progress similarly as soon as the order increases. This is explained by the
fact that both methods use the same approach to thwart SCA, that is to re-
place each transformation calculation by a sequence of elementary calculations.
To secure them, the solution [19] involves additive maskings while our solution
mixes additive and multiplicative maskings. Memory allocation differences be-
tween the two methods are merely due to the fact that additional vectors are
required in our scheme since it involves more shares (multiplicative shares, dirac
shares, etc.). The differences of timing performances come from the fact that
solution [19] involve much more field multiplications than in our proposal (see
Tables 1 and 2).

5 Conclusion

In this paper, we have introduced a new higher-order masking scheme dedicated
to block ciphers mixing affine transformations with power functions. It is prov-
ably secure at any chosen order and can be implemented in software at the cost
of a reasonable overhead. In particular, it is an efficient alternative to [19] in or-
der secure the AES implementation at any order. For our construction, we have
introduced conversion functions that can securely transform an additive masking
into a multiplicative one. We think that those transformations could be inter-
esting as secure primitives in other contexts where security against higher-order
side channel attacks must be achieved and power functions are involved.
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A Proof of Proposition 1

Proof of Proposition 1. In the following we use · and
∏

in place of
.
⊗ and

.
⊗

to
simplify the notations and because there is no ambiguity. They both refer to the
componentwise product over GF(2n)m.

In what follows Si
MV ,Si

AM and Si
MM denote the state of the sets SMV , SAM

and SMM at the output of the loop i for i = 1 . . . d. By definition, S0
MV , S0

AM

and S0
MM are the states of the sets SMV , SAM and SMM at the input of the

algorithm. The uniform random variable U generated during the ith iteration of
the loop at Step 2 and the jth iteration of the loop at Step 2.3 of AMtoMM (resp.

at Step 2.4 of MMtoAM) will be denoted by U
(i)
i+j .

Let us prove the completeness of AMtoMM. By definition, U
(0)
j = xj for j =

1 . . . d. We claim that for i = 0 . . . d, we have:

Si
MV = {x ·

i
∏

j=1

zj ⊕
d
⊕

j=i+1

U
(i)
j }, S

i
AM = {U

(i)
i+1, . . . , U

(i)
d } (2)

and
Si

MM = {z1, . . . , zi} . (3)

For i = 0, we easily check that these sets are reduced to the sets associated to the
(d+1)-additive sharing (x0, . . . ,xd) of x, if we take into account the conventions



and the definitions. Let us now assume that (2) and (3) are satisfied for i and
let us prove that it is still valid for i+1. We first multiply the value of SMV and
the elements of SAM by zi+1 (resp. Step 2.2 and Step 2.3.2 in Alg. 1). Also, we
insert zi+1 into SMM . We get

Si
MV =









x ·
i
∏

j=1

zj ⊕
d
⊕

j=i+1

U
(i)
j



 · zi+1







,

Si
AM = {U

(i)
i+1 · zi+1, . . . , U

(i)
d · zi+1} ,

and
Si

MM = {z1, . . . , zi, zi+1} .

We mask the d− (i + 1) first shares of Si
AM with U

(i+1)
i+2 , U

(i+1)
i+3 , ..., and U

(i+1)
d

respectively (Step 2.3.3). We add all the elements of Si
AM to the element of SMV

(Step 2.3.4). Hence, we get:

Si
MV =









x ·
i
∏

j=1

zj ⊕
d
⊕

j=i+1

U
(i)
j



 · zi+1 ⊕
d−1
⊕

j=i+1

(U
(i)
j · zi+1 ⊕ U

(i+1)
j+1 )⊕ U

(i)
d · zi+1







,

that is

Si
MV = {x ·

i+1
∏

j=1

zj ⊕
d
⊕

j=i+2

U
(i+1)
j } .

Finally, we replace the elements of SAM with the masks U
(i+1)
i+2 , U

(i+1)
i+3 , ..., and

U
(i+1)
d (Step 2.3.5) and we get:

Si
MV = {x ·

i+1
∏

j=1

zj ⊕
d
⊕

j=i+2

U
(i+1)
j },

Si
AM = {U

(i+1)
i+2 , . . . , U

(i+1)
d }

and
Si

MM = {z1, . . . , zi, zi+1} .

This is exactly the definition of the sets Si+1
MV , Si+1

AM and Si+1
MM . Finally, it is not

hard to check that Sd
MV , Sd

AM and Sd
MM are the sets associated to the (d + 1)-

multiplicative sharing (z0, . . . , zd) of x. The proof of the completeness of the
algorithm MMtoAM is similar. ⋄

B Proof of Proposition 2

Proof of Proposition 2.

In this proof, we use the notations introduced in Appendix A. We moreover
add the notation Si,j

MV to denote the set containing the value of the masked



variable (z0) after the jth iteration of the loop at Step 2.3 at the ith iteration of
the loop at Step 2 of the Algorithm AMtoMM (it corresponds to the value of z0 after
Step 2.3.4). To prove the security of AMtoMM(·), we demonstrate by recurrence
that no d-tuple of intermediate variables during its processing depends on x.
With the notation introduced in the completeness proof, this is equivalent to
prove the following property that we call Property(d): no d-tuple of elements
in ∪0≤j≤dS

j
AM , ∪0≤j≤dS

j
MM and ∪0≤i,j≤dS

i,j
MV depends on x. In our recurrence

proof, we will show that Property(d) is trivially satisfied for d = 0. Then, we
will prove that if Property(ℓ) is satisfied, then so does Property(ℓ + 1).

At the beginning of the AMtoMM processing, the d additive shares x1, . . . , xd

of x and the masked variable x ⊕
⊕d

i=1 xi are manipulated. They correspond

respectively to the variables U
(0)
1 , . . . , U

(0)
d in the set S0

AM and to the initial
content of S0

MV . We hence have:

S0
AM = {U

(0)
1 , . . . , U

(0)
d }, S

0
MM = ∅ and S0

MV = {x⊕
d
⊕

i=1

U
(0)
i } .

Since (U
(0)
1 , . . . , U

(0)
d ,x ⊕

⊕d
i=1 U

(0)
i ) is a (d + 1)-sharing of x, Property(0) is

satisfied.
Let us now assume that Property(ℓ) is satisfied for ℓ ≥ 0 and let us prove

that it is still valid for ℓ + 1. During the (ℓ + 1)th processing of the loop at Step
2, the element of SMV and the elements of SAM are all multiplied by zℓ+1 (resp.
Step 2.2 and Step 2.3.2 in Alg. 1). Also, we insert zℓ+1 into SMM . We get

Sℓ
MV =

{(

x ·
ℓ
∏

i=1

zi ⊕
d−ℓ
⊕

i=1

U
(ℓ)
ℓ+i

)

· zℓ+1

}

,

Sℓ
AM = {U

(ℓ)
ℓ+1 · zℓ+1, . . . , U

(ℓ)
d · zℓ+1} ,

and

Sℓ
MM = {z1, . . . , zℓ, zℓ+1} .

Since zℓ+1 is new fresh random value independent of all the previously gener-
ated shares and since the multiplication by zℓ+1 is done on each share separately,

Property(ℓ) stays satisfied. After Step 2.3.3, some shares in S
(ℓ)
AM are masked

with new random values U
(ℓ+1)
ℓ+2 , U

(ℓ+1)
ℓ+3 , ..., and U

(ℓ+1)
d mutually independent on

{U
(t)
t+j; t ≤ ℓ, j ≤ d− t} and {zℓ}. Once again, Property(ℓ) stays trivially satisfied

and SAM became:

Sℓ
AM = {U

(ℓ)
ℓ+1 · zℓ+1 ⊕ U

(ℓ+1)
ℓ+2 , . . . , U

(ℓ)
d−1 · zℓ+1 ⊕ U

(ℓ+1)
d , U

(ℓ)
d · zℓ+1} .

During the jth processing of Step 2.3.4, the jth element of S
(ℓ)
AM is added to

Sℓ
MV , resulting in the following set Sℓ,j

MV :



Sℓ,j
MV = {(x ·

ℓ+1
∏

i=1

zi)⊕ (zℓ+1 ·
d−ℓ
⊕

i=j+1

U
(ℓ)
ℓ+i)⊕

j
⊕

i=1

U
(ℓ+1)
ℓ+1+i} .

In Sℓ,j
MV , the value (x ·

∏ℓ+1
i=1 zi) is (d − ℓ)th-order additively masked (recalling

that zℓ+1 is a random non-zero value). Since this level of additive masking was

assumed to be sufficient to protect (x ·
∏ℓ

j=1 zj in Sℓ
MV (by Property(ℓ)) and

since zℓ+1 is a fresh non-zero random value, Property(ℓ) stays satisfied after each

processing of a value Sℓ,j
MV for j ≤ d− ℓ.

Let us now check whether Property(ℓ) stays satisfied after the processing of
Step 2.5. After this step, we have:

Sℓ+1
MV = {(x ·

ℓ+1
∏

i=1

zi)⊕

d−(ℓ+1)
⊕

i=1

U
(ℓ+1)
ℓ+1+i} ,

and
Sℓ+1

AM = {U
(ℓ+1)
ℓ+2 , . . . , U

(ℓ+1)
d } .

Namely, the value x·
∏ℓ+1

j=1 zj is (d−ℓ−1)th-order additively masked, where the

masks U
(ℓ+1)
ℓ+i have always been manipulated separately. Since x and the zi are

all independent and non-zero, (x ·
∏ℓ+1

j=1 zi, z1, . . . zℓ+1) is a (ℓ+1)-multiplicative
sharing of x. The zi have always been manipulated separately and the refreshing

with the U
(ℓ+1)
ℓ+i ensures that no tuple of data in S

(ℓ)
AM depends an (z1, . . . , zℓ+1).

Eventually, this proves that x is still (d + 1)th-order shared (multiplicatively
and additively) which implies that Property(ℓ+1) is satisfied and concludes the
proof by recurrence.

The proof of the security of MMtoAM(·) is similar. ⋄


